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Abstract

Geographical database systems deal with cer-
tain basic topological relations such as \A over-
laps B" and \B contains C" between simply
connected regions in the plane. It is of great
interest to make sound inferences from elemen-
tary statements of this form. This problem has
been identi�ed extensively in the recent litera-
ture, but very limited progress has been made
towards addressing the considerable technical
di�culties involved. In this paper we study
the computational problems involved in devel-
oping such an inference system. We point out
that the problem has two distinct components
that interact in rather complex ways: rela-
tional consistency, and planarity. We develop
polynomial-time algorithms for several impor-
tant special cases, and prove almost all the oth-
ers to be NP-hard.

1 Introduction

Suppose that you are told that a simply connected planar
region A overlaps another region B, and that one of the
regions A and C contains the other but you don't know
which. What can you infer about B and C? For example,
could they be disjoint?
Such questions are of great interest for developing in-

telligent inference engines for geographic database sys-
tems. It has been recently pointed out [Egenhofer,1991]
that there are eight fundamental relations that can hold
between two planar regions: \overlaps," \disjoint," \in-
side," \contains," \meets" (overlaps only at the bound-
ary), \covers" (contains but also shares some boundary),
\covered by" (the inverse of \covers") and \equal" (see
Figure 1). We call these relations high resolution case;
they are the only relations that can be de�ned by consid-
ering intersections of two regions, their boundaries, and
their complements [Egenhofer,1991].
Now, any three planar regions cannot stand in arbi-

trary relation with respect to each other; for example,
if A is inside B and B meets C, then A and C must be
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Figure 1: topological relations (high resolution case)

disjoint. The complete table of such one-step inferences
was derived in [Egenhofer,1991; Smith and Park,1992]
(see Table 1; notice that this is an extension |as we
shall see, a surprisingly subtle one| of Allen's classical
work on temporal intervals [Allen,1983]).

In some cases the re�nement provided by the high res-
olution relations is not needed. In a cadastral applica-
tion, for instance, the di�erence between \inside" and
\covered by" may not be important. Consider the query
\�nd all land parcels in a given area." The land parcels
of the result should be inside or should be covered by
the area. In this paper we also focus on the (possibly
more useful) case in which there is no di�erentiation
between \meets" and \overlaps" (they are both called
\overlap") or between \covers" and \contains" (they are
both called \contains"), or their inverses (they are both
called \inside"). It can be shown that these are the only
relations that are relevant if one considers intersections
of two objects and their complements (but not of their
boundaries). The one-step inferences of these medium
resolution relations are given in Table 2.

In addition, we consider a sub-case of medium resolu-
tion in which the relation \overlap" is not permitted (in-
stead objects can only meet). This situation arises often
in geographic applications where geographic regions and
administrative subdivisions obviously can only meet or
contain one another, but cannot overlap. The one-step
inferences in this case are shown in Table 3.

We also consider the even coarser situation in which
there are only two possibilities of interest: \disjoint"
and \overlap" (Table 4). Overlap in this case is just
the negation of disjoint (it means the two objects have
points in common). These two relations are important
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Table 1: high resolution one-step inferences
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in spatial access methods where tree structures, such as
R-trees, are used to e�ciently answer queries of the form
\�nd all objects that overlap with object A" [Papadias
et al.,1995].

disjoint overlap
disjoint d ∨ o d ∨ o
overlap d ∨ o d ∨ o

Table 4: low resolution one-step inferences

Therefore we can distinguish three levels of qualitative
resolution (the medium level consists of two sub-cases).
The choice of topological relations depends on the res-
olution requirements of the speci�c application domain.
The three levels are illustrated in Figure 2.
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Figure 2: levels of topological resolution

We are interested in deriving inferences involving
topological relations such as the above. Instead of con-
sidering the inference problem directly, we shall focus on
the corresponding satis�ability problem, that is, deter-
mining whether or not a Boolean combination of state-
ments of the form \A meets B," \B overlaps C" etc. can
hold for certain planar regions A, B, C, etc. If the ex-
pression is unsatis�able, we should be able to conclude
so; if it is satis�able, we should be able to come up with
actual planar regions that satisfy it.
The paper is organized as follows: Section 2 describes

in detail the problem and its sub-cases. Section 3 sum-
marizes the computational complextiy results, classify-
ing each problem in a complexity class. Section 4 de-
scribes proof sketches and Section 5 concludes with com-
ments about future work.

2 Problem Description

We shall only consider Boolean expressions that are con-
junctions of clauses, where each clause is of the form (\A
meets B" or \A overlaps B" or \A inside B"), that is,

the conjunction of one or more atomic statements, all
involving the same pair of objects; furthermore, without
loss of generality, there is exactly one clause involving
each pair of objects (if there are two or more, then this
is equivalent to the disjunction of the relations that are
common to all clauses; if there is none, then we implic-
itly have the full clause, the disjunction of all possible
relations at the present resolution). We call such ex-
pressions topological expressions; the generalization to
arbitrary Boolean expressions in CNF involves no addi-
tional di�culty, and would change our results very little
(see Entry 5 in Section 4) but also appears to be of no
use.
There are two important special cases of topological

expressions that are of interest: In the explicit case, all
clauses are singletons (the relation for each pair of ob-
jects is known). In the conjunctive case we only have
clauses that are either singletons or full (the relation for
each pair of objects is either explicit or unknown). This
situation arises in geographic applications where the re-
lation between objects in the same map is known, but
not explicit information is given about objects in di�fer-
ent maps.
We consider two example topological expressions in-

volving objects A, B, C, and D in medium resolution.

(A overlaps B) ^ (B contains C) ^ (A inside D)

^ (B disjoint D) ^ (C disjoint D)

This �rst expression is conjunctive but not explicit:
there are no _'s, but there is a pair (A, C) whose relation
is unspeci�ed. The pair is only related by an implicit full
clause (A overlaps C _ A disjoint C _ A equal C _ A inside

C _ A contains C).

(A overlaps B _ A equal B) ^ (B contains C)

^ (A inside D _ A contains D)

This second expression is not conjunctive (there are
clauses that are not full, but have at least two disjuncts).
The second is satis�able (by three cocentric circles, start-
ing from the outermost, A=B, C, and D), whereas the
�rst is not (A, B, and D contradict �rst-column, last-row
entry of Table 2).
There are two distinct kinds of reasons why a topo-

logical expression may be unsatis�able. First, it may
contradict the relational consistency as expressed by the
inference tables (Tables 1 through 4). This aspect of the
satis�ability problem is in e�ect a constraint satisfaction
problem, and has been studied as such.
The second aspect is more subtle, and had escaped

the researchers in this area1. A set of relations may
be consistent, and still there may be no planar regions
that realize it because of reasons related to planarity.
For example, it is well-known that the complete graph
with �ve nodes is non-planar (see Figure 3). Assume
that we are given the objects X1, X2, X3, X4, X5, Y1,
: : :, Y9 related as shown (all objects are disjoint except

1
It is easy to understand why this important point

had not been noticed before. Topological reasoning is a

two-dimensional extension of the classical work of Allen

[Allen,1983] on reasoning about temporal intervals. In the

case of intervals, however, constraint satisfaction is enough;

in the case of planar regions it is not.



that X1 overlaps Y1, Y2, Y3, and Y9, and so on for
the other nodes and edges). In addition we are given
that Y10 overlaps X1 and X4 and is disjoint with every
other object. Then relational consistency according to
Tables 1-4 will reveal no contradiction. For instance,
in the simplest case of Table 4 any topological relation
between a pair of objects is permitted regardless of the
relations between the other pairs of objects. However,
there is no way to realize this set of relations by a set of
regions in the plane, without having two of the Y objects
overlap. If we try to insert Y10 in the partial realization
of Figure 3, then Y10 must overlap with at least one
other Y object (Y8 illustrated).
Therefore, there are some subtle geometric constraints

that must be satis�ed, besides the relational consis-
tency ones; notice the analogue with the scene recogni-
tion problem [Kirousis and Papadimitriou,1988], where,
besides the relational consistency constraints of labels
of the edges of a scene (\convex," \concave," \bound-
ary"), there are subtle additional geometric constraints
(the planar regions must be realizable in terms of actual
slopes and heights).
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Figure 3: planarity obstructions

We start by addressing the constraint satisfaction as-
pects of the problem. In a constraint satisfaction prob-
lem we are given variables x1; : : : ; xn taking values in
corresponding �nite domains D1; : : : ; Dn. We are also
given constraints on subsets of the variables: a constraint
Ri1;:::;ik

is a k-ary predicate on the values of xi1
; : : : ; xik

(we will only consider ternary constraints). The problem
is to �nd an assignment of values to the variables such
that all the constraints are satis�ed. Constraint satisfac-
tion problems are typically NP-complete, although spe-
cial classes can be solved in polynomial time.
In the constraint satisfaction problems arising in con-

nection to topological inference, the variables are pairs
of distinct objects; all domains are the subsets of the set
of eight topological relations in Table 1 (or the �ve in Ta-
bles 2 and 3, or the two in Table 4), as dictated by the
clause corresponding to the pair of objects; and for each
triple (i; j; k) of objects we have a constraint, namely,
that the value of the pair i; j, the value of the pair j; k,
and the value of the pair i; k must be related as in Table
1 (or 2, or 3, or 4).

For example, the topological expression

(A overlaps B _ A equal B) ^ (B contains C)

^ (A inside D _ A contains D)

is expressed by six variables (all unordered pairs of ob-
jects from A, B, C, D). The domain of variable AB is the
set foverlaps, equalg, the domain of BC is fcontainsg,
and the domain of the unrestricted pair AC is all �ve
medium resolution relations. There are twenty-four
ternary constraints (one for each ordered triple), ex-
pressed by Table 2. A satisfying assignment assigns
equal to AB, contains to AC, inside to AD, contains to
BC, inside to BD, and inside to CD.

3 Summary of Results

The satis�ability problem for topological expressions has
several special cases and subproblems along three dimen-
sions:

1. Generality of the Topological Expression.
There are three cases of interest, unrestricted topo-
logical expressions, conjunctive topological expres-
sions, and explicit topological expressions. Obvi-
ously, their complexity is non-increasing in this or-
der.

2. Resolution of the Topological Relations. We
consider four cases: In the �nest level we have the
eight topological relations of Figure 1; this is the
high resolution case. In the next level we overlook
the di�erence between contains and covers, and be-
tween overlaps and meets; this is the \medium reso-
lution case." In the coarsest level, we only have the
relations \disjoint" and \overlap" (this is the low
resolution case. Finally, we also consider the spe-
cial case of the second level where we can have no
\overlap," but \meet" (this is the no-overlap case).
There is no a priori dominance of the complexities
of these cases.

3. Notion of Satis�ability. We consider two notions
of satis�ability: Relational consistency means that
there is a global choice of a disjunct from the clause
of each pair of objects that, so that all triples of
choices are consistent with the table of the present
resolution. As the example in Figure 3 indicates,
this concept is sound but not complete (its answer
to the satis�ability question may be a false positive,
but never a false negative). The full form of satis�a-
bility is called realizability: A topological expression
on a set of objects is said to be realizable if it has
a planar model; that is, if there is a set of simply
connected planar regions, one for each object, any
two of which are related by a topological relation
that is a disjunct of the corresponding clause.

Tables 5 and 6 summarize our results. The rows refer
to the level of generality of the topological expressions.
The columns correspond to the resolution of the topo-
logical relations. The �rst table indicates the complexity
of the relational consistency problem, while the second
table the complexity of the realizability problem. \P"
means that the problem is solvable in polynomial time;
\NP-h" that it is NP-hard.



high medium low no overlap
unrestricted NP-h1 NP-h3 P5 NP-h7

conjunctive P9 P11 P13 P15

explicit P17 P19 P21 P23

Table 5: Complexity of relational consistency.

high medium low no overlap
unrestricted NP-h2 NP-h4 NP-h6 NP-h8

conjunctive NP-h10 NP-h12 NP-h14 ?16

explicit NP-h18 NP-h20 NP-h22 P24

Table 6: Complexity of realizability.

According to the above tables, the only open ques-
tion is entry 16, the realizability problem for the no-
overlap conjunctive case. The corresponding relational
consistency problem (that is, telling whether there is a
relationally consistent solution) is in P (entry 15); fur-
thermore, the problem of telling whether an explicit ex-
pression (a solution, that is) is realizable is also in P.
However, the combined problem is not at all clearly in
P (there may be too many solutions to consider); there
is a parallel in [Kirousis and Papadimitriou,1988].

4 Proof Sketches

In this section we sketch proofs of the results. We begin
with the polynomial time algorithms.
Entry 11. Given a conjunctive medium resolu-

tion formula �, we �rst require that it pass the path-
consistency algorithm with respect to Table 2 (running
time O(n3) [Mackworth and Freuder,1985]). Assum-
ing this, augment � with all explicit (non-disjunctive)
clauses derived by path-consistency. Finally assert \dis-
joint" for all remaining pairs.
To see that this works, consider � as augmented. The

\equals" relations de�ne an equivalence relation on the
regions, the \inside" and \contains" relations de�ne an
irre
exive partial order on the equivalence classes, the
\disjoint" relations are closed downward with respect to
the order, and the \overlaps" relations are closed up-
ward. We now construct a set model of the regions. Let
U be the universe consisting of all regions X together
with all pairs Y Z such that \Y overlaps Z" is asserted
in �. Let \�" denote \inside or equals." Model region
A by a subset of U : S(A) = fX : X � Ag [ fY Z :
Y � A _ Z � Ag. Note Table 2 is consistent with
the relations of any system of sets. Furthermore, these
sets agree with �, hence they tell us how to complete �
to explicit form. Now observe that for a pair AB not
already related in �, S(A) and S(B) are disjoint.
Entry 9. The consistency proof now uses a pair of

sets S1(A) � S2(A) to model each region. We check path
consistency, and assert \disjoint" or \meet" for undeter-
mined pairs. Details omitted.
Entry 15. This is nearly identical to Entry 11, replac-

ing \overlaps" with \meets," again asserting \disjoint"
for pairs not determined by path-consistency. Whenever

we have S(A) � S(B)\S(C) in this model, either S(B)
and S(C) are equal or one contains the other. Such sets
are consistent with Table 3.
Entries 17, 19, 23. Path-consistency su�ces here.

However, path consistency is not complete (even for re-
lational consistency) in the unrestricted case. That is,
there are examples in which the path consistency algo-
rithm will halt without identifying an inconsistency, and
still the expression is unsatis�able (simple examples can
be found using our NP-completeness construction be-
low).
Entry 24. This is basically a planarity problem, in

a graph that combines the \contains" and the \meets"
relations. The only problem is that four or more re-
gions may meet pairwise at a point, resulting in large
cliques (graphs with large cliques are, of course, nonpla-
nar). This is circumvented by a pre-processing phase
that identi�es all maximal cliques of size four or more,
and replaces them by a new vertex connected to each
of the vertices in the clique (intuitively, the new vertex
stands for the common point). The maximal cliques of a
graph can be identi�ed in time polynomial in the nodes
and the number of maximal cliques, which must be poly-
nomial for any realization.
Entries 5, 13, 21. Since Table 4 imposes no real

constraint in low resolution, all topological expressions
are satis�able. Incidentally, if we allow general Boolean
combinations of relational statements instead of topo-
logical relations (that is, clauses that involve statements
about more than one pair of objects), then this entry be-
comes NP-hard: We can simulate Boolean satis�ability
by having an object for each variable, and also another
object 0, and replacing all instances of variable x with
\0 disjoint x" and the negation of x with \0 overlap x".
Entry 5 is the only result in our tables that would be
changed by allowing general Boolean expressions.

Next we sketch the NP-hardness results.
Entries 1, 3, and 7. The proof for Entry 3 is by

a reduction from the \not-all-equal satis�ability" prob-
lem. We notice that if A and B contain one another but
we do not know which, the same for B and C, and if we
know that A and C overlap, then we can conclude that
either both A contains B and C contains B, or the op-
posite. Hence, if \A contains B" stands for \x is true"
and \A inside B" for \x is false," this observation al-
lows us to \propagate the truth values" of the variables.
The \not-all-equal" clauses are simulated by a triangle
of \contains-or-inside" relations, that cannot all three
go clockwise, or all three counterclockwise, because this
would violate transitivity. The same reduction works for
Entry 1, while for entry 7 a more complex \value prop-
agation gadget" is needed.
Entries 10, 12, 14, 18, 20, and 22. The easi-

est problem among these is Entry 22, and it turns out
to be NP-hard because of a result of [Kratochv��l,1991]:
It is NP-hard to tell whether a given graph is a string
graph; that is, whether there exists a set of curves, one
for each node, such that for any two nodes the corre-
sponding curves intersect if and only if the nodes are
adjacent. Furthermore the result of [Kratochv��l and Ma-
tou�sek,1991] that some string graphs require exponential



size realizations carries over to the case of regions as well,
so it is not clear whether any of these problems is in NP.

5 Discussion and Further Questions

The qualitative representation and processing of spatial
knowledge has recently gained much attention in spatial
databases (see for example [Papadias and Sellis,1994]),
because very often in geographic applications we need
to handle spatial relations such as, \disjoint", \overlap"
and \north". In this paper we assume that we are given
a database of objects with their interrelationships explic-
itly represented. The data may be incomplete (we may
have no information for some pairs of objects), inde�nite
(more than one relation between the same pair of ob-
jects is possible) or inaccurate (the relations may lead to
non-realizable con�gurations of objects). Such problems
arise often in spatial databases and geographic informa-
tion systems (GIS) where data from various sources and
of variable quality are incorporated in the same system.
This paper discusses algorithms that can be used to infer
the relation between the pairs of objects for which the
spatial relation is not known and to prune the impossible
relations.

The proposed methods refer to con�gurations of arbi-
trary objects. On the other hand geographic databases
contain particular objects whose shape and size further
restrict the allowable topological relations. An interest-
ing extension of the work in this paper would be to study
the topological inference problem when we know some-
thing about the regions (they are all convex, or circles,
or rectangles, or even given polygons). Despite the fact
that satis�ability for particular objects would require
further processing that takes into account the sizes and
the shapes of the objects, our method can be used as a
pre-processing step in commercial GIS's that currently
do not involve any inference or satis�ability mechanisms.

In this paper we have demonstrated that several prac-
tical problems can be solved by reasonably sophisticated
polynomial algorithms, while for the rest we have shown
that only non-polynomial solutions may exist for the
general case. Even for the NP-hard cases, we suspect
that heuristics will be of great use. Naturally, standard
or specialized constraint satisfaction heuristics can solve
the relational consistency subproblem. As for the pla-
nar realizability subproblem, which we showed almost
everywhere NP-hard, there is hope. Our counterexam-
ple showing that planarity is an additional constraint
(Figure 3) involves �fteen regions; in the low-resolution
case, the smallest non-realizable example involves twelve
regions. One could devise heuristics that have an excel-
lent chance of �nding a planar model, if one exists.

Finally, further work can be done for other types
of spatial relations, such as cardinal directions (e.g.,
\north," \northeast") and distance relations (\near",
\far") and applications that involve several kinds of qual-
itative and quantitative spatial constraints (\10 km to
the north", \disjoint but near"). When choosing a set
of relations to model, a reasonable criterion is to choose
relations where at least the conjunctive relational con-
sistency problem is solvable in polynomial time.
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