
Pigeon-Hole Putnam Problems
Below are Putnam problems with solutions using the pigeon-hole principle. As usual, there are problems

on the first page, hints on the second page, and solutions after that.

1 Problems
Look over the problems below. Try to identify one or more problems where you have some idea of how to
start. If you make any progress, try to write it down!

1993 A–4 Let 𝑥1,𝑥2,…,𝑥19 be positive integers each of which is less than or equal to 93. Let 𝑦1,𝑦2,…,𝑦93
be positive integers each of which is less than or equal to 19. Prove that there exists a (nonempty)
sum of some 𝑥𝑖’s equal to a sum of some 𝑦𝑗’s.

2000 B–6 Let 𝐵 be a set of more than 2𝑛+1/𝑛 distinct points with coordinates of the form (±1,±1,…,±1)
in 𝑛-dimensional space with 𝑛 ≥ 3. Show that there are three distinct points in 𝐵 which are the vertices
of an equilateral triangle.

2002 A–2 Given any five points on a sphere, show that some four of them must lie on a closed hemisphere.

2006 B–2 Prove that, for every set 𝑋 = {𝑥1,𝑥2,…,𝑥𝑛} of 𝑛 real numbers, there exists a non-empty subset
𝑆 of 𝑋 and an integer 𝑚 such that

∣𝑚+∑
𝑠∈𝑆

𝑠∣ ≤ 1
𝑛+1.

2010 B–3 There are 2010 boxes labeled 𝐵1,𝐵2,…,𝐵2010, and 2010𝑛 balls have been distributed among
them, for some positive integer 𝑛. You may redistribute the balls by a sequence of moves, each of
which consists of choosing an 𝑖 and moving exactly 𝑖 balls from box 𝐵𝑖 into any one other box. For
which values of 𝑛 is it possible to reach the distribution with exactly 𝑛 balls in each box, regardless of
the initial distribution of balls?
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2 Hints
You don’t get hints on a real exam, but these kinds of ideas may help with similar problems. Look these
hints if you like, and see if you can make any further progress.

1993 A–4 Look at prefix sums, and how they “merge” together.

2000 B–6 A strong pigeon-hole argument.

2002 A–2 A simple argument, start with a great circle.

2006 B–2 Look at partial sums mod 1.

2010 B–3 Make heavy use of 𝐵1.

The next page has solutions, don’t continue until you want to see them!
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3 Solutions
1993 A–4 (from prase.cz) Let 𝑚 = 19, 𝑛 = 93. So 1 ≤ 𝑥𝑖 ≤ 𝑛 for 1 ≤ 𝑖 ≤ 𝑚, and 1 ≤ 𝑦𝑗 ≤ 𝑚 for 1 ≤ 𝑗 ≤ 𝑛.

Define the prefix sums 𝑎ℎ = ∑ℎ
𝑖=1 𝑥𝑖, 𝑏𝑘 = ∑𝑘

𝑗=1 𝑦𝑗. We suppose 𝑎𝑚 ≤ 𝑏𝑛 (if not, reverse the roles
of 𝑥,𝑎 and 𝑦,𝑏 in the following). For each ℎ we have 𝑎ℎ ≤ 𝑎𝑚 ≤ 𝑏𝑛, so we may define 𝑓(ℎ) as the
smallest 𝑘 such that 𝑏𝑘 ≥ 𝑎ℎ. Consider this sequence of 𝑚 numbers: 𝑏𝑓(1) −𝑎1, 𝑏𝑓(2) −𝑎2,…,𝑏𝑓(𝑚) −𝑎𝑚.
If any is zero we are done, so we assume they are all positive. Each number is less than 𝑚, because
𝑏𝑓(𝑖) ≥ 𝑎𝑖 +𝑚 would imply 𝑏𝑓(𝑖)−1 ≥ 𝑎𝑖, contradicting the minimality of 𝑓(𝑖). We have a sequence of 𝑚
numbers drawn from {1,2, ...,𝑚−1}, so two of them are equal: 𝑏𝑓(𝑟) −𝑎𝑟 = 𝑏𝑓(𝑠) −𝑎𝑠 with 𝑟 < 𝑠. Then
𝑏𝑓(𝑠) −𝑏𝑓(𝑟) = 𝑎𝑠 −𝑎𝑟. Note the left-hand-side is a sum of 𝑦′

𝑗𝑠, and the right-hand-side is a sum of 𝑥′
𝑖𝑠.

2000 B–6 For each point 𝑃 in 𝐵, let 𝑆𝑃 be the set of points with all coordinates equal to ±1 which differ
from 𝑃 in exactly one coordinate. Since there are more than 2𝑛+1/𝑛 points in 𝐵, and each 𝑆𝑃 has 𝑛
elements, the cardinalities of the sets 𝑆𝑃 add up to more than 2𝑛+1, which is to say, more than twice
the total number of points. By the pigeonhole principle, there must be a point in three of the sets, say
𝑆𝑃 ,𝑆𝑄,𝑆𝑅. But then any two of 𝑃 ,𝑄,𝑅 differ in exactly two coordinates, so 𝑃𝑄𝑅 is an equilateral
triangle, as desired.

2002 A–2 Draw a great circle through two of the points. There are two closed hemispheres with this great
circle as boundary, and each of the other three points lies in one of them. By the pigeonhole principle,
two of those three points lie in the same hemisphere, and that hemisphere thus contains four of the
five given points.

2006 B–2 Let {𝑥} = 𝑥 − ⌊𝑥⌋ denote the fractional part of 𝑥. For 𝑖 = 0,…,𝑛, put 𝑠𝑖 = 𝑥1 + ⋯ + 𝑥𝑖 (so
that 𝑠0 = 0). Sort the numbers {𝑠0},…,{𝑠𝑛} into ascending order, and call the result 𝑡0,…,𝑡𝑛. Since
0 = 𝑡0 ≤ ⋯ ≤ 𝑡𝑛 < 1, the differences

𝑡1 −𝑡0,…,𝑡𝑛 −𝑡𝑛−1,1−𝑡𝑛

are nonnegative and add up to 1. Hence (as in the pigeonhole principle) one of these differences is no
more than 1/(𝑛+1); if it is anything other than 1−𝑡𝑛, it equals ±({𝑠𝑖}−{𝑠𝑗}) for some 0 ≤ 𝑖 < 𝑗 ≤ 𝑛.
Put 𝑆 = {𝑥𝑖+1,…,𝑥𝑗} and 𝑚 = ⌊𝑠𝑖⌋−⌊𝑠𝑗⌋; then

∣𝑚+∑
𝑠∈𝑆

𝑠∣ = |𝑚+𝑠𝑗 −𝑠𝑖|

= |{𝑠𝑗}−{𝑠𝑖}|

≤ 1
𝑛+1,

as desired. In case 1 − 𝑡𝑛 ≤ 1/(𝑛 + 1), we take 𝑆 = {𝑥1,…,𝑥𝑛} and 𝑚 = −⌈𝑠𝑛⌉, and again obtain the
desired conclusion.

2010 B–3 It is possible if and only if 𝑛 ≥ 1005. Since

1+⋯+2009 = 2009×2010
2 = 2010×1004.5,
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for 𝑛 ≤ 1004, we can start with an initial distribution in which each box 𝐵𝑖 starts with at most 𝑖 − 1
balls (so in particular 𝐵1 is empty). From such a distribution, no moves are possible, so we cannot
reach the desired final distribution.
Suppose now that 𝑛 ≥ 1005. By the pigeonhole principle, at any time, there exists at least one index 𝑖
for which the box 𝐵𝑖 contains at least 𝑖 balls. We will describe any such index as being eligible. The
following sequence of operations then has the desired effect.

(a) Find the largest eligible index 𝑖. If 𝑖 = 1, proceed to (b). Otherwise, move 𝑖 balls from 𝐵𝑖 to 𝐵1,
then repeat (a).

(b) At this point, only the index 𝑖 = 1 can be eligible (so it must be). Find the largest index 𝑗 for
which 𝐵𝑗 is nonempty. If 𝑗 = 1, proceed to (c). Otherwise, move 1 ball from 𝐵1 to 𝐵𝑗; in case
this makes 𝑗 eligible, move 𝑗 balls from 𝐵𝑗 to 𝐵1. Then repeat (b).

(c) At this point, all of the balls are in 𝐵1. For 𝑖 = 2,…,2010, move one ball from 𝐵1 to 𝐵𝑖 𝑛 times.

After these operations, we have the desired distribution.
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