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Some usefull results from number theory.

Def. Let m be an integer number. We say that integers a, b are congruent

modulo m and write a ≡ b (mod m) or a≡
m
b if m divides a− b, or the same a and

b leave the same remainder when they are divided by m.

Congruence modulo n is an equivalence relation; the equivalence classes are called

congruence classes modulo n. You can work with congruences in the same way like

with equalities, i.e. sum, subtract, multiply and delete (be careful on conditions) .

GCD and LCM. For any integer a and b there are exist integers x and y such that

gcd (a, b) = ax+ by. GCD and LCM are connected by gcd (a, b) · lcm (a, b) = ab.

Chinese remainder theorem. Let a and b be natural numbers with gcd (a, b) = 1,

and let c and d be arbitrary integers. Then there is a solution to the simultaneous

congruences

x ≡ c (mod a), x ≡ d (mod b).

Moreover, the solution is unique modulo ab, i.e. if x1 and x2 are two solutions, then

x1 ≡ x2 (mod ab).

Fermat’s theorem Let p be a prime number. Then np ≡ n (mod p) for any natural

number n.

Wilson’s theorem Let p be a prime number. Then (p− 1)! ≡ −1 (mod p).

What are all divisors of n? If n is an arbitrary integer with prime expansion

n = pα1
1 p

α2
1 . . . pαk

k , then there are d (n) = (α1 + 1) (α2 + 1) . . . (αk + 1) divisors of

form d = pβ11 p
β2
1 . . . pβkk with βi ≤ αi with the sum equal to σ (n) =

k∏
i=1

pαi+1
i − 1

pi − 1
.

What is the prime expansion of n!? For any prime p and integer

n the biggest degree of pk such that pk | n! is k =
∞∑
i=1

[
n

pi

]
, where

[x] is the integer part of x, i.e. the biggest integer less or equal to x.
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Problems.

1. Find all integer x, y, x, t which satisfy

x2 + y2 + z2 + t2 = 2xyzt.

(Moscow City Olympiad 1949, I.10.1)

Answer: x = y = z = t = 0.

Hint: Consider remainders modulo 8 of the l.h.s and r.h.s and prove that x, y, z, t are infinitely divisible by 2.

Solution: We will use simple observation: for odd integers n one has n2 ≡ 1 (mod 8). The r.h.s. is even, so

we have even number of odds on the l.h.s. If all x, y, z, t are odd, then the l.h.s.≡ 4 (mod 8) and the r.h.s.≡ 2

(mod 4), and we get contradiction. If there are exactly two odds, then the l.h.s.≡ 2 (mod 4), but the r.h.s.≡ 0

(mod 8). Therefore all values are even. Changing variables to x1 = x/2, . . . , t1 = t/2 we obtain new equation

x21 + y21 + z21 + t21 = 8x1y1z1t1.

Same arguments yield that x1, . . . , t1 are even. Continuing the above scheme we prove x, y, z, t are infinitely

divisible by 2, and therefore the only possible solution is given by (0, 0, 0, 0). Finally we just need to check that

this set satisfy the equation, which is evident.

2. For a given positive integer m, find all triples (n;x; y) of positive integers, with

n relatively prime to m, which satisfy(
x2 + y2

)m
= (xy)n .

(Putnam 1992, A3)

Answer: If m is odd, then there are no such triples; otherwise n = m+ 1,x = y = 2m/2.

Hint: Change x, y to x′ · gcd (x, y) and y′ · gcd (x, y) with x′, y′ relatively prime.

Solution: Inequality x2 + y2 > xy yield m < n. For any pair of integer numbers x, y we can find relatively

prime x′, y′ such that x = x′ · gcd (x, y) and y = y′ · gcd (x, y). Then our equation can be rewritten as

(
x′2 + y′2

)m
=
(
x′y′

)m
gcd (x, y)2(n−m) .

R.h.s is divisible by any prime factor of x′, so the l.h.s. does. But gcd
(
x′2 + y′2, x′

)
= 1, therefore x′ = 1.

Analogously y′ = 1 and we get

2m = gcd (x, y)2(n−m) .

It s easy to see that gcd (x, y) = 2k for some integer k. And m,n, k satisfy

m = 2 (n−m) k.
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m has to be even and divisible by n −m. As m and n are relatively prime with n > m we have n −m = 1.

Now one can see, that the unique solution of this equation with relatively prime m and n is given by m = 2k,

n = 2k + 1 .

3. Let d (n) be a number of all divisors of n. Find all integer positive n such that

n

d (n)
= p,

for some prime p.

(Moscow City Olympiad 1967, II.8.2)

Answer: n = 8, 9, 12, 18, 24, 8p, 12p for prime p > 3.

Hint: Use the Euler’s formula for the number of divisors and fact that n is divisible by p.

Solution: It is obvious that p |n. Consider prime factorization of n in the following form

n = pαpα1
1 . . . pαk

k ,

where pi are different primes, and αi ≥ 1. By using the Euler’s formula for the number of divisors initial equation

can be rewritten as

pα−1

α+ 1

k∏
i=1

pαi
i

αi + 1
= 1.

The main idea of the following solution is to prove that all these fractions are big enough and the product can

be small just in few cases.

Observe, that for any prime q and integer β we have qβ ≥ β + 1 and equality is only possible for q = 2, β = 1.

So if pα−1 = α + 1, then number of prime factors pi is at most 1, and p1 can be equal only to 2 with α1 = 1,

and if pα−1 > α+ 1 then there are no solutions.

Now we are going to find all possible pairs (p, α) such that the first fraction is small enough.

- If α ≥ 2 and p ≥ 5, then pα−1 > α+ 1;

- If α > 2 and p ≥ 3, then pα−1 > α+ 1;

- If α > 3 and p ≥ 2, then pα−1 > α+ 1.

Remark 1. All inequalities can be easily checked by induction, or using derivatives technique.

So finally we are left only with the following possibilities

- p = 2, α = 1, 2, 3

* α = 3:
pα−1

α+ 1
= 1⇒ n = 8.

* α = 2:
pα−1

α+ 1
= 2/3⇒ 3 |n. Let p1 = 3, then

pα1
1

α1 + 1
≥ 3/2 and the unique solution is n = 12.
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* α = 1:
pα−1

α+ 1
= 1/2 but 2 -

k∏
i=1

pαi
i , and this case is impossible.

- p = 3, α = 1, 2

* α = 2:
pα−1

α+ 1
= 1⇒ n = 9, 18.

* α = 1:
pα−1

α+ 1
= 1/2, so n is even. Let p1 = 2 then equation can be rewritten in the form

2α1−1

α1 + 1

k∏
i=2

pαi
i

αi + 1
= 1,

and we finish with initial equation for the case p = 2 with the only one restriction pi 6= 3 for any i.

So the unique answer in this case is n = 24.

- p > 3, α = 1 in this case we have
pα−1

α+ 1
= 1/2 and as well as in the previous case we end up with equation

2α1−1

α1 + 1

k∏
i=2

pαi
i

αi + 1
= 1,

which is fully solved above, and we get solutions of the form n = 8p, 12p.

Homework

1. Prove that there is no number of the form 103n+1 which can be expressed as a

sum of two perfect cubes.

2. Prove that, for any integers a, b, c, there exists a positive integer n such that
√
n3 + an2 + bn+ c is not an integer.

3. Prove that p and p+ 2 are twin primes if and only if

p2 + 2p | 4 ((p− 1)! + 1) + p.

Additional problem1

4. Let Sn denote the sum of the first n prime numbers. Prove that for any n there

exists the square of an integer between Sn and Sn+1.

1If we do not start the problem during the class, then it is a part of your homework


