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Dual Simplex Algorithm
In the tableau implementation of the primal simplex algorithm, the right-hand-side
column is always nonnegative so the basic solution is feasible at every iteration.  For
purposes of this section, we will say that the basis for the tableau is primal feasible if all
elements of the right-hand side are nonnegative.  Alternatively, when some of the
elements are negative, we say that the basis is primal infeasible.  Up to this point we have
always been concerned with primal feasible bases.

For the primal simplex algorithm, some elements in row 0 will be negative until
the final iteration when the optimality conditions are satisfied.  In the event that all
elements of row 0 are nonnegative, we say that the associated basis is dual feasible.   
Alternatively, if some of the elements of row 0 are negative, we have a dual infeasible
basis.

As described, the primal simplex method works with primal feasible, but dual
infeasible (nonoptimal) bases.  At the final (optimal) solution, the basis is both primal and
dual feasible.  Throughout the process we maintain primal feasibility and drive toward
dual feasibility.

In this section, a variant of the primal approach, known as the dual simplex
method, is considered that works in just the opposite fashion.  Until the final iteration,
each basis examined is primal infeasible (some negative values on the right-hand side)
and dual feasible (all elements in row 0 are nonnegative).  At the final (optimal) iteration
the solution will be both primal and dual feasible.  Throughout the process we maintain
dual feasibility and drive toward primal feasibility.  For a given problem, both the primal
and dual simplex algorithms will terminate at the same solution but arrive there from
different directions.

The dual simplex algorithm is most suited for problems for which an initial dual
feasible solution is easily available.  It is particularly useful for reoptimizing a problem
after a constraint has been added or some parameters have been changed so that the
previously optimal basis is no longer feasible.

We will have much more to say about duality and the relationship between primal
and dual solutions in Chapter 5; however, in this section, we are principally concerned
with the mechanics of implementing the dual simplex method in the tableau format.  We
will see that the dual simplex algorithm is very similar to the primal simplex algorithm.

Algorithm

With reference to the tableau, the algorithm must begin with a basic
solution that is dual feasible so all the elements of row 0 must be
nonnnegative.  The iterative step of the primal simplex algorithm first
selects a variable to enter the basis and then finds the variable that must
leave so that primal feasibility is maintained.  The dual simplex method
does the opposite; it first selects a variable to leave the basis and then finds



Dual Simplex Algorithm 2

the variable that must enter the basis to maintain dual feasibility.  This is
the principal difference between the two methods.  The algorithm below
assumes a basic solution is described by a tableau.

Step 1 (Initialization)

Start with a dual feasible basis and let k = 1.  Create a tableau for this basis
in the simplex form.  If the right-hand side entries are all nonnegative, the
solution is primal feasible, so stop with the optimal solution.

Step 2 (Iteration k)

a. Select the leaving variable. Find a row, call it r, with a negative

right-hand-side constant; i.e., 
-
br < 0.  Let row r be the pivot row

and let the leaving variable be xB(r). A common rule for choosing r

is to select the most negative RHS value; i.e.,

-
br  =  min{

-
bi : i = 1, … , m}.

b. Determine the entering variable. For each negative coefficient in
the pivot row, compute the negative of the ratio between the
reduced cost in row 0 and the structural coefficient in row r.  If

there is no negative coefficient, -arj < 0, stop; there is no feasible

solution.

Let the column with the minimum ratio, designated by the
index s, be the pivot column; let xs is the entering variable.  The

pivot column is determined by the following ratio test.

– -cs

 -ars 
  =  min 







– -cj

 -arj 

 : -arj < 0,  j = 1, … , n 

c. Change the basis. Replace xB(r) by xs in the basis.  Create a new

tableau by performing the following operations (these are the same
as for the primal simplex algorithm).

Let -a
 
i be the vector of the ith row of the current tableau, and let

-a
new
i  be the ith row in the new tableau.  Let 

-
b

 
i be the RHS for row i

in the current tableau, and let 
-
b

new
i  be the RHS of the new tableau.

Let -a
 
is be the element in the ith row of the pivot column s.
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The pivot row in the new tableau is

-a
new
r  = -a

 
r / 

-a
 
rs  and  

-
b

new
r  = 

-
b

 
r  /

-a
 
rs.

The other rows in the new tableau are

-a
new
i  =  – -a

 
is × -a

new
r  + -a

 
i and

-
b

new
i  = 





– -a
 
is × 

-
b

new
r  + 

-
b

 
i  for i = 0, 1 , … , m,  i ≠ r

(These operations have the effect of pricing out the pivot column. Its
replacement will have a single 1 in row r and a zero in all other rows
as required by the simplex form.)

Step 3 (Feasibility test)

If all entries on the right-hand side are nonnegative the solution is primal
feasible, so stop with the optimal solution.  Otherwise, put k ← k +1 and

return to Step 2.

Examples

An Easy Dual Feasible Starting Solution

The simplest situation arises when there is an obvious dual feasible basis
that can be used to initialize the algorithm.  Consider the following
problem.

Maximize  z  = –5x1 – 35x2– 20x3

subject to x1 – x2 – x3  ≤ – 2

–x1 –3x2  ≤ – 3

x1 ≥ 0,  x2 ≥ 0,  x3 ≥ 0

Step 1: Adding slack variables x4 and x5, leads to the first tableau which is

primal infeasible but dual feasible.
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Coefficients
Row Basic RHS

0 1 5 35 20 0 0 0
1 0 1 -1 -1 1 0 -2
2 0 -1 -3 0 0 1 -3

x1z x2 x3 x4 x5

z

x4

x5

Iteration 1: Row 2 is selected as the pivot row so x5 leaves the basis.  The

ratio test indicates that x1 is to enter the basis.  The tableau shows the ratio

calculations.

Coefficients
Row Basic RHS

0 1 5 35 20 0 0 0
1 0 1 -1 -1 1 0 -2
2 0 -1 -3 0 0 1 -3

Ratio --- 5 11.67 --- --- ---

x1z x2 x3 x4 x5

z
x4

x5

After the pricing out operations  to obtain the simplex form for x1 we get
the following tableau. The feasibility test at Step 3 fails because the basis
is not yet primal feasible so we return to Step 2.  We show the row and
column selection steps for the next iteration.

Coefficients
Row Basic RHS

0 1 0 20 20 0 5 -15
1 0 0 -4 -1 1 1 -5
2 0 1 3 0 0 -1 3

Ratio --- --- 5 20 --- ---

x1z x2 x3 x4 x5

z
x4

x1

Iteration 2: Row 1 is selected as the pivot row so x4 leaves the basis and x2
enters.  This leads to the tableau below that still has a negative RHS value
so we return to Step 2.
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Coefficients
Row Basic RHS

0 1 0 0 15 5 10 -40
1 0 0 1 0.25 -0.25 -0.25 1.25
2 0 1 0 -0.75 0.75 -0.25 -0.75

Ratio --- --- --- 20 --- 40

x1z x2 x3 x4 x5

z

x1

x2

Iteration 3: Selecting row 2 as the pivot row, x1 leaves the basis and x3
enters.  The updated tableau given below is both primal and dual feasible
indicating that the optimal solution has been obtained.  The algorithm
terminates.

Coefficients
Row Basic RHS

0 1 20 0 0 20 5 -55
1 0 0.333 1 0 0 -0.33 1
2 0 -1.33 0 1 -1 0.333 1

x1z x2 x3 x4 x5

z
x2

x3

Restarting after Changing the Right-Hand-Side Constants

A primary use of the dual simplex algorithm is to reoptimize a problem
after it has been solved and one or more of the RHS constants is changed.
This is illustrated with the following problem.  The optimal tableau is also
shown with xs1, xs2, and xs3 as slacks.

Maximize  z = 2x1 + 3x2

subject to –x1 + x2 ≤   5

x1 + 3x2 ≤  35

x1 ≤  20

x1 ≥ 0,  x2 ≥ 0
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Coefficients
Row Basic RHS

0 1 0 0 0 1 1 55
1 0 0 1 0 0.33 -0.3 5
2 0 1 0 0 0 1 20
3 0 0 0 1 -0.3 1.33 20

x1z
z

x2

x2

x1

xs1 xs2 xs3

xs1

Changing the right-hand-side constants will only change the entries in the
last column of the tableau.  In particular, if we change b2 from 35 to 20

and b3 from 20 to 26 in the original problem statement, the RHS vector in

the above tableau for the current basis B becomes

xB = 
-
b = B–1bnew = 





–1 1 1

1 3 0
1 0 0

 

–1

 




5

20
26

  =  




26

–2
33

  with z =  46.

Consequently, when bnew =  (5, 20, 26)T replaces bold = (5, 35, 20)T, we
get the tableau below which is a candidate for the dual simplex algorithm.

Note that 
-
b2 appears in row 1 and 

-
b1 appears in row 2 in the tableau

because row 2 corresponds to x1 and row 1 to x2.

Coefficients
Row Basic RHS

0 1 0 0 0 1 1 55
1 0 0 1 0 0.33 -0.3 -2
2 0 1 0 0 0 1 26
3 0 0 0 1 -0.3 1.33 33

Ratio --- --- --- --- --- 3

x1z
z

x2

x2

x1

xs1

xs1

xs2 xs3

Changing the RHS values does not effect the reduced costs so the

entries in row 0 remain nonnegative; however, a negative value for 
-
b2

indicates that the basic solution is now infeasible.  It is clear from the
tableau that x2 will leave the basis and xs3 will enter at the next iteration.
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Coefficients
Row Basic RHS

0 1 0 3 0 2 0 40
1 0 0 -3 0 -1 1 6
2 0 1 3 0 1 0 20
3 0 0 4 1 1 0 25

x1z
z

x2

x1

xs1 xs2 xs3

xs3

xs1

Adding a Constraint

Using the previous problem, we now add the constraint x2 ≥ 10.  The

solution in the optimal tableau, x1 = 20 and x2 = 5, does not satisfy this

constraint, so action must be taken to incorporate it into the tableau.  First
we subtract a slack variable xs4 to get the equality

x2 – xs4 = 10

and then multiply it by –1 to achieve the correct form.  A row
corresponding to this constraint and a column corresponding to the slack
variable are added to the current tableau resulting in the modified tableau
below.

Coefficients
Row Basic RHS

0 1 0 0 0 1 1 0 55
1 0 0 1 0 0.333 -0.33 0 5
2 0 1 0 0 0 1 0 20
3 0 0 0 1 -0.33 1.333 0 20
4 0 0 -1 0 0 0 1 -10

xs1 xs2 xs3x1z x2 xs4

z
x2

x1

xs1

xs4

To regain the simplex form for column x2, we must add row 1 to

row 4.  Now the tableau is in the simplex form.
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Coefficients
Row Basic RHS

0 1 0 0 0 1 1 0 55
1 0 0 1 0 0.333 -0.33 0 5
2 0 1 0 0 0 1 0 20
3 0 0 0 1 -0.33 1.333 0 20
4 0 0 0 0 0.333 -0.33 1 -5

Ratio --- --- --- --- --- 3 ---

xs1 xs2 xs3x1z x2 xs4

z
x2

x1

xs1

xs4

As expected, the solution is dual feasible but not primal feasible.  The only
negative RHS value appears in row 4 so xs4 must leave the basis.  The

entering variable is xs3, the only candidate with a negative entry in the

pivot row.  The optimum tableau is shown below.

Coefficients
Row Basic RHS

0 1 0 0 0 2 0 3 40
1 0 0 1 0 0 0 -1 10
2 0 1 0 0 1 0 3 5
3 0 0 0 1 1 0 4 0
4 0 0 0 0 -1 1 -3 15

xs1 xs2 xs3x1z x2 xs4

z
x2

x1

xs1

xs3


