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ABSTRACT
Point-set classification for multiplexed pathology images aims to

distinguish between the spatial configurations of cells within mul-

tiplexed immuno-fluorescence (mIF) images of different diseases.

This problem is important towards aiding pathologists in diag-

nosing diseases (e.g., chronic pancreatitis and pancreatic ductal

adenocarcinoma). This problem is challenging because crucial spa-

tial relationships are implicit in point sets and the non-uniform

distribution of points makes the relationships complex. Manual

morphologic or cell-count based methods, the conventional clinical

approach for studying spatial patterns within mIF images, is lim-

ited by inter-observer variability. The current deep neural network

methods for point sets (e.g., PointNet) are limited in learning the

representation of implicit spatial relationships between categor-

ical points. To overcome the limitation, we propose a new deep

neural network (DNN) architecture, namely spatial-relationship

aware neural networks (SRNet), with a novel design of represen-

tation learning layers. Experimental results with a University of

Michigan mIF dataset show that the proposed method significantly

outperforms the competing DNN methods, by 80%, reaching 95%

accuracy.

CCS CONCEPTS
• Applied computing → Bioinformatics; • Information sys-
tems → Geographic information systems.

KEYWORDS
point set, classification, spatial relationship, deep learning, co-location

pattern, cross-K function, Bioinformatics, pathology diagnosis

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

DeepSpatial ’21, Augest, 2021, KDD-organized Virtual Conference
© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:
Yan Li, Majid Farhadloo, Santhoshi Krishnan, Timothy L Frankel, Shashi

Shekhar, and Arvind Rao. 2021. SRNet: A spatial-relationship aware point-

set classification method for multiplexed pathology images. In Proceedings
of DeepSpatial ’21: 2nd ACM SIGKDD Workshop on Deep Learning for Spa-
tiotemporal Data, Applications, and Systems (DeepSpatial ’21). ACM, New

York, NY, USA, 10 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Point-set classification for multiplexed pathology images aims to

distinguish between the spatial configurations of cells within mul-

tiplexed immuno-fluorescence (mIF) images of different diseases.

Advances in the field of multiplexed and anti-body based imaging

methods have promoted the development of mIF images, which

facilitates bio marker-specific cell species and sub species identifi-

cation [32]. An example of a multipled immunoflourescene image

is show in Figure 1. A point set from multiplexed pathology im-

ages records the location and the attributes (e.g., surface phenotype

markers) of the cells in a mIF image. For example, Figure 2 shows

a sample point set from a mIF image. The location of each cell

is represented by its pixel coordinates whose origin is at the top

left corner of the image. The cell attributes are the existence of

surface phenotype markers (e.g., Epithelial), where "pos" means

the presence of a phenotype marker and "neg" otherwise. Figure 3

illustrates the spatial distribution of "pos" phenotype markers in a

mIF image of chronic pancreatitis.

Classifying point sets from mIF images is important because

it provides a novel way for pathologists to diagnose diseases. For

example, in the context of chronic pancreatitis and pancreatic ductal

adenocarcinoma, the point sets frommIF images describe the spatial

relationships between the diseases’ cells, which reveals information

about how the interactions between these cells vary.

This problem is challenging due to the following three reasons.

First, the points are distributed non-uniformly in the space, which

results in complex spatial relationships. Second, the contributions of

different spatial relationships vary between different classification

tasks, which requires that the representation of the relationships be

adjusted to meet the need of specific tasks. Third, spatial relation-

ships between cells of different types are both crucial and implicit

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Legend:

Green – CD3 – T helper 

cells

Yellow – CD8 – Cytotoxic 

lymphocytes

Red – FoxP3 – T regulatory 

cells

Orange – CD163 – antigen 

presenting cells

Magenta – PD-L1

White – Pancytokeratin –
tumor or epithelial cells

Figure 1: A sample multiplexed immunofluorescence (mIF)
image, with the different colours signifying thefluorescence
corresponding to different surface bio-markers on the cells
imaged. Image courtesy Dr. Timothy L. Frankel.

Location Attributes (e.g., surface phenotype markers)

Figure 2: A point set from a multiplexed pathology image.
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Figure 3: A map of a point set from a sample Chronic Pan-
creatitis mIF image.

in point sets, and the small number of available learning samples

makes it difficult for deep neural networks (DNNs) to learn these

spatial relationships without appropriate neural network architec-

tures.

Manual morphologic or cell-count based methods, which are

the conventional clinical approaches for studying spatial patterns

within mIF images, are limited by inter-observer variability. Sub-

stantial efforts have been made to apply machine learning tech-

niques to automate the pathology diagnosis process alongside the

expansion of digital imaging techniques. In particular, deep neural

networks (DNNs) have been extensively studied in a large number

of pathology diagnosis applications, including pixel/patch-level

region-of-interest detection [4, 7, 9] as well as image-level decision

[15, 38] for various diseases, which have shown state-of-the-art

results. However, most of the existing DNN-based applications

take images as the input and are inapplicable for our problem. The

disadvantage of working with raw images is that the variation in

staining and artifacts present across all images in a given cohort

may influence analysis. In contrast, point sets offer a simplified

representation of cell locations and neighbourhoods, invariant of

cell borders and cellular morphology. Recently, as point cloud data

from LiDAR scanners have become increasingly popular, the repre-

sentation of point sets has attracted more attention [30]. However,

current methods mainly focus on point sets with few numerical

attributes, such as signal strength, and they do not handle categori-

cal attributes specifically. Hence, they do not take full advantage of

the spatial relationships between points of different categories.

To overcome these limitations, we propose a new DNN archi-

tecture, namely SRNet, with novel design of spatial-configuration

based representation learning layers. Experiments show that the

proposed methods yield much higher accuracy than the competing

DNN methods. Our contributions can be summarized as follows:

• We introduce a deep neural network architecture, SRNet, to

learn a representation of the spatial relationships between

points of different categories that are not captured by the

commonly used statistics such as the cross-K function and

the participation ratio.

• We conduct rich experimental studies to evaluate the ac-

curacy of the proposed methods. The discovered crucial

patterns are verified by domain scientists, confirming the

method’s potential to help pathologists identify novel spatial

relationships between different cell types (e.g., immune cells

and tumor cells) in the micro-environment.

Scope: The scope of this study is limited to analyzing point

datasets representing the location and types of cells derived from

multiplexed immuno-fluorescence (mIF) images to distinguish be-

tween diseases. Analyzing mIF images without converting them to

point sets is outside the scope of this paper. In addition, we do not

evaluate the proposed method with larger datasets due to a lack of

public benchmarks. Field trials to evaluate the clinical value of the

proposed method also fall outside the scope of this study.

Outline: The rest of the paper is organized as follows. Section 2

describes the application domain of the study. Section 3 introduces

the formal definition of the problem and provides a short description

of the dataset. Related work is reviewed in Section 4. Our proposed

methods are described in Section 5. Section 6 presents the evaluation

of the proposedmethods. Section 7 concludes the paper and outlines

future work.

2 APPLICATION DOMAIN
Biopsies are the standard procedure in practice for disease diagnosis,

including cancers. In this procedure, a sample of tissue is removed

from the body, chemically treated, sliced into thin sections, placed

on a glass slide, and stained with specific chemicals to enhance

contrast for visual inspection [2]. A pathologist then performs a

macroscopic examination of the specimen and describes various

features such as type of cells present, their distribution, and other

important diagnostic features.
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With developments in whole slide digital imaging and antigen-

based staining technology (e.g., Time-Of-Flight mass cytometry

(CyToF)[8], and Co-detection by Indexing (CODEX)[10]), it is possi-

ble to not only isolate cell nuclei in an image, but also to determine

types and sub-types of each cell type present in the image based

on the cell’s surface chemistry with high throughput, and the po-

tential to scale up to more than 30 markers [16, 24]. These novel

technologies have played an important role in the era of cancer

immunotherapeutic treatment regimens [5, 25], which involves the

treatment of diseases by inducing, enhancing, or suppressing an

immune response in the patient. This treatment regimen has been

gaining increasing attention due to its potential in the treatment of

cancers which are non-responsive to conventional methods such as

radiotherapy and chemotherapy [26, 28]. As this treatment regimen

utilizes the immunoregulatory cells of the patient in eliminating

tumorous cells, there is a growing interest in understanding the

interplay between various cells in a spatially informed manner in

the tumor microenvironment [36, 37]. As an example, for tumor

infiltrating lymphocytes (TILs) to be able to induce cell death, these

cells must have direct or proximal contact with tumor cells [1].

Thus, the distance between tumor and immune cells is an impor-

tant indicator for determining disease progression and treatment

effect.

Emerging research in this area has begun to highlight the im-

portance of spatial organization among cell phenotypes for cancer

diagnosis and prognosis [36]. Currently, visual inspection and cell-

counting by a pathologist are the methods used to describe the

spatial organization of cells, which is fraught with inter-observer

variability and inconsistency between studies. Also, although we

have some information regarding which immune cell features pre-

dict a positive response, there is a lack of reliable methods to iden-

tify which patients will benefit from immunotherapeutic measures

based on their individual immune cell make-up. The development

and adoption of spatially informed methods both for tumor and

disease micro-environment quantification generally would help in

developing optimal treatment plans tailored to each patient. Addi-

tionally, it would be prudent to leverage the power of algorithmic

intelligence in the pathology domain, as it can provide insights

which cannot be captured visually by a pathologist.

3 PROBLEM DEFINITION & DATA
DESCRIPTION

Given a collection of categorical point sets (e.g., cells with different

surface phenotypemarkers) frommultiplexed immuno-fluorescence

(mIF) images and the class labels of the point sets (e.g., different

diseases), the goal of this study is to train a machine learning model

that distinguishes between the point sets of different classes. The

primary objective is to achieve a high classification accuracy.

We define a categorical point set as a collection of points, where

each individual point belongs to a single category and is located in

2-D Euclidean space. This study was conducted on 199 anonymized

point sets derived frommIF images belonging to two disease groups,

namely chronic pancreatitis(i.e., class 1) and pancreatic ductal ade-

nocarcinoma (PDAC) (i.e., class 2), which had 56 and 143 point sets,

respectively. In the original dataset, cell surface makers indicate

nine phenotypes. Each cell might be associated with one or more

phenotype. To transform the original point sets into categorical

point sets, we considered any point that had a single phenotype

marker as belonging to the category corresponding to that phe-

notype, and we replaced every point that had multiple phenotype

markers with a group of points, having one marker each and then

assigned the points to multiple categories corresponding to the

phenotype of each point’s marker. Generating point sets from mul-

tiplexed pathology images is beyond the scope of this paper, and

we treat point sets as given inputs.

4 RELATEDWORK
The history of deep neural network (DNN) methods that directly

take point sets as the input dates back to PointNet [30], which learns

point features independently through multiple fully connected neu-

ral network layers and aggregates them into a shape feature using

a max pooling layer. These methods have been widely used for

3D shape classification and semantic segmentation as the point

clouds collected from LiDAR scanners have become increasingly

popular. PointNet++ [31] defines multi-scale regions and uses Point-

Net to learn their features. It then hierarchically aggregates the

regions’ features, so it can capture local configurations and learn

fine-grained patterns. Similar to PointNet++, the idea of spatially

partitioning points and then recursively aggregating them has been

extensively explored. For example, KD-trees are used in [13, 21] to

spatially partition points based on point density.

Meanwhile, much effort has been made to introduce DNN ar-

chitectures that were originally designed for other data formats

(e.g., imagery and time series). For example, convolutional neural

network (CNN) models are studied in the spectral domain (e.g.,

RGCNN [33]) and the spatial domain (e.g., Pointwise convolution

[18]). Recursive neural network (RNN) models are applied with the

assumption that “order matters” [34], and there are autoencoders

that learn the representation of point sets [17]. However, these

models are not specifically designed to handle multi-categorical

point sets and do not take full advantage of the spatial relationships

between different categories of points.

5 PROPOSED APPROACHES: SRNET
The cross-category spatial neighborhood relationships is an impor-

tant component in the spatial configuration of points. In pathology

diagnosis, the spatial correlations between different types of im-

mune cells may vary with diseases, which inspires us to introduce

a deep neural network (DNN) method, namely spatial-relationship

aware neural network (SRNet), with novel representation layers to

represent point sets with the spatial relationships between different

categories of points in them.

5.1 Spatial-Relationship Quantification
An intuitive way of representing the spatial relationships of point

sets consisting of various categories is to utilize measures quantify-

ing the relationships. In this subsection, we present two measures

for spatial relationships widely used in spatial data mining and

spatial statistics, and how they can be used in classification tasks.

5.1.1 Participation ratio. The participation ratio quantifies the de-

gree to which a category tends to be involved in a co-location

pattern. Co-location patterns [19, 35] refer to set of categorical
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point sets that tend to be located in close proximity, such as a point

set of Nile crocodiles and Egyptian plovers [22].

A co-location pattern [19] has three defining concepts. First, a

co-location pattern is in the form of a set of categories. Second, a

neighborhood clique is a set of points within which every pairwise

distance is smaller than a threshold. Third, an instance of a spatial

co-location pattern is a neighborhood clique composed of one point

from every category in the pattern. The participation ratio (𝑃𝑅) of a

category in a co-location pattern is then defined as the ratio of the

points in the category that are within the instance of the pattern,

which is calculated as:

𝑃𝑅(𝑐𝑖 , 𝑝) =
|𝑐𝑖 points in the instances of 𝑝 |

|𝑐𝑖 points|
, (1)

where 𝑐𝑖 is a category and 𝑝 is a spatial co-location pattern, and | · |
yields the cardinality of a set. The value of a participation ratio is

between 0 and 1. The greater the value, the more likely 𝑐𝑖 points

are located nearby the points of other categories in the pattern 𝑝 .

For the sake of computational efficiency, in this study we only

consider the spatial co-location patterns composed of two cate-

gories, so Equation 1 can be transformed as:

𝑃𝑅(𝑐𝑖 , 𝑐 𝑗 , 𝑑) =
|𝑐𝑖 points with 𝑐 𝑗 in 𝑆𝑁 (𝑐𝑖, 𝑑) |

|𝑐𝑖 points|
,

(2)

where 𝑆𝑁 (𝑐𝑖, 𝑑) yields a circular spatial neighborhood with a radius
of 𝑑 around a 𝑐𝑖 point. Given a point set containing points belong-

ing to 𝑘 categories and a neighborhood distance threshold, there

will be 𝑘 (𝑘 − 1) participation ratios. An important hyperparameter

that affects the value of the participation ratio is the neighborhood

distance threshold. Participation ratios with different neighborhood

distance thresholds imply the relationships between points in dif-

ferent spatial scales, so we compute the participation ratios with a

collection of 𝑙 neighborhood distance thresholds. Therefore, we can

use a vector of 𝑘 (𝑘 − 1)𝑙 participation ratios as the representation

of a point set with 𝑘 categories.

To validate that the spatial relationships quantified by participa-

tion ratios may be useful for distinguishing between the point sets

of different diseases, we plot the probability density distribution of

four participation ratios in the dataset we described in Section 3

using histograms in Figure 4. Each histogram has ten equal-width

bins that represent the range of participation ratio values, and the

area of each bin is the probability density of the bin. As can be

seen, the probability distribution of a participation ratio varies with

category pairs as well as with neighborhood distance thresholds,

and in Figure 4a and 4c, the probability distributions for the two

diseases are notably different. Therefore, 𝑃𝑅(APC,Treg, 100) and
𝑃𝑅(APC,Treg, 200) may be used to distinguish the point sets of the

two diseases.

5.1.2 Ripley’s cross-K function. The participation ratio, 𝑃𝑅(𝑐𝑖 , 𝑐 𝑗 ,
𝑑), can be thought of as the expectation that 𝑐 𝑗 points exist in the

spatial neighborhood 𝑐𝑖 point. However, the existence of 𝑐 𝑗 points

does not tell the whole story about the distribution of 𝑐 𝑗 points in a

𝑐𝑖 points’ spatial neighborhood. Ripley’s cross-K function, instead,
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Figure 4: Examples of the probability distribution of partic-
ipation ratios.

focuses on the number of 𝑐 𝑗 points in 𝑐𝑖 points’ spatial neighbor-

hood. It is defined in the following form:

cross-K(𝑐𝑖 , 𝑐 𝑗 , 𝑑) =
𝐸 ( |𝑐 𝑗 in 𝑆𝑁 (𝑐𝑖 , 𝑑) |)

𝐸 ( |𝑐 𝑗 in entire study area|) , (3)

where 𝑐𝑖 and 𝑐 𝑗 are two categories, 𝑑 is a neighborhood distance

threshold, 𝑆𝑁 (𝑐𝑖 , 𝑑) yields the circular spatial neighborhood of a

𝑐𝑖 point with a radius of 𝑑 , and 𝐸 (·) returns the expectation. The
value of a cross-K function is non-negative. The greater the value,

the more 𝑐 𝑗 points are located nearby the 𝑐𝑖 points. Similar to

how we represent a point set using its participation ratios, given 𝑙

neighborhood distance thresholds, we can also represent a point set

with 𝑘 categories using a vector contains 𝑘 (𝑘 − 1)𝑙 cross-K function

values.

5.2 Proposed SRNet Architecture
In the definitions of the participation ratio and the cross-K function,

a core component is the representation of the spatial neighborhood

of points. Given an ordered category pair (𝑐𝑖 , 𝑐 𝑗 ), and a spatial

neighborhood distance threshold 𝑑 , the participation ratio uses the

existence of 𝑐 𝑗 points and the cross-k function uses the count of 𝑐 𝑗
points to represent the distribution of 𝑐 𝑗 points in the spatial neigh-

borhood of 𝑐𝑖 points. However, in addition to existence and count,

there may be other patterns that describe the spatial relationships

between 𝑐𝑖 and 𝑐 𝑗 points. Hence, we design a DNN model that uses

a spatial-relationship aware neural network (SRNet) that learns the

spatial distribution of 𝑐 𝑗 points in 𝑐𝑖 points’ spatial neighborhood

for every ordered category pair (𝑐𝑖 , 𝑐 𝑗 ), and then to generate a rep-

resentation of point sets. The point-set representation can then be

fed into a fully connected neural network for classification.

Figure 5 shows the overall architecture of SRNet. The input of

the approach is a categorical point set denoted as 𝑋 ∈ R𝑁×(𝐷+1)
,

where𝑁 is the number of points and𝐷 = 2 is the spatial dimensions.

Each point has one categorical attribute, and there are 𝑘 categories

in total. Similar to using the participation ratios or the cross-K
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Figure 5: Overview of the SRNet architecture.
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Figure 6: The architecture of the spatial relationship layer.

function values to represent point sets, the SRNet uses a DNN layer

(spatial relationship layer) to learn the spatial relationship measures

of all 𝑘 (𝑘 − 1) ordered category pairs. This architecture facilitates

the integration of human expert knowledge by concatenating the

learned spatial relationship measures with the measures provided

by human experts (e.g., the participation ratio, the cross-K function).

The architecture of the spatial relationship layer, shown in Figure 6,

has three main components: a spatial neighborhood layer (Section

5.2.1), a spatial distribution attention layer (Section 5.2.2), and a

weighted average pooling layer. For every ordered category pair

(𝑐𝑖 , 𝑐 𝑗 ), the spatial neighborhood layer generates a representation

of the spatial distribution of 𝑐 𝑗 points in every 𝑐𝑖 point’s spatial

neighborhood, and the spatial distribution attention layer learns

the attention to be paid to each 𝑐𝑖 point according to the spatial

distribution of 𝑐𝑖 points. Then, the weighted average pooling layer

aggregates the spatial neighborhood representation of every 𝑐𝑖
point with different weights to calculate the spatial relationship

measures of pair (𝑐𝑖 , 𝑐 𝑗 ). Finally, the spatial relationshipmeasures of

all ordered category pairs are concatenated to generate the overall

representation of the point set, denoted as 𝑌 ∈ R𝑘×(𝑘−1)×𝑊 , where

𝑊 is the feature dimension of the spatial relationship measures of

a category pair.

Spatial neighborhood layer

Location representation layer

ci point

cj point

d

max pooling layer

Location of every cj
point relative to ci point

Spatial distribution of cj
points relative to ci point

(1 + n) x (D + 1)

n: number of cj point in ci point's     
    spatial neighborhood 
D: spatial dimension

n x R

n: number of cj point in ci point's     
    spatial neighborhood 
R: relative location representation 
     dimension

R

R: relative location representation 
     dimension

Figure 7: The architecture of the spatial neighborhood layer.

5.2.1 Spatial neighborhood layer. Given an ordered category pair

(𝑐𝑖 , 𝑐 𝑗 ), a spatial neighborhood layer is applied to represent the

spatial distribution of 𝑐 𝑗 points within every individual 𝑐𝑖 point’s

spatial neighborhood independently. The input of this layer is a 𝑐𝑖
point and the 𝑐 𝑗 points in its spatial neighborhood, and its output

is a vector representing the spatial distribution of the 𝑐 𝑗 points.

There are two main steps in this layer, namely, spatial location

representation and spatial distribution summarization (Figure 7).

Spatial location representation focuses on representing the rela-

tive location of a 𝑐 𝑗 point in the spatial neighborhood of a 𝑐𝑖 point.

The most commonly used representation of a relative location is

the difference of coordinates. However, it was reported in [27] that

the difference of coordinates failed to convey the information of

various spatial distributions. Recently, Gao et al. proposed a repre-

sentational model that uses the hexagon patterns of the grid cells

to form a high-dimensional vector representation of 2D locations

(𝑥 ), based on the following theorem whose proof is given in [14].

Theorem 5.1. Let Ψ(𝑥) = (𝑒𝑖 ⟨𝑎 𝑗 ,𝑥 ⟩, 𝑗 = 1, 2, 3)𝑇 ∈ C3 where
𝑒𝑖𝜃 = cos𝜃 + 𝑖 sin𝜃 and ⟨𝑎 𝑗 , 𝑥⟩ is the inner product of 𝑎 𝑗 and 𝑥 .
𝑎1, 𝑎2, 𝑎3 ∈ R2 are 2D vectors such that the angle between each pair
is 2𝜋/3,∀𝑗, ∥𝑎 𝑗 ∥ = 2

√
𝛼 . Let 𝐶 ∈ C3×3 be a random complex matrix

such as 𝐶 ∗𝐶 = 𝐼 . Then 𝜙 (𝑥) = 𝐶Ψ(𝑥),𝑀 (Δ𝑥) = 𝐶𝑑𝑖𝑎𝑔(Ψ(Δ𝑥))𝐶∗
satisfies

𝜙 (𝑥 + Δ𝑥) = 𝑀 (Δ𝑥)𝜙 (𝑥) (4)

and
⟨𝜙 (𝑥 + Δ𝑥), 𝜙 (𝑥)⟩ = 𝑑 (1 − 𝛼 ∥Δ𝑥 ∥2) (5)

where 𝜙 (𝑥) is the representation of location 𝑥 , 𝑑 = 3 is the dimension
of 𝜙 (𝑥), and Δ𝑥 is a small displacement from 𝑥 .

Based on Theorem 5.1, Mai et al. [27] introduced a multi-scale

location representation model by using sine and cosine functions of

different frequencies in Ψ(𝑥), inspired by the multi-scale periodic

representation of grid cells in mammals [3]. In this model, Ψ(𝑥) is
represented as a concatenation of the position embedding (𝑃𝐸) at 𝑆
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scales, 𝑃𝐸 (𝑥) = [𝑃𝐸1 (𝑥); ...; 𝑃𝐸𝑠 (𝑥); ...𝑃𝐸𝑆 (𝑥)],

𝑃𝐸𝑠 (𝑥) = [𝑃𝐸𝑠,1 (𝑥); 𝑃𝐸𝑠,2 (𝑥); 𝑃𝐸𝑠,3 (𝑥)], (6)

𝑃𝐸𝑠,𝑗 (𝑥) = [cos(
⟨𝑥, 𝑎 𝑗 ⟩

𝜆𝑚𝑖𝑛 · 𝑔𝑠/(𝑆−1)
); sin(

⟨𝑥, 𝑎 𝑗 ⟩
𝜆𝑚𝑖𝑛 · 𝑔𝑠/(𝑆−1)

)],

∀𝑗 = 1, 2, 3,

(7)

where 𝑎1 = [1, 0]𝑇 , 𝑎2 = [−1/2,
√
3/2]𝑇 , 𝑎3 = [−1/2,−

√
3/2]𝑇 are

unit vectors, the angles between every pair of vectors is 2𝜋/3,
𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥 are the minimum and maximum grid scales, and 𝑔 =
𝜆𝑚𝑎𝑥
𝜆𝑚𝑖𝑛

. Thematrixmultiplication𝐶Ψ(𝑥) is represented as𝑁𝑁 (𝑃𝐸 (𝑥)),
where 𝑁𝑁 (·) are fully connected ReLU layers. Therefore, the lo-

cation of a 𝑐 𝑗 point relative to a 𝑐𝑖 point can be represented as

𝑁𝑁 (𝑃𝐸 (Δ𝑥)), where Δ𝑥 is the difference of their coordinates.

Given a collection of relative location representations of 𝑐 𝑗 points

in a 𝑐𝑖 point’s spatial neighborhood, a max pooling layer is applied

to summarize the relative locations to get the representation of

the 𝑐𝑖 point’s spatial neighborhood. Pointnet[30] has theoretically

and experimentally demonstrated that with enough neurons, a max

pooling layer is able to learn to summarize a point distribution [30].

5.2.2 Spatial distribution attention layer. To get the representa-

tion of the spatial relationship measures of pair (𝑐𝑖 , 𝑐 𝑗 ), an average

pooling layer is used to aggregate the representation of 𝑐 𝑗 points’

distribution in all the spatial neighborhoods of 𝑐𝑖 points. However,

it is questionable whether all 𝑐𝑖 points should contribute equally

to the spatial relationship measures. In their study of the spatial

co-location patterns, Barua and Sander discovered that the spa-

tial distribution of the points belonging to a category within a

co-location pattern affected the statistical significance of the pat-

tern’s participation ratio where all points contributed equally [6].

A potential reason is the existence of spatial auto-correlation. In

other words, the spatial neighborhoods of nearby points are simi-

lar. If all points contribute equally, the spatial neighborhood of a

point away from other points may be overwhelmed by the spatial

neighborhoods of the points in clusters. Therefore, we introduce a

spatial distribution attention layer to determine the attention paid

to each 𝑐𝑖 point when generating the spatial relationship measures

of (𝑐𝑖 , 𝑐 𝑗 ). The layer first generates the representation of the spatial

distribution of 𝑐𝑖 points in each 𝑐𝑖 point’s spatial neighborhood in-

dependently using the proposed spatial neighborhood layer. Then

it estimates the attention paid to each 𝑐𝑖 point according to the

representations using multiple fully connected ReLU layers. This

method is similar to the application of farthest point sampling (FPS)

in PointNet++ [31], which selects subsets of representative points

to learn local features. Instead of using a greedy heuristic as in

FPS, the proposed spatial distribution attention layer uses neural

network layers to adjust the attention to points.

6 EXPERIMENT
Our experimental evaluation has two components: (1) a compari-

son of the proposed methods with the state-of-the-art deep neural

network (DNN) point set classification methods; and (2) an analysis

of the importance of the spatial relationship measures.

6.1 Classification Accuracy Comparison
We have conducted two sets of experiments: (1) comparing our pro-

posed methods: handcrafted features using classic spatial measure

(i.e., participation ratio or cross-k function) and learned features

using SRNet, each combined with a simple neural network classi-

fier, with the state-of-the-art (SOTA) DNN point set classification

methods (i.e., PointNet and PointNet++), (2) comparing handcrafted

features combined with simple classification models with the SOTA

DNNpoint set classificationmethods. The experiments are designed

to answer the following questions: 1) did the proposed method yield

more accurate classification results than the competing DNN meth-

ods? 2) how do the spatial relationship measures used to represent

point sets affect classification accuracy? 3) how does the choice

of classification method affect accuracy? Classification accuracy is

measured by AUC-ROC, precision, recall, F1 score, and accuracy.

The candidate methods compared were as follows.

• PointNet[30]: PointNet is a neural network architecture

that directly consumes point sets for applications ranging

from object classification to part segmentation.

• PointNet++[31]: PointNet++ is a hierarchical neural net-

work architecture that applies PointNet recursively to cap-

ture local structure and recognize fine-grained patterns and

complex scenes.

• PR + DT / RF/ NN: The point set representation composed

of the participation ratios (Section 5.1.1) is fed into a decision

tree / random forest / fully connected neural network model

for classification.

• cross-K + DT / RF/ NN: The point set representation com-

posed of the cross-K function values (Section 5.1.2) is fed

into a decision tree / random forest / fully connected neural

network model for classification.

• SRNet / +PR / +cross-K: The point set representation learned
by the SRNet model proposed in Section 5.2 without human

expert knowledge / with the participation ratio measures /

with the cross-K function measures is fed into a fully con-

nected neural network model for classification.

The implementation of both PointNet and PointNet++ are avail-

able on GitHub
1
. The decision tree, the random forest, and the

fully connected neural network methods were implemented using

the Python scikit-learn package [29]. The maximal depth of the

decision tree methods was set to 4, and the maximal depth and the

number of estimators of the random forest methods were set to 3

and 1000. Other hyperparameters were kept as the default values.

The fully connected neural network classifier had two hidden ReLU

layers with 4096 neurons and a sigmoid layer as the output layer.

The SRNet method was implemented using PyTorch, where the

spatial neighborhood of each point was set as a circle with a radius

of 200, and the minimal grid cell size, the maximal grid cell size,

and the number of scales of the multi-scale location representation

layers were set at 1, 100, and 10 respectively. All the spatial neigh-

borhood layers shared the same architecture and parameters. The

fully connected ReLU layers in the spatial neighborhood layers had

four hidden layers, and the hidden layer dimension was set at 256.

The feature dimension of the learned spatial relationship measures

1
Link to PointNet repository: https://github.com/charlesq34/pointnet. Link to Point-

Net++ repository: https://github.com/charlesq34/pointnet2.

https://github.com/charlesq34/pointnet
https://github.com/charlesq34/pointnet2
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Figure 8: The classification accuracy of the methods using
neural network classifiers.

of each ordered category pair was 32. The SRNet and the neural

network classifier were trained using the Adam optimization algo-

rithm with the learning rate of 10
−4

to minimize the cross entropy

loss of the classification results and the ground truth.

We used the dataset described in Section 3. Since the original

dataset only had 199 point sets, we used 5-fold cross-validation

and augmented the number of point sets by partitioning, flipping,

and rotating the original point sets. To get subsets of a point set

and keep spatial relationship information in each subset, instead of

randomly sampling points, we partitioned the minimum bounding

rectangle (MBR) of the point set horizontally by 20% and 80% and

then 80% and 20%, and used the 80% subsets. The subsets were

then flipped both horizontally and vertically. Finally, the flipped

subsets were rotated by 90 degrees three times. Thus, after data

augmentation, there were 199 × 2 × 4 × 4 = 6368 point sets in total.

Table 1 shows the mean and standard deviation (in parenthe-

ses) of classification accuracy measures of the candidate methods.

The highest accuracy is highlighted in bold. It is evident that the

proposed methods, even a very simple model (e.g., the decision

tree model) with a well-defined spatial relationship measures (e.g.,

the participation ratio), were much more accurate than the com-

peting DNN point set classification methods (i.e., PointNet and

PointNet++).

A comparison of the classification accuracy of the methods using

neural network classifiers (Figure 8), shows that the methods using

classic spatial relationship measures (PR+NN and cross-K+NN)

and those using measures learned by the proposed SRNet (SRNet,

SRNet+PR, SRNet+cross-K) had much higher accuracy than the

competing DNN methods. This indicates that the proposed SRNet

was able to learn spatial relationship measures that were missed

by the competing DNN methods. Moreover, the accuracy of the

SRNet+PR and SRNet+cross-K methods was higher than that of

the PR+NN and cross-K+NN methods, respectively, which means

the proposed SRNet is able to learn features that are not captured

by the participation ratio and the cross-K function but that were

useful for the classification task.

Finally, the classification accuracy of methods using the same

point set representation (e.g., PR+DT v.s. PR+NN) indicates that

complex models yielded more accurate results. However, the effect

of choosing different classification methods on classification accu-

racy was not as significant as the effect of point set representation.

PR(HelperT, CD4, 1) <= 0.973

PR(HelperT, Treg, 1) <= 0.057 PR(APC, CTLs, 150) <= 0.146

(a) PR+DT

cross-K(Treg, HelperT, 100) <= 0.019

cross-K(Treg, CTLs, 100) <= 0.006 cross-K(Treg, PDL1_CD8, 200) <= 0.002

(b) cross-K+DT

Figure 9: First two layers of the decision trees trained using
the entire dataset in Section 3

6.2 Analysis of Spatial Relationship Measures
The goal of the second set of experiments was to analyze the cate-

gory pairs whose spatial relationship measures are important for

classifying the point sets of the two diseases, as this provided a way

to discover the interactions between cells that varied with diseases.

In the PR+DT and cross-K+DT methods, the feature vectors

composed of the participation ratios and cross-K function values

were fed into decision tree models. Since in every node of the

decision tree model, a feature is selected greedily to divide samples

into two groups according to a heuristic (e.g., the information gain),

the selected features indicate which category pairs contain high

variation in their spatial relationships. Figure 9 shows the first two

layers of the decision trees trained using the entire dataset described

in Section 3. As can be seen, the spatial relationships between

HelperT cells and CD4 cells and between Treg cells and HelperT

cells were significantly different under the micro environment of

the two diseases.

In the PR+RF and cross-K+RF methods, the feature vectors com-

posed of the participation ratios and cross-K function values were

fed into random forest models. Feature importance in the random

forest models can be measured by the mean impurity decrease,

which also implies the spatial relationships between the category

pairs vary a lot in the point sets of the two diseases. Table 2 lists the

top ten important features in the PR+RF and cross-K+RF models

trained using the entire dataset. As can be seen, both the participa-

tion ratio features and cross-K function features indicate that the

spatial relationships between the HelperT and Treg cells are most

useful for distinguishing the point sets of the two diseases.

For the PR+NN, cross-K+NN, and the SRNet methods, we evalu-

ated the importance of the spatial relationship measures, namely,

the participation ratio, the cross-K function value, and the represen-

tation learned by SRNet, through permutation feature importance.

Permutation feature importance measures the increase in the pre-

diction error of the model after we permute the feature’s values.

In this experiment, the importance of the spatial relationship mea-

sures of an ordered category pair was measured by the classification

accuracy after exchanging the corresponding elements in the rep-

resentation vectors. The lower the accuracy, the more important

the measures of ordered category pair. In the dataset described in

Section 3 the most important ordered category pairs were (HelperT,

Treg), (HelperT, CD4), (CTLs, Treg), and (APC, Treg).
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Table 1: Classification accuracy results.

Method AUC-ROC Precision Recall F1 score Accuracy
PointNet 0.518 (0.026) 0.352 (0.079) 0.518 (0.026) 0.421 (0.120) 0.508 (0.160)

PointNet++ 0.529 (0.089) 0.412 (0.138) 0.529 (0.089) 0.421 (0.138) 0.529 (0.089)

PR+DT 0.903 (0.027) 0.955 (0.028) 0.911 (0.036) 0.932 (0.016) 0.905 (0.021)

PR+RF 0.979 (0.011) 0.936 (0.025) 0.949 (0.027) 0.942 (0.022) 0.917 (0.031)

PR+NN 0.980 (0.016) 0.948 (0.035) 0.954 (0.041) 0.950 (0.025) 0.929 (0.035)

cross-K+DT 0.852 (0.011) 0.911 (0.027) 0.914 (0.058) 0.911 (0.027) 0.874 (0.031)

cross-K+RF 0.955 (0.028) 0.852 (0.019) 0.967 (0.017) 0.906 (0.015) 0.856 (0.023)

cross-K+NN 0.938 (0.027) 0.908 (0.037) 0.933 (0.046) 0.919 (0.025) 0.883 (0.036)

SRNet 0.939 (0.030) 0.951 (0.038) 0.884 (0.066) 0.914 (0.031) 0.884 (0.039)

SRNet+PR 0.985 (0.015) 0.967 (0.002) 0.962 (0.040) 0.964 (0.020) 0.950 (0.014)

SRNet+cross-K 0.964 (0.022) 0.953 (0.028) 0.909 (0.047) 0.930 (0.028) 0.904 (0.037)

Table 2: Top 10 important features obtained in the PR+RF
and cross-K+RF methods.

Rank PR+RF feature cross-K+RF feature

1 PR(HelperT, Treg, 1) cross-K(Treg, HelperT, 100)

2 PR(HelperT, CD4, 1) cross-K(HelperT, Treg, 200)

3 PR(HelperT, Treg, 50) cross-K(HelperT, Treg, 50)

4 PR(HelperT, Treg, 200) cross-K(HelperT, Treg, 100)

5 PR(HelperT, Treg, 100) cross-K(HelperT, Treg, 1)

6 PR(HelperT, Treg, 150) cross-K(Treg, HelperT, 50)

7 PR(CD4, Treg, 150) cross-K(Treg, HelperT, 1)

8 PR(CD4, Treg, 200) cross-K(HelperT, Treg, 150)

9 PR(CD4, Treg, 100) cross-K(Treg, HelperT, 200)

10 PR(APC, Treg, 100) cross-K(Treg, HelperT, 150)

6.3 Clinical Implications
From a clinical perspective, the results highlight some key cell

phenotype relationships that may directly or indirectly play a role

in the disease micro-environment. Specifically, the relationship

between CTLs and T-regs, and Helper T-cells and T-regs are of

particular interest from an immunological standpoint.Cytotoxic

Lymphocytes(CTLs) are the cells that actively seek out and kill can-

cer cells in the environment on activation of the immune system[11].

On the other hand, under normal conditions, the T-regulatory cells

have a regulating effect on the immune response of the locale [23].

It has been observed that T-regulatory cells play a more functional

role in the cancer micro-environment, and there is potential for

some interplay between the two cell phenotypes from a functional

standpoint. Due to this, there is a tendency for them to co-localize at

a higher frequency with CTLs, and potentially inhibit their function

[12]. This may be due to physiologic suppression of activated CTLs,

or pathological polarization of CD4 positive cells by tumor secreted

factors in the tumor micro-environment[20]. Further investigation

on a larger cohort to confirm the potential discriminatory power

of the pairwise interactions observed in this experiment would be

warranted.

The identification of the cell-pairs opens up a potential for a

novel method to capture the difference in cellular arrangements

across different diseases. This also alludes to the influence of cell-

cell distances and their relative placement in the state of the micro-

environment [36]. Along with reinforcing known relationships,

these features would also serve to offer new insight into potential

cell-cell relationships that were either unknown or little explored

in previous studies. In the age of increasing focus on personalized

treatment paradigms, the utilization of a spatially-aware approach

would assist physicians in making more informed treatment plans.

7 CONCLUSION & FUTUREWORKS
In this paper, we proposed a deep learning point-set classification

method, namely SRNet, for multiplexed pathology images. SRNet

provides a novel way for pathologists to diagnose diseases. Instead

of classifying multiplexed immuno-fluorescence (mIF) images di-

rectly, we first converted mIF images to point sets representing

the cells on mIF images, and then classified the point sets. An ex-

perimental evaluation showed that the proposed SRNet can learn

spatial relationship measures that are not captured by classic mea-

sures, and the classification accuracy of using the learned measures

significantly outperformed the SOTA deep learning point-set classi-

fication methods, reaching 95% accuracy (about 80% more accurate).

In addition, the proposed methods helped to discover pairs of cell

types that might inspire new pathology findings.

In the future, we will compare the proposed method on point sets

with the methods directly analyzing mIF images without converting

them to point sets. We also plan to identify larger mIF images and

other spatial pathology datasets for larger and broader evaluation

of the proposed method. In addition, the proposed SRNet focuses

on the spatial relationships between two cell types, and we plan to

extend its capability by taking the relationships between multiple

cell types into consideration.
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