
Polynomial Putnam Problems
Below are Putnam problems with solutions using basic properties of polynomials. As usual, there are problems on

the first page, hints on the second page, and solutions after that.

1 Problems
Look over the problems below. Try to identify one or more problems where you have some idea of how to start. If you
make any progress, try to write it down!

2017 A–2 Let Q0(x) = 1, Q1(x) = x, and

Qn(x) =
(Qn−1(x))2 −1

Qn−2(x)

for all n≥ 2. Show that, whenever n is a positive integer, Qn(x) is equal to a polynomial with integer coefficients.

2013 A–3 Suppose that the real numbers a0,a1, . . . ,an and x, with 0 < x < 1, satisfy

a0

1− x
+

a1

1− x2 + · · ·+ an

1− xn+1 = 0.

Prove that there exists a real number y with 0 < y < 1 such that

a0 +a1y+ · · ·+anyn = 0.

2010 B–4 Find all pairs of polynomials p(x) and q(x) with real coefficients for which

p(x)q(x+1)− p(x+1)q(x) = 1.

2008 A–5 Let n ≥ 3 be an integer. Let f (x) and g(x) be polynomials with real coefficients such that the points
( f (1),g(1)),( f (2),g(2)), . . . ,( f (n),g(n)) in R2 are the vertices of a regular n-gon in counterclockwise order.
Prove that at least one of f (x) and g(x) has degree greater than or equal to n−1.

2007 B–1 Let f be a polynomial with positive integer coefficients. Prove that if n is a positive integer, then f (n)
divides f ( f (n)+1) if and only if n = 1. [Editor’s note: one must assume f is nonconstant.]
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2 Hints
You don’t get hints on a real exam, but these kinds of ideas may help with similar problems. Look these hints if you
like, and see if you can make any further progress.

2017 A–2 Work out the first few polynomials, guess a pattern.

2013 A–3 If it is never zero, it cannot change sign.

2010 B–4 Also consider the equation with x−1 in place of x.

2008 A–5 Let P(z) = f (z)+ ig(z). Show a polynomial with the same degree as P has n−1 distinct roots.

2007 B–1 Do arithmetic modulo f (n).

The next page has solutions, don’t continue until you want to see them!
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3 Solutions
2017 A–2 Define Pn(x) for P0(x) = 1, P1(x) = x, and Pn(x) = xPn−1(x)−Pn−2(x). We claim that Pn(x) = Qn(x) for all

n ≥ 0; since Pn(x) clearly is a polynomial with integer coefficients for all n, this will imply the desired result.

Since {Pn} and {Qn} are uniquely determined by their respective recurrence relations and the initial condi-
tions P0,P1 or Q0,Q1, it suffices to check that {Pn} satisfies the same recurrence as Q: that is, (Pn−1(x))2 −
Pn(x)Pn−2(x) = 1 for all n ≥ 2. Here is one proof of this: for n ≥ 1, define the 2×2 matrices

Mn =

(
Pn−1(x) Pn(x)
Pn−2(x) Pn−1(x)

)
, T =

(
x −1
1 0

)
with P−1(x) = 0 (this value being consistent with the recurrence). Then det(T ) = 1 and T Mn = Mn+1, so by
induction on n we have

(Pn−1(x))2 −Pn(x)Pn−2(x) = det(Mn) = det(M1) = 1.

2013 A–3 Suppose on the contrary that a0 + a1y+ · · ·+ anyn is nonzero for 0 < y < 1. By the intermediate value
theorem, this is only possible if a0 +a1y+ · · ·+anyn has the same sign for 0 < y < 1; without loss of generality,
we may assume that a0 +a1y+ · · ·+anyn > 0 for 0 < y < 1. For the given value of x, we then have

a0xm +a1x2m + · · ·+anx(n+1)m ≥ 0

for m = 0,1, . . . , with strict inequality for m > 0. Taking the sum over all m is absolutely convergent and hence
valid; this yields

a0

1− x
+

a1

1− x2 + · · ·+ an

1− xn+1 > 0,

a contradiction.

2010 B–4 The pairs (p,q) satisfying the given equation are those of the form p(x)= ax+b,q(x)= cx+d for a,b,c,d ∈
R such that bc−ad = 1. We will see later that these indeed give solutions.

Suppose p and q satisfy the given equation; note that neither p nor q can be identically zero. By subtracting the
equations

p(x)q(x+1)− p(x+1)q(x) = 1
p(x−1)q(x)− p(x)q(x−1) = 1,

we obtain the equation
p(x)(q(x+1)+q(x−1)) = q(x)(p(x+1)+ p(x−1)).

The original equation implies that p(x) and q(x) have no common nonconstant factor, so p(x) divides p(x+1)+
p(x−1). Since each of p(x+1) and p(x−1) has the same degree and leading coefficient as p, we must have

p(x+1)+ p(x−1) = 2p(x).

If we define the polynomials r(x) = p(x + 1)− p(x), s(x) = q(x + 1)− q(x), we have r(x + 1) = r(x), and
similarly s(x+1) = s(x). Put

a = r(0),b = p(0),c = s(0),d = q(0).

Then r(x) = a,s(x) = c for all x ∈ Z, and hence identically; consequently, p(x) = ax+ b,q(x) = cx+ d for all
x ∈ Z, and hence identically. For p and q of this form,

p(x)q(x+1)− p(x+1)q(x) = bc−ad,

so we get a solution if and only if bc−ad = 1, as claimed.
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2008 A–5 Form the polynomial P(z) = f (z)+ ig(z) with complex coefficients. It suffices to prove that P has degree
at least n−1.

By replacing P(z) with aP(z)+b for suitable a,b∈C, we can force the regular n-gon to have vertices ζn,ζ
2
n , . . . ,ζ

n
n

for ζn = exp(2πi/n). It thus suffices to check that there cannot exist a polynomial P(z) of degree at most n−2
such that P(i) = ζ i

n for i = 1, . . . ,n.

We will prove more generally that for any complex number t /∈ {0,1}, and any integer m ≥ 1, any polynomial
Q(z) for which Q(i) = t i for i = 1, . . . ,m has degree at least m−1. If Q(z) has degree d and leading coefficient
c, then R(z) = Q(z+1)− tQ(z) has degree d and leading coefficient (1− t)c. However, by hypothesis, R(z) has
the distinct roots 1,2, . . . ,m−1, so we must have d ≥ m−1.

2007 B–1 The problem fails if f is a constant, e.g., take f (n) = 1. We thus assume that f is nonconstant. Write
f (n) = ∑

d
i=0 aini with ai > 0. Then

f ( f (n)+1) =
d

∑
i=0

ai( f (n)+1)i

≡ f (1) (mod f (n)).

If n = 1, then this implies that f ( f (n)+1) is divisible by f (n). Otherwise, 0 < f (1)< f (n) since f is noncon-
stant and has positive coefficients, so f ( f (n)+1) cannot be divisible by f (n).
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