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ABSTRACT
Recent urbanization has coincided with the enrichment of geo-
tagged data, such as street view and point-of-interest (POI). Region
embedding enhanced by the richer data modalities has enabled
researchers and city administrators to understand the built envi-
ronment, socioeconomics, and the dynamics of cities better. While
some efforts have been made to simultaneously use multi-modal in-
puts, existing methods can be improved by incorporating different
measures of “proximity” in the same embedding space — leveraging
not only the data that characterizes the regions (e.g., street view,
local businesses pattern) but also those that depict the relationship
between regions (e.g., trips, road network). To this end, we propose
a novel approach to integrate multi-modal geotagged inputs as ei-
ther node or edge features of a multi-graph based on their relations
with the neighborhood region (e.g., tiles, census block, ZIP code
region, etc.). We then learn the neighborhood representation based
on a contrastive-sampling scheme from the multi-graph. Specifi-
cally, we use street view images and POI features to characterize
neighborhoods (nodes) and use human mobility to characterize
the relationship between neighborhoods (directed edges). We show
the effectiveness of the proposed methods with quantitative down-
stream tasks as well as qualitative analysis of the embedding space:
The embedding we trained outperforms the ones using only uni-
modal data as regional inputs.
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1 INTRODUCTION
The world is full of connections between entities of different modal-
ities, such as websites and urban neighborhoods. A website can
be represented as a node containing multi-modal components like
text, images, and videos; hyperlinks connected websites as directed
edges. Similarly, an urban neighborhood can be regarded as a
complex multi-modal node containing the natural and built en-
vironment, business activities, and the people living there. Urban
neighborhoods are interconnected implicitly with various types of
relations such as geospatial proximity and human mobility trajecto-
ries between neighborhoods. With the vision of “smart city” being
proposed in different parts of the world as well as the increasing
availability of a great variety of data in cities, understanding the
characteristics and dynamics of cities become essential, and more

∗Contributed equally to this research.

Figure 1: Multi-modal multi-graph of urban neighborhoods
in the City of Chicago. Each neighborhood is a container of
multi-modal inputs, e.g., street views and POIs. The neigh-
borhoods are considered connected if they are close spatially
(e.g. A and B) or or if there are many humanmobility trajec-
tories in between (e.g. A and C). Notice that even A and C
are spatially far away, the large number of trips in between
indicates the strong relations which should be captured in
the embedding space.

importantly, feasible with the help of state-of-the-art machine learn-
ing algorithms. Urban neighborhood embedding, or representing
various urban features as vectors, is a preliminary task to many
data-driven urban studies and applications such as spatiotemporal
prediction, planning, and causal inference. Though abundant stud-
ies focus on representation learning for a single modality of data
like images [18] and text [14], representing urban neighborhoods
leveraging multi-modal data while maintaining their correlations
is still a challenging task.

Traditional approaches to collecting demographic information,
like the Decennial Census conducted by U.S. Census Bureau every
10 years, leave a decade-long gap regardless of social and economic
changes happening in urban neighborhoods. Efforts to obtain data
on a more frequent basis such as 1-year, 3-year, and 5-year esti-
mates conducted by American Community Survey (ACS) rely on the
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responses of a randomly-sampled population, and such estimates
have trade-offs between spatial and temporal granularity [1]. Specif-
ically, 1-year estimates have the best temporal granularity but are
only available for areas with populations of more than 20,000, while
5-year estimates have better spatial granularity (census block group
level) but the estimation can only represent the average characteris-
tics over 5 years. Moreover, the data produced by such survey-based
method is usually aggregated at pre-defined geographic divisions
(e.g., census tracts and counties) and can hardly be re-mapped into
other customized geospatial units such as raster tiles or polygons,
which limits the flexibility of using the data.

To overcome those limitations, there are recent attempts to ex-
tract or predict urban characteristics from widely-available urban-
associated data using data-driven approaches, including both su-
pervised and unsupervised learning. Supervised learning methods
utilize geo-tagged data such as point-of-interest (POI) [28], and
street view imagery [4] as inputs and output the inference of local
socioeconomic attributes. However, supervised learning is task-
specific: The representation learned is not necessarily transferrable
to other tasks. Furthermore, developing supervised learning models
with high-dimensional data like images requires a massive dataset
with annotated labels of ground-truth socioeconomic attributes,
which is not necessarily available for certain regions or at the de-
sired geographic level (e.g., raster tiles). By contrast, unsupervised
learning overcomes such limitations by developing a universal and
versatile representation without task-specific ground-truth supervi-
sions. Common urban features to use include POI [3], street views
[12], and taxi trips [27]. However, most of the existing unsupervised
urban representation learning is still based on unimodal data, with-
out fully leveraging various types of data both within and between
neighborhoods.

Urban neighborhoods are complex systems that can be modeled
by a multi-modal multi-graph: Each urban neighborhood (“node”)
is a “container” which contains the built environment, business
activities, and population inside the neighborhood. There are also
relations (“edge”) between neighborhoods, which can be charac-
terized by geospatial proximity, mobility connections, or both. To
obtain a comprehensive representation of urban neighborhoods,
we model the neighborhoods in an urban area as multi-modal multi-
graph (M3G ) and develop an unsupervised representation learning
framework to obtain the neighborhood embedding from the graph.
Instead of learning the graph globally, we propose a contrastive
sampling approach that samples triplet (anchor, positive, negative)
according to the multi-graph edges, enabling scalable training with
multi-city data. Our major contribution is three-fold: 1) We pro-
posed a framework to learn neighborhood representation by jointly
modeling both inter- and intra-neighborhood multi-modal data as
a multi-graph. 2) We demonstrate this framework with real-world
data in two U.S. metropolitan areas at the census-tract level, us-
ing street view images and POI features as intra-neighborhood
characteristics, and geospatial proximity and mobility flow as inter-
neighborhood relations. The neighborhood embeddings generated
from our framework achieve state-of-the-art performance in all
downstream prediction tasks. 3) We propose three qualitative eval-
uations for the neighborhood embedding space, showing that our
model successfully integrates various data modalities in the embed-
ding space.

2 RELATEDWORK
2.1 Spatiotemporal Representation Learning
Spatiotemporal representation learning aims to produce region em-
bedding using geo or temporal-tagged data under the First Law of
Geography [23]1. [2, 13] generate geo-aware prior based on the
geo-coding of coordinates. Tile2vec [8] starts the stream of impos-
ing such prior to the embedding space through contrastive learning.
Using geo-proximity as the single criterion to sample positive and
negative tiles, this algorithm judiciously pushes the latter further
away from the anchor point in the embedding space as compared
with the former. Unfortunately, such framework can not be easily
applied to multi-modal settings as a consistent and meaningful
distance measure is required between any two samples across dif-
ferent modalities. Urban2Vec [25] overcomes such drawbacks by
introducing the neighborhood embedding. It is worth noticing the
spatiotemporal relation between each sample can be viewed as a
reciprocal relation denoted by an undirected edge. [10] introduces
the use of mobility, POI similarity or even the likeness of geo-
tagged tweets [29] as new metrics of proximity to define “edges”. In
this work, we generalize the contrastive learning approach to non-
reciprocal relations such as mobility flow and propose a framework
that can be easily extended to other graph-structured datasets with
multi-modal edges and multi-modal nodes.

2.2 Graph Embedding
There are a lot of graph embedding methods (e.g., DeepWalk [16],
node2vec [5]) that generates embedding for a certain node in the
graph. They can be applied to the mobility graph. For example,
[3] incorporate such prior by directly impose an autocorrelation
in the latent space. However, most of them are not able to model
multi-modal edge (as in a multi-graph), and their embedding space
does not reflect the multi-perspective proximity between nodes. To
further incorporate information from both nodes (e.g. POI, street
view) and edges (e.g. mobility, distance), [9] concatenate image em-
bedding and graph embedding at each node. Our training strategy
can be viewed as an extension of the contrastive sampling technique
in Graph Neural Network setting ([17, 19]): By sampling triplets
according to multiple proximity measures, the embedding captures
the multi-graph topological properties as well as the multi-modal
features from each node.

2.3 Urban Computing
Urban Computing aims to tackle major issues in cities, such as
traffic control, public health and economic development, by mod-
eling and analyzing urban data. A lot of research have shown the
possibility to infer this socioeconomic information from satellite
image [7, 21], street view [4], human mobility [26] and geo-tagged
social network activities [20]. Recent studies also demonstrate that
similar tasks could benefit from multi-modal inputs: [24] utilizes
both POI data and taxi trip data to infer crime rate in Chicago. [6]
includes a fusion of auxiliary variables, such as elevation and air
pressure, with a computer vision model on satellite images to im-
prove the performance of forest loss driver classification. We hope

1“Everything is related to everything else, but near things are more related than distant
things.”
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the multi-graph framework proposed in this work will provide a
much convenient and comprehensive tool for urban computing
tasks with multi-modal data.

3 METHODS
In the following section, we first mathematically define the problem
of learning neighborhood embedding and give an overview of the
construction of Multi-Modal Multi Graph (M3G ). Then we intro-
duce the concept of neighborhood container and our contrastive sam-
pling strategy to incorporate multi-modal inputs at each node. We
continue by describing our inter-neighborhood learning strategy
for both directed and undirected edges. This section is concluded
by a summary of the loss function used in M3G .

3.1 Problem Statement
Unlike most of the previous studies that focus on specific modality
(e.g., image, text, etc.) and specific geographic unit (e.g. census tract,
county, etc.), we restate the general problem of UrbanNeighborhood
Embedding agnostic to both as the following:

Definition 3.1 (Urban Neighborhood Embedding Problem). Given
a metropolitan areaA that is composed of a set of disjointed neigh-
borhood geometries U = {𝑢1, 𝑢2, ..., 𝑢𝑁 }, s.t. A =

⋃𝑁
𝑖 𝑢𝑖 , the goal

of urban neighborhood embedding is to learn a vector represen-
tation 𝑧𝑖 ∈ R𝑑 for each 𝑢𝑖 which encodes the characteristics and
mutual relations of 𝑢𝑖 .

Notice 𝑢𝑖 can be a raster tile of certain size (commonly used in
remote sensing), a census tract or a county. Under our abstraction
we do not assume all 𝑢𝑖 are of the same geographic unit.

Geo-tagged data (i.e. data with GPS coordinates) is used to gen-
erate such embedding. Instead of categorising data by the modality,
we use a more general approach of categorization based on how
data is associated with the location(s):

Definition 3.2 (Geo-Tagged Point Data). Geo-tagged point data is
the kind of data characterizing one geolocation 𝑙 :

D𝑝
𝑚 = {(𝑥𝑚, 𝑙)}

is the set of geo-tagged point data with an input 𝑥𝑚 of modality𝑚
at each geolocation. Examples of geo-tagged point data includes
street views, POI check-in data and satellite images.

Definition 3.3 (Geo-Tagged Reciprocal Data). Geo-tagged recip-
rocal data is the kind of data characterizing the relation between
two geolocations 𝑙1 and 𝑙2, but it does not have a direction and the
relation is reciprocal:

D𝑟
𝑚 = {(𝑥𝑚, 𝑙1, 𝑙2)}

⋃
{(𝑥𝑚, 𝑙2, 𝑙1)}

is the set of geo-tagged reciprocal data with an input 𝑥𝑚 of modality
𝑚 between two geolocations. Examples of geo-tagged reciprocal
data include spatial distance, road connectivity, and transaction
volume.

Definition 3.4 (Geo-tagged Irreciprocal Data). Geo-tagged recip-
rocal data is the kind of data characterizing the relation between
two geolocations 𝑙1 and 𝑙2 with a direction:

D𝑖𝑟
𝑚 = {(𝑥𝑚, 𝑙1, 𝑙2)}

is the set of geo-tagged irreciprocal data with an input 𝑥𝑚 of modal-
ity𝑚 between two geolocations. Examples of geo-tagged irrecip-
rocal data include human mobility, commute time, and goods im-
ports/exports.

The three categories of data are corresponding to the node, undi-
rected, and directed edges in our M3G model and will be fur-
ther explained in the next two sections. For now, let us assume
D =

⋃
𝑚,𝑡 D𝑡

𝑚 and introduce the concept of multi-modal multi-
graph:

Definition 3.5 (Multi-ModalMulti-graph (M3G )). TheMulti-Modal
Multi-graph GD (U, E) is a multi-graph for neighborhoods U and
their edge set E, characterized by the multi-modal geo-tagged
dataset D. The nodes U have attributes defined by all geo-tagged
points data D𝑝

𝑚 , which are described with more details in Section
3.2. The edges E are defined by all geo-tagged reciprocal/irreciprocal
data D𝑟

𝑚 and D𝑖𝑟
𝑚 , which are described in Section 3.3.

3.2 Intra-Neighborhood Modalities
Despite their vast difference in data structure, both POI meta infor-
mation and street view images depict the urban characteristics at
specific location. In this section, we will use them as examples of
Intra-NeighborhoodModalities and demonstrate howwe incorporate
their information into the neighborhood embedding.

3.2.1 Neighborhoods as Containers. Given a set of geo-tagged
street view images D𝑝

S = {(𝑥S, 𝑙)}, where 𝑠 is an image and 𝑙

is its geolocation, we can easily assign each data point to the urban
neighborhood 𝑢𝑖 it is located in:

S𝑖 = {𝑥S | (𝑥S, 𝑙) ∈ D𝑝

S , s.t. 𝑙 ∈ 𝑢𝑖 }
Each S𝑖 is a bag of street view images for neighborhood 𝑢𝑖 .

Similarly, we can construct the feature container with the POIs
D𝑝

P = {(𝑥P , 𝑙)}, where 𝑝 is a POI and 𝑙 is its geolocation. To repre-
sent each POI 𝑝 , we further disassemble the textual information of
𝑝 , which are extracted from the POI category, price, and customer
reviews, into a bag of words {𝑡}. By pooling bags of words of all
POIs inside a neighborhood, we obtain the bag of POI words for
each neighborhood 𝑢𝑖 in M3G .

P𝑖 = {𝑡 | (𝑥P , 𝑙) ∈ D𝑝

P , s.t. 𝑡 ∈ 𝑥P and 𝑙 ∈ 𝑢𝑖 }
𝑡 denotes a word. We can extend this approach to incorporate other
textual data such as geo-tagged social media posts.

3.2.2 Intra-Neighborhood Contrastive Learning Objective. With the
node feature containers S𝑖 and P𝑖 constructed, we here propose
our intra-neighborhood contrastive-sampling strategy: For each
pass, we sample one neighborhood 𝑢𝑎 uniformly at random from
U, i.e. 𝑢𝑎

u∼ U, as our anchor neighborhood. Then we sample
one context street view image 𝑠𝑐

u∼ S𝑎 and one negative street
view image 𝑠𝑛

u∼ S−𝑎 , with S−𝑎 =
⋃

𝑖≠𝑎 S𝑎 . Our proposed triplet
loss [19] formulates as:

LS (𝑧𝑎, 𝑠𝑐 , 𝑠𝑛) = [𝑀 + ||𝑧𝑎 − 𝑓𝜃 (𝑠𝑐 ) | |2 − ||𝑧𝑎 − 𝑓𝜃 (𝑠𝑛) | |2]+ (1)

, where [·]+ is a rectifier and a positive constant𝑀 is used to prevent
infinitely large difference between these two distances. 𝑧𝑎 is the em-
bedding vector for neighborhood 𝑢𝑎 . 𝑓𝜃 (·) is the learnable encoder
for images, e.g. a convolutional neural network with parameters 𝜃 .
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Similarly, given a random sample𝑢𝑎 fromU, we can sample POI
word 𝑡𝑐

u∼ P𝑎 and 𝑡𝑛
u∼ P−𝑎 =

⋃
𝑖≠𝑎 P𝑎 and construct the triplet

loss for POI data:

LP (𝑧𝑎, 𝑡𝑐 , 𝑡𝑛) = [𝑀 + ||𝑧𝑎 − 𝑔𝜙 (𝑡𝑐 ) | |2 − ||𝑧𝑎 − 𝑔𝜙 (𝑡𝑛) | |2]+ (2)

The definitions of [·]+ and 𝑀 are the same as above. 𝑔𝜙 (·) is the
learnable encoder for word with parameters 𝜙 .

3.3 Inter-Neighborhood Modalities
Without data characterizing the relations between neighborhoods,
the neighborhood embedding obtained by minimizing (1) and (2)
can only incorporate information within neighborhoods [25]. In
this section, we will describe how D𝑟

𝑗
and D𝑖𝑟

𝑗
characterize the

edges in graph G and introduce our learning strategy for inter-
neighborhood modalities. We include both spatial distanceD𝑟

D and
human mobility D𝑖𝑟

M as examples of inter-neighborhood modali-
ties.

3.3.1 Multi-Modal Multi-Edges. Spatial distance can be measured
between any pair of neighborhoods (𝑢𝑖 , 𝑢 𝑗 ). We can define the
outgoing edge sets of 𝑢𝑖 induced from the spatial distance as:

ED
𝑖 = {(𝑢𝑖 ,𝑢 𝑗 , 𝑥D ) | (𝑥D , 𝑙1, 𝑙2) ∈ D𝑟

D
s.t. 𝑙1 ∈ 𝑢𝑖 and 𝑙2 ∈ 𝑢 𝑗 }

Here 𝑥D = 1
𝑑𝑖 𝑗

, which is the reciprocal of geospatial distance
between𝑢𝑖 and𝑢 𝑗 . Notice thatD𝑟

D already includes both directions
of a same undirected edge according to Definition 3.4. Similarly we
can define the outgoing edge sets of 𝑢𝑖 induced from the human
mobility D𝑖𝑟

M :

EM
𝑖 = {(𝑢𝑖 ,𝑢 𝑗 , 𝑥M ) | (𝑥M , 𝑙1, 𝑙2) ∈ D𝑖𝑟

M
s.t. 𝑙1 ∈ 𝑢𝑖 and 𝑙2 ∈ 𝑢 𝑗 }

Here 𝑥M is the total number of trips from a geolocation in 𝑢𝑖 to
a geolocation in 𝑢 𝑗 . Once we add both sets of edges to the graph
G, it is likely there can be multiple edges between 𝑢𝑖 and 𝑢 𝑗 from
different modalities.

3.3.2 Inter-Neighborhood Contrastive Learning Objectives. Like Sec-
tion 3.2, we first sample one neighborhood 𝑢𝑎 at random fromU,
i.e. 𝑢𝑎

u∼ U. Instead of defining the context and negative set explic-
itly as in Section 3.2, we draw samples of context neighborhood
by sampling each edge with the probability proportional to the
weights associated with it. Specifically, edge (𝑢, 𝑣,𝑤) has weight of
𝑝𝑚 (𝑤) being sampled, with 𝑝𝑚 (·) a designed thresholding function
using the prior on modality𝑚. For example, for the spatial distance,
we can set

𝑝S (𝑤) =
{
1, if𝑤 > 1

500
0, otherwise

to sample a context neighborhood within a radius of 500 meters.
Hence, for modality𝑚 ∈ {D,M}, the probability of 𝑢 𝑗 being sam-
pled as a context neighborhood 𝑢𝑐 is:

𝑃𝑚𝑎,𝑗 =

∑
(𝑢,𝑣,𝑤) ∈E𝑚

𝑎
𝑝𝑚 (𝑤)1𝑎 (𝑢)1𝑗 (𝑣)∑

(𝑢,𝑣,𝑤) ∈E𝑚
𝑎
𝑝𝑚 (𝑣)1𝑎 (𝑢)

(3)

Here 1𝑥 (·) is the indicator function with the value 0 everywhere
except for 𝑥 . The negative neighborhood𝑢𝑛 is sampled uniformly at
random from the set of rest of nodes {𝑢 𝑗 |𝑃𝑚𝑎,𝑗 = 0}. Finally, we have
the inter-neighborhood triplet loss for each modality𝑚 ∈ {D,M}:

L𝑚 (𝑧𝑎, 𝑧𝑐 , 𝑧𝑛) = [𝑀 + ||𝑧𝑎 − 𝑧𝑐 | |2 − ||𝑧𝑎 − 𝑧𝑛 | |2]+ (4)

The definitions of [·]+ and 𝑀 are the same as above. By default,
we sample balanced number of triplets for each modality. Together
with Equation (1) and (2), we are able to train our neighborhood
embedding with any modality of inter/intra-neighborhood data.
Next section will demonstrate our framework with experiments on
real-world datasets.

4 EXPERIMENT
To demonstrate the effectiveness of our framework, we conduct
experiments on 1294 census tracts in Chicago and 1310 census
tracts in New York City. We demonstrate our framework at census-
tract level because the reference data for prediction (e.g., American
Community Survey (ACS)) are readily available at this level. Our
framework can be easily applied to other geographic divisions (e.g.
block groups) or even customized units (e.g. raster tiles).

4.1 Data Description
The street view images and POI features we used are obtained from
Google Street view API2 and Yelp Fusion API3, respectively. We
randomly sample 50 street views for each census tract. The human
mobility data is provided by SafeGraph4. Specifically, we use Core
Places and Weekly Patterns datasets, which include, for each POI,
the exact location, as well as the aggregated weekly estimates of
the home CBGs of visitors. We preprocess the weekly patterns in
Chicago and New York City from Jan 2018 to Dec 2019. Each visit
is encoded as a directed edge between neighborhoods of POI and
visitor’s home; both are aggregated at the census tract level. Their
statistics are summarized in Table 6.

4.2 Training Details
For all experiments we set embedding dimension 𝑑 = 200 for im-
ages, POI words, and neighborhood. We use an Inception-v3 [22]
architecture as the encoder for street view images (i.e., 𝑓𝜃 (·) in
Equation (1)). The encoder for POI words(i.e., 𝑔𝜙 (·) in Equation (2))
is a look-up table with weights initialized by GloVe [15]. During
training, we minimize loss (1), (2), (4) sequentially in a three-stage
process. When we sample inter-neighborhood triplet, for spatial
distance, we sample 𝑢𝑐 uniformly at random from the 5 closest
neighbors and sample 𝑢𝑛 uniformly at random from the rest.

We obtain M3G neighborhood embeddings using three different
configurations of edge modalities (1) Spatial distance only (M3G
DIST); (2) Mobility only (M3G MOB); (3) Both spatial distance
and mobility (M3G DIST+MOB). We compare the embedding with
the one derived using Urban2Vec method [25], which rely solely
on intra-neighborhood modalities, and GAE [11], which extract
information from mobility graph using Graph Autoencoder.

2https://developers.google.com/maps/documentation/streetview
3Available at https://www.yelp.com/fusion
4See data catalog at https://docs.safegraph.com/docs/.

https://developers.google.com/maps/documentation/streetview
https://www.yelp.com/fusion
https://docs.safegraph.com/docs/
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Figure 2: Prediction 𝑅2 on neighborhood attributes with random forest model in Chicago. Left: Demographic attributes. Right:
Economic attributes.

Model Demographic characteristics Economic characteristics

Median age Years of education Percentage of white population Poverty rate Average household income Employment rate

Urban2Vec [25] 0.326 ± 0.056 0.701 ± 0.035 0.472 ± 0.052 0.418 ± 0.052 0.515 ± 0.052 0.441 ± 0.059
GAE [11] 0.261 ± 0.072 0.672 ± 0.024 0.480 ± 0.061 0.432 ± 0.078 0.457 ± 0.047 0.435 ± 0.079
M3G DIST 0.344 ± 0.052 0.756 ± 0.030 0.630 ± 0.038 0.488 ± 0.053 0.548 ± 0.047 0.530 ± 0.046
M3G MOB 0.338 ± 0.063 0.780 ± 0.020 0.736 ± 0.021 0.591 ± 0.049 0.616 ± 0.029 0.615 ± 0.038
M3G DIST+MOB 0.374 ± 0.060 0.790 ± 0.022 0.734 ± 0.030 0.602 ± 0.049 0.630 ± 0.038 0.627 ± 0.036

Table 1: Prediction 𝑅2 on demographic and economic attributes with linear regression model in Chicago.

Model Demographic characteristics Economic characteristics

Median age Years of education Percentage of white population Poverty rate Average household income Employment rate

Urban2Vec [25] 4.181 0.739 0.193 0.079 18, 728 0.048
GAE [11] 4.104 0.716 0.140 0.070 18, 693 0.041
M3G DIST 3.747 0.608 0.140 0.064 16, 493 0.039
M3G MOB 4.014 0.690 0.114 0.064 17, 088 0.036
M3G DIST+MOB 3.716 0.587 0.064 0.064 15, 578 0.035

Table 2: Prediction𝑀𝐴𝐸 on demographic and economic attributes with random forest model in Chicago

Model Demographic characteristics Economic characteristics

Median age Years of education Percentage of white population Poverty rate Average household income Employment rate

Urban2Vec [25] 4.081 0.724 0.186 0.076 20, 270 0.047
GAE [11] 4.283 0.740 0.182 0.073 20, 531 0.046
M3G DIST 3.983 0.642 0.153 0.072 19, 295 0.043
M3G MOB 3.975 0.600 0.128 0.064 17, 794 0.039
M3G DIST+MOB 3.861 0.583 0.129 0.064 17, 509 0.038

Table 3: Prediction𝑀𝐴𝐸 on demographic and economic attributes with linear regression model in Chicago

5 RESULTS AND DISCUSSION
5.1 Predicting Demographics and Economics
In this task, we treat trained neighborhood embeddings as input
features to predict ACS demographic and economic attributes for
each census tract. We choose Median Age, Years of Education, and
Percentage of White Population as demographic attributes, and
Poverty Rate, Average Household Income and Employment Rate
as economic attributes. We apply PCA to reduce the embedding
dimensions to 50 before running the regression model. In this work,
we try both linear regression and random forest regression. Census
tracts are split into training set (85%), and test set (15%). We use 𝑅2

as the major metrics and randomly reshuffle train/test split for 20
rounds to estimate variance of the performance.

As is shown in Figure 2, two models trained with single edge
modality outperform one another on different attributes: For exam-
ple, for Median Age and Years of Education, M3G DIST outper-
forms M3G MOB, while M3G MOB has a higher average 𝑅2 for
Percentage of White Population and Employment Rate. However,
by combing both modalities, M3G DIST + MOB always outper-
form both of them and the baseline models Urban2Vec and GAE
on all demographic and economic attributes, indicating the benefits
of incorporating both intra- and inter-neighborhood modalities to
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Model Demographic characteristics Economic characteristics

Median age Years of education Percentage of white population Poverty rate Average household income Employment rate

Urban2Vec [25] 0.398 0.618 0.455 0.473 0.546 0.485
GAE [11] 0.414 0.632 0.581 0.502 0.579 0.548
M3G DIST 0.487 0.694 0.603 0.569 0.619 0.582
M3G MOB 0.436 0.658 0.642 0.556 0.631 0.596
M3G DIST+MOB 0.493 0.711 0.673 0.567 0.648 0.624

Table 4: Prediction Kendall’s 𝜏 on demographic and economic attributes with random forest model in Chicago

Model Demographic characteristics Economic characteristics

Median age Years of education Percentage of white population Poverty rate Average household income Employment rate

Urban2Vec [25] 0.430 0.634 0.496 0.494 0.533 0.508
GAE [11] 0.419 0.648 0.512 0.510 0.557 0.529
M3G DIST 0.453 0.680 0.572 0.523 0.580 0.544
M3G MOB 0.450 0.702 0.614 0.568 0.617 0.579
M3G DIST+MOB 0.472 0.717 0.618 0.572 0.627 0.584

Table 5: Prediction Kendall’s 𝜏 on demographic and economic attributes with linear regression model in Chicago

Area (𝑘𝑚2) # Edges Average in/out degree # Street views # POIs # Neighborhoods (census tract)

Chicago 606 143, 235 110 64, 739 38, 445 1, 294
New York City 1212 120, 470 92 67, 271 50, 697 1, 310

Table 6: Safegraph mobility data, street views and POI data statistics

capture mult-perspective urban characteristics. Linear regression
results from Table 1 follow a similar pattern: M3G DIST+MOB
outperforms all other models on all attributes except Percentage of
White Population.

5.2 Training with Multi-City Data
Since we adopt a contrastive sampling approach to learn the graph
structure, we can easily scale up experiments to multiple cities
without facing anymemory issue. In this experiment, we investigate
the improvements from training with merged data of both Chicago
and New York City. Table 7 shows the mean of 𝑅2 for predicting
all 6 demographic and economic attributes using linear regression.
As is shown, using multi-city training set in Chicago yields better
prediction performance but not for New York City. This may be
explained by the relative sparse mobility data in New York City.

Model Training set Test set

Chicago New York City

M3G MOB Single-city 0.613 0.524
Multi-city 0.627 0.518

Table 7: Average prediction𝑅2, training on single-/multi-city
data.

Figure 3: Correlation between geospatial/mobility proxim-
ity of node pairs in the graph and the corresponding em-
bedding distance in Chicago. Left: The horizontal axis is the
total number of visitors (bidirectional) between each pair
from January 2018 to December 2019. Right: The horizontal
axis is the spatial distance measured in km.

5.3 Qualitative Analysis of the Embedding
Space

5.3.1 Correlation with Geospatial and Mobility Proximity. In this
analysis, we investigate the correlations between inter-neighborhood
embedding distance and their real-world proximity in terms of geo-
distance or mobility. In Figure 3, we sample 0.1% of the 1.6 M pairs
of census tracts in Chicago and measure the L2 distances between
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Figure 4: Positions of embeddings in the plane of the first two PCA components, for both neighborhood (shown as large points)
and street view images (shown as small points).

their embedding vectors. With a larger number of aggregated visi-
tors in between, neighborhoods tend to have representations closer
in the embedding space; as spatial distance becomes larger, two
neighborhoods tend to fall further apart in the embedding space.
Such trends demonstrate that the embedding indeed captures both
the geospatial and mobility relations through training.

5.3.2 Neighborhood Embedding and Input Data Embedding. We are
also interested in whether the neighborhood embedding incorpo-
rates information from the geo-tagged point data. We apply PCA
to extract the first two principal components of the embeddings of
both neighborhoods and street views and plot their distribution in
Figure 4. Large points with black borders denote neighborhoods;
small points denote street view images, with the color indicating the
neighborhood they belong to. Here, we randomly selected three cen-
sus tracts for visualization. Census tracts in orange, blue, and green
have average household income of $34,407, $43,836, and $113,479,
respectively. As the plot shows, street view embeddings scatter
around their corresponding neighborhood embedding. Though all
three sampled images contain large portion of vegetation, their vi-
sual difference (e.g. trimmed or not, road landscape) can be reflected
by their proximity in embedding space.

6 CONCLUSION
In this work, we develop M3G , a framework to model urban neigh-
borhoods as a multi-modal multi-graph and thus learn the neigh-
borhood representation. To demonstrate our framework, we use
street view images and POIs as two modalities of data inside the
neighborhood and both geospatial proximity and mobility pattern
as two modalities of “edges” between neighborhoods. We show the
neighborhood embedding from our framework outperforms the
ones generated from other multi-modal models in the downstream

prediction tasks. We demonstrate that the embedding derived from
out model can preserve both proximity/mobility connections be-
tween neighborhoods, and relations between the neighborhood
and street views in the embedding space. As our method are based
on the widely-available street view images, POI information, and
mobility data, it is applicable to different regions of world. We also
show that our model can be trained with data from different regions
all together, which can project the neighborhoods from different
regions into the same embedding space and enable the quantita-
tive comparison between the urban features from different regions.
Since the embedding incorporates the underlying characteristics of
urban neighborhoods and can be generated at arbitrary geographic
unit (e.g. raster tile, block), it can be used flexibly as input features
to a variety of downstream tasks such as matching for causal in-
ference, commercial site selection, and urban planning at different
geospatial level. Moreover, the method we propose here is a general
framework to learn representation for a graph with multi-modal
“node” and multi-modal “edge”. Such a framework can further in-
tegrate other modalities like satellite imagery (as components of
the “nodes”) and inter-region transactions (as “edges”), and even
be extended to learn the representation of other graph-structured
data such as websites, which will be an important task in our future
work.
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