|
|
max: a1x1 + a2x2 + ... + anxn // Objective function subject to:c11x1 + c12x2 + ... + c1nxn ≤ d1 // Constraints c21x1 + c22x2 + ... + c2nxn ≤ d2 .... cm1x1 + cm2x2 + ... + cmnxn ≤ dm x1 ≥ 0, x2 ≥ 0, ..., xn ≥ 0 |
Note:
|
|
|
|
|
The variable s1 is called a surplus variable
|
max: x1 + x2 s.t.: x1 + 2x2 ≤ 8 3x1 + 2x2 ≤ 12 x1 ≥ 0, x2 ≥ 0 |
max: z = x1 + x2 s.t.: x1 + 2x2 ≤ 8 3x1 + 2x2 ≤ 12 x1 ≥ 0, x2 ≥ 0 |
We want to maximize the variable x...
|
Notes:
|
|
|
|
|
Related: Non-basic variable:
|
Example:
x1 x2 s1 s2 z | RHS ==========================+==== -1 -1 0 0 1 | 0 1 2 1 0 0 | 8 3 2 0 1 0 | 12 Basic variables: s1 s2 z Non-basic variables: x1 x2 |
|
|
Example:
|
|
|
|
|
2 x1 + 4 x2 = 16 3 x1 + 2 x2 = 12 |
2 x1 + 4 x2 = 16 3 x1 + 2 x2 = 12 |
|
Example: divide the first equation by 2 (= multiply first equation by 0.5)
0.5 × (2 x1 + 4 x2) = 0.5 × 16 ==> x1 + 2 x2 = 8 |
|
Example: subtract 3 × the first equation from the second equation
x1 + 2 x2 = 8 (1) 3 x1 + 2 x2 = 12 (2) (2) ===> 3 x1 + 2 x2 = 12 3 x (1) ===> 3 x1 + 6 x2 = 24 - --------------------------- 0 x1 - 4 x2 = -12 |
|
|
|
The basic solution corresponding to the new Simplex Tableau is:
|
Note:
|
|
Example:
|
|
|
|
|
max: z = x1 + x2 s.t.: x1 + 2x2 ≤ 8 3x1 + 2x2 ≤ 12 x1 ≥ 0, x2 ≥ 0 |
Add surplus variables: z - x1 - x2 = 0 x1 + 2x2 + s1 = 8 3x1 + 2x2 + s2 = 12 |
This is the initial Simplex Tableau
|
|
Graphically:
|
|
Graphically:
|
DONE !!!
(Optimal solution found)