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0 Introduction

This document constitutes a very brief introduction into the world of university level
mathematics olympiads. In terms of prestige they may not quite rival those aimed at
high school students, but this does not take away from the enjoyment of toying with
some slightly more advanced mathematical notions in a fresh and creative way. This
introduction is irresponsibly brief and as such, we have had to focus on only those ideas
that we deemed most prevalent at international mathematics olympiads, particularly
at the IMC. It is the author’s hope that the reader will find enjoyment in solving these
problems, and that at least once in their mathematical career, one of these tricks may
prove useful beyond the scope of mere olympiads.

After a brief section outlining some theory and highlighting a few selected tips and
tricks, the reader should not feel overwhelmed by the sheer amount of problems that
await them in each chapter. They have been compiled from various different sources,
but most prominently they are taken directly from the IMC, the competition that this
note primarily aims to prepare its readers for. Credit for other problems goes to Iris Smit
and Josha Box and their own Dutch IMC training syllabus that is often used in Ams-
terdam, but also to Julian Lyczak and his “Wiskundewedstrijdtraining” for students in
Utrecht. With this document, it was my intention to bring these Dutch materials to a
more international audience.

The IMC problems are included in chronological order and may therefore vary in
difficulty substantially from one to the next. Each chapter is also accompanied by a
smaller set of problems that illustrate various concepts discussed in the theory preced-
ing them, which we would recommend those new to the sport to attempt first before
diving head first in the deep end. Namely, IMC problems can be quite challenging,
and even though some of the other problems in this set are equally difficult, at least the
first few of each chapter should be considerably more approachable than most of what
one would find at the IMC. The most challenging problems, according to the author’s
judgment at a glance, have been marked by an asterisk (∗), but please keep in mind
that some of these may have been placed inappropriately. Some IMC problems, albeit
relevant to the topics, have been omitted from this set if the author deemed it in the
reader’s best interest to shield them from the technicalities that would be difficult to
avoid when seriously giving these problems a proper attempt.

Should the reader find any typos, errors or other misprints, they are most welcome to
contact the author at dutchmikedaas@gmail.com. Any feedback would be greatly ap-
preciated. It is the author’s hope that these notes will grow out to become a useful tool
for those new to the world of university level olympiads, and that these competitions
will bring them as much joy as it has brought yours truly.
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1 Analysis I

Real analysis problems are very common at the IMC. The fundamentals of this inter-
esting field of study contain many cute yet powerful lemmas that can be exploited in
non-trivial ways to solve some pleasantly tricky problems, often without the need for
tedious ϵ, δ-proofs. Due to the scope of this topic, we split its treatment into many
separate sections; the first two will cover the theory of sequences and series, whereas
the latter two will focus on functions, continuity and integration. Let us start with
sequences first.

1.1 Real sequences

Let us start by recalling a handful of topological notions about subsets of the real num-
bers. We assume the reader to be familiar with the standard topology on R.

Definition 1.1. Let S ⊂ R. We say some x ∈ S is an interior point if there exists some
open neighbourhood x ∈ U ⊂ S. We say some x ∈ S is isolated if for some open U ∋ x

we have U∩ S = {x}.
We say that some x ∈ R is a limit point of S if for every open U ∋ x, the set U ∩ S is

infinite. We say some x ∈ R is an edge point of S if for every open U ∋ x, the sets U ∩ S

and U∩ (R \ S) are both non-empty.

Definition 1.2. We say some x ∈ R is a limit point of a sequence (an)n∈N if some
subsequence of (an) converges to x. The infimum of this set is denoted by lim inf an,
and the supremum of this set is denoted lim sup an. Recall that a sequence converges
precisely when these two notions agree.

The following elementary results are sometimes very useful when proving state-
ments about sequences.

Lemma 1.3. Every sequence of real numbers contains a monotone subsequence.

Lemma 1.4. Every bounded monotonous sequence of real numbers is convergent.

Proposition 1.5. (Bolzano-Weierstraß) Every bounded sequence in R, or even Rn, contains
a convergent subsequence.
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1.2 Sequences and functions

Even though a thorough treatment of functions is left to the next chapter, it is im-
possible to omit them completely from any comprehensive treatment of sequences
and series. Often sequences are recursively defined, which one can generally write
as an = f(an−1, . . . ,an−k). We recall the following definition. which is typically more
useful than the standard ϵ, δ-definition.

Definition 1.6. A function f : U → R for some subset U ⊂ R is called continuous
at some x ∈ U if for every sequence (an) of elements in U that converges to x, the
sequence f(an) converges to f(x). We say that f is continuous if it is so at all x ∈ U.

This definition makes it very easy to determine the possible limit values of a recur-
sively defined function.

Proposition 1.7. Let (an) be a recursively defined sequence by an = f(an−1, . . . ,an−k) for
some function f. Suppose that (an) converges to some limit L. Then L = f(L, . . . ,L).

However, it does not show that such a sequence should even converge in the first
place. The following theorem sometimes helps with this.

Proposition 1.8. (Banach’s Fixed Point Theorem) Let X be a closed connected subset of R.
Suppose that f is a contraction; in other words, there exists some 0 < c < 1 such that

|f(x) − f(y)| ⩽ c|x− y| for all x,y ∈ X.

Then there exists a unique solution x∗ to the equation f(x) = x. In addition, for any x0 ∈ X,
the sequence defined by xn = f(xn−1) for n ⩾ 1 converges to x∗.

By definition of the Riemann integral, we know that for an integrable function f, a
sum of the form

n∑
i=1

f(xi)(ai+1 − ai) converges to
∫b
a

f(x)dx

if xi ∈ (ai,ai+1) for some elements a = a0 < . . . < an+1 = b and the partition length
goes to zero as n → ∞. The definition of Riemann sums does not make it easy to
actually compute the integral, so sometimes a sum is cleverly disguised as one. This
way, its value can only be determined by recognising the integral that it secretly defines.
However, these can be very difficult to spot when hidden well.
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1.3 Inequalities

The real numbers enjoy the property of being totally ordered. This allows them to
satisfy many interesting and useful inequalities, the most fundamental of which is the
following:

x2 ⩾ 0 for all x ∈ R, and x2 = 0 ⇐⇒ x = 0.

Another very famous and often useful inequality is the following.

Theorem 1.9. Let a1, . . . ,an > 0 be positive real numbers and define for p ̸= 0,

Mp =

(
x
p
1 + . . . + x

p
n

n

)1/p

, and M0 = n
√
a1 · · ·an.

Then if p < q, we have Mp ⩽ Mq. Equality holds if and only if all ai are equal. In particular,
we have

a1 + . . . + an

n
⩾ n

√
a1 · · ·an ⩾

n
1
a1

+ . . . + 1
an

.

An even more general version using weights can be deduced from Jensen’s Inequality,
which is discussed in the next chapter. The following is also very famous.

Theorem 1.10. (Cauchy-Schwarz) Let X be an inner product space and let u, v ∈ X. Then
|u · v| ⩽ ∥u∥ · ∥v∥. Equality only holds when u and v are linearly dependent. In particular, for
any x,y ∈ Rn, it holds that ( n∑

i=1

xiyi

)2
⩽
( n∑

i=1

x2
i

)( n∑
i=1

y2
i

)
.

The following inequality may seem obvious after digesting its content, but it can be
used in non-trivial ways.

Proposition 1.11. (Rearrangement Inequality) Let x1 ⩾ . . . ⩾ xn and y1 ⩾ . . . ⩾ yn be
real numbers. Then for any σ ∈ Sn, we have

x1y1 + . . . + xnyn ⩾ x1yσ(1) + . . . xnyσ(n) ⩾ x1yn + . . . xny1.

This can be used to deduce the following.

Theorem 1.12. (Tsjebychev’s Inequality) Let x1 ⩾ . . . ⩾ xn and y1 ⩾ . . . ⩾ yn be real
numbers. Then

x1y1 + . . . + xnyn

n
⩾

x1 + . . . + xn

n
· y1 + . . . + yn

n
⩾

x1yn + . . . + xny1

n
.

The following inequalities help deal with arbitrary exponents.

Proposition 1.13. (Bernoulli’s Inequality) Let r ⩾ 1 and let x > −1. Then

(1 + x)r ⩾ 1 + rx.

Proposition 1.14. (Schur’s Inequality) Let x,y, z ⩾ 0 and t > 0. Then

xt(x− y)(x− z) + yt(y− z)(y− x) + zt(z− x)(z− y) ⩾ 0.
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1.4 Examples

Example 1.15. Prove that √
6 +

√
6 +

√
6 + . . .

converges and determine its limit.

Solution: We formalise the problem first: let a1,a2, . . . be the sequence defined by

a1 =
√

6 and an+1 =
√

6 + an

for all n ⩾ 1. We are then tasked to show that limn→∞ an converges and to find its
value. To show that it converges, we will show that it is both increasing and bounded
above. Indeed, it quickly follows that

an ⩽ 3 =⇒ an+1 =
√

6 + an ⩽
√

9 = 3,

so the sequence is bounded by induction. To show it is increasing, we note that

an+1 ⩾ an ⇐⇒ 6 + an ⩾ a2
n ⇐⇒ an ∈ [−2, 3].

Convergens follows. Since the function f(x) =
√

6 + x is continuous for x > −6, it
follows that the limit L of the sequence must satisfy f(L) = L; i.e. it must hold that
L =

√
6 + L. It readily follows that L = 3. △

Example 1.16. Determine

lim
n→∞

(
1
n
+

1
n+ 1

+ . . . +
1

2n− 1

)
.

Solution: Define a function f by setting f(x) = 1/n if x ∈ [n,n+ 1] as n ranges over the
positive integers. Then note that on the interval [n,n+ 1], we have that∣∣∣∣f(x) − 1

x

∣∣∣∣ ⩽ 1
n
−

1
n+ 1

=
1

n(n+ 1)
.

One may then compute that

1
n+ 1

⩾
∫ 2n

n

∣∣∣∣f(x) − 1
x

∣∣∣∣dx =

2n−1∑
k=n

1
k
−

∫ 2n

n

1
x
dx =

2n−1∑
k=n

1
k
− log(2).

If we now let n → ∞, the error tends to zero and we find that the limit equals log(2),
completing the proof. △
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1.5 Exercises

Problem 1.1. Prove that for all x,y, z ∈ R,

x2 + y2 + z2 ⩾ xy+ yz+ zx.

Problem 1.2. Let (xn) be the sequence defined by x0 = 1 and xn+1 = sin(xn). Similarly, let
(yn) be defined by y0 = 1 and yn+1 = cos(yn). Show that both sequences converge.

Problem 1.3. Consider the sequences

an =
lcm(1, 2, . . . ,n)

n!
and bn =

lcm(1, 2, . . . ,n− 1)
lcm(1, 2, . . . ,n)

.

Do any of these sequences converge? If so, what is their limit?

Problem 1.4. Let a,b > 0 and let n ∈ N. Show that

an + bn

2
⩾

(
a+ b

2

)n

.

Problem 1.5. Let a,b > 0. Now define two sequences (an) and (bn) by setting a0 = a and
b0 = b, and further

an =
an−1 + bn−1

2
and bn =

√
an−1bn−1 for all n ⩾ 1.

Show that an and bn converge to the same limit.

Problem 1.6. Let (an) be the sequence given by a1 =
√

2 and an+1 =
√

2
an for all n ⩾ 1.

Prove that (an) converges and determine its limit.

Problem 1.7. Prove that √
1 + 2

√
1 + 3

√
1 + 4

√
1 + . . . = 3.

Problem 1.8. Let (an) be a sequence of real numbers satisfying (2 − an)an+1 = 1 for all
n ⩾ 1. Show (an) converges and determine its limit.

Problem 1.9. Prove that √
7 −

√
7 +

√
7 −

√
7 + . . .

converges and determine its limit.

Problem 1.10. Show that the sequence given by

an =

√
1 +

√
2 +

√
3 + . . . +

√
n

is convergent.
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Problem 1.11. For any n ⩾ 1, define

an =
1 · 4 · 7 · · · (3n− 2)
2 · 5 · 8 · · · (3n− 1)

.

Prove that
1√

3n+ 1
⩽ an ⩽

1
3
√

3n+ 1
.

Problem 1.12. Let d ∈ R. For each positive integer m, define the sequence am(n) by setting
am(0) = d · 2−m and am(n+ 1) = am(n)2 + 2am(n) for all n ⩾ 0. Determine the limit
given by limn→∞ an(n).

Problem 1.13. Let α ∈ R be given and define the sequence (an) by a0 = α, a1 = 1 and
further an+2 = |an+1 − an| for all n ⩾ 0. For which choices of α does this sequence contain
repeats? Alternatively, for which choices of α does the sequence eventually become periodic?

Problem 1.14. Let α > 0. Prove that

lim
n→∞

(
1 +

α

n

)n
= eα.

Problem 1.15. Does the sequence an = tan(π
√
n2 −n) converge?

Problem 1.16. Let (an)n⩾0 be a sequence satisfying an+1 = 4an(1−an) for all n ⩾ 0. How
many such sequences satisfy a2023 = a0?

Problem 1.17. Let m,n ∈ N. Determine

lim
x→0

cos(x)1/m − cos(x)1/n

x2 .

Problem 1.18. Let x1, . . . , xn ∈ R and let y1, . . . ,yn > 0. Prove that

x2
1

y1
+ . . .

x2
n

yn
⩾

(x1 + . . . xn)2

y1 + . . .yn
.

Problem 1.19. Prove that for any integer n > 1, it holds that

1 · 3 · 5 · · · (2n− 1) < nn.

Problem 1.20. Prove that for all a,b, c > 0, it holds that

bc

b+ c
+

ca

c+ a
+

ab

a+ b
⩽

a+ b+ c

2
.

Problem 1.21. Prove that for all x,y, z ∈ R, it holds that

x4 + y4 + z2 ⩾
√

8xyz.
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Problem 1.22. Prove that for all x,y, z ∈ R, it holds that

x2 + y2 + z2 ⩾ x
√
y2 + z2 + y

√
x2 + z2.

When does equality hold?

Problem 1.23. Let x,y, z ⩾ 0 satisfy (1 + x)(1 + y)(1 + z) = 8. Prove that xyz ⩽ 1.

Problem 1.24. Prove that for all x,y, z,w > 0, it holds that

1
x
+

1
y
+

4
z
+

16
w

⩾
64

x+ y+ z+w
.

Problem 1.25. Prove that for any x,y ⩾ 0, it holds that

x4 + y4 + 8 ⩾ 8xy.

Problem 1.26. Let m ∈ N and let a,b > 0. Prove that(
1 +

a

b

)m
+

(
1 +

b

a

)m

⩾ 2m+1.

Problem 1.27. Let m,n ∈ N and x,y ⩾ 0. Prove that

xmyn ⩽

(
mx+ny

m+n

)m+n

.

Problem 1.28. Let n ⩾ 2 be an integer and a > 1. Prove that

an − 1 > n
(
a

n+1
2 − a

n−1
2

)
.

Problem 1.29. Let A, B and C be the angles of some triangle. Prove that

sin(A) + sin(B) + sin(C) ⩾
3
√

3
2

.

Problem 1.30. Let a1,a2,a3 > 0. Prove that

a2
1 + a2

2 + a2
3

a3
1 + a3

2 + a3
3
⩾

a3
1 + a3

2 + a3
3

a4
1 + a4

2 + a4
3

.

Problem 1.31. Let a,b,p ∈ R with 0 ⩽ p ⩽ 1. Prove that

|a+ b|p ⩽ |a|p + |b|p.

Problem 1.32. Let n > 8. Which of
√
n
√
n+1 and

√
n+ 1

√
n is bigger?

Problem 1.33. Let 0 ⩽ p,q, r ⩽ 1. Prove that

(p− q)(q− r)(r− p) <
8
27

.
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Problem 1.34. Let a,b, c,A,B,C ∈ R with a,A ̸= 0. Suppose that

|ax2 + bx+ c| ⩽ |Ax2 +Bx+C|

for all x ∈ R. Prove that
|b2 − 4ac| ⩽ |B2 − 4AC|.

Problem 1.35. Let x1, . . . xn be a permutation of the set {1, 2, . . . ,n}. Determine the maximal
value of

x1x2 + x2x3 + . . . xn−1xn + xnx1.

Problem 1.36. Prove that for any n ∈ N it holds that

1
2ne

<
1
e
−

(
1 −

1
n

)n

<
1
ne

.

Problem 1.37. (∗) Let a ̸= 1 be a positive real number. Determine

lim
x→∞

(
ax − 1
x(a− 1)

)1/x

.

Problem 1.38. (∗) Determine

lim
n→∞ 1√

n

(
1√
1
+

1√
2
+ . . . +

1√
n

)
.

Problem 1.39. (∗) Determine

lim
k→∞ 1

k

∫k
0
(1 + sin(2x))1/xdx.

Problem 1.40. (∗) Determine the limit

lim
n→∞

((
1
n

)1( 2
n

)2

· · ·
(n
n

)n)1/n2

.

Problem 1.41. (∗) Given x ∈ R, determine the value of the limit

lim
n→∞ cos

x

2
· cos

x

4
· · · cos

x

2n
.

Problem 1.42. (∗) Show that

lim
n→∞ 1

n

(
2 · 4 · · · (2n)

1 · 3 · · · (2n− 1)

)2

= π.

Problem 1.43. (∗) Let a1, . . . ,an ⩾ 0. Prove that

(1 + a1) · · · (1 + an) ⩾ (1 + n
√
a1 · · ·an)

n.
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Problem 1.44. (∗) Consider a1, . . . ,an ⩾ 0 such that a1 + . . . + an = 1. Prove that

(a1 + a2)(a1 + a2 + a3) · · · (a1 + a2 + . . . + an−1) ⩾ 4n−1a1 · · ·an.

Problem 1.45. (∗) Let a1 < a2 < . . . < a2n+1 be real numbers. Prove that

n
√
a1 − a2 + a3 − . . . − a2n + a2n+1 ⩾ n

√
a1 − n

√
a2 + n

√
a3 − . . . − n

√
a2n + n

√
a2n+1.

Problem 1.46. (∗) Let n > 1 and x1, . . . xn > 0 such that x1 + . . . xn = 1. Prove that

x1√
1 − x1

+ . . .
xn√

1 − xn
⩾

√
x1 + . . . +

√
xn√

n− 1
.

Problem 1.47. (∗) Let a,b, c be the sides of a triangle. Prove that

3
2
⩽

a

b+ c
+

b

c+ a
+

c

a+ b
⩽ 2.

Problem 1.48. (∗) Let a1, . . .an ⩾ 0 and b1, . . .bn ⩾ 0. Prove that

(a1 · · ·an)
1/n + (b1 · · ·bn)

1/n ⩽
(
(a1 + b1) · · · (an + bn)

)1/n.

1.6 IMC Problems

Problem 1.49. (1996)(∗) Let (an) be the sequence defined by a1 = 1 and

an =
1
n

n−1∑
k=1

akan−k

for all n ⩾ 2. Show that 2/3 ⩽ lim sup |an|
1/n < 1/

√
2.

Problem 1.50. (1996)(∗) Prove that for every sequence (an) of positive real numbers with∑∞
n=1 an < ∞, we have ∞∑

n=1

(a1a2 · · ·an)
1/n < e

∞∑
n=1

an.

Problem 1.51. (1999) Let x1, . . . , xn ⩾ −1 satisfy
∑n

i=1 x
3
i = 0. Prove that

∑n
i=1 xi ⩽ n/3.

Problem 1.52. (2000) Let (xi) be a decreasing sequence of positive numbers. Prove that(
n∑

i=1

x2
i

)1/2

⩽
n∑

i=1

xi√
i
.

Problem 1.53. (2001)(∗) Let a0 =
√

2, b0 = 2 and further an+1 =
√

2 −
√

4 − a2
n and

bn+1 = 2bn/(2 +
√

4 + b2
n) for all n ⩾ 0. Show that both an and bn are decreasing and

converge to zero. Further show that the sequence 2nan is increasing and that 2nbn is decreas-
ing, but that they converge to the same limit. Finally, show that for some C > 0, it holds that
0 < bn − an < C/8n for all n ∈ N.
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Problem 1.54. (2004) Let S ⊂ R be such that |s1 + s2 + . . . + sk| < 1 for any finite subset
{s1, . . . , sk} ⊂ S. Show that S is finite or countable.

Problem 1.55. (2004) For each n ⩾ 2, let Sn be the set of all sums
∑n

k=1 xk where we require
0 ⩽ x1, . . . , xn ⩽ π/2 and

n∑
k=1

sin(xk) = 1.

Show that Sn is an interval. Let ln be its length. Find limn→∞ ln.

Problem 1.56. (2010) Let a1 =
√

5 and let an+1 = a2
n − 2. Determine

lim
n→∞

∏n
k=1 ak

an+1
.

Problem 1.57. (2010)(∗) Let −1 ⩽ a,b, c ⩽ 1 be real such that 1 + 2abc ⩾ a2 + b2 + c2.
Show that for every positive integer n, it holds that 1 + 2(abc)n ⩾ a2n + b2n + c2n.

Problem 1.58. (2010) A sequence (xn) of real numbers satisfies xn+1 = xn cos(xn) for all
n ⩾ 1. Does this sequence converge for all choices of x1? What about xn+1 = xn sin(xn)?

Problem 1.59. (2010) Let a0, . . . ,an > 0 be real numbers such that ak+1 − ak ⩾ 1 for all
0 ⩽ k < n. Show that

1 +
1
a0

(
1 +

1
a1 − a0

)
· · ·
(

1 +
1

an − a0

)
⩽

(
1 +

1
a0

)(
1 +

1
a1

)
· · ·
(

1 +
1
an

)
.

Problem 1.60. (2011) Let (an) be a sequence of real numbers with 1/2 < an < 1 for all
n ⩾ 0. Define another sequence xn by x0 = a0 and further

xn+1 =
an+1 + xn

1 + an+1xn
.

Does this sequence always converge? What are its possible limits?
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2 Algebra I

Algebra in essence is the study of groups, rings, modules and related objects. Basic
knowledge of groups is indispensible at the IMC, though often some mild ring theoretic
notions are also very useful to keep in mind. We specialise in these notes to two of the
main applications of the field of algebra; number theory, and the study of polynomials
and the rings which describe their arithmetic. This section is aimed to secure a good
basis of abstract algebra, upon which all other concepts build.

2.1 Group Theory

A group is a set endowed with an associative, binary operation with an identity element
for which each element admits an inverse. If this operation is commutative, we say that
the group is abelian. There are many ways to denote the unit element; sometimes the
letter e is used, but when the group is written multiplicatively, we also often write 1.
For additive notation, typical for abelian groups, 0 is most common. The following
result is fundamental in the theory of groups.

Proposition 2.1. (Lagrange) Let G be a finite group and denote n = #G. Then for any g ∈ G

it holds that gn = 1. Similarly, for any subgroup H, it holds that #G = [G : H] · #H.

The following result is sometimes useful.

Proposition 2.2. (Cauchy) Let G be a finite group and let p | #G. Then there exists some
g ∈ G \ {1} with gp = 1.

One of the most important family of groups to be familiar with is the family of sym-
metric groups, written Sn. These are the groups of all permutations of any n element set
and it is of cardinality n!. Further, it comes with a natural sign map Sn → {±1} that
reveals some additional structure. Its kernel is denoted An and is the subgroup of all
even permutations. A conjugacy class in a group G is defined as any of the orbits for the
conjugation action of G on itself. With this definition, it is easy to prove the following.

Lemma 2.3. The size of every conjugacy class must divide the order of the group.

The centre Z(G) of a group G is defined as the set of elements that commute with all
other elements of G. Clearly, Z(G) = G if and only if G is abelian.

Lemma 2.4. Let G be a finite group of order pk for some prime p and k ⩾ 1. Then the centre
of G is non-trivial.

The commutator subgroup [G,G] ⊂ G is the subgroup generated by all expressions
of the form ghg−1h−1 for g,h ∈ G. The quotient G/[G,G] is always abelian and [G,G]
is minimal for this property. It is a fun fact to know that [Sn,Sn] = An.
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2.2 Actions and subgroups

Normal subgroups N of a group G are precisely those subgroups that can be written as
N = ker(f) for some group homomorphism f : G → H. By definition they are stable
under conjugation by any element in G.

The most important of the isomorphism theorems states that G/N ∼= im(f). If H ⊂ G

is a subgroup, then we also know that H/(H∩N) ∼= HN/N. Finally, if both N1 ⊂ N2 ⊂
G are all normal subgroups, then (G/N1)/(N2/N1) ∼= G/N2.

In short, an action of a group G on a set X is given by a homomorphism G → S(X),
where S(X) denotes the set of permutations of the set X. This can be used to prove the
existence of large normal subgroups given only a large subgroup.

Proposition 2.5. Let G be a group and H ⊂ G a subgroup with [G : H] = n. Then there exists
a normal subgroup N of G, contained in H, such that [G : N] | n!.

This can be used to conclude that some subgroups must be normal.

Lemma 2.6. Let G be a finite group and H ⊂ G a subgroup such that #H and ([G : H] − 1)!
are coprime. Then H is normal. In particular, if [G : H] is the smallest prime dividing #G, then
H is normal.

If a finite group G acts on a finite set X, we let Gx for x ∈ X denote the orbit of x and
we let Gx denote the stablisiser subgroup. Then #Gx = [G : Gx], and as such,

#X =
∑

x∈orb(X)

[G : Gx].

Theorem 2.7. (Burnside) Let a finite group G act on a finite set X and let Fix(g) for g ∈ G

denote the number of fixed points for the action of g on X. If #X/G denotes the number of orbits,
we have

#X/G =
1

#G

∑
g∈G

#Fix(g).

It is sometimes useful to consider the Sylow subgroups of a finite group.

Theorem 2.8. (Sylow) Let G be a finite group and let p be a prime such that pk | #G for some
k ⩾ 1. Then G contains a subgroup of size pk. If k is chosen maximally, we call any such
subgroup a p-Sylow subgroup of G. Any two such subgroups are conjugate in G. If sp denotes
the number of p-Sylow subgroups, then sp ≡ 1 mod p and sp | #G. Finally, a p-Sylow
subgroup is normal if and only if it is the only one.
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2.3 Ring Theory

A ring is an abelian group with a distributive, associative multiplication structure. Of-
ten it is also assumed to have a neutral element 1 for this multiplication. Rings contain
a number of special elements.

• We say some a ∈ R is a unit if for some b ∈ R, it holds that ab = ba = 1. The
subset of units in R is typically denotes R× and this forms a group. Note that
elements in general can have a left-inverse, but not a right-inverse, and the other
way around.

• Some a ∈ R is a zero divisor if for some b ∈ R, it holds that ab = 0 or ba = 0.

• We say some a ∈ R is an idempotent if a2 = a.

• We say some a ∈ R is nilpotent if an = 0 for some n ⩾ 1.

From now on we will assume that all rings are commutative. If R contains no zero
divisors, we say it is a domain. If R× = R \ {0}, we say that R is a field.

An ideal I ⊂ R is an R-submodule of R; in other words, I is an abelian group and ri ∈ I

for all r ∈ R and i ∈ I. Ideals are precisely the possible kernels of ring morphisms. We
say an ideal I is prime if ab ∈ I means that either a ∈ I or b ∈ I. An ideal is called
maximal if no proper ideal of R contains it.

Lemma 2.9. An ideal I ⊂ R is prime if and only if R/I is a domain. Similarly, I is maximal if
and only if R/I is a field.

We say an ideal is principal if it is of the form aR for some a ∈ R. If every ideal in a
domain R is of that form, we say that R is a principal ideal domain. We have the following
result about the structure of modules over such rings.

Theorem 2.10. Let R be a principal ideal domain and M a finitely generated R-module. Then
there exist an integer n and non-zero ideals I1, . . . , Ik of R such that

M ∼= Rn ⊕ R/I1 ⊕ · · · ⊕ R/Ik.

Because Z is a principal ideal domain and abelian groups are just Z-modules, this
implies the following.

Corollary 2.11. Let A be a finite abelian group. Then there exist prime numbers p1, . . . ,pk

and positive integers e1, . . . , ek such that

A ∼= Z/pe1
1 Z × · · · × Z/pek

k Z.
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2.4 Examples

Example 2.12. Let S be a set with a binary operation ∗ such that x ∗ (y ∗ x) = y for all
x,y ∈ S. Prove that for any a,b ∈ S, the equations a ∗ x = b and x ∗ a = b both have a
unique solution in S.

Solution: We claim that x = b ∗ a is the only solution to the equation a ∗ x = b.
Indeed, this value of x works, as a ∗ (b ∗ a) = b by assumption. Now let x ∈ S be any
solution to the equation a ∗ x = b. Then it follows that also a = x ∗ (a ∗ x) = x ∗ b. In
turn, we may then also deduce that b ∗ a = b ∗ (x ∗ b) = x. We leave the other equation
to the reader. △

Example 2.13. (IMC 2018) Does there exist a field such that its multiplicative group is
isomorphic to its additive group?

Solution: Let k denote such a field and let f : k× → k be an isomorphism. Now note
that

2f(−1) = f((−1)2) = f(1) = 0.

As f(−1) ̸= 0 and k is a field, this implies that 2 = 0 and as such, the field k is of
characteristic 2. But then for any x ∈ k×, we have

f(x2) = 2f(x) = 0 = f(1),

and as such, x2 = 1 for all x ∈ k. But again as k is a field, this implies that x = ±1.
However, now k is either F2 or F3, but for cardinality reasons, these fields do not admit
such an isomorphism f. So, such a field does not exist. △

2.5 Exercises

Problem 2.1. Let ∗ denote an operation on a set G that satisfies the left-axioms of a group; so ∗
is associative, there is a left-unit e ∈ G such that e ∗ g = g for all g ∈ G and for each g ∈ G,
there is a left-inverse gL such that gL ∗ g = e. Prove that gL is also a right-inverse of g and
show that e is also a right-unit.

Problem 2.2. Let S be a set with a binary operation ∗. Suppose that for any a,b ∈ S, it holds
that (a ∗ b) ∗ a = b. Prove that then also a ∗ (b ∗ a) = b for all a,b ∈ S.

Problem 2.3. (∗) Let S ⊂ R be a set that is closed under multiplication. We now write
S = T ∪U with T ∩U = ∅. Suppose that for any a,b, c ∈ T it holds that abc ∈ T and that for
any a,b, c ∈ U it holds that abc ∈ U. Prove that at least one of T and U is also closed under
multiplication.

Problem 2.4. Let ∗ denote a binary operation on a set S such that for any x,y ∈ S, it holds
that x ∗ (x ∗ y) = y and (y ∗ x) ∗ x = y. Prove that ∗ is commutative. Is it also necessarily
associative?
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Problem 2.5. (∗) Let S be a set and let ∗ be a binary operation on S with x ∗ x = x and
(x ∗ y) ∗ z = (y ∗ z) ∗ x for all x,y, z ∈ S. Prove that ∗ is both commutative and associative.

Problem 2.6. (∗) Let ∗ be an associative binary operation on a set S such that a ∗ b = b ∗ a if
and only if a = b. Prove that a ∗ (b ∗ c) = a ∗ c for any a,b, c ∈ S. Can you give an example
of such an operation?

Problem 2.7. (∗) Let ∗ be a binary operation on R such that (a ∗ b) ∗ c = a+ b+ c for any
a,b, c ∈ R. Prove that a ∗ b = a+ b for any a,b ∈ R.

Problem 2.8. Let ∗ and ⋆ be two binary operations on a set S with respective unit elements e
and f, satisfying

(x ⋆ y) ∗ (u ⋆ v) = (x ∗ u) ⋆ (y ∗ v)

for any x,y,u, v ∈ S. Prove that e = f, that ∗ = ⋆ and that both operations are commutative.

Problem 2.9. Let ∗ be a binary operation on a set S such that there is some e ∈ S with the
property that x ∗ e = x for all x ∈ S, further satisfying that (x ∗ y) ∗ z = (z ∗ x) ∗ y for all
x,y, z ∈ S. Prove that ∗ is both associative and commutative.

Problem 2.10. (∗) Let ∗ be a binary operation on Q that is both associative and commutative,
further satisfying 0 ∗ 0 = 0 and (a+ c) ∗ (b+ c) = a ∗ b+ c for any a,b, c ∈ Q. Prove that
either a ∗ b = max(a,b) for all a,b ∈ Q, or a ∗ b = min(a,b) for all a,b ∈ Q.

2.6 IMC Problems

Problem 2.11. (1996) Let G be the subgroup of GL2(R) generated by the matrices(
2 0
0 1

)
and

(
1 1
0 1

)
.

Let H consist of those matrices in G for which both diagonal entries are equal to 1. Prove that H
is an abelian subgroup of G, but that H as a group is not finitely generated.

Problem 2.12. (1998) Prove that for n ∈ {3, 5} and any permutation π1 ∈ Sn, there exists
some π2 ∈ Sn such that π1 and π2 together generate all of Sn. Is this statement true for S4?

Problem 2.13. (1999) Suppose that in a not necessarily commutative ring R without 1, the
square of every element is 0. Prove that abc+ abc = 0 for all a,b, c ∈ R.

Problem 2.14. (2000) Let R be not necessarily commutative ring of characteristic zero. Let e,
f and g be idempotent elements of R satisfying e+ f+ g = 0. Prove that e = f = g = 0.

Problem 2.15. (2001) Let r, s, t be pairwise coprime integers. Let G be an abelian group and
a,b ∈ G such that ar = bs = (ab)t = 1. Prove that a = b = 1. Does this conclusion also
hold if G is not necessarily abelian?
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Problem 2.16. (2003) Let a1, . . . ,a51 be non-zero elements of a field. We simultaneuously re-
place each element with the sum of the remaining 50 ones, obtaining a new sequence b1, . . . ,b51.
If this new sequence is a permutation of the original, what can be the characteristic of the field?

Problem 2.17. (2005)(∗) For any group G and m ∈ N, let G(m) ⊂ G be the subgroup
generated by the mth powers of elements of G. Suppose that G(m) and G(n) are commutative.
Prove that G(gcd(m,n)) is also commutative.

Problem 2.18. (2005)(∗) Prove that for any r ∈ Q(
√

7), there exists a matrix
(
a b

c d

)
∈

SL2(Z) \ {±1} such that ar+ b = r(cr+ d).

Problem 2.19. (2007) Let G be a finite group. For arbritrary subsets U,V ,W ⊂ G, denote by
NUVW the number of triples (x,y, z) ∈ U× V ×W for which xyz = 1. Suppose that G is
partitioned into three sets A, B and C. Prove that NABC = NCBA.

Problem 2.20. (2008) Does there exist a finite group G with a normal subgroup H such that
#Aut(H) > #Aut(G)?

Problem 2.21. (2010) Let G be a subset of the symmetric group Sn such that for every π ∈
G \ {1}, there exists a unique k for which π(k) = k. Show that this k is the same for all
π ∈ G \ {1}.

Problem 2.22. (2012) Given an integer n > 1, two players, A and B, play the following
game. Taking turns, they select one element from the symmetric group Sn, with the rule that
it is forbidden to select an element that has been previously selected. The same ends when the
selected elements generate all of Sn. The player who moves last, loses the game. If A starts,
which player has a winning strategy?

Problem 2.23. (2012)(∗) Let c ⩾ 1 be a real number. Let G be an abelian group and let A ⊂ G

be a finite set satisfying |2 ∗A| ⩽ c|A|, where for any positive integer k, the set (k+ 1) ∗A :=
{x+ y | x ∈ k ∗A,y ∈ A} is defined inductively. Prove that |k ∗A| ⩽ ck|A| for any k ∈ N.

Problem 2.24. (2016)(∗) For every permutation π ∈ Sn, we let inv(π) denote the number of
pairs 1 ⩽ i < j ⩽ n with π(i) > π(j). Let f(n) denote the number of π ∈ Sn such that inv(π)
is divisible by n+ 1. Prove that there exist infinitely many primes such that p · f(p − 1) >

(p− 1)! and infinitely many primes for which p · f(p− 1) < (p− 1)!.

Problem 2.25. (2016) Let n be a positive integer and suppose that there exists a function
f : Z/nZ → Z/nZ satisfying the properties that f(x) ̸= x but f(f(x)) = x and further
f(f(f(x+ 1) + 1) + 1) = x for all x ∈ Z/nZ. Prove that n ≡ 2 mod 4.

Problem 2.26. (2020) Let G be a group and n ⩾ 2 an integer. Let H1 and H2 be subgroups of
G that satisfy [G : H1] = [G : H2] = n and [G : (H1 ∩H2)] = n(n− 1). Prove that H1 and H2
are conjugate in G.

Problem 2.27. (2021) For a prime number p, show that there is no injective group homomor-
phism GL2(Z/pZ) → Sp.
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3 Linear Algebra I

Even very basic notions in linear algebra can make for interesting and challenging prob-
lems. Every year at the IMC, there will be at least one problem about this seemingly
completely understood field of mathematics, and often there are even more. It is there-
fore imperative to familiarise yourself with the following concepts and tricks, which
are most often exploited at the IMC.

3.1 Rank and nullity

We start by setting some notation, which can be found in any first year’s course on the
matter. Let k be a field and let V and W be finite-dimensional k-vector spaces. With
very few exceptions, we will work with k ∈ {R, C}. Let A : V → W be a linear map.

Definition 3.1. The dimension of the image of A is called the rank of A, denoted rk(A).
The dimension of the kernel of A is called the nullity of A, denoted nul(A).

These two quantities satisfy a few very basic properties, which we leave to the reader
to convince or remind themselves of.

Proposition 3.2. Let A : V → W and B : W → U be linear maps. Then:

• We have rk(A) ⩽ min
(
dimk(V), dimk(W)

)
.

• We have rk(BA) ⩽ min
(
rk(A), rk(B)

)
.

• If rk(A) = dimk(W), then rk(BA) = rk(B).

• If rk(B) = dimk(W), then rk(BA) = rk(A).

• We have rk(A+B) ⩽ rk(A) + rk(B).

• We have rk(A) + nul(A) = dimk(V).

• We have rk(A) + rk(B) ⩽ rk(BA) + dimk(W). (Sylvester’s Inequality)

If we choose bases for both the source and the target of a linear map A, we may
represent A as a matrix. In this language, the rank of A is equal to the greatest number
of linearly independent columns we can find, which is the same as the greatest number
of linearly independent rows that we can find. This number does not change when
adding other columns some number of times to a given column, and similarly for rows.
IMC problems are most often phrased in terms of matrices, but it can help to think about
matrices in the language of linear operators instead, not in small part because many of
the above results become much more intuitive in this context.

21



3.2 Similarity and commuting

We continue with the following cute trick that seems innocent, but at times proves to be
supremely useful. Namely, matrices do not commute in general, but in rare occassions
we are allowed to swap matrices around.

Lemma 3.3. Let A and B be n×n-matrices. Then

AB = In ⇐⇒ BA = In.

We also record the following fact about commuting matrices.

Proposition 3.4. Let A and B be n× n-matrices that commute; i.e. that satisfy AB = BA.
Then they share a common eigenvector.

The following theorem is the focus point of many first courses on linear algebra.

Theorem 3.5. Every real symmetric matrix is diagonalisable. In fact, there exists an orthogonal
basis of eigenvectors, and all eigenvalues are real.

The concept of being diagonalisable is closely related to that of similar matrices; we
say A and B are similar if for some invertible matrix P, we have B = PAP−1. Similar
matrices represent the same linear map, just for a different choice of basis. As such,
almost all meaningful properties of similar matrices coincide, from trace and determi-
nant to eigenvalues and rank. If v is an eigenvector for A, then Pv is one for PAP−1.
The following result is even more precise.

Proposition 3.6. The following equality of characteristic polynomials is true: pA = pPAP−1 .
In particular, we have pAB = pBA.

Not every matrix is diagonalisable, but we can always get close.

Lemma 3.7. (Schur) For any square matrix A, there exists some (unitary) matrix Q such that
QAQ−1 is upper-triangular.

This can be strengthened; even if a matrix A is not diagonalisable, it can always be
brought into Jordan normal form. This is a special kind of upper-triangular matrix,
which consists of blocks of the form

λ 1 0 . . . 0 0
0 λ 1 . . . 0 0
0 0 λ . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . λ 1
0 0 0 . . . 0 λ


placed on the diagonal, with zeroes elsewhere; here the λ are the eigenvalues of A.
Finally, sometimes when tasked to prove something for general matrices A, we may re-
duce to the case of diagonalisable matrices for free, which can make a huge difference.
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Namely, if the problem asks to prove a polynomial identity about all or a certain class
of matrices, then often the diagonalisable matrices are dense inside this set. If a poly-
nomial identity holds on a dense subset, if must hold on the full space. This can yield
quicker proofs of many known theorems and is sometimes useful at the IMC. This can
be used to prove the non-obvious but sometimes useful fact that any matrix A is similar
to its transpose AT . Even though some linear algebra questions, even at the IMC, are
direct applications of the material discussed in this brief introduction, most will require
a thorough understanding of the interplay between linear maps and matrices, and will
require one or multiple creative and key insights to solve.

3.3 Examples

Example 3.8. Let A be a real n× n-matrix satisfying A3 = 0. Let 1 be the n× n matrix
containing only 1’s. For which n can we conclude that det(A+ 1) = 0?

Solution: We use Sylvester’s inequality to deduce that

2rk(A) ⩽ rk(A2) +n.

Similarly, we may apply it again to find that

rk(A) + rk(A2) ⩽ rk(A3) +n = n.

Adding these inequalities gives us

3rk(A) + rk(A2) ⩽ rk(A2) + 2n =⇒ rk(A) ⩽ 2n/3.

Now clearly rk(1) = 1, so we find that

rk(A+ 1) ⩽ rk(A) + rk(1) ⩽ 2n/3 + 1 < n

as soon as n > 3. If a matrix does not have full rank, it cannot be invertible; as such,
det(A+ 1) = 0 as soon as n > 3. To see that the claim fails for n < 3, we invite the
reader to consider the matrices

A =
(
0
)

, A =

(
0 1
0 0

)
, and A =

0 1 1
0 0 1
0 0 0


respectively. This solves the problem. △

Example 3.9. (IMC 2003) Let A and B be n× n-matrices satisfying the equation AB+
A+B = 0. Prove that A and B commute and that rk(A) = rk(B).

Solution: Note that

AB+A+B = 0 ⇐⇒ AB+A+B+ I = I ⇐⇒ (A+ I)(B+ I) = I.
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This means that A and B are each other’s inverses, and as such, we also have that

(B+ I)(A+ I) = I ⇐⇒ BA+A+B+ I = I ⇐⇒ BA+A+B = 0.

Comparing this result to the given equation yields that AB = BA, as desired. For the
statement about ranks, note that

A(B+ I) = AB+A = −B.

Since A and B now differ up to an invertible matrix, their ranks must be the same. △

3.4 Exercises

Problem 3.1. Let n > k be two positive integers and let Ai for i = 1, . . . ,k be an n×n-matrix
with rk(Ai) = n− 1. Prove that A1 · · ·Ak ̸= 0.

Problem 3.2. Let A and B be two nilpotent matrices of the same size. Show that if A and B

commute, then A+B is also nilpotent. Is this still true if A and B do not commute?

Problem 3.3. Let A be a matrix satisfying A2 = In. Show that rk(A+ I) + rk(A− I) = n.
Does the converse hold?

Problem 3.4. Determine all invertible matrices A with non-negative real entries such that A−1

also has only non-negative real entries.

Problem 3.5. Determine the rank of the n×n-matrix A with entries aij = (i+ j)2.

Problem 3.6. Let A and B be two distinct matrices satisfying A3 = B3 and A2B = B2A. Can
A2 +B2 be invertible?

Problem 3.7. Let P and Q be square matrices of the same size, satisfying P2 + P = Q2 +Q

and such that P+Q+ I is invertible. Show that rk(P) = rk(Q).

Problem 3.8. Let A be an n×n-matrix with aij ∈ {0, 1} for all 1 ⩽ i, j ⩽ n. Suppose further
that aii = 0 and aij + aji = 1 for all i, j. Prove that rk(A) ⩾ n− 1.

Problem 3.9. Let A be a 3 × 3-matrix with rational entries. Suppose that A8 = I3. Prove that
even A4 = I3.

Problem 3.10. Let A be a 2 × 2-matrix with integer coefficients. Suppose that An = I2 for
some n coprime to 6. Prove that A = I2.

Problem 3.11. Let A and B be complex 2 × 2-matrices such that AB− BA = B2. Prove that
A and B commute.

Problem 3.12. Let A and B be complex 2 × 2-matrices such that A2 + B2 = 2AB. Prove that
A and B commute and that their traces are equal.
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Problem 3.13. Let A,B,C be n×n matrices such that C commutes with both A and B. Sup-
pose further that C2 = In and AB = 2(A+ B)C. Show that A and B also commute. If further
A+B+C = 0, show that rk(A−C) + rk(B−C) = n.

Problem 3.14. (∗) Let A be a 3 × 2-matrix and B a 2 × 3-matrix. Suppose that

AB =

 8 2 −2
2 5 4
−2 4 5

 .

Determine BA.

Problem 3.15. Let M be a 3 × 3 magic square and view it as a matrix. Prove that for any odd
positive integer, the matrix Mn is also a magic square.

Problem 3.16. (∗) Let S be the set of 2 × 2-matrixes of the form(
a a+ d

a+ 2d a+ 3d

)
.

Find all M ∈ S such that for some k > 1, we have that also Mk ∈ S.

3.5 IMC Problems

Problem 3.17. (1994) Let n ⩾ 2 be an integer and let A be an invertible n× n-matrix with
positive real entries. Show that A−1 contains at most n2 − 2n zeroes. How many zeroes occur
in the inverse of 

1 1 1 1 . . . 1
1 2 2 2 . . . 2
1 2 1 1 . . . 1
1 2 1 2 . . . 2
...

...
...

...
. . .

...
1 2 1 2 . . . . . .


?

Problem 3.18. (1994) Let A be a diagonal matrix and let d(λ) for λ ∈ R denote the number
of times λ occurs on the diagonal of A. Show that the dimension of the space of matrices B that
commute with A is given by

∑
d(λ)2.

Problem 3.19. (1995) Let X be an invertible n×n-matrix with columns X1,X2, . . . ,Xn. Let Y
be the matrix with columns X2,X3, . . . ,Xn, 0. Show that the matrix A = YX−1 and the matrix
B = X−1Y both have rank n− 1, yet are nilpotent.

Problem 3.20. (1995) Let A and B be real n× n-matrices with the property that there exist
n + 1 distinct real numbers t0, . . . , tn such that the matrices A + tiB are nilpotent for all
0 ⩽ i ⩽ n. Show that both A and B are nilpotent themselves.
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Problem 3.21. (1995) Let A be a real n× n-matrix with the property that any u ∈ Rn is
orthogonal to Au. Show that A is skew-symmetric.

Problem 3.22. (1996) Given a positive integer n, find the largest possible integer k such that
there exists a set of pairwise commuting n × n-matrices A1, . . . ,Ak further satisfying that
A2

i = In for all 1 ⩽ i ⩽ k.

Problem 3.23. (1997) Let A and B be real n× n-matrices such that A2 + B2 = AB. Prove
that if BA−AB is invertible, then n is divisible by 3.

Problem 3.24. (1998) Let V = R10 and let U1 ⊂ U2 ⊂ V be subspaces with dim(U1) = 3
and dim(U2) = 6. Let E be the space of linear maps T : V → V such that T(U1) ⊂ U1 and
T(U2) ⊂ U2. Determine dim(E).

Problem 3.25. (1998) Let V be a real vector space and let f, f1, . . . , fk : V → R be linear maps.
Suppose that f(x) = 0 whenever f1(x) = . . . = fk(x) = 0. Show that f can be written as a
linear combination of the f1, . . . , fk.

Problem 3.26. (2002) Let A be a complex n×n-matrix. Show that AA = In if and only if for
some invertible matrix S, we have A = SS

−1.

Problem 3.27. (2004) Let A be a real 4 × 2-matrix and B a real 2 × 4 matrix such that

AB =


1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

 .

Determine BA.

Problem 3.28. (2005) Let A = (aij) be the n×n-matrix given by aij = i+ j. Find rk(A).

Problem 3.29. (2006)(∗) Let v0 = 0 and let v1, . . . , vn+1 ∈ Rn be such that the norm |vi− vj|

is rational for all 0 ⩽ i, j ⩽ n+ 1. Prove that v1, . . . , vn+1 are linearly dependent over Q.

Problem 3.30. (2007) Let n ⩾ 2 be an integer. What is the smallest possible rank of an
n×n-matrix whose coefficients are precisely the numbers 1, 2, . . . ,n2? What about the greatest
possible rank?

Problem 3.31. (2008) For each positive integer k, find the smallest positive integer n for which
there exists real n× n-matrices A1, . . .Ak such that A2

i = 0 and AiAj = AjAi for all indices
1 ⩽ i, j ⩽ k, with the additional property that A1 · · ·Ak ̸= 0.

Problem 3.32. (2009) Let A, B and C be n× n-matrices with A invertible. Suppose that the
equation C(A−B) = A−1B holds. Prove that (A−B)C = BA−1.

Problem 3.33. (2010)(∗) Let A be a symmetric matrix over F2 all of whose diagonal entries
are zero. Prove that for each positive integer n, each column of An contains at least one zero.
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Problem 3.34. (2012) Let n be a positive integer. Determine the smallest possible rank of an
n×n-matrix with only zeros on its diagonal and positive entries elsewhere.

Problem 3.35. (2013)(∗) Let v1, . . . , vn be unit vectors in Rn. Show that there exists some
unit vector u such that |⟨u, vi⟩| ⩽ 1/

√
n for all 1 ⩽ i ⩽ n.

Problem 3.36. (2016) Let n be a positive integer. We say a set of n×n-matrices {A1, . . . ,Ak}

is interesting if A2
i ̸= 0 for all 1 ⩽ i ⩽ k and AiAj = 0 for all i ̸= j. Show that the largest

possible interesting set is precisely of size n.

Problem 3.37. (2018) Determine all rational numbers a for which the matrix
a −a −1 0
a −a 0 −1
1 0 a −a

0 1 a −a


is the square of a matrix with all rational entries.

Problem 3.38. (2018) Let k be a positive integer. Determine the smallest integer n with the
property that there exist k non-zero vectors v1, . . . vk ∈ Rn such that for any two indices i, j
with |i− j| > 1, the vectors vi and vj must be orthogonal. How does the answer change if we
require vi and vj to be orthogonal if and only if |i− j| > 1?

Problem 3.39. (2019) Determine all positive integers n for which there exist n×n real invert-
ible matrices A and B satisfying AB−BA = B2A.

Problem 3.40. (2021) Let A be a real n×n-matrix such that A3 = 0. Determine all matrices
X such that X+AX+XA2 = A.

Problem 3.41. (2021) Let p be a prime number. Show that there is no injective group homo-
morphism from GL2(Z/pZ) to the permutation group Sp.

Problem 3.42. (2022) Let A1, . . . ,Ak be n × n-matrices satisfying A2
i = Ai and further

AiAj = −AjAi for all 1 ⩽ i < j ⩽ k. Prove that for some i, we must have rk(Ai) ⩽ n/k.

Problem 3.43. (2022) Let A, B and C be n×n matrices with complex entries satisfying

A2 = B2 = C2 and B3 = ABC+ 2I.

Prove that A6 = I.
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4 Analysis II

Before moving on to the theory of functions, continuity and integration, we will mo-
mentarily pause to consider a natural extension of the realm of sequences: namely, the
concept of series. Problems about series are ubiquitous at the IMC and as such deserve
their own section for practice.

4.1 Series

For a sequence (an) of real numbers, the sum
∑∞

n=1 an is the series associated with an.
If this series converges, then limn→∞ an = 0, but the converse is not true. However,
if (an) does not converge to zero, then the series cannot converge either. Some power
series are particularly important to remember, as they can be used in myriad ways. Well
known is

(1 + x)α =

∞∑
k=0

(
α

k

)
xk; in particular,

1
1 − x

=

∞∑
k=0

xk.

Integrating the latter yields

log(1 − x) = −

∞∑
k=1

xk

k
; inverting yields ex =

∞∑
k=0

xk

k!
.

Of course one may only use these power series on their domains of convergence, which
is |x| < 1 for the former and all of R for the latter. Similarly, the series

sin(x) =
∞∑

k=0

(−1)k
x2k+1

(2k+ 1)!
and cos(x) =

∞∑
k=0

(−1)k
x2k

(2k)!

converge on all of R. To determine if a given series converges, it is often good practice
to compare it to a series of which convergence or divergence is already known. For
example, it is useful to know that

∞∑
n=1

1
nα

converges precisely when α > 1.

The following theorem is sometimes useful to settle edge-cases when it comes to con-
vergence.

Proposition 4.1. (Abel’s Theorem) Suppose that a formal power series converges on an open
interval (−r, r) to a function f. If the power series at x = r also converges to some value L, then

L = lim
x→r

f(x).
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The following proposition records two more criteria that are sometimes useful.

Proposition 4.2. Let (an) be a sequence such that lim sup |an+1/an| < 1. Then
∑∞

n=1 an

converges. Similarly, if lim sup |an|
1/n < 1, the series converges.

These may seem complicated, but in reality these are both direct consequences of
the fact that a geometric series converges precisely when the multiplicative factor is in
absolute value smaller than 1.

4.2 Manipulating Series

We record here some conditions on when we can change the order of summation, which
is sometimes useful but always requires some justification.

Proposition 4.3. Let (an) be a sequence of real numbers. If
∞∑

n=1

|an|

converges, so will ∞∑
n=1

an

and this limit is independent from the order of the terms.

Proposition 4.4. Let (am,n) be a multi-indexed sequence of real numbers. If
∞∑

m=1

∞∑
n=1

|am,n|

converges, then we have that
∞∑

m=1

∞∑
n=1

am,n =

∞∑
n=1

∞∑
m=1

am,n.

As in the previous section, some sequences can be written as an = f(n) for some
obvious choice of function f : R → R. If f is positive yet decreasing, we have the
following estimates:

b∑
n=a+1

f(n) ⩽
∫b
a

f(x)dx ⩽
b−1∑
n=a

f(n) for all a,b ∈ N.

This often allows one to get a very sharp bound on the growth of a series of this kind;
even though it does not give much information about the precise value of the series, it
is certainly true that ∞∑

n=1

f(n) < ∞ ⇐⇒
∫∞

1
f(x)dx < ∞,
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which is often quite useful for establishing convergence or divergence of a series, pro-
vided computing the integral is much easier than analysing the series directly. When
dealing with infinite products, the following proposition is often critical.

Proposition 4.5. Let (an) be a sequence of positive numbers. Then L :=
∑∞

i=1 an < ∞ if and
only if

∏∞
i=1(1 + an) < ∞. More precisely, if this holds, then

1 + L <

∞∏
i=1

(1 + an) < eL.

4.3 Examples

Example 4.6. Determine ∞∑
n=1

1
n2n

.

Solution: We integrate the generating function:

∞∑
n=0

Xn =
1

1 −X
=⇒

∞∑
n=0

Xn+1

n+ 1
= log(1 −X) for |X| < 1.

Now plug in X = 1/2 to find that the sequence evaluates precisely to log(2). △

Example 4.7. Prove that for any n ∈ N, it holds that(
1 +

1
2

)(
1 +

1
22

)
· · ·
(

1 +
1

2n

)
<

5
2

.

Solution: Naively applying the proposition above, using that 1/2 + 1/4 + . . . = 1, we
would bound this infinite product by e > 5/2, which is too coarse. To refine our ap-
proach, we may multiply both sides by 2/3 to reduce to showing that the same product
without the first factor is bounded above by 5/3. Now since 1/4 + 1/8 + . . . = 1/2, the
above proposition bounds this infinite product by

√
e < 5/3, completing the proof. △
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4.4 Exercises

Problem 4.1. Determine ∞∑
n=2

1
n(n− 1)

.

Problem 4.2. Determine the sum

1
3
+

2
9
+

3
27

+
4

81
+ . . .

Problem 4.3. Let (an) satisfy an > 0 and an < a2n + a2n+1 for all n ⩾ 1. Show that∑∞
n=1 an diverges.

Problem 4.4. Let (an) be a decreasing sequence of positive real numbers. Prove that
∑∞

n=1 an

converges if and only if
∑∞

n=1 2na2n converges.

Problem 4.5. Determine
0
1!

+
1
2!

+
2
3!

+ . . .

Problem 4.6. Let 0 < x < 1. Compute the product

∞∏
n=0

(1 + x2n).

Problem 4.7. For each positive integer n, define

Sn =
∑

x,y⩽n
x+y⩾n

1
xy

.

Determine limn→∞ Sn.

Problem 4.8. Compute
3

1 · 2
−

5
2 · 3

+
7

3 · 4
−

9
4 · 5

+ . . .

Problem 4.9. Let the Fibonacci sequence be given by F0 = F1 = 1 and Fn+2 = Fn+1 + Fn for
all n ⩾ 0. Determine ∞∑

n=1

Fn

Fn−1Fn+1
and

∞∑
n=1

1
Fn−1Fn+1

.

Problem 4.10. Compute the infinite product

∞∏
n=2

n3 − 1
n3 + 1

.
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Problem 4.11. Prove the identity

4
n∑

k=1

k sin
(
kπ

2n

)2

= (n+ 1)2 + cot
( π

2n

)2
.

Problem 4.12. Determine all real α > 0 with the property that
∞∑

n=1

2012
(n+α)(16n+ 2012)

= 1.

Problem 4.13. Let x1, . . . , xn ∈ R. Show that
n∑

i=1

n∑
j=1

min(i, j)xixj ⩾ 0.

Problem 4.14. Compute ∞∑
n=0

n

n4 +n2 + 1
.

Problem 4.15. Let |x| < 1 be a real number. Determine

x

x+ 1
+

x2

(x+ 1)(x2 + 1)
+

x4

(x+ 1)(x2 + 1)(x4 + 1)
+ . . .

Problem 4.16. Determine ∞∑
n=1

1
n(2n+ 1)

.

Problem 4.17. Compute the series
∞∑

n=1

1
n(9n2 − 1)

.

Problem 4.18. Compute ∞∑
n=0

(−1)n

3n+ 1
.

Problem 4.19. Let B(n) denote the number of ones in the binary expansion of the positive
integer n. Determine ∞∑

n=1

B(n)

n(n+ 1)
.

Problem 4.20. Show that the sum ∞∑
n=1

(−1)n
log(n)
nα

converges for all α > 0.
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Problem 4.21. (∗) Determine the sum
∞∑

k=1

6k

(3k+1 − 2k+1)(3k − 2k)
.

Problem 4.22. (∗) Let T be the set of triples (a,b, c) of positive integers for which there exists
a triangle with side lengths a, b and c. Determine∑

(a,b,c)∈T

2a

3b5c
.

Problem 4.23. (∗) Determine the double sum
∞∑

n=1

∞∑
m=1

1
m2n+mn2 + 2mn

.

Problem 4.24. (∗) Find the value of the double sum
∞∑

n=1

∞∑
m=1

m2n

3m(n3m +m3n)
.

Problem 4.25. (∗) Compute
∞∑

n=1

∞∑
m=1

1
mn(m+n+ 1)

.

What about ∞∑
k=1

∞∑
n=1

∞∑
m=1

1
mnk(m+n+ k+ 1)

?

Can you generalise this to more variables?

Problem 4.26. (∗) Compute ∞∑
n=0

cos−1(n2 +n+ 1),

where cos−1(t) for t > 0 is defined as the unique θ ∈ (0,π/2] such that cos(θ) = t.

Problem 4.27. (∗) Determine the value of the double sum
∞∑

k=1

(−1)k−1

k

∞∑
n=0

1
k2n + 1

.

Problem 4.28. (∗) Let α(n) denote the number of zeroes in the expansion of n in base 3. For
which positive x does the series ∞∑

n=1

xα(n)

n3

converge?
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4.5 IMC Problems

Problem 4.29. (1995)(∗) Let (bn) be the sequence of real numbers defined by b0 = 1 and
bn+1 = 2 +

√
bn − 2

√
1 +

√
bn. Compute

∞∑
n=1

bn2n.

Problem 4.30. (1996)(∗) Show that

lim
x→∞

∞∑
n=1

nx

(n2 + x)2 =
1
2

.

Problem 4.31. (1997)(∗) Let (an) be a sequence of positive numbers with limn→∞ an = 0.
Determine

lim
n→∞ 1

n

n∑
k=1

log
(
k

n
+ an

)
.

Problem 4.32. (1997) Show that

∞∑
n=1

(−1)n sin(log(n))
nα

converges if and only if α > 0.

Problem 4.33. (1999) Let π : N → N be a bijection. Show that the following sum diverges:

∞∑
n=1

π(n)

n2 .

Problem 4.34. (2001) Determine

lim
t→1

(1 − t)

∞∑
n=1

tn

1 + tn
.

Problem 4.35. (2003)(∗) Let (an) be the sequence defined by a0 = 1 and

an+1 =
1

n+ 1

n∑
k=0

ak

n− k+ 2
.

Find the limit

lim
n→∞

n∑
k=0

ak

2k
.
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Problem 4.36. (2010)(∗) Determine

∞∑
k=0

1
(4k+ 1)(4k+ 2)(4k+ 3)(4k+ 4)

.

Problem 4.37. (2011)(∗) Determine the value of

∞∑
n=1

log
(

1 +
1
n

)
log
(

1 +
1

2n

)
log
(

1 +
1

2n+ 1

)
Problem 4.38. (2012)(∗) Define a sequence (an) by setting a0 = 1, a1 = 1/2 and further

an+1 =
na2

n

1 + (n+ 1)an
for all n ⩾ 1.

Show that the series
∑∞

k=0
ak+1
ak

converges and determine its limit.

Problem 4.39. (2014)(∗) Consider the sequence

(an) = (1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, . . .)

Determine all pairs (α,β) of positive real numbers such that

lim
n→∞ 1

nα

n∑
k=1

ak = β.

Problem 4.40. (2015) Define a sequence an by a0 = 0, a1 = 3/2 and an+2 = 5
2an+1 − an

for all n ⩾ 0. Determine ∞∑
n=0

1
a2n

.

Problem 4.41. (2015) Prove that

∞∑
n=1

1√
n(n+ 1)

< 2.

Problem 4.42. (2016) Let (xn) be a sequence of positive real numbers such that

∞∑
n=1

xn

2n− 1
= 1.

Show that ∞∑
k=1

k∑
n=1

xn

k2 ⩽ 2.
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Problem 4.43. (2018) Let (an) and (bn) be two sequences of positive numbers. Show that

∞∑
n=1

√
an

bn
< ∞ ⇐⇒ there exists (cn) such that

∞∑
n=1

an

cn
< ∞ and

∞∑
n=1

cn

bn
< ∞.

Problem 4.44. (2018) Let (an) be defined by a0 = 0 and a3
n+1 = a2

n − 8. Prove that

∞∑
n=0

|an+1 − an| < ∞.

Problem 4.45. (2019) Evaluate the product

∞∏
n=3

(n3 + 3n)2

n6 − 64
.
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5 Algebra II

We continue with a brief treatment of some elementary number theory. IMC problems
rarely require advanced knowledge of this very deep and active field, so we will content
ourselves with only some very basic concepts.

5.1 Number Theory

Number theory, in its simplest terms, describes the study of the natural numbers and
their properties. We list some very basic ones.

• If d | m and d | n, then also d | am+ bn for any a,b ∈ Z.

• If d | m and m | n, then also d | n.

• If p is a prime and p | mn, then p | m or p | n.

• Every positive integer has a unique prime factorisation.

• If gcd(m,n) = 1, then Z/mnZ ∼= Z/mZ × Z/nZ. (Chinese Remainder Theorem)

A very important arithmetic function is the Euler-totient function φ : N → N, which
is defined by φ(n) = #(Z/nZ)×. The following properties are easy to show, yet very
important.

• If p is a prime and k ∈ N, then φ(pk) = pk−1(p− 1).

• If gcd(m,n) = 1, then by the CRT, φ(mn) = φ(m)φ(n).

• For any n ∈ N we have the direct formula

φ(n) = n
∏
p|n

p− 1
p

.

The following result is a direct result from Lagrange’s Theorem in group theory.

Proposition 5.1. (Fermat’s Little Theorem) If gcd(a,n) = 1, then aφ(n) ≡ 1 mod n. In
particular, for primes p, it holds that ap ≡ a mod p for all a ∈ Z.

Finally, the following is almost immediate from the fact that (Z/pZ)× is a group.

Proposition 5.2. (Wilson) For any prime number p, it holds that (p− 1)! ≡ −1 mod p.
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To solve number theory problems, it is very often a good idea to apply modular arith-
metic; especially powers of numbers often display great regularity when considering
the right modulus. It is also useful to keep the Legendre symbol in mind;(

a

p

)
≡ a(p−1)/2 mod p ∈ {−1, 0, 1}.

It decides whether or not a number is a quadratic residue modulo p or not. Its most
striking property is quadratic reciprocity.

Theorem 5.3. Let p and q be two distinct odd primes. Then(
p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4.

The prime 2 is a tad more subtle;
(

2
p

)
is equal to 1 precisely when p ≡ ±1 mod 8.

5.2 Examples

Example 5.4. Let p be a prime and let d > 1 be a divisor of 2p − 1. Prove that d > p.

Solution: It suffices to show that every prime divisor q of 2p − 1 is larger than p. To
this end, suppose that q | 2p − 1, or in other words, that 2p ≡ 1 mod q. This means
that the order of the element 2 mod q in the group (Z/qZ)× divides p. Since it is not
1, this order must equal p. But this order must also divide the order of the group itself.
We find that p | q− 1, and so in particular p < q; this completes the proof. △

Example 5.5. Determine all pairs of integers x,y ∈ N such that

1! + 2! + . . . + x! = y2.

Solution: Note that 5 | x! as soon as x ⩾ 5. This implies that for x ⩾ 4,

1! + 2! + . . . + x! ≡ 1 + 2 + 6 + 24 + 0 + . . . + 0 = 33 ≡ 3 mod 5.

However, 3 is not a square modulo 5, so we find no solutions for x ⩾ 4. We manually
check the cases x ⩽ 3, to find only the pairs (1, 1) and (3, 3) as solutions. △

Example 5.6. Let m,n ∈ N. Prove that 4mn−m−n is not a square.

Solution: Suppose that 4mn−m−n = k2 for some integer k. Then we find that

16mn− 4m− 4n = 4k2 =⇒ (4m− 1)(4n− 1) = (2k)2 + 1.

We claim that any prime number p | (2k)2 + 1 must be 1 mod 4. This would complete
the proof, as this would show that it is impossible for (2k)2 + 1 to admit a factor 4m−
1 ≡ −1 mod 4. To show the claim, we note that for such a prime p, it holds that
(2k)2 ≡ −1 mod p. This means that −1 is a square modulo p, and as such, the claim
follows from the theory about Legendre symbols above. △
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Example 5.7. How many primes are of the form 3711 . . . 11?

Solution: Let an = 3711 . . . 11, containing precisely n ones at the end.
Our first observation will be that 111 = 3 · 37. Appending three ones to a number k

is equivalent to the operation k 7→ 1000k+ 111. In particular, divisibility by 3 and 37 is
preserved. As 37 | a0, this shows that 37 | an as soon as 3 | n. Similarly, by considering
the sum of its digits, one finds that 3 | 3711 = a1, and as such, 3 | an as soon as n ≡ 2
mod 3. We thus reduce to analysing the case that n ≡ 1 mod 3. We look for small
prime factors for these remaining numbers, to find

371 = 7 · 53, and 371111 = 13 · 28547.

Could similar patterns as above exist for these primes? Note that

111111 = 1001 · 111 = (7 · 11 · 13) · (3 · 37).

With similar reasoning as above, we find that 7 | an =⇒ 7 | an+6 and similarly
13 | an =⇒ 13 | an+6. Our calculations show that 7 | a1 and 13 | a4, and as such, we
have identified a prime factor of every an. So, such numbers can never be prime. △

5.3 Exercises

Problem 5.1. Determine all n ∈ Z such that n2 + 1 is divisible by n+ 1.

Problem 5.2. Let p > 3 be a prime. Show that p2 − 1 is divisible by 24.

Problem 5.3. Is it possible for a power of 2 to end in the digits 2012?

Problem 5.4. Determine all prime numbers p for which there exist primes q,q ′ and r, r ′ such
that p = q+ q ′ = r− r ′.

Problem 5.5. Find the largest positive integer m with the property that for any n ∈ N, the
number n(n+ 1)(2n+ 1) is divisible by m.

Problem 5.6. Let n ⩾ 2 be an integer. What is the final digit of the Fermat-number 22n + 1?

Problem 5.7. Determine all pairs of integers k, ℓ ∈ N such that k2 = 2ℓ + 3.

Problem 5.8. Prove that for any positive integer n, the number n2 + 2n+ 12 is not divisible
by 121.

Problem 5.9. An m×n grid of unit squares has the property that the border consist of precisely
8% of the total number of squares. What possible areas can the board have?

Problem 5.10. Let p ⩾ 5 be a prime number. Prove that the number consisting of p− 1 ones
in a row is divisible by p.

Problem 5.11. Let a,b ∈ N be coprime. Prove that gcd(a+ b,a2 − ab+ b2) ∈ {1, 3}.
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Problem 5.12. Determine all quintuples of primes p,q, r, s, t such that p2 +q2 = r2 + s2 + t2.

Problem 5.13. Determine all pairs of positive integers x,y ∈ Z such that 1/x+ 1/y = 1/14.

Problem 5.14. Determine all integer solutions to the equation x25 − y12 = x+ 3.

Problem 5.15. Prove that for any n ⩾ 2, the number 2n − 1 is not divisible by n.

Problem 5.16. Prove that every positive composite integer can be written as xy+ yz+ zx+ 1
for some positive integers x,y, z.

Problem 5.17. Prove that
gcd(m,n)

n

(
n

m

)
is an integer for any n ⩾ m ⩾ 1.

Problem 5.18. Let n = 92023. Determine gcd(n2 + 2,n3 + 1).

Problem 5.19. Determine all pairs of integers x,y ∈ Z such that x4 + y3 = 2613527.

Problem 5.20. Let u, v ∈ N be coprime integers. Prove that there exist integers a,b > 1 and
m,n ∈ N such that anu

= bmv
and au = bv.

Problem 5.21. Determine all Fibonacci numbers that are also of the form 22m + 1.

Problem 5.22. Determine the largest proper divisor of 20155 + 20354 + 1.

Problem 5.23. Determine all pairs of positive integers a,b ∈ N such that a2 + 2b2 = 2023.

Problem 5.24. Determine all pairs of positive integers such that 3n2 + 3n+ 7 = m3.

Problem 5.25. Suppose that {a1, . . . ,an} and {b1, . . . ,bn} are a set of representatives for the
classes of Z/nZ. If also {a1b1, . . . ,anbn} is such a set, prove that n ∈ {1, 2}.

Problem 5.26. Find all right-angled triangles with integral side lengths a < b < c such that
c− b = b− a.

Problem 5.27. How many numbers of the form 10101 . . . 101 are prime?

Problem 5.28. Show that for any positive integer n, it holds that

n! =
n∏

i=1

lcm(1, 2, . . . , ⌊n/i⌋).

Problem 5.29. Determine all triples of integers x,y, z ∈ Z satisfying x2 + 10y2 = 3z2.

Problem 5.30. Determine all quadruples of positive integers (m,n, x,y) with gcd(n,m) = 1
further satisfying (x2 + y2)m = (xy)n.
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Problem 5.31. Let p be an odd prime. Prove that the function

F : Z/pZ : n 7→ 1 + 2n+ 3n2 + . . . + (p− 1)np−2

is bijective.

Problem 5.32. Let S = Q \ {0,±1}. Let f : S → S be given by f(x) = x− 1/x. Prove that

∞⋂
n=1

fn(S) = ∅.

Problem 5.33. Determine all pairs of a,n ∈ N such that an+1 − (a+ 1)n = 2001.

Problem 5.34. Define the sequence (an) through a0 = 1 and further a2n+1 = an and
a2n+2 = an + an+1 for all n ⩾ 0. Prove that every positive rational number can be writ-
ten as an/an+1 for some n ⩾ 0.

Problem 5.35. Let three positive integers be written on a blackboard. A move consists of choos-
ing two of the numbers on the board, say x and y, wiping them out and replacing them by 2x
and y− x. Prove that it is possible to at some point write a 0 on the board.

Problem 5.36. Let S be a finite set of integers exceeding 1. Suppose that for any integer n,
there exists some s ∈ S such that either gcd(s,n) = 1 or gcd(s,n) = s. Prove that there exist
s, t ∈ S such that gcd(s, t) is prime.

Problem 5.37. Determine all positive integers n with the property that if a and b are positive
integers such that 1/n = 1/a+ 1/b, then either a | b or b | a.

Problem 5.38. Determine the remainder upon dividing 22n by 2n − 1 if n itself is also a power
of 2. What if n is a prime?

Problem 5.39. Let p be a prime. Determine
(2p
p

)
mod p.

Problem 5.40. Determine all pairs of integers k,m ∈ Z such that 3 · 2k = m3 + 5m+ 6.

Problem 5.41. Determine for every prime p an explicit integer n such that 2n + 3n + 6n − 1
is divisible by p.

Problem 5.42. Let m and a be positive integers such that a5 + 1 is divisible by m. Prove that
either a+ 1 is divisible by m, or that φ(m) is divisible by 5.

Problem 5.43. Does there exist a positive integer n with the property that 103 | n and 22n+1 ≡
2 mod n?

Problem 5.44. Let p and q ̸= 5 be primes such that q | 2p + 3p. Prove that q > 2p.

Problem 5.45. Is 712! + 1 a prime?

Problem 5.46. Let n be a positive integer, let p be a prime and let d be a divisor of the number
(n+ 1)p −np. Prove that d− 1 is divisible by p.
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Problem 5.47. Let m,n ⩾ 3 be odd integers. Prove that 2m − 1 is not a divisor of 3n − 1.

Problem 5.48. Let x,y ⩾ 2 be positive integers with gcd(x,y) = 1. Prove that x7 + y7 is
divisible by 7 or by a prime that is 1 modulo 7.

Problem 5.49. Starting with the number 71996, we repeatedly remove the first digit and add
it to the remaining number. Prove that, when we have reached a 10 digit number, at least two
digits are equal.

Problem 5.50. Prove that for any k ⩾ 1, the number 512 · 12k + 1 is composite.

Problem 5.51. The number 229 is a 9-digit number of which it is known that all digits are
distinct. Which digit does not occur?

Problem 5.52. Determine all positive integers that cannot be written as the sum of two or more
consecutive positive integers.

Problem 5.53. How many prime numbers are of the form 3811 . . . 11?

Problem 5.54. Determine all pairs of integers x,y satisfying 2x6 + y7 = 11.

Problem 5.55. Prove that nn + (n+ 1)n+1 is composite for infinitely many choices of n.

Problem 5.56. Prove that the number 10101 is composite in every possible base b ⩾ 2.

Problem 5.57. Determine all positive even numbers that can be written as the sum of two
composite odd numbers.

Problem 5.58. Is the set of positive integers n such that 2n − 8 is divisible by n finite or
infinite?

Problem 5.59. Define the sequence (an) by a0 = 1 and an+1 = 2an for every n ⩾ 0. Prove
that an ≡ an−1 mod n for every n ⩾ 2.

Problem 5.60. Prove that there exist infinitely many composite n such that 3n−1 − 2n−1 is
divisible by n.

Problem 5.61. Let A be the sum of the decimal digits of 44444444 and let B be the sum of the
digits of A. Determine the sum of the digits of B.

Problem 5.62. Let a,b, c ∈ N be such that a2 − bc is a square. Prove that 2a+ b+ c is not
a prime.

Problem 5.63. Prove that for every positive integer n, the number 101010n
+ 1010n + 10n − 1

is not a prime.

Problem 5.64. Consider the set S =
{

2k − 3 | k ∈ {2, 3, . . .}
}

. Prove that there exists an
infinite subset T ⊂ S such that any two elements of T are coprime.

Problem 5.65. (∗) Let n > 1 be an integer such that n | 3n + 4n. Prove that 7 | n.

Problem 5.66. (∗) Determine all primes p such that the number of solutions x,y ∈ Z with
0 ⩽ x,y < p to the equation y2 = x3 − x mod p is precisely equal to p.
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5.4 IMC Problems

Problem 5.67. (1994) Let n ∈ N and let S be a set of 2n − 1 distinct irrational numbers.
Prove that there are n distinct elements x1, . . . , xn ∈ S such that for all non-negative rational
numbers a1, . . . ,an with a1 + . . .an > 0, we have that a1x1 + . . . + anxn is an irrational
number.

Problem 5.68. (1996) Let y be a real number for which cosh(y) is an integer. Show that
cosh(ny) is an integer for any n ∈ N. Use this to show that if cosh(ny) and cosh((n+ 1)y)
are both rational for some n ⩾ 1, then cosh(my) must be rational for all m ∈ N.

Problem 5.69. (1997)(∗) Let α ∈ (1, 2) be a real number. Show that α has a unique represen-
tation as an infinite product

α =

(
1 +

1
n1

)(
1 +

1
n2

)
· · ·

where each ni is a positive integer satisfying n2
i ⩽ ni+1 for each i ⩾ 1. Show further that α is

rational if and only if for some m ⩾ 1 and all k ⩾ m, it holds that nk+1 = n2
k.

Problem 5.70. (2003) Determine the set of all pairs (a,b) of positive integers for which the set
N of positive integers can be decomposed into two sets A and B such that a ·A = b ·B.

Problem 5.71. (2006) Find the number of positive integers x < 102006 such that x2 − x is
divisible by 102006.

Problem 5.72. (2006) Prove that there exists an infinite number of relatively prime pairs
(m,n) of positive integers such that the equation (x +m)3 = nx has three distinct integer
roots.

Problem 5.73. (2007) Let x,y, z ∈ Z be such that S = x4 + y4 + z2 is divisible by 29. Prove
that S is even divisible by 294.

Problem 5.74. (2008) Let n be a positive integer. Prove that 2n−1 divides∑
0⩽k<n/2

(
n

2k+ 1

)
5k.

Problem 5.75. (2010) Let a,b ∈ Z and suppose that n is a positive integer for which the set
Z \ {axn + byn | x,y ∈ Z} is finite. Prove that n = 1.

Problem 5.76. (2012) Determine whether or not the set of positive integers n for which n! + 1
is a divisor of (2012n)! is finite or infinite.

Problem 5.77. (2013) Let p,q ∈ N satisfy gcd(p,q) = 1. Prove that

pq−1∑
k=0

(−1)⌊k/p⌋+⌊k/q⌋ =

{
0 if pq is even;
1 if pq is odd.
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Problem 5.78. (2013)(∗) Does there exist an infinite subset M ⊂ N such that for any a,b ∈
M, the sum a+ b is square-free?

Problem 5.79. (2014) Let n > 6 be a perfect number and let n = pe1
1 · · ·pek

k be its prime
factorisation with p1 < . . .pk. Prove that e1 must be even.

Problem 5.80. (2014) For a positive integer x, let dn(x) denote its nth decimal digit. Suppose
that for some sequence (an), there are only finitely many zeroes in the sequence (dn(an)).
Prove that there are infinitely many positive integers that do not occur in the sequence (an).

Problem 5.81. (2015) For a positive integer n, let f(n) be the number obtained by writing n

in binary and replacing every 0 with 1 and vice versa. Prove that 4
∑n

k=1 f(k) ⩽ n2. When
does equality hold?

Problem 5.82. (2015) Determine whether or not there exist 15 integers m1, . . . ,m15 such that
15∑

k=1

mk · arctan(k) = arctan(16).

Problem 5.83. (2017) For any positive integer m, let P(m) denote the product of the posi-
tive divisors of m. For every positive integer n, define the sequence a1(n),a2(n), . . . through
a1(n) = n and ak+1(n) = P(ak(n)). Prove that for every subset S ⊂ {1, 2, . . . , 2007}, there
exists a positive integer n such that for every 1 ⩽ k ⩽ 2007, the number ak(n) is a perfect
square if and only if k ∈ S.

Problem 5.84. (2018)(∗) Let p < q be prime numbers. Suppose that in a convex polygon
P1P2 . . .Ppq all angles are equal and all side lengths are distinct positive integers. Prove that
|P1P2|+ |P2P3|+ . . . + |PkPk+1| ⩾

k3+k
2 for all integers 1 ⩽ k ⩽ p.

Problem 5.85. (2019) Let C denote the set of composite integers. For each n ∈ C, let an denote
the smallest positive integer k such that k! is divisible by n. Determine whether the following
series converges: ∑

n∈C

(an

n

)n
Problem 5.86. (2020) Find all prime numbers p for which there exists a unique integer 1 ⩽
a ⩽ p such that a3 − 3a+ 1 is divisible by p.

Problem 5.87. (2022) Let p > 2 be a prime number. Prove that there is a permutation
(x1, x2, . . . , xp−1) of {1, 2, . . . ,p− 1} such that x1x2 + x2x3 + . . . + xp−2xp−1 ≡ 2 mod p.

Problem 5.88. (2023)(∗) Let p be a prime number and let k be a positive integer. Suppose that
the numbers ai = ik + i for i = 0, 1, . . . ,p− 1 for a complete residue system modulo p. What
is the set of possible remainders of a2 upon division by p?

Problem 5.89. (2023)(∗) For every positive integer n, let f(n) and g(n) be the minimal posi-
tive integers such that

1 +
1
1!

+
1
2!

+ . . . +
1
n!

=
f(n)

g(n)
.

Determine whether there exists a positive integer n for which g(n) > n0.999n.
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6 Combinatorics I

Combinatorics is one of the most represented topics on competitions like the IMO, but
also the IMC is no stranger to interesting counting problems or strange mathematical
games. This chapter will feature little theory; most of the techniques are completely
elementary, as is typical for combinatorics, but this challenging field is not to be under-
estimated in terms of its depth, richness and complexity.

6.1 Basic counting

Many problems in combinatorics are as simple as counting the number of ways some-
thing can be done, or the number of objects satisfying a certain set of properties. Many
different techniques can be used to approach these kinds of problems, of which we list a
few below that may offer some inspiration in case the reader needs some while working
on the exercises below.

• Always try to make the problem more manageable first by plugging in small val-
ues of the parameters that occur in the problem. This often allows you to play
around with things and can often be very helpful in developing a conjecture or a
more profound understanding of the problem.

• If a setting of a combinatorial problem is dependent on the choice of some n ∈ N,
it is often inviting to try induction. This idea is particularly strong if for k < n, the
conclusion to the problem for k gives some information about the situation for n.

• Sometimes counting the same set in two different ways can give meaningful in-
formation. Recall the handshaking lemma: in a group of n people, some of which
shook each other’s hand, the number of people who have shaken an odd number
of hands must be even. Indeed, this is equivalent to saying that the total number
of handshakes is even. Instead of adding up the contributions from each individ-
ual, we recognise that adding up the contributions from each handshake should
give the same result; the claim follows.

• Looking for bijections can often be useful. Proving that a set S has even cardi-
nality is implied by the existence of a involution S → S without fixed points, or
equivalently, by disjoint subsets A,B ⊂ S with a bijection A → B. Alternatively,
a bijection from S to a set S ′ whose objects are defined differently can sometimes
make things easier to count.
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6.2 Advanced counting

It is important to be handy with binomial coefficients; they pop up in many different
settings and problems, but the most important properties to remember are(

n

k

)
=

(
n− 1
k

)
+

(
n− 1
k− 1

)
and (x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k.

The following is informally (and perhaps only locally) known as the Easter-egg principle.

Proposition 6.1. Consider a set of n easter eggs. We wish to paint each egg in one of k different
colours. Then the number of different possible colour combinations is given by(

n+ k− 1
k− 1

)
.

Sometimes the most natural way to count a certain quantity is to build it up from
smaller cases of itself. Typically, this results in a recursion relation. Not every recursion
relation is solvable in a closed form, but sometimes they are. Writing out small values
can sometimes give you a strong idea for as to how the sequence behaves and might
lead to a guess for a closed form. In the special case of a linear recursion, it is always
possible to find a closed form.

Proposition 6.2. If a sequence (an) is defined by the initial values a1, . . . ,am and further

an = c1an−1 + . . . + cman−m for all n > m,

then define the polynomial

f(X) = Xm − c1X
m−1 − . . . − cm.

Let λ1, . . . , λm ∈ C be its roots and suppose that they are all distinct. Then there exist unique
C1, . . . ,Cm ∈ C such that

an = C1λ
n
1 + . . . +Cmλnm for all n ⩾ 1.

Typically, one applies this result to solve two step recursions, because in general,
the numbers λ1, . . . , λn might be rather nasty. The largest absolute value of these roots
determines the growth of the sequence and even for real sequences, it is possible for
some of the λi to be complex. This result is still useful even when the λn turn out to be
integers; the sequence

an = 5an−1 − 6an−2 with a0 = 0 and a1 = 1

starts off as 0, 1, 5, 19, 65, . . ., from which the general formula an = 3n − 2n is not easily
guessed. The above result yields it very quickly, though.
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6.3 Examples

Example 6.3. (IMC 2012) For any positive integer n, we let p(n) denote the number of
different ways to write n as the sum of positive integers. For example, because

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1,

it holds that p(4) = 5. Prove that for any n ⩾ 2, the number of ways to write n as the
sum of integers which are all strictly greater than 1 is precisely equal to p(n)−p(n− 1).

Solution: Let Pn denote the set of ways we can write n as the sum of positive inte-
gers, and Sn the set of ways of doing so without using the number 1. We construct a
bijection Pn → Pn−1 ∪ Sn from which the desired conclusion would immediately fol-
low. Indeed, any partition in Pn either contains a 1, or it does not. In the former case,
we remove this 1 to end up with an element from Pn−1. In the latter case, this partition
describes an element from Sn by definition. The inverse map is obvious; to a partition
in Pn−1 we add a 1 back, and to an element from Sn we do nothing. The bijection has
been established. △

Example 6.4. (IMC 2022) We colour all the sides and diagonals of a regular polygon
P with 43 vertices either red or blue in such a way that every vertex is an endpoint
of 20 red segments and 22 blue segments. A triangle formed by vertices of P is called
monochromatic if all of its sides have the same colour. Suppose that there are 2022 blue
monochromatic triangles. How many red monochromatic triangles are there?

Solution: Define a corner to be a set of two distinct edges from K43 that have a
vertex in common. We observe that a monochromatic triangle always contains three
monochromatic corners, and that a polychromatic triangle always contains one monochro-
matic corner and two polychromatic corners. Therefore we study the quantity 2M− P,
where M is the number of monochromatic corners and P is the number of polychro-
matic corners. By observing that every corner is part of a unique triangle, we can split
this quantity up into all the distinct triangles in K43. By construction the contribution of
a polychromatic triangle will vanish, whereas a monochromatic triangle will contribute
6. We conclude that

2M− P = 6#{monochromatic triangles}.

Consider any vertex v. Let Mv be the number of monochromatic corners with central
vertex v and Pv the number such polychromatic corners. It then follows that

Mv =
20 · 19

2
+

22 · 21
2

= 421 and Pv = 20 · 22 = 440.

In other words, for any vertex v it holds that 2Mv − Pv = 402. Adding up all these
contributions, we find that

2M− P = 43 · 402.

We conclude that there are 43 · 402/6 = 43 · 67 = 2881 monochromatic triangles in total.
Since 2022 of these were blue, 859 must be red. △
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6.4 Exercises

Problem 6.1. How many subsets of {1, 2, . . . ,n} consist of an even number of elements?

Problem 6.2. For n ⩾ 2, let Tn denote the number of non-empty subsets S of {1, 2, . . . ,n} such
that the mean of the numbers occurring in S is an integer. Prove that Tn +n is even.

Problem 6.3. In how many ways can be write 2023 as the sum of 42 non-negative integers?
What about positive integers? What about positive odd integers?

Problem 6.4. A pawn is placed on an infinite square grid. A step consists of the pawn moving
to one of the four squares that touch its current square. Given n ⩾ 1, how many routes can the
pawn take that consist of 2n steps but bring him back to where he started?

Problem 6.5. How many permutations of {1, 2, . . . ,n} can we find such that every number is
either smaller or bigger than all numbers that came before it?

Problem 6.6. Let k,n, ℓ ∈ N. How many subsets of {1, 2, . . . ,n} are there of size k such that
for any a,b ∈ S it holds that |a− b| > ℓ?

Problem 6.7. How many sequences of length n, consisting of only zeroes and ones, can be make
such that we never write down three zeroes or three ones in a row?

Problem 6.8. Let n,k ∈ N. Determine

k∑
j=0

(
k

j

)2(
n+ 2k− j

2k

)
.

Problem 6.9. We call a subset S ⊂ {1, 2, . . . ,n} mediocre if S satisfies the property that if
a,b ∈ S and a+ b is even, then also (a+ b)/2 ∈ S. Let A(n) denote the number of mediocre
subsets of {1, 2, . . . ,n}. Find all n ⩾ 1 such that A(n+ 2) +A(n) = 2A(n+ 1) + 1.

Problem 6.10. A group of 2n students, all with different heights, must pose for a photo. They
must arrange themselves into two lines of n students such that in each line, the heights increase
from left to right, and such that every person on the back row is taller than the person directly
in front of them. In how many ways can they arrange themselves?

Problem 6.11. Define the sequence (cn) by the rules c1 = 1 and further c2n = cn and
c2n+1 = (−1)nc(n). Determine

2023∑
n=1

c(n)c(n+ 2).

Problem 6.12. For a positive integer n, let C(n) denote the number of ways to write n as
the sum of non-increasing powers of 2, such that no power of 2 is used more than three times.
Determine C(n).

Problem 6.13. Let a rook travel on an n× 3 chessboard. How many routes can the rook take
from the bottom-left square to the bottom-right square such that the rook passes each square
exactly once?
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Problem 6.14. We call a finite set of numbers selfish if it contains its own cardinality. Deter-
mine the number of selfish subsets of {1, 2, . . . ,n} that contain no other selfish sets.

Problem 6.15. A Dyck-path of length n is a path with steps (1, 1) and (1,−1) that starts at
(0, 0) and ends at (2n, 0) that never crosses the x-axis. A return of such a path is a maximal
sequence of steps in the same direction that ends on the x-axis. Prove that that there is a bijection
between Dyck-paths of length n without returns of even length, and Dyck-paths of length n− 1.

Problem 6.16. For a word W using only the letters A and B, we let ∆(W) denote the number
of A’s minus the number of B’s. We say such a word is balanced if for every subword W ′ of
W, it holds that ∆(W ′) ⩽ 2. Determine the number of balanced words of length n.

Problem 6.17. For positive integers n and m, we define f(n,m) as the number of n-tuples
(x1, . . . , xn) of integers such that |x1|+ . . . + |xn| ⩽ m. Prove that f(n,m) = f(m,n).

Problem 6.18. Let k < n be positive integers. Show that the number of ways to write n at
the sum of precisely k positive integers is equal to the number of ways to write n as the sum of
positive integers such that k is the largest of the numbers in the partition.

Problem 6.19. Given k < n positive integers, determine the number of subsets of {1, 2, . . . ,n}
of size k containing no two consecutive numbers.

Problem 6.20. (∗) Let n ⩾ 3 and consider a circle with n+ 1 marked points on it, among
which one special point. We bijectively assign a label from the set {0, 1, . . . ,n} to each marked
point, ensuring that the special point is labelled 0. We call such a labelling pretty if for any
0 ⩽ a < b < c < d ⩽ n with a+ d = b+ c, the chord between the points labelled with a and
d does not intersect the chord between the points labelled b and c. Let M be the number of pretty
labellings, and let N denote the number of ordered pairs (x,y) such that x,y > 0, gcd(x,y) = 1
and x+ y ⩽ n. Prove that M = N+ 1.

Problem 6.21. (∗) Let P be the set of paths from (0, 0) to (n,n) that consist of steps of length
1 either up or to the right. For any path p ∈ P, let a(p) denote the number of points on p of the
form (i, i) for 0 ⩽ i ⩽ n. Determine ∑

p∈P

a(p).

Problem 6.22. (∗) Let S be a finite set containing m elements. For a function f : S → S, let
fn denote the n-fold composition of f with itself. We say that f is boring if fn = fn+1 for some
n ⩾ 1. Determine the number of boring functions.

Problem 6.23. (∗) For any positive integer n, let p(n) denote the set of distinct ways to write
n as the sum of positive integers. For each partition π ∈ p(n), let S(π) denote the number of
positive integers occurring in the partition π of n. Show that

∑
π∈p(n) S(π) = #p(n− 2).

Problem 6.24. (∗) Prove that the number of partitions of n is equal to the number of partitions
of 2n in precisely n parts.

Problem 6.25. (∗) Prove that the number of distinct ways to write n as the sum of distinct
positive integers is equal to the number of ways to write n as the sum of positive odd integers.
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Problem 6.26. (∗) Let p(n) denote the number of partitions of n. Prove that for n ⩾ 2, we
have that p(n) ⩾ 2p(n− 1) + p(n− 2).

Problem 6.27. (∗) For any positive integer n, let p(n) denote the set of distinct ways to write
n as the sum of positive integers. For each partition π ∈ p(n), let f(π) denote the number
of ones occurring in the partition π of n and g(p) the number of distinct integers. Show that∑

π∈p(n) f(π) =
∑

π∈p(n) g(π).

Problem 6.28. (∗) A perfect partition of some n ∈ N is a sequence a1 ⩾ . . . ⩾ ak such
that

∑
i ai = n and such that every 1 ⩽ m ⩽ n can be written in a unique way as the sum

of some of the ai. If two such ai are equal, we regard them as indistinguishable. An ordered
factorisation of some n ∈ N is an ordered tuple of positive integers, all distinct from 1, whose
product equals n. Show that the number of perfect partitions of n equals the number of ordered
factorisations of n+ 1.

Problem 6.29. (∗) An equilateral triangle of side length n is divided into n2 small equilateral
triangles of side length 1 in the most natural way. Determine the number of parallellograms you
can draw on this grid.

Problem 6.30. (∗) For n ∈ N, let π(n) denote the number of sets of positive integers with the
property that their sum is equal to n. Further, let π2(n) denote the number such sets containing
at least one power of 2; here we regard 1 as a power of 2. Prove that π2(n+ 1) = π(n).

Problem 6.31. (∗) Let an denote the number of sequences of length n consisting of only zeroes
and ones with the property that no three consecutive terms are equal to 0, 1, 0. Let bn be the
number such sequences instead satisfying the property that no four consecutive terms are equal
to either 0, 0, 1, 1 or 1, 1, 0, 0 respectively. Prove that bn+1 = 2an.

Problem 6.32. (∗) Let n be a positive integer. Every point (x,y) ∈ Z2
⩾0 with x + y ⩽ n

is coloured either red or blue with the property that if (x,y) is red, then so are all of (x ′,y ′)
with x ′ ⩽ x and y ′ ⩽ y. Let A denote the number of ways to choose n blue points with
distinct x-coordinates and let B denote the number of ways to choose n blue points with distinct
y coordinates. Prove that A = B.

Problem 6.33. (∗) Let k ⩾ n be positive integers with k+ n even. Consider an array of 2n
lamps that are all initially turned off. A step consists of flicking the switch for precisely one
lamp. Let N denote the number of sequences of k steps that result in the state in which the first
n lamps are on and the latter n lamps are off. Let M be the number of sequences of k steps
that result in a state in which the first n lamps are on and the latter n remained untouched
throughout. Determine the value of N/M.
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6.5 IMC Problems

Problem 6.34. (1998) Determine the number of functions f : {1, 2, . . . ,n} → {1, 2, . . . ,n} such
that f(k) ⩽ f(k+ 1) and f(k) = f(f(k+ 1)) for all 1 ⩽ k ⩽ n− 1.

Problem 6.35. (1999) We throw a fair dice n times. What is the probability that the sum of the
values is divisible by 5?

Problem 6.36. (2002) Let n be a positive integer and define ak = 1/
(
n
k

)
and bk = 2k−n for

all 1 ⩽ k ⩽ n. Prove that

a1 − b1

1
+

a2 − b2

2
+ . . . +

an − bn

n
= 0.

Problem 6.37. (2002) For each n ⩾ 1, let

an =

∞∑
k=0

kn

k!
and bn =

∞∑
k=0

(−1)k
kn

k!
.

Prove that an · bn is an integer.

Problem 6.38. (2005) For any integer n ⩾ 3, let Sn denote the set of n-tuples of numbers each
from the set {0, 1, 2}. Let An be the subset of Sn containing all tuples without three consecutive
equal terms. Let Bn be the subset of Sn containing all tuples without two consecutive zeroes.
Prove that |An+1| = 3|Bn|.

Problem 6.39. (2013)(∗) Consider a circular necklace with 2013 beads. Each bead can be
painted either white or green. A painting of the necklace is called good, if among any 21 suc-
cessive beads there is at least one green bead. Prove that the number of good paintings of the
necklace is odd. Here, two paintings that differ on some beads, but can be obtained from each
other by rotating or flipping the necklace, are counted as different paintings.

Problem 6.40. (2014)(∗) Let A1A2 . . .A3n be a closed broken line consisting of 3n line seg-
ments in the Euclidean plane. Suppose that no three of its vertices are colinear and that for each
1 ⩽ i ⩽ 3n, the triangle AiAi+1Ai+2 has counter-clockwise orientation and ∠AiAi+1Ai+2 =
60◦, using the notation A3n+1 = A1 and A3n+2 = A2. Prove that the number of self-
intersections of the broken line is at most 3n2/2 − 2n+ 1.

Problem 6.41. (2015) Consider all 2626 words of length 26 in the Latin alphabet. Define the
weight of a word as 1/(k+ 1), where k is the number of letters not used in the word. Prove
that the sum of the weights of all words is 375.

Problem 6.42. (2016) Let k be a positive integer. For each integer n ⩾ 0, we let f(n) be the
number of solutions (x1, . . . , xk) ∈ Zk to the inequality |x1|+ . . . + |xk| ⩽ n. Prove that for
every n ⩾ 1, we have f(n− 1)f(n+ 1) ⩽ f(n)2.

Problem 6.43. (2018) Let Ω = {(x,y, z) ∈ Z3 | y+ 1 ⩾ x ⩾ y ⩾ z ⩾ 0}. A frog moves
along the points of Ω by jumps of length 1. For every positive integer n, determine the number
of paths the frog can take to reach (n,n,n) starting from (0, 0, 0) in exactly 3n jumps.
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Problem 6.44. (2019) Let x1, . . . , xn be real numbers and write S = {1, 2, . . . ,n}. For any
I ⊂ S, let s(I) =

∑
i∈I xi. Assume that the function I 7→ s(I) takes on at least 1.8n values as

I runs over all subsets of S. Prove that the number of I ⊂ S for which s(I) = 2019 does not
exceed 1.7n.

Problem 6.45. (2020) Let n be a positive integer. Compute the number of words w of length n

made up from the alphabet {a,b, c,d} such that w contains an even number of a’s and an even
number of b’s.

Problem 6.46. (2021) Let n and k be fixed positive integers and let a ⩾ 0 be an integer.
Choose a k-element subset X of {1, 2, . . . , k+a} uniformly at random and independently, choose
a random n-element subset Y of {1, 2, . . . , k+ n+ a}. Prove that the probability of the event
that min(Y) > max(X) is independent from the value of a.

Problem 6.47. (2022) Let p be a prime number. A flea is staying at point 0 of the real line. At
each minute, the flea has three possibilities: to stay at its position, or to move by 1 to the left or
to the right. After p− 1 minutes, it wants to be at 0 again. Denote by f(p) the number of its
strategies to do this. Find f(p) mod p.

Problem 6.48. (2022)(∗) Let n,k ⩾ 3 be integers and let S be a circle. Let n blue points and
k red points be chosen uniformly and independently at random on the circle S. Denote by F the
intersection of the convex hull of the red points and the convex hull of the blue points. Let m
be the number of vertices of the convex polygon F; we set m = 0 when F is empty. Find the
expected value of m.

Problem 6.49. (2023)(∗) Fix positive integers n and k such that 2 ⩽ k ⩽ n and a set M con-
sisting of n fruits. A permutation is a sequence x = (x1, x2, . . . , xn) such that {x1, . . . , xn} =
M. Ivan prefers some (at least one) of these permutations. He realised that for every preferred
permutation x, there exist k indices i1 < i2 < . . . < ik with the following property: for every
1 ⩽ j < k, if he swaps xij and xij+1 , he obtains another preferred permutation. Prove that he
prefers at least k! permutations.

Problem 6.50. (2023)(∗) Let T be a tree with n verticies; that is, a connected simple graph on
n vertices that contains no cycle. For every pair u, v of vertices, let d(u, v) denote the distance
between u and v; that is, the number of edges in the shortest path in T that connects u with v.
Consider the sums

W(T) =
∑

{u,v}⊂V(T)
u ̸=v

d(u, v) and H(T) =
∑

{u,v}⊂V(T)
u ̸=v

1
d(u, v)

.

Prove that

W(T) ·H(T) ⩾
(n− 1)3(n+ 2)

4
.

54



7 Analysis III

We continue our treatment of real analysis by shifting our focus away from individual
sequences and studying various kinds of functions instead. Many IMC problems deal
with continuous functions, differentiable functions, integrals and inequalities; we lay
out the most important results here before moving on to another great many exercises.

7.1 Continous functions

The reader should remember the following from their first course on real analysis.

Proposition 7.1. (Intermediate value theorem) Let f : U ⊂ R → R be a continuous
function. If U is connected, then so is f(U).

Proposition 7.2. (Weierstraß’s Theorem) Let f : C → R be a continuous function where C
is compact. Then f attains both a maximum and a minimum on C.

Finally, sometimes one needs a stronger version of continuity to draw the necessary
conclusions.

Definition 7.3. We say that a function f : R → R is uniformly continuous if for all ϵ > 0,
there exists some δ > 0 such that for all x,y ∈ R, we have that

|x− y| < δ =⇒ |f(x) − f(y)| < ϵ.

Sometimes, we get uniform continuity for free.

Proposition 7.4. Let A,B ⊂ R and let f : A → B be a continuous function. Suppose that A is
compact. Then f is uniformly continuous.

Continuous functions are always integrable, which is a very useful property to keep
in mind. However, not every integrable function must necessarily be continuous. We
record here a useful result about swapping the order of integration for multivariate
functions that is occassionaly useful.

Proposition 7.5. (Fubini) Given two intervals I, J ⊂ R and f : I× J → R such that∫
I

∫
J

|f(x,y)|dydx < ∞,

it is true that ∫
I

∫
J

f(x,y)dydx =

∫
J

∫
I

f(x,y)dxdy.
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7.2 Differentiable functions

Recall that a function f : R → R is called differentiable at some x ∈ R if the limit

lim
h→0

f(x+ h) − f(x)

h

exists and is finite. Derivatives can be used in myriad ways to analyse real analysis
problems. The following lemma should be known from high school.

Lemma 7.6. Let f : (a,b) → R be a differentiable function. Suppose that f attains a local
maximum or minimum at some x ∈ (a,b). Then f ′(x) = 0.

It is very important to remember that the derivative of a continuous function need
not be continuous itself. However, it still satisfies a sometimes very useful version of
the intermediate value theorem.

Proposition 7.7. (Darboux’s Theorem) Let A ⊂ R be open and let f : A → R be differen-
tiable on A. For any interval [a,b] ⊂ A and any y ∈ R satisfying f ′(a) < y < f ′(b), there
must exist some x ∈ (a,b) such that f ′(x) = y.

Proposition 7.8. (Rolle’s Theorem) Let f : [a,b] → R be a continuous function that is
differentiable on (a,b), Then there exists some c ∈ (a,b) such that

f ′(c) =
f(b) − f(a)

b− a
.

In particular, if f(b) = f(a), then we can find some c ∈ (a,b) such that f ′(c) = 0. By
choosing a clever function f to apply this result to, it can be used to prove the existence
of some numbers satisfying rather spectacular equations, a few examples of which can
be found in the exercises. Another theorem that can sometimes be used to the same
effect, is the following.

Theorem 7.9. (Taylor’s Theorem) Let k ∈ N and let f : R → R be a function that is k+ 1
times differentiable. For any a, x ∈ R, there exists some c in between a and x such that

f(x) = f(a)+ f ′(a)(x−a)+
f ′′(a)

2!
(x−a)2 + . . .+

f(k)(a)

k!
(x−a)k+

f(k+1)(c)

(k+ 1)!
(x−a)k+1.

A useful tool for computing limits is the following.

Proposition 7.10. (l’Hôpital) Let f and g be differentiable functions on some subset S ⊂ R

such that the limit
L = lim

x→s

f ′(x)

g ′(x)

exists for some s ∈ S∩ {±∞}. Then, if either limx→s f(x) = limx→s g(x) = 0, or alternatively
if limx→s |g(x)| = ∞, then also

lim
x→s

f(x)

g(x)
= L.
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7.3 Limits and functions

The following theorem should be familiar.

Theorem 7.11. (Fundamental Theorem of Calculus) Let f : [a,b] → R be a continuous
function. Define the function F : [a,b] → R by

F(x) =

∫x
a

f(t)dt.

Then F is continuous on [a,b] and differentiable on (a,b), satisfying F ′(x) = f(x).

We note that F ′ and f need no longer agree if f was not originally assumed to be
continuous. However, even in that case, F will still be continuous.

Some exercises concern not just limits of sequences, but limits of functions. There are
various kinds of convergence that a sequence of functions can satisfy.

Definition 7.12. Let A ⊂ R and let fn : A → R be a function for every n ∈ N. We say
that this sequence converges pointwise to a function f : A → R if for each x ∈ A, we
have

lim
n→∞ fn(x) = f(x).

We say that (fn) converges uniformly to f if for all ϵ > 0, there exists some N ∈ N such
that for all n ⩾ N and all x ∈ A, it holds that |fn(x) − f(x)| < ϵ.

The following proposition shows why the notion of uniform convergence is useful
and often preferred over pointwise convergence.

Proposition 7.13. Let (fn) be a sequence of functions A → R for some subset A ⊂ R.
If all functions fn are continuous and the sequence (fn) converges uniformly to a function
f : A → R, then f must also be continuous.

It is important to not think of continuous functions as prettier than they are. There are
some very exotic and nasty examples of continuous functions, like the “Devil’s Stair-
case”. For more such examples, we refer to “Counterexamples in Analysis” by B. R.
Gelbaum and J. M. H. Olmsted. Finally, we have the following.

Theorem 7.14. (Dominated Convergence) Let functions fn(x) for n ⩾ 1 and g(x) be given
on [a,b] such that |fn(x)| ⩽ g(x) for all n and all x ∈ [a,b]. Suppose that∫b

a

g(x)dx < ∞
and that the pointwise limit limn→∞ fn(x) exists for every x ∈ [a,b]. Then

lim
n→∞

∫b
a

fn(x)dx =

∫b
a

lim
n→∞ fn(x)dx.
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7.4 Examples

Example 7.15. Let f : R → R be a continuous function with the property that f(f(x)) = x

for some x ∈ R. Prove that f(y) = y for some y ∈ R.

Solution: Suppose the contrary, so f(y) ̸= y for all y ∈ R. Because f is continuous,
this means that either f(y) > y for all y ∈ R, or f(y) < y for all y ∈ R. In the former
case, one deduces that also x = f(f(x)) > f(x) > x; a contradiction. In the latter case,
we similarly obtain a contradiction. △

Example 7.16. Let f : [0, 1] → R be a continuous function that is differentiable on (0, 1),
satisfying f(0) = 0 = f(1). Prove that for any α ∈ R, there exists some c ∈ (0, 1) such
that

f ′(c) +αf(c) = 0.

Solution: Let g(x) = eαxf(x). Then we also have g(0) = 0 = g(1), so we may apply
Rolle’s theorem to g to find that for some c ∈ (0, 1), it must hold that

g ′(c) = 0 ⇐⇒ eαcf ′(c) +αeαcf(c) = 0 ⇐⇒ f ′(c) +αf(c) = 0;

this immediately completes the proof. △

7.5 Exercises

Problem 7.1. Prove that any continuous function f : [0, 1] → R with at least one zero must
have a smallest and a biggest zero.

Problem 7.2. Let a < b be real numbers and consider a continous function f : [a,b] → [a,b].
Show that there exists some c ∈ [a,b] such that f(c) = c.

Problem 7.3. Let a0, . . . ,an be real numbers satisfying the equation

a0

1
+

a1

2
+ . . . +

an

n+ 1
= 0.

Show that the polynomial p(x) = anx
n + . . . + a1x+ a0 must have a real root.

Problem 7.4. Find two non-constant continuously differentiable functions f,g : [−1, 1] → R

satisfying (f+ g)2 = f2 + g2. Show that two such functions also satisfy (f · g) ′ = f ′ · g ′. Can
you find functions further satisfying∫x

0
f(t)dt ·

∫x
0
g(t)dt =

∫x
0
f(t)g(t)dt for all x ∈ [0, 1]?

Problem 7.5. Let f : [0, 1] → R be a continuous function that is differentiable on (0, 1),
satisfying f(0) = 0 = f(1). Prove that for any α ∈ R, there exists some c ∈ (0, 1) such that

f ′(c) +αf(c)tan(c) = 0.
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Problem 7.6. Let f : R → R be a differentiable function. Prove that for some x ∈ R \ {0, 1}, it
holds that

f ′(x) =

(
2

1 − x
−

2
x

)
f(x).

Problem 7.7. Let f : [0, 1] → [0, 1] be a continuous function such that f(f(f(x))) = x for all
x ∈ [0, 1]. Prove that f(x) = x for all x ∈ [0, 1].

Problem 7.8. Let f : [0, 1] → [0, 1] be a differentiable function such that |f ′(x)| ̸= 1 for all
x ∈ [0, 1]. Prove that there exist unique α,β ∈ [0, 1] such that f(α) = α and f(β) = 1 −β.

Problem 7.9. Let f : [0, 1] → R be a continuous function with f(0) = f(1). Show that for
every n ∈ N, there exists some x ∈ [0, 1 − 1/n] such that f(x) = f(x+ 1/n).

Problem 7.10. Let f : R → R be a function with the properties that

lim
x→∞ f(x) = lim

x→∞ f ′(x) = 0 and lim
x→∞ f ′′(x)

f ′(x)
= 2.

Determine limx→∞ f ′(x)/f(x).

Problem 7.11. Let f(x) = ex
2
. Find an interval (a,b) and a function g : (a,b) → R such

that (f · g) ′ = f ′ · g ′ on (a,b).

Problem 7.12. Let f : (a,b) → R be a bounded convex function, i.e. for any x,y ∈ (a,b), it
holds that

f

(
x+ y

2

)
⩽

f(x) + f(y)

2
.

Show that f is continuous.

Problem 7.13. Let α > 0 and let f : [0, 1] → R be a differentiable function with the properties
that f(0) = 0 and f(x) > 0 for all x > 0. Show that for some c > 0, it holds that

α
f ′(c)

f(c)
=

f ′(1 − c)

f(1 − c)
.

Problem 7.14. Let f : R → R be a three times continuously differentiable function. Prove that
for some a ∈ R,

f(a) · f ′(a) · f ′′(a) · f ′′′(a) ⩾ 0.

Problem 7.15. Let f : [−1, 1] → R be a twice differentiable function with f(−1) = f(0) = f(1).
Prove that for some x ∈ (−1, 1), it holds that f ′′(x) = f ′(x)2.

Problem 7.16. For which α ∈ R can we find some continuous function f : R → R such that
f(f(x)) = αx9?

Problem 7.17. Let f,g : R → R be non-constant differentiable functions satisfying for any
x,y ∈ R the equations

f(x+ y) = f(x)f(y) − g(x)g(y) and g(x+ y) = f(x)g(y) + g(x)f(y).

If f ′(0) = 0, show that f(x)2 + g(x)2 = 1 for all x ∈ R.
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Problem 7.18. Let f : R → R be a continuous function such that for any integer k ⩾ 1, it
holds that ∫k

0
f(x)2dx =

∫k
0
f(x)f(k− x)dx.

Prove that f(2023) = f(2024).

Problem 7.19. Let f : R → R be a continuous function. We define g : R → R by

g(x) = f(x)

∫x
0
f(t)dt.

Suppose that g is non-decreasing. Prove that f = 0.

Problem 7.20. (∗) Let f : R → R be a twice differentiable function satisfying

f(x) + f ′′(x) = −xg(x)f ′(x)

for some function g : R → R satisfying g(x) ⩾ 0 for all x ∈ R. Prove that |f(x)| is bounded.

Problem 7.21. (∗) Let f : R → R be a three-times differentiable function with at least five
zeroes. Prove that f+ 6f ′ + 12f ′′ + 8f ′′′ has at least two zeroes.

Problem 7.22. (∗) Let f : R → R be a three times continuously differentiable function satisfy-
ing that all of f, f ′, f ′′ and f ′′′ are positive on all of R. Suppose further that f ′′′(x) ⩽ f(x) for
all x ∈ R. Prove that f ′(x) < 2f(x) for all x ∈ R.

7.6 IMC Problems

Problem 7.23. (1994) Let b > 0 and let f : [0,b] → R be continuous. If g : R → R is a
periodic function with period b, prove that

lim
n→∞

∫b
0
f(x)g(nx)dx =

1
b

∫b
0
f(x)dx ·

∫b
0
g(x)dx.

Problem 7.24. (1994)(∗) Let N > 0 and let f : [0,N] → R be a twice continuously differen-
tiable function with the property that |f ′(x)| < 1 and f ′′(x) > 0 for all x ∈ [0,N]. Suppose that
0 ⩽ m0 < m1 < . . . < mk ⩽ N are integers such that ni = f(mi) are also integers. Denote
bi = ni −ni−1 and ai = mi −mi−1. Prove that

−1 <
b1

a1
< . . . <

bk

ak
< 1.

Also prove that for every A > 1, there are no more than N/A indices j ∈ {0, . . . ,k} such that
aj > A. Conclude that k ⩽ 3N2/3.

Problem 7.25. (1994) Let f : R → R be a smooth function and let a,b ∈ R be such that

log
(
f(b) + f ′(b) + . . . + f(n)(b)

f(a) + f ′(a) + . . . + f(n)(a)

)
= b− a.

Show that for some c ∈ (a,b), it holds that f(n+1)(c) = f(c).
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Problem 7.26. (1995) Let f : (0,∞) → R be twice continuously differentiable. Suppose that
limx→0 f

′(x) = −∞ and limx→0 f
′′(x) = ∞. Show that limx→0 f(x)/f

′(x) = 0.

Problem 7.27. (1995) Let F : (1,∞) → R be the function defined by

F(x) =

∫x2

x

dt

log(t)
.

Show that F is injective and determine its range.

Problem 7.28. (1995) Prove that every function of the form

f(x) =
a0

2
+ cos(x) +

N∑
n=2

an cos(nx)

with |a0| < 1 has positive as well as negative values in [0, 2π).

Problem 7.29. (1995) Suppose that we are given an infinite sequence of continuous functions
fn : [0, 1] → R for each n ⩾ 1 such that∫ 1

0
fm(x)fn(x)dx =

{
1 if m = n;
0 otherwise.

Suppose further that
sup{|fn(x)| : x ∈ [0, 1],n ∈ N} < ∞.

Show that limk→∞ fk(x) does not exist for all x ∈ [0, 1].

Problem 7.30. (1996) Let f : [0, 1] → [0, 1] be a continuous function. Consider any sequence
given by xn+1 = f(xn). Show that (xn) converges if and only if limn→∞(xn+1 − xn) = 0.

Problem 7.31. (1997) Let f be a three times continuously differentiable function with the prop-
erty that f(0) = f ′(0) = 0 < f ′′(0). Define

g(x) =
d

dx

(√
f(x)

f ′(x)

)

for x ̸= 0 and g(0) = 0. Show that g is bounded in a neighbourhood of 0. Does this conclusion
still follow if f is only twice continuously differentiable?

Problem 7.32. (1998) Let f : [0, 1] → R be given by f(x) = 2x(1− x). Denote fn = f ◦ . . . ◦ f
for the n-fold composition of f. Determine∫ 1

0
fn(x)dx.

Does this sequence converge?
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Problem 7.33. (1998) Let f : R → R be a twice differentiable function satisfying f(0) = 2,
f ′(0) = −2 and f(1) = 1. Prove that there exists some c ∈ (0, 1) such that

f(c) · f ′(c) + f ′′(c) = 0.

Problem 7.34. (1998) Let c ∈ (0, 1) and define

f(x) =

{
x/c if x ∈ [0, c];
(1 − x)/(1 − c) if x ∈ [c, 1].

Show that the equation fn(x) = x only has finitely many solutions for every n ⩾ 1, where fn

denotes the n-fold composition of f with itself. Show also that for every n, there are solutions to
fn(x) = x for which this n is minimal.

Problem 7.35. (1998)(∗) Let f : (0, 1) → [0,∞) be a function that is non-zero only on the
distinct points a1,a2, . . .. Suppose that

∞∑
n=1

f(an) < ∞.

Prove that f is differentiable at at least one x ∈ (0, 1).

Problem 7.36. (2000) Let f : [0, 1] → [0, 1] be a strictly increasing function. Show that for
some x ∈ [0, 1], it holds that f(x) = x. What if f is strictly decreasing?

Problem 7.37. (2002) Let f : [a,b] → [a,b] be a continuous function and let p ∈ [a,b].
Define the sequence (pn) by p0 = p and pn+1 = f(pn) for all n ⩾ 0. Suppose that the set
Tp = {pn | n ∈ N} is closed. Prove that Tp is finite.

Problem 7.38. (2003)(∗) Let g : [0, 1] → R be a function and define the sequence of functions
fn : (0, 1] → R by setting f0(x) = g(x) and

fn+1(x) =
1
x

∫x
0
fn(t)dt

for all x ∈ (0, 1] and n ⩾ 0. Determine limn→∞ fn(x) for every x ∈ (0, 1].

Problem 7.39. (2004) Let f,g : [a,b] → [0,∞) be continuous and non-decreasing functions
such that for each x ∈ [a,b], we have∫x

a

√
f(t)dt ⩽

∫x
a

√
g(t)dt,

with equality for x = b. Prove that∫b
a

√
1 + f(t)dt ⩾

∫b
a

√
1 + g(t)dt.
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Problem 7.40. (2005) Let f(x) = x2 + bx+ c where b, c ∈ R. Now define the possibly empty
set M = {x ∈ R : |f(x)| < 1}. Clearly M is the union of disjoint open intervals. Let |M| denote
the sum of their lenghts. Prove that |M| ⩽ 2

√
2.

Problem 7.41. (2005) Let f : R → R be a three times differentiable function. Prove that for
some c ∈ (−1, 1), it holds that

f ′′′(c) = 3f(1) − 3f(−1) − 6f ′(0).

Problem 7.42. (2006) Let f : R → R be a surjective monotonous function. Show that f must
be continuous.

Problem 7.43. (2006) Determine all functions f : R → R such that for any real numbers
a < b, the image f([a,b]) is a closed interval of length b− a.

Problem 7.44. (2007) Let f : R → R be a continuous function with the property that for every
c > 0, the graph of f can be transformed into the graph of c · f by translating and rotating. Does
this imply that f(x) = ax+ b for some a,b ∈ R?

Problem 7.45. (2007) Let C ⊂ R be a compact set and let f : C → C be a non-decreasing
continuous function. Show that for some p ∈ C it holds that f(p) = p.

Problem 7.46. (2008) Determine all continuous functions f : R → R with the property that

x− y ∈ Q =⇒ f(x) − f(y) ∈ Q.

Problem 7.47. (2009) Let f,g : R → R be two functions with the property that f(r) ⩽ g(r)
for all r ∈ Q. Is f and g are non-decreasing, does this imply that f(x) ⩽ g(x) for all x ∈ R?
What if f and g are both continuous?

Problem 7.48. (2011) Let f : R → R be a continuous function. We say some x ∈ R is a
shadow-point of f if for some y > x it holds that f(y) > f(x). Let a < b now be two real
numbers that are not shadow-points of f, with the property that all points in (a,b) are shadow-
points of f. Show that f(x) ⩽ f(b) for all x ∈ (a,b) and that f(a) = f(b).

Problem 7.49. (2015) Compute

lim
A→∞ 1

A

∫A
1

A1/xdx.

Problem 7.50. (2016) Let f : [a,b] → R be a continuous function that is differentiable on
(a,b). Suppose that f has infinitely many zeroes, but that there is no x ∈ (a,b) such that
f(x) = f ′(x) = 0. Prove that f(a)f(b) = 0 and give an example of such a function on [0, 1].

Problem 7.51. (2017) Let f : [0,∞) → R be a continuous function satisfying the property
that limx→∞ f(x) = L exists. Prove that

lim
n→∞

∫ 1

0
f(nx)dx = L.
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Problem 7.52. (2017)(∗) Define the sequence f1, f2, . . . : [0, 1] → R of continuously differen-
tiable functions by

f1 = 1, f ′n+1 = fnfn+1 on (0, 1) and fn+1(0) = 1.

Show that limn→∞ fn(x) exists for every x ∈ [0, 1) and determine the limit function.

Problem 7.53. (2019) Let f,g : R → R be continuous functions such that g is differentiable.
Suppose that (

f(0) − g ′(0)
)(
g ′(1) − f(1)

)
> 0.

Show that there exists some c ∈ (0, 1) such that f(c) = g ′(c).

Problem 7.54. (2023) Let V be the set of all continuous functions f : [0, 1] → R, differentiable
on (0, 1), with the property that f(0) = 0 and f(1) = 1. Determine all α ∈ R such that for
every f ∈ V , there exists some ξ ∈ (0, 1) such that f(ξ) +α = f ′(ξ).
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8 Algebra III

Polynomials often make for interesting problems because by their very nature, they
exist on the crossroads of algebra and analysis; those who enjoy algebraic geometry
might also add this field into the mix. In many problems about polynomials, one re-
quires ideas from at least two of these fields; a dichotomy which is reflected in both the
introductory texts and the problems themselves.

8.1 Basics on polynomials

A monomial is a term of the form axn with n ⩾ 0 and typically a ∈ k with k ∈
{Z, Q, R, C}. A polynomial is a finite linear combination of monomials. All non-zero
polynomials have a degree, which is defined as the largest power of x whose coefficient
is non-zero; one typically writes deg(0) = −∞. We can do division with remainder.

Lemma 8.1. ?? Let k be a field and let p(x),g(x) ∈ k[x]. Then there exist unique polynomials
q(x), r(x) ∈ k[x] with deg(r) < deg(g) such that p(x) = q(x)g(x) + r(x). In particular, we
see that x− a is a divisor of p(x) − p(a) for any a ∈ k.

The above can be used to show that the ring k[x] is always a principal ideal domain.
By the above, the number of zeroes of a non-zero polynomial is bounded from above
by its degree. If p(x) ∈ R[x] and α ∈ C is a zero of p, then so is α. As a result, a
real polynomial of odd degree must have at least one real zero. The following is more
specific to C.

Theorem 8.2. (Fundamental Theorem of Algebra) A polynomial in C[X] of degree n ⩾ 0
can be written as c(x− r1) · · · (x− rn) for certain r1, . . . , rn ∈ C, unique up to reordering.

The number of times a certain complex number appears in the mutliset {r1, . . . , rn} is
called the multiplicity of the zero at that point. Given the zeroes r1, . . . , rn of a poyno-
mial, it is easy to reconstruct its coefficients using symmetric polynomials, which is
illustrated by the example

(x− a)(x− b)(x− c) = x3 − (a+ b+ c)x2 + (ab+ bc+ ca)x− abc.

It follows from all the above that a polynomial of degree n is uniquely determined by
its values at n+ 1 different points.
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8.2 Examples

Example 8.3. Determine all polynomials P satisfying P(0) = 1 and P(x2 +1) = P(x)2 +1.

Solution: Define the sequence a0 = 0 and an+1 = a2
n + 1 for all n ⩾ 0. We claim that

P(an) = a2
n + 1 for all n ⩾ 0. Indeed, P(0)2 = 02 + 1 and if this holds for a given n, then

we compute that

P(an+1) = P(a2
n + 1) = P(an)

2 + 1 = (a2
n + 1)2 + 1 = a2

n+1 + 1;

proving our claim by induction. This means that the polynomial Q(x) = P(x) − x2 − 1
satisfies Q(an) = 0 for all n ⩾ 0. However, only the zero polynomial can have infinitely
many zeroes. As such, Q = 0 and hence P(x) = x2 + 1. One checks that this polynomial
indeed satisfies the given equation tautologically, showing that it is the only one. △
Example 8.4. Determine all real polynomials p(x) of degree n ⩾ 0 such that

(n− 2)p ′(x)p ′′(x) = np(x)p ′′′(x)

for all x ∈ R.

Solution: If n ⩽ 1, then both sides of the equation vanish. If n = 2, then the same
happens, as n− 2 = 0 and p ′′′ = 0 in that case. We thus henceforth assume that n ⩾ 3.

Consider the functions f(x) = (n− 2) logp(x) and g(x) = n logp ′′(x). We claim that
f ′(x) = g ′(x) for all x ∈ R. Indeed, we compute that

f ′(x) = (n− 2)
p ′(x)

p(x)
and g ′(x) = n

p ′′′(x)

p ′′(x)
.

Therefore, we find that

f ′(x) = g ′(x) ⇐⇒ (n− 2)
p ′(x)

p(x)
= n

p ′′′(x)

p ′′(x)
⇐⇒ (n− 2)p ′(x)p ′′(x) = np(x)p ′′′(x);

this is precisely our assumption. We conclude that f(x) = g(x) + c for a certain fixed
c ∈ R. In other words,

f(x) − g(x) = c ⇐⇒ (n− 2) logp(x) −n logp ′′(x) = c ⇐⇒ log
(
p(x)n−2

p ′′(x)n

)
= c.

We claim that for some constant C ∈ R, it must hold that p(x)n−2 = Cp ′′(x)n for all
x ∈ R. Let α ∈ C be any root of either side of the equation with multiplicity d. Then
the left hand side implies that n− 2 | d, whereas the right hand side yields that n | d.

If n is odd, these two relations imply that n(n− 2) | d and as d ⩽ n(n− 2) as this
is the degree of the polynomial on both sides, equality must follow. This shows that
p(x) = a(x− b)n for some a,b ∈ R and we leave it to the reader to check that such
polynomials always satisfy the given equation.

If n is even, then using similar reasoning we find that d must be either n(n− 2) or
n(n− 2)/2. The former option is identical to the case treated above, so suppose we are
in the latter. Then there must be two distinct roots of multiplicity n(n− 2)/2, so that
p(x) = a(x− b)n/2(x− b)n/2 for some a ∈ R and b ∈ C. One checks again that such
polynomials always satisfy the given equation, solving the problem. △
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8.3 Exercises

Problem 8.1. Prove that x2 + x+ 1 divides x2n + xn + 1 if and only if n is not divisible by 3.

Problem 8.2. Determine all polynomials p(x) ∈ R[x] satisfying p(x2) = p(x) · p(x+ 2).

Problem 8.3. Let a,b, c be the roots of p(x) = 3x3 − 14x2 + x+ 62. Determine

1
a+ 3

+
1

b+ 3
+

1
c+ 3

.

Problem 8.4. Let a0, . . . ,an > 0. Prove that the polynomial

p(x) = xn+1 − anx
n − . . . − a1x− a0

has a unique positive zero.

Problem 8.5. Define the function f : N → N by f(n) = 1! + 2! + . . . + n!. Determine
polynomials p(x),q(x) ∈ Z[x] such that f(n+ 2) = p(n)f(n+ 1) + q(n)f(n) for all n ∈ N.

Problem 8.6. What is the smallest number of non-zero coefficients a degree 5 polynomial
p(x) ∈ Z[x] can have such that all its zeroes are real?

Problem 8.7. Does there exist an infinite sequence of non-zero reals a0,a1, . . . such that for
each n ⩾ 1, the polynomial pn(x) = a0 + a1x+ . . . + anx

n has n distinct real zeroes?

Problem 8.8. Consider all lines that intersect the graph of p(x) = 2x4 + 7x3 + 3x− 5 in four
distinct points with x-coordinates x1, x2, x3, x4. Prove that x1 + x2 + x3 + x4 is independent of
the choice of such a line. What is its value?

Problem 8.9. Let a,b, c denote the three real zeroes of p(x) = 5x3 + 4x2 − 8x+ 6. Determine
a(1 + b+ c) + b(1 + a+ c) + c(1 + a+ b).

Problem 8.10. Does there exist a polynomial p(x) ∈ R[x] such that p(1/k) = (k+ 2)/k for
all positive integers k? What about p(k) = 1/(2k+ 1)?

Problem 8.11. Determine all triples of complex numbers x,y, z ∈ C satisfying
x+ y+ z = 3;
x2 + y2 + z2 = 11;
x3 + y3 + z3 = 27.

Problem 8.12. Let a1, . . .an and b1, . . . ,bn be complex numbers. Consider the n×n-array of
numbers with the number ai + bj in cell (i, j) for all 1 ⩽ i, j ⩽ n. Suppose that the product of
all numbers in any given row is independent from the choice of this row. Prove that the product
of the numbers in any given column is also independent from the choice of the column.

Problem 8.13. Suppose that the product of two of the roots of the polynomial x4 − 18x3 +kx2 +
200x− 1984 is equal to −32. Determine k.

67



Problem 8.14. In a tournament, n teams each play one game against every other team; no
game can end in a draw. Let wi be the number of wins of team i and let ℓi denote the number of
losses. Prove that

∑n
i=1 w

2
i =

∑n
i=1 ℓ

2
i.

Problem 8.15. On a blackboard, some numbers are written. A move consists of choosing two
of them, say a and b, and replacing them by 2ab− a− b+ 1. If we start with the numbers
49/1, 49/2, . . . , 49/97, what possibilities are there for the final number on the board? And what
if we start with 1/2016, 2/2016, . . . , 2015/2016?

Problem 8.16. Prove that for all |x| < 1,

∞∑
k=0

xk
1 + x2k+2

(1 − x2k+2)2 =

∞∑
k=0

(−1)k
xk

(1 − xk+1)2 .

Problem 8.17. Let p(x) = (x− 1)(x− 2)(x− 3). How many q ∈ R[x] are there with the
property that for some polynomial r(x) of degree at most 3, it holds that p(q(x)) = p(x) · r(x)?

Problem 8.18. Let p(x) ∈ C[x] be a polynomial with the property that p ′(x) has at least two
distinct zeroes. Prove that

inf
r∈R

max{|z−w| : p(z) = p(w) = r} > 0.

Problem 8.19. Can we find polynomials a(x), b(x), c(y) and d(y) such that

1 + xy+ x2y2 = a(x)c(y) + b(x)d(y)?

Problem 8.20. Let p(x) ∈ R[x] be a polynomial with the property that p(x) ⩾ 0 for all x ∈ R.
Prove that there exist polynomials f1, . . . , fk ∈ R[x] such that

p(x) =

k∑
j=1

fj(x)
2.

Problem 8.21. Determine all polynomials p(x) ∈ R[x] of degree n ⩾ 2 with the property that
there exists real r1 < . . . < rn with p(ri) = 0 for all 1 ⩽ i ⩽ n and p ′((ri + ri+1)/2) = 0 for
all 1 ⩽ i < n.

Problem 8.22. (∗) For any polynomial p(x) ∈ R[x], let Γ(p) denote the sum of the squares of
its coefficients. Given f(x) = 3x2 + 7x+ 2, determine a polynomial g(x) with g(0) = 1 and the
property that Γ(gn) = Γ(fn) for all n ⩾ 1.

8.4 IMC Problems

Problem 8.23. (1994) Let A and B be real n × n matrices. Assume that there exist n + 1
distinct real numbers t0, . . . , tn such that the matrices A+ tiB are nilpotent for all 0 ⩽ i ⩽ n.
Prove that both A and B must be nilpotent themselves.
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Problem 8.24. (1995) Let p(x) ∈ C[x] be a polynomial of degree n all of whose zeroes lie on
the complex unit circle. Prove that all the roots of the polynomial 2xp ′(x) − np(x) also lie on
the unit circle.

Problem 8.25. (1998) Let p(x) ∈ R[x] be a polynomial of degree n with only real zeroes. Prove
that for all x ∈ R, it holds that (n− 1)p ′(x)2 ⩾ np(x)p ′′(x). When does equality hold?

Problem 8.26. (1998) Let P be the set of real polynomials of degree at most 3 with the property
that |f(±1)| ⩽ 1 and |f(±1/2)| ⩽ 1. Determine supf∈P maxx∈[−1,1] |f

′′(x)|.

Problem 8.27. (2000) Let p(x) = x5 + x and q(x) = x5 + x2. Determine all pairs of distinct
complex numbers w, z ∈ C such that p(w) = p(z) and q(w) = q(z).

Problem 8.28. (2000) Let p be a complex polynomial of degree n ⩾ 1. Prove that there are at
least n+ 1 distinct z ∈ C such that p(z) ∈ {0, 1}.

Problem 8.29. (2001) Let k be a positive integer and let p(x) be a polynomial of degree n,
each of whose coefficients is taken from the set {0,±1}, which is also required to be divisible by
(x− 1)k. Let q be a prime such that qlog(n+ 1) < klog(q). Prove that the complex q-th roots
of unity are roots of p(x).

Problem 8.30. (2001) Suppose that for some positive integer k, the polynomial 1+x+ . . .+xk

is written as the product of two real polynomials with non-negative coefficients. Prove that all
coefficients from both polynomials in the factorisation are taken from the set {0, 1}.

Problem 8.31. (2003)(∗) Let f(z) = anz
n + . . . + a1z+ a0 ∈ R[z]. Prove that if all roots z

of f satisfy ℜ(z) < 0, then akak+3 < ak+1ak+2 for all 0 ⩽ k ⩽ n− 3.

Problem 8.32. (2004) Let p(x) = x2 − 1. How many distinct real solutions does the equation
(p ◦ p ◦ . . . ◦ p)(x) = 0 have, where we compose p with itself 2004 times?

Problem 8.33. (2005) Let f : R → R be a function with the property that f(x)n ∈ R[x] for all
n ⩾ 2. Prove that f ∈ R[x].

Problem 8.34. (2007) Call a polynomial p(x1, . . . , xk) good if there exist real 2 × 2-matrices
A1, . . . ,Ak such that

p(x1, . . . , xk) = det
( k∑

i=1

xiAi

)
.

Find all values of k for which all homogeneous polynomials with k variables of degree 2 are good.

Problem 8.35. (2007)(∗) Let f(x) ∈ R[x] be a non-zero polynomial. Define the sequence
f0, f1, . . . of polynomials by f0 = f and fn+1 = fn + f ′n for every n ⩾ 0. Prove that there exists
some N ∈ N such that for ever n ⩾ N, all roots of fn are real.

Problem 8.36. (2008) Let V be the real vector space of all real polynomials in one variable and
let P : V → R be a linear map. Suppose that for all f,g ∈ V with P(fg) = 0, we have either
P(f) = 0 or P(g) = 0. Prove that there exist x0, c ∈ R such that P(f) = cf(x0) for all f ∈ V .
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Problem 8.37. (2008) Let n,k ∈ N and suppose that the polynomial x2k − xk + 1 divides
x2n + xn + 1. Prove that also x2k + xk + 1 divides x2n + xn + 1.

Problem 8.38. (2009)(∗) Let p(z) = a0 +a1z+ . . .+anz
n be a complex polynomial. Suppose

that 1 = c0 ⩾ c1 ⩾ . . . ⩾ cn ⩾ 0 is a sequence of real numbers satisfying 2ck ⩽ ck−1 +
ck+1 for all 1 ⩽ k ⩽ n − 1. Define q(z) = c0a0 + c1a1z + . . . + cnanz

n. Prove that
max|z|⩽1 |q(z)| ⩽ max|z|⩽1 |p(z)|.

Problem 8.39. (2010) Suppose that for a function f : R → R and real numbers a < b, one
has f(x) = 0 for all x ∈ (a,b). Prove that f(x) = 0 for all x ∈ R if

p−1∑
k=0

f

(
y+

k

p

)
= 0

for every prime number p and every y ∈ R.

Problem 8.40. (2012) Homer Simpson and Albert Einstein are playing a game. They take
turns choosing a coefficient ai of the polynomial p(x) = x2012 + a2011x

2011 + . . . + a1x+ a0
and assigning it some real value. Once a coefficient has been assigned, it can never be changed
again. Homer starts and it is his goal to ensure that p(x) is divisible by some agreed upon
polynomial m(x). Who has the winning strategy for m(x) = x − 2012? And what about
m(x) = x2 + 1?

Problem 8.41. (2014) Let n ⩾ 1 be an integer. Prove that we can find a0, . . . ,an > 0 such that
for every choice of signs, the polynomial ±anx

n ±an−1x
n−1 ± . . .±a1x±a0 has precisely n

distinct real zeroes.

Problem 8.42. (2015)(∗) Let n be a positive integer and let p(x) ∈ Z[x] be a polynomial of
degree n. Prove that max0⩽x⩽1 |p(x)| > 1/en.

Problem 8.43. (2017)(∗) Let k,n ∈ N with n ⩾ k2 − 3k + 3, and let f(z) = zn−1 +
cn−2z

n−2 + . . . + c0 be a complex polynomial such that cicj = 0 whenever i + j = n − 2.
Prove that f(z) and zn − 1 has at most n− k common roots.

Problem 8.44. (2017)(∗) Let p(x) ∈ R[x] be non-constant. For every n ∈ N, define qn(x) =
(x+ 1)np(x) + xnp(x+ 1). Prove that there are only finitely many n for which all roots of
qn(x) are real.

Problem 8.45. (2019)(∗) Determine all pairs p(x), q(x) of monic complex polynomials such
that p(x) divides q(x)2 + 1 and q(x) divides p(x)2 + 1.

Problem 8.46. (2020)(∗) A polynomial p(x) ∈ R[x] satisfies the equation p(x+ 1) − p(x) =
x100 for all x ∈ R. Prove that p(1 − t) ⩾ p(t) for all 0 ⩽ t ⩽ 1/2.

Problem 8.47. (2021) Let D ⊂ C be an open set containing the closed unit disk {z : |z| ⩽ 1}.
Let f : D → C be a holomorphic function and let p(z) be a monic polynomial. Prove that
|f(0)| ⩽ max|z|=1 |f(z)p(z)|.

Problem 8.48. (2023) Find all polynomials P in two variables with real coefficients satisfying
the identity

P(x,y)P(z, t) = P(xz− yt, xt+ yz).
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9 Linear Algebra II

It is very common at the IMC to heavily exploit the intricate and delicate logic asso-
ciated with the interplay between matrices and polynomials of them. These are quite
closely linked to the theory of eigenvalues of all the quantities associated with them, as
we will explore in the forthcoming. Throughout we will work only over algebraically
closed fields k.

9.1 Polynomials and eigenvalues

From now on, we will assume that A : V → V is a linear endomorphism of some
k-vector space V of dimension n ⩾ 1. We recall the following definitions.

Definition 9.1. Recall that an eigenvector v ̸= 0 of a linear map A is a vector such that
Av = λv for some λ ∈ k. Here λ is called the corresponding eigenvalue. The characteristic
polynomial of A is given by pA(x) = det(xIn − A), which is monic of degree n. By
construction,

λ is an eigenvalue of A ⇐⇒ pA(λ) = 0.

The analytic multiplicity a(λ) of the eigenvalue λ is defined as the multiplicity of the zero
of pA(x) at x = λ. The geometric multiplicity g(λ) of the eigenvalue λ is defined as the
dimension of the λ-eigenspace of A; in other words

g(λ) := dim(Eλ) where Eλ = {v ∈ V | Av = λv}.

The eigenvalues of an upper- or lower-triangular matrix can be read off from its di-
agonal. The following theorem is very famous.

Theorem 9.2. (Cayley-Hamilton) It holds that pA(A) = 0.

The multiplicities a(λ) and g(λ) are related to A being diagonalisable or not; recall
that this means that we can find a basis of V consisting of eigenvectors of A.

Proposition 9.3. Let A : V → V be a linear map and let λ be an eigenvalue of A. Then
g(λ) ⩽ a(λ). A matrix is diagonalisable if and only if g(λ) = a(λ) for all eigenvalues λ.

The following proposition is sometimes useful.

Proposition 9.4. Let A : V → V be a linear map and let λ1, . . . , λn be the eigenvalues of A
occuring with their algebraic multiplicities. Then for any polynomial p ∈ k[X], the eigenvalues
of the matrix p(A) are given by p(λ1), . . . ,p(λn).
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It also admits a converse, which is given by the following and is often even more
useful than the Cayley-Hamilton Theorem.

Proposition 9.5. Let A : V → V be a linear map and let p ∈ k[X] be a polynomial such that
p(A) = 0. Then all eigenvalues of A are zeroes of p.

It is important to note here that not every zero of p must necessarily be an eigenvalue
of A and that the multiplicities of the zeroes of p need not necessarily match those of λ
as an eigenvalue of A. However, there exists a minimal polynomial µA ∈ k[X] of A with
the property that

p(A) = 0 ⇐⇒ µA | p.

Now it is true that any zero of µA must necessarily be an actual eigenvalue of A, but
the multiplicities need still not match. Finally, we have the following.

Proposition 9.6. A matrix A is diagonalisable if and only if the polynomial µA ∈ k[X] is
squarefree; i.e. if it only has simple zeroes in an algebraic closure of k.

9.2 Trace and determinant

The following two concepts capture a lot of information about a matrix.

Definition 9.7. Let A = (aij)
n
i,j=1 be an n×n-matrix. Then we define

tr(A) =

n∑
i=1

aii and det(A) =
∑
σ∈Sn

sgn(σ)
n∏

i=1

aiσ(i).

These quantities enjoy the following familiar properties.

Proposition 9.8. Let A and B be n×n-matrices. Then the following statements hold.

• For any c ∈ k, it holds that tr(cA) = ctr(A) and det(cA) = cndet(A).

• It holds that tr(AB) = tr(BA) and det(AB) = det(A)det(B).

• Swapping two columns or two rows of a matrix multiplies the determinant by −1. Adding
one column a number of times to another, or adding one row a number of times to another,
leaves the determinant invariant.

Proposition 9.9. For any linear endomorphism A, it holds that

tr(A) =
∑
λ e.v.

λ and det(A) =
∏
λ e.v.

λ.

In other words, information about the eigenvalues of A can give you valuable infor-
mation about its trace and its determinant. Recall that a matrix A is called nilpotent if
Ak = 0 for some k ⩾ 0. We have many different ways of identifying these matrices.
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Proposition 9.10. For an n×n-matrix A, the following are equivalent:

• A is nilpotent;

• An = 0;

• All eigenvalues of A are equal to 0;

• tr(Ak) = 0 for all 1 ⩽ k ⩽ n.

Finally, it is sometimes useful to not forget that tr(AT ) = A and det(AT ) = det(A).
We conclude by recalling that transposition is a covariant operation; in other words, it
holds that (AB)T = BTAT for any two square matrices A and B.

9.3 Examples

Example 9.11. (IMC 2011) Find all real 3 × 3-matrices A satisfying the conditions that
tr(A) = 0 and in addition A2 +AT = I3.

Solution: We are given the equation AT = I−A2. If we transpose the original equa-
tion, we find that

(AT )2 +A = I =⇒ (I−A2)2 +A = I =⇒ A4 − 2A2 +A = 0.

This means that all eigenvalues of A must be roots of the polynomial

X4 − 2X2 +X = X(X3 − 2X+ 1) = X(X− 1)(X2 +X− 1).

In other words, if λ is an eigenvalue of A, then

λ ∈ S :=

{
0, 1,

−1 ±
√

5
2

}
.

The same holds for the matrix AT , and as such, the eigenvalues of I−AT must all be
contained in the set

1 − S =

{
1, 0,

1 ±
√

5
2

}
.

But as I−AT = A2, these are also the possible eigenvalues of A2. However, the only
eigenvalues of this matrix are the eigenvalues

S2 =

{
0, 1,

3 ±
√

5
2

}
.

Therefore, the only possible eigenvalues for A can be 0 and 1. However, But then

2tr(A) = tr(A2) + tr(AT ) = tr(I) = 3;

this is a contradiction. Therefore, no such matrices A exist. △
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Example 9.12. (IMC 2009) Let A and B be two square matrices of the same size that
satisfy the equation A2B+BA2 = 2ABA. Show that AB−BA is nilpotent.

Solution: We may rewrite the given equation to

A(AB−BA) = (AB−BA)A;

in other words, we know that A and AB−BA commute. We then find for any positive
integer k that

tr
(
(AB−BA)k+1) = tr

(
AB(AB−BA)k −BA(AB−BA)k

)
= tr

(
AB(AB−BA)k

)
− tr

(
B(AB−BA)kA

)
= tr

(
AB(AB−BA)k

)
− tr

(
AB(AB−BA)k

)
= 0;

where we used cyclicity of the trace. Since tr
(
(AB−BA)k

)
= 0 for each positive integer

k, it follows that AB−BA must be nilpotent, as desired. △

9.4 Exercises

Problem 9.1. Let P be a square matrix with the property that the sum of the entries in each
column equal 1. Show that 1 is an eigenvalue of P.

Problem 9.2. Show that there are no square matrices A and B satisfying AB−BA = I.

Problem 9.3. Let A be a real n× n-matrix with the property that A2 + In = 0. What are all
possible values of det(A)?

Problem 9.4. Let A be a real n×n-matrix with n odd. Can A−AT be invertible?

Problem 9.5. A real 3 × 3-matrix A satisfies

A2 =

4 4 0
0 4 0
0 0 1

 .

Determine all possible values of tr(A).

Problem 9.6. Let A be a square matrix with the property that tr(X) = 0 =⇒ tr(AX) = 0.
Show that A is a diagonal matrix.

Problem 9.7. Let a,b,p1, . . . ,pn be real numbers with a ̸= b. Let

f(x) = (p1 − x) · · · (pn − x).

Prove that

det


p1 a · · · a a

b p2 · · · a a
...

...
. . .

...
...

b b · · · pn−1 a

b b · · · b pn

 =
bf(a) − af(b)

b− a
.
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Problem 9.8. Let A be a real n× n-matrix with the property that aii = 1 and aij + aji = 1
for all 1 ⩽ i, j ⩽ n. Show that det(A) > 0.

Problem 9.9. (∗) To each number of n2 digits we let f(m) denote the determinant of the matrix
obtained by writing the digits of m in order along the rows. For example,

f(8617) = det
(

8 6
1 7

)
= 50.

Determine the sum of the values of f(m) as m ranges over all positive integers with n2 digits.

Problem 9.10. (∗) Let A be the n× n-matrix given by ai,i+1 = ai+1,i = i+ 1 and aii =
i2 + 1 for all 1 ⩽ i < n, and finally ann = n2, with zeroes elsewhere. Determine det(A).

Problem 9.11. (∗) Let A,B be real n× n-matrices. Let Ak denote the matrix A in which the
first column of A was replaced by the k-th column of B, and similarly define Bk. Show that

det(AB) =

n∑
k=1

det(AkBk).

9.5 IMC Problems

Problem 9.12. (1994) Let α ∈ R× and let A and B be real n × n-matrices satisfying the
property that AB− BA = αA. Show that for all k ⩾ 1, we have that AkB− BAk = αkAk

and use this to prove that A is nilpotent.

Problem 9.13. (1997) Let M be an invertible 2n× 2n-matrix, represented in block form as

M =

(
A B

C D

)
and M−1 =

(
E F

G H

)
.

Show that det(M) · det(H) = det(A).

Problem 9.14. (1997) Let f : Matn×n(R) → R be a linear map. Show that there exists a
unique matrix C such that f(A) = tr(AC) for all A ∈ Matn×n(R). Show that if further
f(AB) = f(BA) for all A,B ∈ Matn×n(R), then f(A) = λ · tr(A) for all A ∈ Matn×n(R).

Problem 9.15. (1999) Show that for any positive integer n, there exists a real n×n-matrix A

satisfying A3 = A+ In. Show that any such matrix must satisfy that det(A) > 0.

Problem 9.16. (2000) Let A and B be square matrices of the same size and suppose that
rk(AB−BA) = 1. Show that (AB−BA)2 = 0.

Problem 9.17. (2002) Let A be the n×n-matrix given by aij = (−1)i+j if i ̸= j, and aii = 2
for all 1 ⩽ i, j ⩽ n. Determine det(A).

Problem 9.18. (2003) Let A be an n×n-matrix satisfying the equation 3A3 = A2 +A+ In.
Show that the sequence Ak converges to an idempotent matrix.
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Problem 9.19. (2005) Given n ⩾ 1, find the largest possible dimension of a subspace V of the
space of all real n×n-matrices with the property that tr(AB) = 0 for all A,B ∈ V .

Problem 9.20. (2007) Do there exist real 2 × 2-matrices A,B,C such that

det(xA+ yB+ zC) = x2 + y2 + z2 for all x,y, z ∈ R?

Problem 9.21. (2007) Let n > 1 be an odd positive integer and let A be the matrix defined by
aii = 2 and aij = 2 if i− j ≡ ±2 mod n, with zeroes elsewhere. Determine det(A).

Problem 9.22. (2008)(∗) Let n be a positive integer and consider the matrix A given by aij = 1
if i+ j is prime and aij = 0 otherwise. Prove that |det(A)| is a perfect square.

Problem 9.23. (2013) Let A and B be real symmetric matrices all of whose eigenvalues are
strictly greater than 1. Let λ be an eigenvalue of AB. Show that |λ| > 1.

Problem 9.24. (2014) Determine all pairs (a,b) of real numbers for which there exists a unique
real symmetric 2 × 2-matrix M satisfying tr(M) = a and det(M) = b.

Problem 9.25. (2014) Let A be a real symmetric matrix with eigenvalues λ1, . . . , λn.
Show that ∑

1⩽i<j⩽n

aiiajj ⩾
∑

1⩽i<j⩽n

λiλj.

When does equality hold?

Problem 9.26. (2015) Let n ⩾ 2 and let A and B be real n×n-matrices satisfying the equation
A−1 + B−1 = (A+ B)−1. Prove that det(A) = det(B). Does the same conclusion follow if A
and B are allowed to be complex matrices?

Problem 9.27. (2017) Which complex numbers can occur as the eigenvalue of a real square
matrix A satisfying A2 = AT?

Problem 9.28. (2020) Let A and B be real n× n-matrices such that rk(AB− BA+ I) = 1.
Prove that tr(ABAB) − tr(A2B2) = n(n− 1)/2.

Problem 9.29. (2021) Let A be a real square matrix with the property that for every m ⩾ 1,
there exists a real symmetric matrix B such that 2021B = Am +B2. Prove that |det(A)| ⩽ 1.

Problem 9.30. (2022) Let n be a positive integer. Find all real n×n matrices A with only real
eigenvalues satisfying A+Ak = AT for some integer k ⩾ n.

Problem 9.31. (2024) Ivan writes the matrix
(

2 3
2 4

)
on the board. Then he performs the

following operation on the matrix several times:

• he chooses a row or a column of the matrix, and

• he multiplies or divides the chosen row of column entry-wise by the other row or column,
respectively.

Can Ivan end up with the matrix
(

2 4
2 3

)
after finitely many steps?
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10 Analysis IV

We conclude our discussions about analysis with some more advanced concepts involv-
ing functions, including clever substitutions, functional equations and inequalities.

10.1 Goniometric functions

Goniometric functions, those derived from sin and cos, are more arithmetic than one
would guess at first sight. In the previous section we already saw their definitions in
terms of power series expansions. Using complex numbers, they are much more easily
defined;

sin(x) =
eix − e−ix

2i
and cos(x) =

eix + e−ix

2
.

Sometimes, their real analogs pop up, the hyperbolic functions, which are given by

sinh(x) =
ex − e−x

2
cosh(x) =

ex + e−x

2
.

Most effective are applications of goniometric functions when recognising their partic-
ular formulas, of which we list a few here:

sin(x)2 + cos(x)2 = 1;
sin(x± y) = sin(x) cos(y)± cos(x) sin(y);
cos(x± y) = cos(x) cos(y)∓ sin(x) sin(y);

tan(x± y) =
tan(x)± tan(y)

1 ∓ tan(x) tan(y)
;

sin(2x) = 2 sin(x) cos(x);

cos(2x) = 2 cos(x)2 − 1;

tan(2x) =
2 tan(x)

1 − tan(x)2 ;

sin(x) + sin(y) = 2 sin
x+ y

2
cos

x− y

2
;

sin(x) − sin(y) = 2 cos
x+ y

2
sin

x− y

2
;

cos(x) + cos(y) = 2 cos
x+ y

2
cos

x− y

2
;

cos(x) − cos(y) = −2 sin
x+ y

2
sin

x− y

2
.
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It can be difficult to spot when a clever goniometric substitution is the right way to
move forward, but for example, expressions like 2x2 − 1 can hint at the involvement
of a cosine. Similarly, the sudden appearance of a π usually hints at some underlying
goniometric structure waiting to be uncovered and exploited.

10.2 Functional equations

Functional equations are quite a classical topic, even for high school olympiads, asking
to determine all functions satisfying a certain set of conditions. The following func-
tional equation in particular is very famous.

Proposition 10.1. (Cauchy’s Equation) Let f : Q → R be a function satisfying the equation
f(x+ y) = f(x) + f(y) for all x,y ∈ Q. Then f(x) = cx for some c ∈ R.

It is to be stressed that using the axiom of choice, one can construct very nasty and
discontinuous solutions to this equation for general functions f : R → R, but on Q,
everything works nicely. Combined with a continuity condition, the same condition
follows on all of R too.

A common technique for solving functional equations is repeatedly substituting ex-
pressions into themselves. If you can spot an expression g(x) in your functional equa-
tion involving the mystery function f that has the property that g(g(. . . (g(x)) . . .)) = x,
one often deduces interesting information. Common examples are

g(x) = 1 − x with g(g(x)) = x, and g(x) =
1

1 − x
, with g(g(g(x))) = x.

At the IMC, contrary to on the high school olympiads, functional equations are often
paired with derivatives or integrals to create some interesting differential equations.
It is important to remember the solutions to some of the most basic ones you can en-
counter, like

f(x) = α · f ′(x) =⇒ f(x) = c · eαx.

It is also imperative to remember that

d

dx
log(f(x)) =

f ′(x)

f(x)
.

Further tips for solving functional equations is trying to prove that f is surjective or
injective, as this sometimes allows you to cancel f’s from your expressions. If you en-
counter the expression f(f(x)), it might give you additional information to consider
f(f(f(x))) in two different ways. It can also sometimes be useful to determine the set of
x for which f(x) = x. Never forget to apply induction in case you have some additive
condition on the argument of your function; sometimes this can be used in combination
with continuity in powerful ways. If your functional equation displays some symme-
try, it is often a good idea to exploit that. Finally, the single most important thing to
do when faced with a functional equation is to try plugging in some explicit values of
the variables in your expressions; substituting x = 0 or x = y can often reveal some
powerful equations hiding in the mess of the full condition.
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10.3 Inequalities

One of the easiest inequalities about functions comes from analysing its derivative.

Proposition 10.2. Let f : [a,b] → R be a continuous function that is continuously differen-
tiable on (a,b). Suppose that f ′(x) ⩾ 0 for all x ∈ (a,b). Then f(b) ⩾ f(a) with equality if
and only if f ′ = 0.

However, there are also more profound inequalities about functions, of which the
following is quite well known.

Theorem 10.3. (Jensen’s Inequality) Let f : [a,b] → R be a continuous function that is
twice differentiable on (a,b). Suppose that f ′′(x) ⩾ 0 for all x ∈ (a,b). Let x1, . . . xn ∈ [a,b]
be arbitrary and let λ1, . . . , λn ⩾ 0 satisfy λ1 + . . . + λn = 1. Then

f(λ1x1 + . . . + λnxn) ⩽ λ1f(x1) + . . . + λnf(xn).

In particular, it holds that

f

(
x1 + . . . + xn

n

)
⩽

f(x1) + . . . + f(xn)

n
.

This implies the following continuous version:

if
∫
C

λ(x)dx = 1, then f

(∫
C

xλ(x)dx

)
⩽

∫
C

f(x)λ(x)dx.

There is a continuous analogon of the generalised inequality about arithmetic means.

Theorem 10.4. Let p ⩾ q and let f be integrable on a measureable set C ⊂ R. Then(∫
C

|f(x)|pdx

)1/p

⩾

(∫
C

|f(x)|qdx

)1/q

,

with equality only when p = q or f is constant.

The following is another restatement of the Cauchy-Schwarz inequality.

Corollary 10.5. Let f,g be integrable functions on a measureable set C ⊂ R. Then(∫
C

f(x)g(x)dx

)2

⩽

(∫
C

|f(x)|2dx

)(∫
C

|g(x)|2dx

)
.

Finally, Hölder’s inequality combines the above two.

Theorem 10.6. (Hölder’s inequality) Let p,q ⩾ 1 satisfy 1/p+ 1/q = 1. Then for any two
integrable functions on some measureable subset C ⊂ R, it holds that∫

C

|f(x)g(x)|dx ⩽

(∫
C

|f(x)|pdx

)1/p(∫
C

|g(x)|qdx

)1/q

.

Equality holds only when |f|p and |g|q agree up to a fixed scalar.
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10.4 Examples

Example 10.7. (IMC 2022) Let f : [0, 1] → (0,∞) be an integrable function with the
property that f(x) · f(1 − x) = 1 for all x ∈ [0, 1]. Prove that∫ 1

0
f(x)dx ⩾ 1.

Solution: We deduce the inequalities(√
f(x) −

√
f(1 − x)

)2
⩾ 0 =⇒ f(x) + f(1 − x) ⩾ 2

√
f(x)f(1 − x) = 2.

By symmetry, we have that ∫ 1

0
f(x) dx =

∫ 1

0
f(1 − x) dx.

As such, we find that∫ 1

0
f(x) dx =

∫ 1

0

f(x) + f(1 − x)

2
dx ⩾

∫ 1

0
1 dx = 1,

completing the proof. △

Example 10.8. Find all continuous functions f : R → R with

f(0) = 1 and f(2x) − f(x) = x

for all x ∈ R.

Solution: We rewrite the given equation to f(x/2) = f(x) − x/2 for all x ∈ R. We may
then iterate this to find that

f(x/4) = f(x/2) − x/4 = f(x) − x/2 − x/4;
f(x/8) = f(x) − x/2 − x/4 − x/8;

. . .

f(x/2n) = f(x) −

n∑
k=1

x

2k
= f(x) −

2n − 1
2n

x.

If we now let n → ∞, using the supposed continuity of f, we obtain that

1 = f(0) = f(x) − x.

As such, f(x) = x+ 1 for all x ∈ R. △
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10.5 Exercises

Problem 10.1. Find all functions f : R → R with

f(x) + xf(1 − x) = 1 + x for all x ∈ R.

Problem 10.2. Find all functions f : R → R satisfying

f(x) = 1 +

∫x
0
f(t)dt.

Problem 10.3. Determine all functions f : Z → Z satisfying f(1) = 3 and

f(x+ y) = f(x) + f(y) + 1 for all x,y ∈ Z.

Problem 10.4. Determine all increasing and strongly multiplicative (i.e. f(mn) = f(m)f(n)
for all m and n) functions f : N → N satisfying f(2) = 2.

Problem 10.5. A continuous function f : R → R satisfies that f(x) = f(x2) for all x ∈ R.
Prove that f is constant.

Problem 10.6. Find all functions f : R → R that are continuous at 0, satisfying

f(x) = f

(
x

1 − x

)
for all x ̸= 1.

Problem 10.7. Find all functions f : Z → Z with f(0) = 1 satisfying

f(f(n)) = n and f(f(n+ 2) + 2) = n for all n ∈ Z.

Problem 10.8. Determine all continuous functions f : R \ {0, 1} → R such that for all x ∈
R \ {0, 1}, it holds that

f(x) + f

(
x− 1
x

)
= x+ 1.

Problem 10.9. Determine all functions f : R → R satisfying

f(x)f(y) = f(x) + yf(x) for all x,y ∈ R.

Problem 10.10. Consider a continuous function f : R → R satisfying the property that

f(2x2 − 1) = 2xf(x) for all x ∈ [0, 1].

Show that f = 0 on [−1, 1].

Problem 10.11. Determine all continuously differentiable functions f : R → R satisfying for
all x ∈ R the equation

f(x)2 =

∫x
0
f(t)2 + f ′(t)2dt+ 2023.
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Problem 10.12. Determine all functions f : R → R satisfying for all x,y ∈ R the equation

f(x2 − y2) = (x− y)(f(x) + f(y)).

Problem 10.13. Consider a continuous function f : R → R satisfying

f(2x− f(x)) = x for all x ∈ R.

Suppose that f(α) = α for some α ∈ R. Show that then f(x) = x for all x ∈ R. Does this
conclusion still hold if f such an α need not necessarily exist?

Problem 10.14. Let c > 0. Determine all continuous functions f : R → R with the property
that

f(x) = f(x2 + c) for all x ∈ R.

Problem 10.15. Determine all α > 0 with the property that for all differentiable functions
f : R → R>0 such that f ′(x) > f(x) for all x ∈ R, there exists some N ∈ R such that
f(x) > eαx for all x > N.

Problem 10.16. Let a,b ∈ (0, 1/2) and let g be a continuous function satisfing the property
that

g(g(x)) = ag(x) + bx for all x ∈ R.

Prove that g(x) = cx for some c ∈ R.

Problem 10.17. Prove that there exists no function f : R → R satisying

f(f(x) + y) = f(x) + 3x+ yf(y) for all x,y ∈ R.

Problem 10.18. Determine all differentiable functions f : (0,∞) → (0,∞) for which there
exists some a ∈ R such that

f ′(a/x) = x/f(x) for all x > 0.

Problem 10.19. Determine all functions f : R \ {0} → R \ {0} satisfying

xf(x2f(y)) = yf(x) for all x,y ∈ R.

Problem 10.20. Determine all twice differentiable functions f : R → R with f ′(x)f ′′(x) = 0
for all x ∈ R.

Problem 10.21. Determine all continuous functions f : R → R satisfying

f(x) +

∫x
0
(x− t)f(t)dt = 1 for all x ∈ R.

Problem 10.22. Let f : [−2, 2] → R be continuously differentiable. Prove that there exists
some x ∈ (−2, 2) such that

f ′(x) − f(x)2 < 1.
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Problem 10.23. (∗) Determine all functions f : R → R satisfying

|x|f(y) + yf(x) = f(xy) + f(x2) + f(f(y)) for all x,y ∈ R.

Problem 10.24. (∗) Let a > 0. For which value of a is the integral∫a2

a

1
x+

√
x
dx minimal?

Problem 10.25. (∗) Consider the set of continuously differentiable functions f : [0, 1] → R

satisfying f(0) = 0 and f(1) = 1. Determine the minimal value of∫ 1

0
|f ′(x) − f(x)|dx.

Problem 10.26. (∗) Let f : [0, 1] → R be continuous. Prove that∫ 1

0

∫ 1

0
|f(x) + f(y)|dxdy ⩾

∫ 1

0
|f(x)|dx.

Problem 10.27. (∗) Let f(x,y) : [0, 1]× [0, 1] → R be continuous. Define

A =

∫ 1

0

(∫ 1

0
f(x,y)dx

)2

dy+

∫ 1

0

(∫ 1

0
f(x,y)dy

)2

dx

and similarly the quantity

B =

(∫ 1

0

∫ 1

0
f(x,y)dxdy

)2

+

∫ 1

0

∫ 1

0
f(x,y)2dxdy.

Prove that A ⩽ B.

10.6 IMC Problems

Problem 10.28. (1994) Let f : (a,b) → R be a continuously differentiable function with the
properties that

lim
x→a

f(x) = ∞, lim
x→b

f(x) = −∞ and f ′(x) + f(x)2 ⩾ −1 for all x ∈ (a,b).

Show that b− a ⩾ π and find all possible f for which equality holds.

Problem 10.29. (1994) Let f : [a,b] → R be continuously differentiable with f(a) = 0.
Suppose that for some λ > 0, it holds that

|f ′(x)| ⩽ λ|f(x)| for all x ∈ [a,b].

Prove that f = 0.
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Problem 10.30. (1995) Let f : [0, 1] → R be a continuous function with that for every x ∈
[0, 1], it holds that ∫ 1

x

f(t)dt ⩾
1 − x2

2
.

Show that ∫ 1

0
f(t)2dt ⩾

1
3

.

Problem 10.31. (1996) Let n ∈ N. Evaluate the integral∫π
−π

sin(nx)
(1 + 2x) sin(x)

.

Problem 10.32. (1998) Let f : [0, 1] → R be a continuous function with the property that for
any x,y ∈ [0, 1], it holds that

xf(y) + yf(x) ⩽ 1.

Show that ∫ 1

0
f(x)dx ⩽

π

4
.

Can equality hold?

Problem 10.33. (1999) Let f : R → R be a function satisfying∣∣∣ n∑
k=1

3k
(
f(x+ ky) − f(x− ky)

)∣∣∣ ⩽ 1,

for all n ∈ N and all x,y ∈ R. Prove that f must be a constant function.

Problem 10.34. (1999) Find all strictly monotonous functions f : (0,∞) → (0,∞) satisfying

f(x2/f(x)) = x for all x > 0.

Problem 10.35. (1999) Determine all functions f : (0,∞) → (0,∞) satisfying

f(x)2 ⩾ f(x+ y)(f(x) + y) for all x,y > 0.

Problem 10.36. (2000) Find all functions f : R>0 → R>0 satisfying for all x,y > 0 the
equation

f(x)f(yf(x)) = f(x+ y).

Problem 10.37. (2001) Prove that there is no function f : R → R satisfying both f(0) > 0 and

f(x+ y) ⩾ f(x) + yf(f(x)) for all x,y ∈ R.

Problem 10.38. (2001)(∗) For each positive integer n, let fn(θ) = sin(θ) sin(2θ) sin(4θ) · · · sin(2nθ).
Show that

|fn(θ)| ⩽
2√
3
|fn(π/3)| for all θ ∈ R and n ∈ N.
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Problem 10.39. (2002) Does there exist a continuously differentiable function f : R → R such
that for every x ∈ R we have both

f(x) > 0 and f ′(x) = f(f(x))?

Problem 10.40. (2003) For any choice of m,n ⩾ 1, evaluate the limit

lim
x→0

∫ 2x

x

sin(t)m

tn
dt.

Problem 10.41. (2004) Prove that∫ 1

0

∫ 1

0

dxdy

1/x+ | log(y)|− 1
⩽ 1.

Problem 10.42. (2005)(∗) Let f : R → [0,∞) be a continuously differentiable function. Prove
that ∣∣∣ ∫ 1

0
f(x)3dx− f(0)2

∫ 1

0
f(x)dx

∣∣∣ ⩽ max
0⩽x⩽1

|f ′(x)|

(∫ 1

0
f(x)dx

)2

.

Problem 10.43. (2005) Let f : (0,∞) → R be a twice continuously differentiable function
such that

|f ′′(x) + 2xf ′(x) + (x2 + 1)f(x)| ⩽ 1

for all x > 0. Prove that limx→∞ f(x) = 0.

Problem 10.44. (2006) For any given x ∈ (0,π/2) determine which of tan(sin(x)) and
sin(tan(x)) is bigger.

Problem 10.45. (2009) Let f : R → R be a twice differentiable function satisfying f(0) = 1
and f ′(0) = 0, and further

f ′′(x) − 5f ′(x) + 6f(x) ⩾ 0 for all x ⩾ 0.

Show that for all x ⩾ 0, it holds that

f(x) ⩾ 3e2x − 2e3x.

Problem 10.46. (2010) Let 0 < a < b. Prove that∫b
a

(x2 + 1)e−x2
dx ⩾ e−a2

− e−b2
.

Problem 10.47. (2012) Let f : R → R be a continuously differentiable function with the
property that

f ′(t) > f(f(t)) for all t ∈ R.

Show that
f(f(f(t))) ⩽ 0 for all t ⩾ 0.
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Problem 10.48. (2013) Let f : R → R be a twice differentiable function with the property that
f(0) = 0. Show that there exists some c ∈ (−π/2,π/2) such that

f ′′(c) = f(c)(1 + 2tan(c)2).

Problem 10.49. (2014)(∗) Define f(x) = sin(x)/x. Show that for all x > 0 and n ⩾ 1, it
holds that

|f(n)(x)| <
1

n+ 1
,

where f(n) denotes the nth derivative of f.

Problem 10.50. (2016) Consider the set of continuous functions f : [0, 1] → R satisfying

f(x) + f(y) ⩾ |x− y| for all x,y ∈ [0, 1].

Find the minimal value of ∫ 1

0
f(x)dx

for functions in this set.

Problem 10.51. (2017) Consider a differentiable function f : R → (0,∞) with the property
that for some constant L > 0, it holds that

|f ′(x) − f ′(y)| ⩽ L|x− y| for all x,y ∈ R.

Show that for all x ∈ R, it holds that

f ′(x)2 < 2Lf(x).

Problem 10.52. (2018) Find all differentiable functions f : (0,∞) → R with the property that

f(b) − f(a) = (b− a)f ′(
√
ab) for all a,b > 0.

Problem 10.53. (2019) Let f : (−1, 1) → R be a twice differentiable function such that
2f ′(x) + xf ′′(x) ⩾ 1 for all x ∈ (−1, 1). Prove that∫ 1

−1
xf(x)dx ⩾

1
3

.

Problem 10.54. (2020) Find all twice continuously differentiable functions f : R → (0,∞)
such that

f ′′(x)f(x) ⩾ 2f ′(x)2 for all x ∈ R.

Problem 10.55. (2023) Find all functions f : R → R that have a continuous second derivative
and for which the equality

f(7x+ 1) = 49f(x) holds for all x ∈ R.
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11 Algebra IV

We conclude our treatment of algebra by discussing some somewhat more advanced
ideas surrounding the theory of polynomials that can sometimes be useful to settle
subtle questions about these rich objects.

11.1 Advanced ideas on polynomials

We know that n+ 1 distinct values uniquely determine a degree n polynomial. Explic-
itly, given x0, . . . xn ∈ C and y0, . . . ,yn ∈ C, the Lagrange-polynomial

p(x) =

n∑
i=0

yi

∏
0⩽j⩽n
j̸=i

x− xj

xi − xj

satisfies p(xi) = yi for all 0 ⩽ i ⩽ n. More analytically, we can take derivatives of
polynomials. If p(x) = c(x− r1) · · · (x− rn) as above, then by the product rule,

p ′(x) = p(x)

n∑
i=1

1
x− ri

.

From this, it follows that if α is a zero of p with multiplicity k ⩾ 1, then α is a zero of p ′

with multiplicity k− 1. We have the following theorem.

Theorem 11.1. (Gauss-Lucas Theorem) For p ∈ C[x], the zeroes of p ′ are contained in the
complex hull of the zeroes of p.

The space of polynomials of bounded degree is a vector space; it is possible to apply
some knowledge from linear algebra to these spaces!

Finally, we remark that polynomials with integer coefficients, those p(x) ∈ Z[x], al-
low for very interesting number theoretical applications. The most basic observation is
that

a ≡ b mod n =⇒ p(a) ≡ p(b) mod n.

Phrased differently, this says that for any a,b ∈ Z, it holds that

a− b | p(a) − p(b).

For example, if both p(0) and p(1) are odd, then p cannot have any integral zeroes,
simply because all its values must be odd. If g(x) ∈ Z[x] is monic and we divide p by
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g with remainder, than both q(x) and r(x) from Lemma ?? have integral coefficients as
well. In particular, the polynomial

p(x) − p(a)

x− a

is also a member of Z[x], which is sometimes useful to know. Finally, we remark that if
it is known that p(ai) = 0 for some {a1, . . . ,ak}, then

(x− a1) . . . (x− ak) | p(x);

this can have striking applications to the possible values p(x) can take for a given x.

11.2 Examples

Example 11.2. Does there exist some p(x) ∈ Z[x] such that p(0)p(2) = −2?

Solution: By the above, it follows that 2 | p(2) − p(0), so p(0) and p(2) must have
the same parity. If they are both odd, so is their product; so they must both be even.
However, then their product is a multiple of 4, and thus in particular not −2. Such a
polynomial can therefore not exist. △

Example 11.3. Does there exist some polynomial p(x) ∈ Z[x] such that

p(0) = 2, p(2) = 4 and p(4) = 18?

Solution: Suppose that p ∈ Z[x] is such that p(0) = 2 and p(2) = 4. Let q(x) =
p(x) − x− 2 ∈ Z[x]. Then by construction, q(0) = q(2) = 0 and as such,

x(x− 2) | q(x) = p(x) − x− 2.

Plugging in x = 4 now yields that 8 | p(4) − 6, so in particular p(4) ̸= 18. △

11.3 Exercises

Problem 11.1. Let p(x) ∈ Z[x] be a polynomial such that the equation p(x) = 1 has three
distinct integer solutions. Prove that p does not have any integer zeroes.

Problem 11.2. Let p(x) ∈ Z[x] be a polynomial with p(1) = 44, p(5) = 0 and p(9) = −12.
Prove that p(12) is divisible by 231.

Problem 11.3. Let p(x) ∈ Z[x] be a polynomial with the property that there exist four distinct
a,b, c,d ∈ Z such that p(a) = p(b) = p(c) = p(d) = 5. Prove that there exists no integer
such that p(k) = 8.

Problem 11.4. Let p(x) ∈ Z[x] be a polynomial with p(1) = 4, p(5) = 16 and p(9) = 60.
Prove that p does not have an integral zero.

88



Problem 11.5. Let p(x) be the unique degree n polynomial satisfying p(k) = 2k for all integers
0 ⩽ k ⩽ n. Determine p(n+ 1).

Problem 11.6. Let p(x) ∈ R[x] be the unique degree n polynomial satisfying p(k) = k/(k+1)
for all integers 0 ⩽ k ⩽ n. Determine p(n+ 1).

Problem 11.7. Let r, s and t be the three zeroes of some cubic polynomial p. Now let q be the
unique cubic polynomial satisfying q(r) = s+ t, q(s) = t+ r and q(t) = r+ s. Express q(0)
in the coefficients of p.

Problem 11.8. Let a,b, c ∈ R and let p be the unique quadratic polynomial with p(a) = bc,
p(b) = ca and p(c) = ab. Determine p(a+ b+ c).

Problem 11.9. Let p(x) ∈ Z[x] be such that p(x) and p(p(p(x))) share a common zero. Show
that they even share a common integral zero.

Problem 11.10. Let a1, . . . ,an be distinct integers for some n ⩾ 2. Prove that the polynomial
p(x) = (x− a1) · · · (x− an) − 1 is irreducible in Z[x].

Problem 11.11. Let p(x) ∈ Z[x] be a degree 5 polynomial satisfying p(0) = 100, p(1) = 105,
p(2) = 110, p(3) = 115 and p(4) > 0. Determine the smallest possible value of p(4).

Problem 11.12. Let n ⩾ 1 be an integer. Determine all polynomials p(x) ∈ Z[x] of degree n
such that p(p(x)) = p(xn) + p(x) − 1.

Problem 11.13. Let p(x) ∈ Z[x] be a monic polynomial such that |p(0)| is not a square. Prove
that the polynomial p(x2) is irreducible in Z[x].

Problem 11.14. Let p(x) ∈ Z[x] be a polynomial with the property that for two distinct c,d ∈
Z it holds that p(c) = d and p(d) = c. Prove that the equation p(x) = x has at most one
integer solution.

Problem 11.15. Consider a1,a2,a3 ∈ Z and set a4 = a1. Prove that there exists no polyno-
mial p(x) ∈ Z[x] with the property that p(ai) = ai+1 for i ∈ {1, 2, 3}.

Problem 11.16. Determine all natural numbers n with the property that there exists some
polynomial p ∈ Z[x] such that for all positive divisors d | n, it holds that p(d) = (n/d)2.

Problem 11.17. Let p(x) ∈ Z[x] be a monic polynomial of degree 4. Let r1, r2, r3, r4 denote its
zeroes and suppose that r1 + r2 ∈ Q, whereas r1 + r2 ̸= r3 + r4. Prove that also r1r2 ∈ Q.

Problem 11.18. (∗) Let p(x) ∈ Z[x] be a polynomial and let m ̸= 0 be an integer. Define the
sequence (an) by setting a1 = m and an+1 = p(an) for all n ⩾ 1. Suppose that an ̸= 0 and
that an | an+1 for all n ⩾ 1. Prove that if all ai are distinct, it must hold that p(0) = 0. Also
show that if p(0) ̸= 0, then the sequence eventually becomes periodic with period 1 or 2.

Problem 11.19. (∗) Let p(x) ∈ Z[x] be a polynomial with the property that for any integer
n ⩾ 1, it holds that p(n) > n. Define the sequence (an) by setting a1 = 1 and an+1 = p(an)
for all n ⩾ 1. Suppose that for any m ∈ N, there exists some n ⩾ 1 such that m | an. Prove
that p(x) = x+ 1.

Problem 11.20. (∗) Let p ∈ Z[x] be a polynomial of degree n and let q be a polynomial of the
form (p ◦ p ◦ . . . ◦ p)(x). Prove that there are at most n distinct integers t such that q(t) = t.
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11.4 IMC Problems

Problem 11.21. (2005) Find all polynomials of degree n whose coefficients are a permutation
of the numbers {0, 1, . . . ,n} and all of whose roots are rational numbers.

Problem 11.22. (2006) Let p,q ∈ R[x] be polynomials such that for infinitely many integers
n, it holds that p(n)/q(n) is an integer. Prove that q | p.

Problem 11.23. (2007) Let p(x) ∈ Z[x] be a polynomial of degree 2. Suppose that p(n) is
divisible by 5 for every integer n. Prove that all coefficients of p are divisible by 5.

Problem 11.24. (2007) Let n be a positive integer and a1, . . . ,an be arbitrary integers. Sup-
pose that a function f : Z → R satisfies

∑n
i=1 f(k+ aiℓ) = 0 whenever k, ℓ ∈ Z and ℓ ̸= 0.

Prove that f = 0.

Problem 11.25. (2007)(∗) How many nonzero coefficients can a polynomial p(x) ∈ Z[x] have
if |p(z)| ⩽ 2 for any z ∈ C with |z| = 1?

Problem 11.26. (2008) Let p(x) ∈ Z[x] and let a1 < . . . < ak be integers. Prove that there
exists some a ∈ Z such that p(ai) divides p(a) for all 1 ⩽ i ⩽ k. Does there exist some integer
a such that the product p(a1) · · ·p(ak) divides p(a)?

Problem 11.27. (2008) Let f(x),g(x) ∈ Z[x] be non-constant polynomials such that g(x) |

f(x). Prove that if the polynomial f(x) − 2008 has at least 81 distinct roots, then the degree of
g(x) is greater than 5.

Problem 11.28. (2009) Let p be a prime number and let W be the smallest subset of Fp[x]
such that x + 1 ∈ W and xp−2 + xp−3 + . . . + x2 + 2x + 1 ∈ W, and in addition for any
h1(x),h2(x) ∈ W, the remainder of h1(h2(x)) upon division by xp − x is also in W. How
many polynomials does W contain?

Problem 11.29. (2011) Let p be a prime number. We say a positive integer n is interesting if

xn − 1 = (xp − x+ 1)f(x) + pg(x)

for some f,g ∈ Z[x]. Prove that pp− 1 is interesting. For which primes p is pp− 1 the smallest
interesting number?

Problem 11.30. (2011)(∗) Let f(x) ∈ R[x] be a polynomial of degree n. Suppose that f(k)−f(m)
k−m

is an integer for all integers 0 ⩽ k < m ⩽ n. Prove that a− b divides f(a) − f(b) for all pairs
of distinct integers a and b.

Problem 11.31. (2012)(∗) Let a ∈ Q and n ∈ N. Prove that the polynomial x2n(x+a)2n + 1
is irreducible in Q[x].
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12 Combinatorics II

We leave mere counting behind and explore some widely usable techniques for combi-
natorial problems.

12.1 Combinatorial techniques

There are some universally applicable techniques in combinatorics which shine as brightly
at high school olympiads as they do at the IMC. Many of these will be well known to
most, so we only mention the ideas briefly.

Remark 12.1. (Pigeonhole Principle) Let k,n ∈ N. Suppose that more than kn objects are
placed into at most n different categories. Then at least one category will contain more
than k objects.

This observation is so trivial that it hardly needs justification. However, it is so gen-
eral that it can still be used to prove strong and non-trivial results. An idea of similar
simplicity is examplified by the following.

Remark 12.2. (Extremal Principle) Every finite set of real numbers contains both a largest
and a smallest member.

What this remark is trying to convey, is that it can sometimes be useful to focus your
attention on the largest or smallest number or object in your set, because it typically
satisfies some nice properties.

Another common technique is finding an invariant. Sometimes a combinatorial prob-
lem describes some kind of process and it is asked if a certain situation can or cannot,
or must necessarily be reached at some point. Sometimes there are hidden quantities
that are secretly always constant, or slightly weaker, are always moving in one direc-
tion, even though the situation in the problem itself seems to display little structure.
For example, if we have a sequence of numbers defined by 2an+2 = an+1 + an, then
without even studying the sequence, we may note that 2an+2 +an+1 = 2an+1 +an; in
other words, the sequence bn = 2an+1 + an is constant, so without even analysing the
sequence (an), we know that the only possible limit could be (2a1 + a0)/3.

When the problem concerns some kinds of situation that plays out on a square grid,
or on some graph, it is often a good idea to consider colourings to try to analyse the
situation. This can sometimes turn complicated seeming problems into an almost trivial
remark. For example, dominoes can’t cover a chess board with two opposite corners
removed, simply because the number of white and black squares is no longer equal.
However, without the colouring, this is not easy to see at all.
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12.2 Examples

Example 12.3. Let n+ 2 integers be given. Show that there are two numbers of which
either their sum or their difference is divisible by 2n.

Solution: Consider the 2n different residue classes modulo 2n and group them to-
gether in the following way:

{0}, {1, 2n− 1}, {2, 2n− 2}, . . . , {n− 1,n+ 1}, {n}.

In total we have made n+ 1 < n+ 2 groups, so by the pigeonhole principle, at least one
of these groups must contain at least two numbers. If any two numbers agree modulo
2n, we are done. If not, then the group containing at least two numbers must have been
of the form {k, 2n− k}. But then the sum of these two numbers is a multiple of 2n and
the result is proved. △

Example 12.4. Let G be a finite directed graph with the property that for any two ver-
tices v and w there is a path either v → w or a path w → v. Show that there must be a
vertex that can be reached from any other vertex.

Solution: Suppose that such a vertex does not exist. Now let v be the vertex that
can be reached from the greatest number of other vertices. By assumption, there exists
some vertex w from which we cannot reach v. However, it must then follow that from
v we can reach w instead. We claim that w can now be reached from more vertices than
v, which would yield a contradiction. Indeed, through v, the vertex w can be reached
from all vertices from which v can be reached, and additionally w can be reached from
v; thus strictly more. This completes the proof. △

Example 12.5. Given a triple of numbers, a step consists of choosing two of these, say
a and b, and replacing them by (a + b)/

√
2 and (a − b)/

√
2. Can we turn the triple

(1,
√

2, 1 +
√

2) into the triple (2, 2,
√

2) through a sequence of such steps?

Solution: We claim that the sum of the squares of the numbers is invariant through-
out the process. Indeed, if we start with the triple (a,b, c) and pick the numbers a and
b, we may compute that(

a+ b√
2

)2

+

(
a− b√

2

)2

+ c2 =
a2 + 2ab+ b2

2
+

a2 − 2ab+ b2

2
+ c2

= a2 + b2 + c2.

One checks that for the first given triple the sum of squares equals 6+ 2
√

2, whereas for
the latter it equals 10. Therefore, such a sequence of steps cannot exist. △
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12.3 Exercises

Problem 12.1. Prove that at every party with at least two people, there exist two guests who
know the same number of other people.

Problem 12.2. Let n ⩾ 1. Prove that a square 2n × 2n-grid with one corner removed can be
tiled by L-triominos, which are three connected unit squares in an L-shape.

Problem 12.3. Consider a sequence of 2023 ones and 2024 zeroes. A move consists of deleting
two numbers and writing a new one; if we deleted the same number twice, we must write a 0,
otherwise we must write a 1. Do we always end up with the same digit in the end?

Problem 12.4. Consider a table with 2023 cards with the numbers 1, . . . , 2023. A move consists
of taking two cards with, say, the numbers p and q, and replacing them by the single card
containing the number pq+ p+ q. Which possible values can appear on the final card?

Problem 12.5. Three players are sitting at a round table with 3, 4 and 5 coins respectively.
Each turn, every player either gives two coins to the person to their right, or one coin to the
person to their left. The players win if each player ends up with the same number of coins, and
they lose if someone runs out of coins. Can they win the game?

Problem 12.6. Consider a generalised knight; this chess piece moves on an infinite chess
board always p squares in one direction and then q in a direction perpendicular to it. Prove that
such a generalised knight can only return to its starting square in an even number of moves.

Problem 12.7. Let α > 0 be irrational and let ϵ > 0. Prove that there exists positive integers
k and n such that |kα−n| < ϵ.

Problem 12.8. Two players play a game with 2n cards, numbered 1 to 2n. The cards are
shuffled and distributed evenly to the two players. The two players take turns putting cards on
the table; if one of the players can make the sum of the cards on the table a multiple of 2n+ 1,
they win the game. Which player has a winning strategy?

Problem 12.9. Let n integers be given. Prove that there exists a non-empty subset of these
numbers such that their sum is divisible by n.

Problem 12.10. Let aj,bj, cj be integers for all 1 ⩽ j ⩽ n such that for each j, at least one of
the numbers aj, bj and cj is odd. Show that there are integers r, s and t such that the expression
raj + sbj + tcj is odd for at least 4n/7 different values of j.

Problem 12.11. The numbers 1, 2, . . . , 2025 are written on a blackboard. A move consists of
replacing two numbers by their absolute difference. Can we reach a situation with only zeroes
on the board?

Problem 12.12. Let m,n ∈ N and let a0, . . . ,amn be distinct real numbers. Show that there
exists either an increasing sequence of length m+ 1 or a decreasing sequence of length n+ 1.

Problem 12.13. We have a stack containing 1001 stones. A move consists of choosing a stack
containing at least 3 stones, tossing one stone out and splitting the stack into two smaller stacks.
Can we end up with only stacks containing precisely 3 stones?
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Problem 12.14. Prove that for any n ⩾ 2, the polynomial (1 + X+ X2)n ∈ Z[X] contains at
least one even coefficient.

Problem 12.15. On a party with n ⩾ 4 people, it turns out that for any four guests, we can
either find three guests who do all know each other, or three guests who do all not know each
other. Prove that we can divide all the guests over two rooms such that any two people from
different rooms do not know each other.

Problem 12.16. Let n ⩾ 1 and let 0 < a1 < . . . < an be real numbers. Prove that the set

{±a1 ± a2 ± . . . ± an}

contains at least n(n+ 1)/2 elements.

Problem 12.17. Let n points be given on a circle and draw all possible chords between them.
Suppose that no three chords intersect at a common point inside the circle. How many intersec-
tions points can we find inside the circle?

Problem 12.18. On a sheet of paper, a few positive real numbers are written with the property
that the sum of all their pair-wise products is equal to 1. Prove that we can erase one of the
numbers such that the sum of the remaining numbers is at most

√
2.

Problem 12.19. A group of students satisfies the property that if two students have the same
number of friends in the group, then they have no friends in common. Given that at least one
pair of students is befriended, prove that there is a student with precisely one friend.

Problem 12.20. In a group of 2n people, every person knows at most n− 1 other people. Prove
that we can seat everyone at a round table such that nobody sits next to someone they know.

Problem 12.21. Consider any set of 2n points in the plane, precisely half of which are red and
half of which are blue. Prove that we can pair up the red and blue points bijectively in such a
way that for any two such pairs, the straight line segments connecting the red point and the
blue point of the pair do not intersect.

Problem 12.22. In a group of 3n people it is known that every person has ever hit at most one
other person in the group. Prove that we can find a subgroup of n people such that nobody has
ever hit anyone else.

Problem 12.23. Three different schools have n students each. It is known that every student
has precisely n+ 1 friends outside of his own school. Prove that one can find three students, one
from each school, such that they are all friends.

Problem 12.24. Each of the vertices of an n-gon is given a stack of coins. Repeatedly, we choose
one vertex with at least two coins and distribute one coin to each of its neighbours. It turns out
that after precisely k steps, we are precisely back in the original configuration. Show that n | k.

Problem 12.25. A group of 2024 people stand around a large circle. Alice starts with the ball
and each turn, a person plays the ball to one of their neighbours, or the person directly opposite
them. They play 2023 turns such that every person has had the ball exactly once. How many
people can be the last one with the ball?
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Problem 12.26. We are given a grid of 2023 × 2023 light bulbs, all of which are on. If you
touch a bulb, itself and all bulbs in the same row and column will change their state. What is
the smallest number of light bulbs we have to touch to turn all bulbs off?

Problem 12.27. Let k ⩾ 1. We are given a sequence of 4k coins, of which precisely 2k are heads
and 2k are tails. A move consists of swapping any set of adjacent heads with an equal number
of adjacent tails. What is the smallest number n such that we can be sure to be able to change
any such sequence into the sequence starting with 2k heads in at most n moves?

Problem 12.28. A collection of subsets from {1, 2, . . . ,n} has the property that any two subsets
from the collection have non-empty intersection. How large than such a collection be?

Problem 12.29. Let n+ 1 numbers from the set {1, 2, . . . , 2n} be given. Prove that one of these
numbers is divisible by another.

Problem 12.30. Can a 2023 × 2023 board that misses one of its corner pieces be covered by an
equal number of horizontal and vertical dominoes?

Problem 12.31. On each square of a 9 × 9 grid sits an ant. All at once, every ant moves to a
square diagonally adjacent to its current square. What is the minimal number of squares that
are now empty?

Problem 12.32. Consider a set with 2023 positive integers, none of them containing a prime
factor exceeding 23. Prove that this set contains four numbers whose product is a fourth power.

Problem 12.33. Consider an n × n board, some of whose squares are considered sick. If a
healthy square borders at least two sick squares, it will become sick too. At the end of the
epidemic, the whole board turns out to be sick. How many squares must have been initially
sick?

Problem 12.34. Consider a pawn situated in the origin (0, 0) of the plane. A move consists of
removing a pawn from a point (a,b) and placing a pawn on the points (a+ 1,b) and (a,b+ 1),
provided these squares are empty. Prove that there will always be at least one pawn a distance
at most

√
5 from the origin.

Problem 12.35. A chess player prepares himself for a tournament during the coming 77 days.
He will play at least one game each day, but at most 132 games in total. Prove that there is a
sequence of consecutive days during which the chess player plays precisely 21 games.

Problem 12.36. There is a coin placed heads up on every square of an m× n board. A step
consists of choosing a coin that is heads up, removing that coin and then flipping over all its
neighbours. For which values of m and n is it possible to remove all coins from the board?

Problem 12.37. Let n1 < . . . < n2000 < 10100 be given. Prove that we can split these numbers
into two disjoint sets of equal size of which the sum of their elements and the sum of the squares
of their elements both agree.

Problem 12.38. Let n be an odd positive integer and colour an n× n board in a chess-board
pattern in such a way that all four corners are black. For which n is it possible to place down
L-triomino’s on the board in such a way that all the black squares are covered?
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Problem 12.39. Let nine lines be given that divide a given square into two quadrilaterals whose
areas relate as 2 : 3. Prove that three of these lines must intersect in a single point.

Problem 12.40. For a partition π of the set S = {1, 2, . . . , 9}, let π(x) denote the size of the set
of π containing x. Prove that for any two such partitions π and π ′, there exist x,y ∈ S with
π(x) = π(y) and π ′(x) = π ′(y).

Problem 12.41. Let (xn) be the sequence defined by xn = n for all n ⩽ 2023 and xn+1 =
xn + xn−2023 for all n ⩾ 2023. Prove that this sequence contains 2022 subsequent terms which
are all divisible by 2023.

Problem 12.42. We construct a sequence that starts with 1, 0, 1, 0, 1, 0, . . . and the next term is
always given by the value mod 10 of the sum of the six before it. Prove that 0, 1, 0, 1, 0, 1 never
appears in the sequence.

Problem 12.43. In a group of people, every person has at most three enemies. Prove that we
can divide this group over two rooms such that every person has at most one of its enemies with
them in the same room.

Problem 12.44. Let k ∈ N and consider a regular 12-gon and call one of its vertices special.
At each vertex we place a coin, such that only the coin at the special vertex is tails up. A move
consists of selecting k adjacent coins and flipping all of them around. Can we reach a situation
in which one of the neighbours of the special vertex is the only one with a coin that is tails up if
k = 3? What if k = 4? And k = 5?

Problem 12.45. Let a rectangular board be covered completely by 1× 4 and 2× 2 tiles. Suppose
that we remove one 2 × 2 tile and add one 1 × 4 tile back in its place. Is it possible for us to still
cover the original board?

Problem 12.46. A pawn on a chess board can move either a square to the right, a square up, or
a square to the bottom-left. Can it make a journey across the board, visiting all squares exactly
once, and ending up one square to the right of its initial square?

Problem 12.47. Let N be a positive integer. Can a knight make a journey across all squares of
a 4 ×N-boards, visiting each square exactly once, and return back to its original square?

Problem 12.48. At 7 of the vertices of a cube we write a 0 and at the last vertex we write a 1. A
move consists of choosing a face of the cube and adding 1 to each vertex bounding the face. Can
we make the numbers at all vertices equal? Can we make all of them divisible by 3?

Problem 12.49. On every point (a,b) ∈ Z2 with b < 0 we have a pawn. A move consists
of letting a pawn jump over another pawn (like in checkers) and to remove the pawn we just
jumped over. On which points in Z2 can be get a pawn?

Problem 12.50. On an infinite chessboard, we have an n×n square of pawns. A move consists
of letting a pawn jump over another pawn (like in checkers) and to remove the pawn we just
jumped over. For which values of n can we end up with only a single pawn left on the board?
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Problem 12.51. A group of n players sit around a table, each with one coin. One person starts
by giving one coin to the person to their right. Then that person hands two coins to the person
to their right. Then that person gives passes on one coin again, and the next two again, etcetera.
Each time someone runs out of money, they leave the table. Find infinitely many values of n for
which in the end, one person ends up with all the coins.

Problem 12.52. Consider a polytope with at least five faces such that in every corner, precisely
3 sides meet. Two players take turns colouring one of the faces in their favourite colour. Whoever
first manages to colour all three faces that meet in a single corner with their colour, wins. Which
player has a winning strategy?

Problem 12.53. Two players take turns writing zeroes or ones in an empty 3× 3 matrix. Player
1 wins if the resulting matrix is invertible; otherwise player 2 wins. Which player has a winning
strategy? What if they can write any number during their turn instead?

Problem 12.54. (∗) Let V be a finite set of points in the plane, not all on a line. Prove that there
exists a line that passes through precisely two points of V .

Problem 12.55. (∗) Let m,n > 1 be integers. Alice divides the set of numbers {1, 2, . . . , 2m}

into m pairs. Then, Bob chooses one number from each pair and computes their total sum. Prove
that Alice can choose the pairs in such a way that Bob cannot hope to get n as his final answer.

Problem 12.56. (∗) We are given a finite graph in which every vertex can either be coloured
red or blue. A move consists of choosing a vertex and changing its colour and the colour of its
neighbours. Suppose that all vertices start red. Prove that it is possible to turn all vertices blue.

Problem 12.57. (∗) Let f : N × N → {±1} be a function. Prove that there exists an infinite
subset V ⊂ N such that f is constant on V × V .

Problem 12.58. (∗) We are given a regular pentagon and we associate to each vertex an integer
such that their sum is positive. If x, y and z are adjacent, we may replace these numbers by
x+ y, −y and y+ z respectively. If we continue doing this, will we inevitably end up with a
situation in which all numbers are non-negative?

Problem 12.59. (∗) Given a simple graph, we call a set S of vertices covering if for every
vertex, either itself or precisely one of its neighbours is in S. Prove that any two coverings, if
they exist, must have the same size.
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12.4 IMC Problems

Problem 12.60. (1997) Suppose that F is a family of finite subsets of N with the property that
for any A,B ∈ F we have that A∩B ̸= ∅. Is it true that there must be some finite Y ⊂ N such
that for any A,B ∈ F we have that A ∩ B ∩ Y ̸= ∅? What if we additionally suppose that all
members of F have the same size?

Problem 12.61. (1997) Let X be a set and let f : X → X be an bijective function. Prove that
there exists functions g1,g2 : X → X such that f = g1 ◦ g2 and g1 ◦ g1 = id = g2 ◦ g2.

Problem 12.62. (1999) Suppose that 2n points of an n× n grid are marked. Show that for
some k > 1, one can select 2k distinct marked points, say a1, . . . ,a2k, such that a2i−1 and
a2i are in the same row for all 1 ⩽ i ⩽ k and a2i and a2i+1 are in the same column for all
1 ⩽ i < k, and additionally a2k and a1 are in the same column.

Problem 12.63. (1999)(∗) Let S be the collection of all words using only the letters x, y and z.
Consider an equivalence relation on S given by the relations uu ∼ u for all u ∈ S, and if v ∼ w,
then also uv ∼ uw and vu ∼ wu for all u, v,w ∈ S. Prove that every word in S is equivalent to
a word of length at most 8.

Problem 12.64. (2000) Show that the unit square can be partitioned into n smaller squares
for all n ⩾ 6. Further, show for any d ⩾ 2 that there is a constant N(d) such that, whenever
n ⩾ N(d), a d-dimensional unit cube can be partitioned into n smaller cubes.

Problem 12.65. (2002) A total of 200 students participated with a math olympiad that featured
6 problems. Every problem was solved by at least 120 students. Prove that there are two students
who together solved all problems.

Problem 12.66. (2003)(∗) Find all positive integers n for which there exists a family F of three-
element subsets of S = {1, 2, . . . ,n} satisfying that for any two distinct a,b ∈ S, there exists
exactly one A ∈ F containing both a and b, and further satisfying that for any a,b, c, x,y, z ∈
S such that {a,b, x}, {a, c,y}, {b, c, z} ∈ F, then also {x,y, z} ∈ F.

Problem 12.67. (2004) Let k ⩾ 2 and let X be a set of
(2k−4
k−2

)
+ 1 real numbers. Prove that

there exists a monotone sequence x1, . . . , xk of elements of X such that |xi+1 − x1| ⩾ 2|xi − x1|

for all 1 < i < k.

Problem 12.68. (2006) Let V be a convex polygon with n vertices. Prove that if n is divisible
by 3, then V can be triangulated so that each vertex of V is the vertex of an odd number of
triangles. Further show that if n is not divisible by 3, then V can be triangulated so that there
are exactly two vertices are are the vertices of an even number of triangles.

Problem 12.69. (2008)(∗) We say a triple (a1,a2,a3) of non-negative reals is better than
another triple (b1,b2,b3) if two out of the three inequalities a1 > b1, a2 > b2 and a3 > b3
are satisfied. We call a triple (x,y, z) of non-negative reals special if x+ y+ z = 1. Find all
natural numbers n for which there is a set S of n special triples such that for any given special
triple, we can find at least one better triple in S.
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Problem 12.70. (2009) In a town, every two residents who are not friends have a friend in
common, and no one is a friend of everyone else. Let us number the residents from 1 to n and let
ai be the number of friends of the i-th resident. Suppose that

∑n
i=1 a

2
i = n2 −n. Let k ⩾ 3 be

the smallest number of residents who can be seated at a round table in such a way that any two
neighbors are friends. Determine all possible values of k.

Problem 12.71. (2011) An alien race has three genders: male, female, and emale. A married
triple consists of three persons, one from each gender, who all like each other. Any person is
allowed to belong to at most one married triple. A special feature of this race is that feelings are
always mutual; if x likes y, then y likes x too. The race is sending an expedition to colonize a
planet. The expedition has n males, n females, and n emales. It is known that every expedition
member likes at least k persons of each of the two other genders. The problem is to create as many
married triples as possible to produce healthy offspring so the colony could grow and prosper.
Show that if n is even and 2k = n, then it might be impossible to create even one married triple.
Also show that if 4k ⩾ 3n, then it is always possible to create n disjoint married triples, thus
marrying all of the expedition members.

Problem 12.72. (2013) There are 2n ⩾ 4 students in a school. Each week, n students go on a
trip. After several trips, the following condition was fulfilled: every two students were together
on at least one trip. What is the minimum number of trips needed for this to happen?

Problem 12.73. (2016)(∗) Let n ⩾ k be positive integers and let F be a family of finite sets
with the properties that F contains at least

(
n
k

)
+ 1 distinct sets of size k, and such that for any

two sets A,B ∈ F, their union A∩B also belongs to F. Prove that F contains at least three sets
with at least n elements.

Problem 12.74. (2017) There are n people in a city and each of them has exactly 1000 friends;
fortunately, friendship is symmetric. Prove that it is possible to select a group S of people such
that at least n/2017 persons in S have exactly two friends in S.

Problem 12.75. (2022)(∗) Let n > 3 be an integer and let Ω denote the set of all triples of
distinct elements of {1, 2, . . . ,n}. Let m denote the minimal number of colours which suffice to
colour Ω so that whenever 1 ⩽ a < b < c < d ⩽ n, the triples {a,b, c} and {b, c,d} have
different colours. Prove that

1
100

log logn ⩽ m ⩽ 100 log logn.

Problem 12.76. (2023)(∗) We say that a real number V is good if there exist two closed convex
subsets X and Y of the unit cube in R3, with volume V each, such that for each of the three
coordinate planes (that is, the planes spanned by two of the three coordinate axes), the projections
of X and Y onto that plane are disjoint. Find sup{V | V is good}.
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