
7 Branch and Bound, and Dynamic Programming

7.1 Knapsack

An important combinatorial optimization problem is the Knapsack Problem, which can
be defined as follows:
Given nonnegative integers n, c1, . . . , cn, w1, . . . , wn and W . Find a subset S ⊆ {1, . . . , n}
such that

∑
i∈S wi ≤ W and

∑
i∈S ci is maximal.

In the standard formulation ci and wi are the costs and weight of item i, respectively, and
W is the capacity of the knapsack. The problem is to put items into the knapsack such
that the total weight does not exceed the capacity, and the total costs are maximal. The
above definition leads straightforwardly to the following ILP formulation:

Maximize
∑n

i=1 cixi

subject to
∑n

i=1 wixi ≤ W
0 ≤ xi ≤ 1 (i = 1, . . . , n)
xi integral (i = 1, . . . , n)

Here xi is a decision variable that gets value 1 if item i is in the knapsack, and 0 otherwise.
This ILP formulation of the knapsack problem has the advantage that it is very easy to
solve its LP-relaxation.

Proposition 1 Let c1, . . . , cn, w1, . . . , wn and W be nonnegative integers with

c1

w1
≥ c2

w2
≥ · · · ≥ cn

wn
,

and let

k := min

j ∈ {1, . . . , n} :
j∑

i=1

wi > W

 .

Then an optimum solution of the LP-relaxation of the ILP model of the knapsack problem
is defined by:

xi =

1 i = 1, . . . , k − 1,
W−

∑k−1

i=1
wj

wk
i = k,

0 i = k + 1, . . . , n.

The value of this LP-relaxation is clearly an upper bound for the optimal value of the
knapsack problem. Notice that the solution of the LP-relaxation has at most one variable
with a fractional value. If all weights (wi) are smaller than W , then the two solutions
{1, . . . , k− 1} and {k} are both feasible the better of these two solutions achieves at least
half the optimum value. To be more precise:

Proposition 2 Let for an instance I of the knapsack problem OPT (I) be its optimal
value and LP (I) be the value of the LP-relaxation. If all weights are at most W then

1
2
LP (I) < OPT (I) ≤ LP (I).

1

7.2 Branch and Bound

The branch and bound method is based on the idea of intelligently enumerating all the
feasible points of a combinatorial optimization problem. In the branch and bound method
we search for an optimal solution based on successive partitioning of the solution space.
The branch in branch and bound refers to this partitioning process; the bound refers to
lower bounds that are used to eliminate parts of the solution space that will not contain
an optimum. First we shall develop the method for ILP, and then put things in a more
abstract framework. Consider the ILP problem

Problem 0: minimize z = c>x = c(x)
subject to Ax ≤ b

x ≥ 0, x ∈ ZZ .

If we solve the LP relaxation, we obtain a solution x0, which in general is not integer. The
cost c(x0) of this solution is, however, a lower bound on the optimal cost c(x∗) (where x∗

is the optimal solution to Problem 0), and if x0 were integer, we would in fact be done. In
the cutting plane algorithm, we would now add a constraint to the relaxed problem that
does not exclude feasible solutions. Here, however, we are going to split the problem into
two subproblems by adding two mutually exclusive and exhaustive constraints. Suppose
that component x0

i of x0 is noninteger, for example. Then the two subproblems are

Problem 1: minimize z = c>x = c(x)
subject to Ax ≤ b

x ≥ 0, x ∈ ZZ
xi ≤ bx0

i c

and Problem 2: minimize z = c>x = c(x)
subject to Ax ≤ b

x ≥ 0, x ∈ ZZ
xi ≥ bx0

i c+ 1

The solution to the original problem must lie in the feasible region of one of these two
problems, simply because one of the following two statements must be true.

x∗i ≤ bx0
i c , x∗i ≥ bx0

i c+ 1 .

We now choose one of the subproblems, say Problem 1, which is after all an LP, and
solve it. The solution x1 will in general not be integer, and we may split Problem 1
into two subproblems just as we split Problem 0, creating Problems 3 and 4. We can
visualize this process as a successive finer and finer subdivision of the feasible region.
Each subset in a given partition represents a subproblem i, with relaxed solution xi and
lower bound zi = c(xi) on the cost of any solution in the subset. We can also visualize
this process as a tree, as is shown in Figure 1. The root represents the original feasible
region and each node represents a subproblem. Splitting the feasible region at a node by
the addition of the inequalities is represented by the branching to the node’s two children.
If the original ILP has a bounded feasible region, this process cannot continue indefinitely,
because eventually the inequalities at a node in the branching tree will lead to an integer
solution to the corresponding LP, which is an optimal solution to the original ILP. The
branching process can fail at a particular node for one of two reasons: (1) the LP solution
can be integer; or (2) the LP problem can be infeasible.

2

s

s

s

s

s

s

s�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

A
A
A
A
A
A
A
A

@
@
@
@
@
@
@
@

�
�
�
�
�
�
�
�A
A
A
A
A
A
A
A

0

1 2

3 4 5 6

xi ≤ bx0
i c xi ≥ bx0

i c+ 1

xj ≤ bx1
jc

xj ≥ bx1
jc+ 1

xk ≤ bx2
kc

xk ≥ bx2
kc+ 1

Figure 1: Representation of solution space subdivision by a binary tree

c
c
c
c

c
c
c
c

c
c
c
c

c
c
c
c

c
c
c
c

c
c
c
c

c
c
c
c

c
c
c
c

c
c
c
c

c
c
c
c

c
c
c
c

c
c
c
c

c
c
c
c

c
c
c
c

c
c
c
c

c
c
c
cs

s s

s s

�
�
�
�
�
�
�
�A
A
A
A
A
A
A
A �

�
�
�
�
�
�
�A
A
A
A
A
A
A
A

A
A
A
A

A
A

@
@

@
@

@
@

@
@

�
�
��

�
�
��

�
�
��

�
�
��

� -

?

6

� -

x0

x1 x2

x3 x5

Problem 0 Problem 1 Problem 2

Problem 3

Problem 4

Problem 5 Problem 6

x1

x2

x1

x2

x1

x2

x1

x2

(a) (b)

(c) (d)

Figure 2: Stages in the solution of an ILP by branch and bound

3

A simple ILP is shown in Figure 2(a); the solution is x∗ = (2, 1) and c(x∗) = −(x1 +x2) =
−3. The initial relaxed problem has the solution x0 = (3

2 , 5
2) with cost c(x0) = −4.

Figure 2(b) shows the two subproblems generated by choosing the noninteger component
x0

1 = 3
2 and introducing the constraints x1 ≤ 1 and x1 ≥ 2. If we continue branching

from Problem 2 in Figure 2, we obtain the branching tree shown in Figure 3. Three
leaves are reached in the right subtree; these leaves correspond to two feasible LP’s and
one LP with an integer solution x5 = (2, 1) with cost z5 = c(x5) = −3. What we have

s s

s s

s s

s

�
�
�
�
�
�
�
�
�
�
�
�

@
@
@
@
@
@

@
@
@
@
@
@

�
�
�
�
�
�@
@
@
@
@
@

0

1 2

3 4

5 6

x1 ≤ 1 x1 ≥ 2

x2 ≤ 1 x2 ≥ 2

x1 ≤ 2 x1 ≥ 3

z0 = −4

z1 = −2, 5 z2 = −3, 5

z3 = −3, 25

z5 = −3

killed by x5

empty

emptyinteger: x1 = 2 x2 = 1

Figure 3: The binary tree leading to a solution to the problem

described up to this point comprises the branching part of the branch and bound. If we
continue the branching process until all the nodes are leaves of the tree and correspond
either to integer solutions or infeasible LP’s, then the leaf with the smallest cost must be
the optimal solution to the original ILP. We come now to an important component of the
branch and bound approach: Suppose at some point the best complete integer solution
obtained so far has cost zm and that we are contemplating branching from a node at which
the lower bound zk = c(xk) is greater than or equal to zm. This means that any solution
x that would be obtained as a descendent of xk would have cost

c(x) ≥ zk ≥ zm

and hence we need not proceed with a branching from xk. In such a case, we say that the
node xk has been killed or fathomed, and refer to it as dead. The remaining nodes, from
which branching is still possibly fruitful, are referred to as alive. For our example (Figures
2, 3), the node corresponding to Problem 1 has associated with it a lower bound of −21

2 ,
which is greater than the solution cost of −3 associated with node 5. It is therefore killed
by node 5, as shown. Since no live nodes remain, node 5 must represent the optimal
solution.

There are now still two important details in the algorithm that need to be specified:
We must decide how to choose, at each branching step, which node to branch from; and we
must decide how to choose which noninteger variable is to determine the added constraint.
The first choice is referred to as the search strategy. The two most common strategies are
depth first search and frontier search. In case of depth first search we first consider the

4

last generated nodes to branch from. It has to be specified in which order these last
nodes are considered. This strategy has the advantage that the amount of storage needed
is limited and furthermore that in an early stage feasible solutions are found. In case
of frontier search we first consider the node with the lowest lower bound because this is
the most promising one. This strategy looks more effective, but for larger problems the
number of subproblems that have to be stored is too large. For the second choice-the
variable to add the constraint- the best strategy is to find that constraint which leads to
the largest increase in the lower bound after that constraint is added, and to add either
that constraint or its alternative. The motivation is to find the branch from a given node
that is most likely to get killed, and in this way keep the search tree shallow. There are
no theorems to tell us the best strategy, and computational experience and intuition are
the only guides to the design of fast algorithms of this type.

If the feasible region is bounded, it is not difficult to see that the algorithm terminates.
Indeed, then each variable can only be chosen a finite number of times for splitting.

7.3 Branch and Bound in a General Context

The idea of branch and bound is applicable not only to a problem formulated as an ILP
(or mixed ILP), but to almost any problem of a combinatorial nature. We next describe
the method in a very general context. Two things are needed to develop the tree in the
branch and bound algorithm for ILP:

1. Branching A set of solutions, which is represented by a node, can be partitioned into
mutually exclusive sets. Each subset in the partition is represented by a child of the
original node.

2. Lower Bounding An algorithm is available for calculating a lower bound on the cost
of any solution in a given subset.

No other properties of ILP were used. We may therefore formulate the method for any
optimization problem in which (1) and (2) are available. Specification of the branching,
the lower bounding and the search strategy leads to a branch and bound algorithm for this
optimization problem. There is always some set of subproblems, or active nodes. This set
is initialized by the original problem and the algorithm stops as soon as this set is empty.
In each step of the algorithm one subproblem is selected. The choice is specified by the
search strategy. There might be three reasons to eliminate this subproblem.

1. The subproblem is infeasible.

2. The lower bound is larger than or equal to the upper bound (cost of the best solution
so far).

3. The subproblem can be solved. If the cost are less than the upper bound, the upper
bound is replaced by these cost and the solution is stored.

If the subproblem can not be eliminated, it is split in a finite number of smaller subprob-
lems that are added to the set of subproblems. There are now many choices in how we
implement a branch and bound algorithm for a given problem; we shall discuss some of
them.

• First, there is a choice of the branching itself; there may be many schemes for
partitioning the solution space for that matter.

5

• Next, there is the lower bound calculation. One often has a choice here between
bounds that are relatively tight but require relatively large computation time and
bounds that are not so tight but can be computed fast.

• Third, there is the choice at each branching step of which node to branch from.
The usual alternatives are least lower bound next (frontier search), last in first out
(depth first search) or first in first out.

• Still another choice must be made at the start of the algorithm. It is often practical
to generate an initial solution by some heuristic construction. This gives us an initial
upper bound and may be very useful for killing nodes early in the algorithm. As
usual, however, we must trade off the time required for the heuristic against possible
benefit.

It should be clear from now that the branch and bound idea is not one specific algorithm,
but rather a very wide class. Its effective use is dependent on the design of a strategy for
the particular problem at hand. In this course we discuss two different branch and bound
algorithms one for ILP (which we just did), and one for the traveling salesman problem
(see Section 10).

7.4 Knapsack with Branch and Bound

The branch and bound algorithm for ILP has been illustrated in case of two variables,
because then the LP-relaxations can easily be solved by hand. Another case where the
LP-relaxation are easy to solve if for the knapsack problem. We illustrate this for the
following example.

Maximize 60x1 + 60x2 + 40x3 + 10x4 + 16x5 + 9x6 + 3x7,
subject to 3x1 + 5x2 + 4x3 + x4 + 4x5 + 3x6 + x7 ≤ 10,

xi ∈ {0, 1} , i = 1, . . . , 7.

This problem can be solved using the branch and bound algorithm with the following
specifications:

(A) Branching. Partition a subset Fi of the feasible region into two disjunct subsets
by adding an extra condition: xj = 0 and xj = 1 respectively. The choice of the
variable xj follows from the calculation of the upper bound for the subset Fi. This
corresponds to solving the LP-relaxation of some smaller knapsack problem. The
solution of this relaxation has at most one variable with a fractional value. This
variable is chosen as splitting variable.

(B) Upper Bound calculation. A subproblem Fi of the knapsack problem consists of the
original knapsack where some variables are forced to be 0 or 1. This is again the
feasible region of a knapsack problem since if some xi = 0 this item can be removed
and if xi = 1, the knapsack capacity can be reduced by wi. The upper bound
calculation for Fi is again solving the LP-relaxation of a knapsack problem.

(C) Search Strategy. As search strategy we take the ‘Last-in-First-out’-rule. Of the last
two generated subsets we first consider the one with ‘xj = 1’.

6

(1, 0, 0, 1, 0, 1, 1)

82 113

F15 ��
��
��

(2
3 , 1, 0, 0, 0, 1, 0)

109 113

F14

(1, 0, 1, 1, 0, 0, 1)

113 110

F9

(1, 0, 1, 0, 0, 1, 0)

109 110

F8PP
PP

PP
(1, 1, 0, 1, 0, 0, 1)

133 113

F16 �
�

(1, 4
5 , 0, 0, 0, 1, 0)

117 113

F13 aa
aa

a

(1, 0, 1, 1, 0, 2
3 , 0)

116 110

F7 ��
���

���

(2
3 , 0, 1, 0, 1, 0, 0)

96 110

F6 �
�

(0, 1, 1, 1, 0, 0, 0)

110 0

F4 !!
!!
!

no feasible solution

0

F3 @
@

(1, 1, 0, 1, 0, 1
3 , 0)

133 113

F12 ��
��
��

(1, 3
5 , 0, 0, 1, 0, 0)

112 113

F11 HH
HH

(1, 0, 1, 1, 1
2 , 0, 0)

118 110

F5 ��
��

(1
3 , 1, 1, 0, 0, 0, 0)

120 0

F2 PP
PP

PP
(1, 1, 0, 1, 1

4 , 0, 0)

134 113

F10

(1, 3
5 , 1, 0, 0, 0, 0)

136 0

F1 ```
```

```
`

(1, 1, 1
2 , 0, 0, 0, 0)

BG=140 OG=0

F0

Figure 4: The Branch and Bound tree of the knapsack problem under consideration

Using these rules we get the following results. The items are already sorted by nonin-
creasing ratio ci

wi
. The boldface 0’s and 1’s denote the variables that are fixed to 0 or 1

during the branching. The corresponding branch and bound tree is shown in Figure 4.

Name Solution LP-relaxation U.B. L.B. Next Action
F0 (1, 1, 1

2 , 0, 0, 0, 0) 140 0 branch w.r.t. x3

F1 (1, 3
5 ,1, 0, 0, 0, 0) 136 0 branch w.r.t. x2

F2 (1
3 ,1,1, 0, 0, 0, 0) 120 0 branch w.r.t. x1

F3 no feasible solution 0 F3 empty, backtrack
F4 (0,1,1, 1, 0, 0, 0) 110 0 integral solution, backtrack
F5 (1,0,1, 1, 1

2 , 0, 0) 118 110 branch w.r.t. x5

F6 (2
3 ,0,1, 0,1, 0, 0) 96 110 u.b.<l.b., backtrack

F7 (1,0,1, 1,0, 2
3 , 0) 116 110 branch w.r.t. x6

F8 (1,0,1, 0,0,1, 0) 109 110 integral solution and u.b.<l.b., backtrack
F9 (1,0,1, 1,0,0, 1) 113 110 integral solution, backtrack
F10 (1, 1,0, 1, 1

4 , 0, 0) 134 113 branch w.r.t. x5

F11 (1, 3
5 ,0, 0,1, 0, 0) 112 113 u.b.<l.b., backtrack

F12 (1, 1,0, 1,0, 1
3 , 0) 133 113 branch w.r.t. x6

F13 (1, 4
5 ,0, 0,0,1, 0) 117 113 branch w.r.t. x2

F14 (2
3 ,1,0, 0,0,1, 0) 109 113 u.b.<l.b., backtrack

F15 (1,0,0, 1,0,1, 1) 82 113 integral solution and u.b.<l.b., backtrack
F16 (1, 1,0, 1,0,0, 1) 133 113 integral solution, backtrack, finished

7

The optimal solution has value 133 and is given by:

x1 = 1, x2 = 1, x3 = 0, x4 = 1, x5 = 0, x6 = 0, x7 = 1

The number of considered subproblems can be 2n and solving the LP-relaxation of a sub-
problem takes O(n). So the complexity of the branch and bound algorithm for knapsack
is O(n2n).

7.5 Dynamic Programming

Dynamic programming (DP) is, like branch and bound, an enumerative method to solve
combinatorial optimization problems. The method can be characterized by the fact that
it uses some recurrence relation to solve the problem. This recurrence relation relates the
optimal solution of some problem to optimal solutions of smaller problems of the same
type. For these smaller problems the same recurrence relation holds etcetera. Like the
tree for the branch and bound method, one can define a directed graph to represent the
dynamic programming method. The vertices of the graph correspond to the subproblems
and there is an arc from subproblem Π1 to Π2 if Π1 appears in the recurrence relation for
Π2. The original problem is then the ’endpoint’ of the graph and some trivial subprob-
lem(s) is(are) the starting point(s) of the graph. We will call this graph the DP-graph.
The optimal solution of some subproblem can be determined using the recurrence relation
if the optimal solutions of its predecessors are known. Since the graph is acyclic, one
can solve all subproblems one-by-one starting with the trivial problems and ending with
the original problem. In some cases solving a problem reduces to finding the shortest
or longest path from the starting point to the end point in the DP-graph. This is for
instance the case if the optimum OPT (Π) of some subproblem Π is equal to the maxi-
mum or minimum of {OPT (Π1) + c(Π1,Π), . . . , OPT (Πk) + c(Πk,Π)} where Π1, . . . ,Πk

are the predecessors of problem Π and c(., .) are costs that can be computed easily for
some problem instance. De complexity of some dynamic programming algorithm depends
on the number of subproblems that have to be considered and the amount of work per
subproblem. Often the total number of arcs in the DP-graph is a good measure.

In this course we have seen examples of dynamic programming algorithms already:
The algorithms of Bellman-Ford and Floyd.

We will now discuss a dynamic programming algorithm for the knapsack problem. Let
1 ≤ m ≤ n en 0 ≤ W ′ ≤ W . Define fm(W ′) as the optimal solution of the knapsack
problem with items 1, 2, . . . ,m en knapsack capacity W ′. Then clearly

f0(W ′) = 0 W ′ = 0, 1, . . . ,W

f1(W ′) =

{
0 W ′ = 0, 1, . . . , w1 − 1
c1 W ′ = w1, w1 + 1, . . . ,W

We have the following recurrence relation for fm(W ′):

fm(W ′) =

{
fm−1(W ′) W ′ = 0, 1, . . . , wm − 1
max{fm−1(W ′), fm−1(W ′ − wm) + cm} W ′ = wm, wm + 1, . . . W

fn(W) is the optimum solution of the original problem. Dynamic programming now
consists of calculating the values fm(W ′). This is done from m = 0 to m = n and for
some m from W ′ = W downto W ′ = 0. This leads to the following algorithm:

8

At the start of the mth step of the algorithm the variables have the following values:

P [W ′] = fm−1(W ′) for W ′ = 0, 1, . . . ,W

X[W ′] = S ⊆ {1, 2, . . . ,m− 1} for W ′ = 0, 1, . . . ,W

where S is the subset of the set of items {1, 2, . . . ,m−1} that leads to the maximum value
P [W ′] for capacity W ′.

Input: n, W, (ci), (wi);
Output: z;
begin

for W ′ = 0 to W do
begin

P [W ′] := 0;
X[W ′] := ∅;

end
for m := 1 to n do

for W ′ = W downto wm do
if P [W ′] < P [W ′ − wm] + cm then
begin

P [W ′] := P [W ′ − wm] + cm;
X[W ′] := X[W ′ − wm] ∪ {m}

end;
z := P [W];
end.

This algorithm has time complexity O(nW) since the number of considered subproblems
is nW and the amount of work per subproblem does not grow when the problem becomes
larger. One only has to choose the best of two alternatives. Notice that the size of the
input is O(n log W + n log C), where C is equal to the largest profit of the items. For our
example we find the following values for fm(W ′):

10 0 60 120 120 130 130 130 133
9 0 60 120 120 130 130 130 130
8 0 60 120 120 120 120 120 120
7 0 60 60 100 100 100 100 100
6 0 60 60 60 70 70 70 73

W ′ 5 0 60 60 60 70 70 70 73
4 0 60 60 60 70 70 70 70
3 0 60 60 60 60 60 60 60

↑ 2 0 0 0 0 10 10 10 13
1 0 0 0 0 10 10 10 10
0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7
→ m

So, again the optimal solution has value 133 and is realized by choosing the items 1, 2, 4
and 7.

9

Exercises

1. Solve the following ILP problem by use of Branch and Bound with frontier search
and draw the search tree. Minimize 11x + 10y subject to

13x + 10y ≥ 65
8x + 17y ≥ 68
x ≥ 0, y ≥ 0
x, y integer.

2. Give an ILP formulation of the knapsack problem given below with knapsack capac-
ity 17. Solve the ILP problem with Branch and Bound with frontier search. Draw
the search tree.

object 1 2 3 4 5 6
value 8 16 20 6 4 9
weight 3 7 9 3 2 5

3. Solve the following knapsack problem with knapsack capacity 7, by use of dynamic
programming.

object 1 2 3 4 5
value 4 7 3 5 4
weight 5 3 2 2 1

4. Show that if for an instance I of the knapsack problem not all weights are at most
the capacity W , then LP (I)/OPT (I) can be arbitrarily large.

5. Consider a knapsack problem with capacity W , items 1, . . . , n, weights w1, . . . , wn,
and values (costs) c1, . . . , cn. Define C =

∑n
j=1 cj . For an integer m ≤ n, define

gm(C ′) as the minimal total weight of a subset S ⊂ {1, 2, . . . ,m} for which
∑
i∈S

ci = C ′

(take gm(C ′) = ∞ if such a set doesn’t exist).

a. What is g0(C ′) for 0 ≤ C ′ ≤ C?

b. How can OPT (I) be derived from the values of gn(C ′) (0 ≤ C ′ ≤ C)?

c. Derive a recursion formula for gm+1(C ′) in terms of the gm(C ′) and gm(C ′ −
cm+1) (provided C ′ ≥ cm+1).

d. Show that this gives a dynamic programming algorithm with complexityO(nC).

e. Use this algorithm to solve the knapsack problem of Exercise 3.

10

