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ABSTRACT
In this paper we introduce a new problem within the growing
literature on interpretability for convolutional neural networks
(CNNs), with a special focus on applications to street-level imagery.
While previous work has focused on the question of how to visually
interpret CNNs, we ask what it is that we care to interpret, that is,
which layers and neurons are worth our attention? Due to the vast
size of modern deep learning network architectures, automated,
quantitative methods are needed to rank the relative importance
of neurons so as to provide an answer to this question. We present
a new statistical method for ranking the hidden neurons in any
convolutional layer of a network. We define importance as the
maximal correlation between the activation maps and the class
score. We provide different ways in which this method can be
used for visualization purposes with MNIST and ImageNet, and
show a real-world application of our method to air pollution spatial
variation predictionwith street-level images. Our ranking algorithm
constitutes a mathematical tool that can be used to interpret and
visualize deep learning models trained on spatiotemporal data.
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1 INTRODUCTION
In recent years, the use of convolutional neural networks (CNNs)
has become widespread due to their success at performing tasks
such as image classification or speech recognition. CNNs have
achieved outstanding results at the ImageNet challenge and popular-
ized the use of such architectures [25]. Remarkably, these same net-
works that outperform at the ImageNet challenge are also successful
when used for other tasks such as object detection on the PASCAL
VOC dataset [28]. Large training datasets, powerful GPUs and the
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implementation of regularization techniques, such as dropout, have
also helped boost the performance of CNN architectures [27].

While CNNs continue to excel at countless tasks and competi-
tions, their internal procedures remain a mystery and there is very
little insight into how these architectures achieve such outstanding
results. We effectively treat these neural networks as black boxes,
and it is extremely challenging to understand how they operate,
due to their complexity and large number of interacting parts. How-
ever complex these black boxes might be, it is vital to acquire a
deeper understanding of how they work. There are many reasons
for encouraging research in this area. From a scientific perspective,
understanding the inner mechanisms of models will allow us to
improve their results and accuracy. Without any insight on how
these black boxes work, their development into better models can
only be achieved by trial-and-error. From a social perspective, we
should not be allowing a system that applies untransparent and
unexplainable algorithms to make decisions that govern health
care, banking, or politics. Once the decisions taken by deep neural
networks shift from innocuously classifying hand-written digits
to deciding whether someone has a particular disease or is eligible
for a bank loan, it becomes imperative to advocate for a right to
explanation [11].

This paper focuses on the following question: how can we rank
the hidden units of a convolutional layer in order of importance to-
wards a final classification?1 While research around understanding
the inner mechanisms of CNN architecture advances, visualization
methods that are targeted directly towards each neuron (e.g., fea-
ture visualization) are unfeasible to apply and analyze to each of
the thousands of neurons in the architecture. Therefore, our goal is
to provide a method that identifies the neurons that contribute the
most to the final classification. On top of it, any other visualization
or explainability method that applies to a particular neuron can be
studied only on this small set of ranked neurons or combinations
of them, hereby making it practical. We discuss this question thor-
oughly and propose a novel statistical method called PCACE that
ranks the hidden units of a convolutional layer according to their
relevance towards the final (class) score. The algorithm is based
on the Alternating Conditional Expectation algorithm by Breiman
and Friedman [4], which provides the optimal transformations that
allow us to maximize the correlation between the activation maps
of the neurons with the final (class) score. While in this paper we
use PCACE to produce one ranking per convolutional layer, the al-
gorithm can be applied to obtain a global ranking over the network,
given that the PCACE values are normalized.

1We use the words unit, filter, channel, and neuron interchangeably, as there does not
appear to be consensus in the literature [17].
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We show how to use our statistical method for visualization
purposes by using activation maps, CAM, and the activation max-
imization method. The combination of the statistical algorithm
behind PCACE with several visualization methods yields a new
procedure to help in the interpretability and explainability of con-
volutional neural networks. Besides testing our algorithm on the
well-known datasets of MNIST and ImageNet [5], we provide a real-
world use case to air pollution prediction of street-level images. In
the case of ImageNet, we replicate our results with both the ResNet-
18 and VGG-16 architectures and compare them. In the case of the
street-level images for air pollution spatial variation estimation, we
show how our ranking algorithm allows us to rigorously pick the
activation maps of the most important neurons for explainability
purposes. We further evidentiate how the network trained on spa-
tiotemporal data acts as an object detector (in particular, of trees)
despite being trained on a regression task, and how the PCACE
algorithm is able to rank the neurons that most detect such trees as
those of greatest importance. This sheds light on which features the
model has learned towards the final classification, which is crucial
towards ensuring an interpretable deployment of deep learning
models on satellite images, among other types of data.

2 RELATEDWORK ON INTERPRETABILITY
AND EXPLAINABILITY OF NEURAL
NETWORKS

After the rapid success of deep neural networks, the community
has recently started to acknowledge that we have very limited un-
derstanding of how these architectures work and how they are
able to achieve such remarkable results. Some of the first visual-
ization tools that were proposed were saliency maps [22], which
indicate the areas of the input image that are discriminative and
most important with respect to the given class by using the inten-
sity of the pixels. That is, given an input image, the saliency method
ranks its pixels based on their influence on the final class score
by using derivatives and backpropagation. A similar idea is the
Grad-CAM method [21], which employs the gradients of any target
concept to produce a localization map that highlights the impor-
tant regions in the image that predict the concept. Grad-CAM can
also be combined with existing pixel-space visualizations (Guided
Grad-CAM) to achieve visualizations that are both high-resolution
and class-discriminative.

Another way to study the importance of the pixels in the input
image is to perturb the image by occluding patches of the image and
see how the classification score drops [27]. Other authors follow a
similar idea by directly deleting some parts of the image in order to
find the part of the image that makes the final class score drop the
most [8]. A bit differently, Koh and Liang use influence functions to
gain understanding on which training points are more relevant to
the final classification without having to retrain the network [16].
Their method essentially shows how the model parameters change
as we upweight a training point by an infinitesimal amount.

In [27], the authors try to understand CNNs backwards by cre-
ating a Deconvolutional Network. A DeConvNet can be thought
as a ConvNet model with the same components but in reverse, so
that it maps features to pixels. A similar idea is followed in [6],
where image representations are studied by inverting them with

an up-convolutional neural network. Other work focuses on devel-
oping human-friendly concepts to help understand the machine.
In [13], Concept Activation Vectors are introduced to provide an
interpretation of the internal state of a network in human-friendly
concepts, andDeep Dream and Lucid are Google projects that intend
to humanize what the hidden layers and neurons see in the input
images [19]. Their paper develops human-like visualizations for
understanding what each neuron is focusing on. In the conclusion,
the authors point out that one of the issues that still stands out in
network interpretability is finding which units are most meaningful
for understanding neural net activations, which is what we study
in this paper. Other studies also engage in trying to bridge human
concepts and neural networks; for example, [28] investigates how
transferable are features in deep neural networks by differentiating
between general and specific features learnt by the architecture. It
was asked in [1] if CNNs learn class hierarchy, and [2] contains a
study of the semantic concepts learnt by the units, such as colors,
scenes, and textures.

Other papers bring up criticism to some of the methods we just
described. In [14], it is argued that saliency methods lack reliability
when the explanation is sensitive to factors that do not contribute to
the model prediction, and in [15] it is shown that DeConvNets and
Guided Backpropagation do not produce the theoretically correct
explanations for a linear model, and so even less for a multi-layer
network with millions of parameters. Finally, in [9] and [18], the
authors propose that neurons do not encode single concepts and
that they are in fact multifaceted, with some concepts being encoded
by a group of neurons rather than by a sole neuron by itself.

As summarized in this section, most papers in the literature
focus on qualitatively studying the specific features and concepts
that are being learnt in the network, rather than quantifying the
importance of each hidden neuron towards the final class score. Our
method bridges this gap by focusing on quantifying the relevance
of each neuron, beyond providing qualitative information based on
visualization methods. An exception in the literature is the recent
paper [3], where the most relevant units for each class are defined
by computing which cause the most accuracy loss when removed
individually. However, this approach is too computationally costly.

2.1 Class Activation Mapping
It was first observed in [28] that CNNs behave as object detectors
even though no location information about the central object is
provided. In this paper, we provide evidence supporting this claim.
In [29], they combine a simple modification of the global average
pooling layer with the class activation mapping (CAM) technique
to allow for a classification-trained CNN to localize specific image
regions in a single forward-pass. Examples are provided in Sec-
tions 5 and 7, where we compare the activation maps of different
neurons with the CAM visualization of the same input image.

2.2 Activation Maximization
The activation maximization method [7], instead of highlighting
discriminative regions of the input image (as with saliencymaps and
CAM), synthesizes an artificial image 𝑥∗ (which we henceforth call
ideal image) that maximizes the activation of a target neuron [20]:

𝑥∗ = argmax𝑥 𝑎𝑖,𝑙 (Θ, 𝑥), (1)
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where Θ denotes the network parameter sets; i.e., the weights and
the bias. This is achieved through an iterative process: after initially
setting a random image 𝑥0, the gradients with respect to 𝑥0, i.e.,
𝜕𝑎𝑖,𝑙/𝜕𝑥 , are computed with backpropagation. Each pixel of the
initial noisy image is changed iteratively to maximize the activation
of the neuron, by applying the update

𝑥 ←− 𝑥 + 𝛾 ·
𝜕𝑎𝑖,𝑙 (Θ, 𝑥)

𝜕𝑥
, (2)

where 𝛾 denotes the gradient ascent step size. The final image 𝑥
represents the preferred input image for that neuron.

Figure 1: Ideal images synthesized with the activation maxi-
mization method for MNIST (left), and the ideal images for
the ImageNet classes Egyptian cat, German shepherd, Peli-
can, and Mushroom in VGG-16 (clockwise at right).

Note that the activation maximization method allows to both
create the ideal image that maximally activates a neuron (Section 6),
as well as the ideal image for a particular class (Figure 1). More-
over, the activation maximization method uses the unnormalized
final class score immediately before the application of the softmax
function, to prevent the values from being squeezed between 0
and 1. We will follow the same principle for our PCACE algorithm.
In order to make the ideal image more interpretable, the activa-
tion maximization method is normally used with regularization
methods, such as ℓ2 decay or Gaussian blur [20].

3 STATISTICAL METHODS FOR
INTERPRETABILITY

3.1 Alternating Conditional Expectation
This section introduces a novel statistical method to rank the hid-
den units of any neural network in order of importance towards
the final class score: PCACE. The name PCACE results from the
fusion of PCA (Principal Component Analysis), which we use for
dimensionality reduction, and ACE (Alternating Condition Expecta-
tion), which we use to compute the maximal correlation coefficient
between a dependent variable (the final class score) and multiple
independent variables (each entry of the activation matrix of a par-
ticular neuron). The units will be ranked on the basis of the strength
of their possibly non-linear relationship with the final class score.

The Alternating Conditional Expectation (ACE) algorithm [4]
is a non-parametric approach for estimating the transformations
that lead to the maximal multiple correlation of a response and a
set of independent variables in regression and correlation analysis.
The iterative algorithm works by estimating optimal transforma-
tions in a multiple regression setup, to find the maximal correlation

between multiple independent variables 𝑋𝑖 and a dependent vari-
able 𝑌 . These transformations minimize the unexplained variance
of a linear relationship between the transformed response variable
and the sum of the transformed predictor variables [24]. Moreover,
ACE does not require any assumptions on the response or predictor
variables and is entirely automatic, in contrast to more recent meth-
ods for nonparametric dependence testing (e.g., kernel methods like
the Hilbert-Schmidt Independence Criterion [10] require specifying
a kernel and its lengthscale). ACE also contrasts with Generalised
Additive Models in that it transforms the response variable.

As summarized in [24], the general regression model for 𝑝 inde-
pendent variables (predictors) 𝑋1, 𝑋2, . . . , 𝑋𝑝 and a response vari-
able 𝑌 is given by

𝑌 = 𝛽0 +
𝑝∑
𝑖=1

𝛽𝑖𝑋𝑖 + 𝜖, (3)

where 𝛽0, . . . , 𝛽𝑝 are regression coefficients that are to be estimated,
and 𝜖 is the error term. However, this model is not well-suited for
CNN architectures, since the activation functions in the network
are not linear, and so instead we must use a non-linear regression
method. The ACE regression model has the form

Θ(𝑌 ) = 𝛼 +
𝑝∑
𝑖=1

𝜙𝑖 (𝑋𝑖 ) + 𝜖, (4)

where Θ(𝑌 ) is a function of the response variable 𝑌 with zero
mean and unit variance, and 𝜙𝑖 (𝑋𝑖 ) are zero-mean functions of the
predictors 𝑋𝑖 , for 𝑖 = 1, . . . , 𝑝 . Then ACE finds the functions that
minimize the error variance not explained in the regression, i.e.,

𝜖2 (Θ, 𝜙1, . . . , 𝜙𝑝 ) = 𝐸

{[
Θ(𝑌 ) −

𝑝∑
𝑖=1

𝜙𝑖 (𝑋𝑖 )
]2}

, (5)

with respect to Θ and 𝜙1, . . . , 𝜙𝑝 .
In our case, given a fixed neuron in a convolutional layer in the

architecture, the independent variables𝑋𝑖 correspond to the entries
of the activation map produced from the convolution between the
fixed weights of the neuron and the input image. The predictor vari-
able 𝑌 corresponds to the final class score of the input image before
the application of the softmax function, to avoid the compression of
the values into the interval [0, 1]. Since ACE will assign a number
between −1 and 1 to each hidden unit, it allows to rank all of the
hidden units of the network in a reliable, normalized, and clear
way. The higher the ACE value is, the stronger is the relationship
between that neuron and the score of a particular class.

3.2 Applying ACE to CNN Architectures
We now give a more detailed explanation of how to apply ACE
to the CNN setting. Given a trained CNN architecture, we fix one
of the convolutional layers, and our goal is to produce a ranking
of the𝑚 neurons that form that layer.2 Each of these neurons has
a fixed matrices of weights, which has size corresponding to the
kernel of the convolutional layer. This matrix of weights produces
an activation map whenever an input image is fed into the network

2As noted in the introduction, PCACE can produce a global ranking of the neurons in
the network because the values are normalized. However, in this paper we decide to
focus on each layer separately in order to be able to compare the magnitude of the
PCACE values across them.
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and the neuron is then fired by its activation function. We fix a
neuron 𝑁𝑖 in this convolutional layer, and we fix a set of input
images which will be used to compute the maximal correlation
between neuron 𝑁𝑖 and the final class score of this set of images.

It can be meaningful to either have this set correspond entirely
to training images, entirely to unseen images by the network, or
a mix of both. It is also recommended to make this set of pictures
be all of the same class, so that we are correlating a neuron with
its importance towards the classification of a particular class (for
example, in MNIST, we can create a ranking of the neurons for each
of the 10 digits separately). However, we note that our algorithm
PCACE does not require to be class specific (as we use it in Sections 4
and 5), and can also be applied in regression tasks (as we do in
Section 7 for spatiotemporal data). Even for classification tasks, it
can be interesting to use a set of input images that consists of a
weighted mix of all classes, in order to produce a ranking of the
overall most correlated neurons.

Each of these neurons produces an activation map when an input
image is fed into the network, which is a matrix of size 𝑘1 × 𝑘2.
ACE will then be working with 𝑘1 · 𝑘2 independent variables 𝑋𝑖 ,
where each corresponds to one of the entries in the activation
maximization map. We favor this method instead of simpler ones
(e.g., those consisting of only taking the mean or the maximum
value of the 𝑘1 · 𝑘2 activation values in order to have just one
independent variable), which neglect the complexity and range of
values within the activation map. The response variable 𝑌 is given
by the final correct class score right before applying the softmax
function. For each pass of one of the 𝑛 input images of the set, we
store the 𝑘1 · 𝑘2 activation maximization values as a column in a
matrix𝑀 , and the final class score in a vector 𝑣 .

At this stage, we cannot input 𝑀 and 𝑣 directly into the ACE
algorithm. Firstly, the dimensions of both the matrix 𝑀 and the
vector 𝑣 are normally too large for ACE to be able to compute the
maximal correlation coefficient in a reasonable computation time.
Secondly, the ACE algorithm halts and outputs nan if values in the
matrix 𝑀 are too small due to division by 0. One way to fix this
is to standardize each row of the matrix 𝑀 (i.e., standardize each
of the 𝑘1 · 𝑘2 predictor variable vectors): center to the mean and
component-wise scale to unit variance. However, the issue might
still not be resolved if the standard deviation of any of the 𝑘1 · 𝑘2
predictor variables is 0.

Both problems can be solved at once by applying the PCA (Prin-
cipal Component Analysis) algorithm before inputting𝑀 and 𝑣 into
ACE. PCA performs a linear mapping of the data in the original
matrix to a lower-dimensional space such that the variance of the
data in the low-dimensional representation is maximized by using
eigenvalue decomposition [12]. After applying PCA, the newmatrix
𝑀 ′ will have smaller dimensions but will have inherited the maxi-
mum possible variance of the original data. Once the dimension of
the original matrix 𝑀 has been reduced, we can now apply ACE
in a computationally efficient way. It is important to remark that
when using PCA for the purposes of PCACE one needs to reduce
the number of rows (the number of predictor variables), and not
the number of columns (the number of input images).

We take the absolute value of the final PCACE value, as we are
concerned with the magnitude of the correlation. In fact, very few
channels in our experiments presented a negative ACE correlation.

3.3 The PCACE Algorithm
PCACE is an algorithm that can be effectively used to rank hidden
channels for the following reasons:

(1) It bridges together two effective, reliable, and powerful sta-
tistical methods: the Alternating Conditional Expectation
(ACE) and the Principal Component Analysis (PCA).

(2) By using PCA on top of ACE, we can significantly reduce the
dimensions of the matrix𝑀 , therefore making the ranking
computation time efficient.

(3) Since the number of predictor variables is significantly re-
duced, we can increment the number of input images and
PCACE will still be computationally efficient.

(4) ACE will not encounter nan problems because PCA stan-
dardizes the original data.

(5) The output PCACE values are all between 0 and 1, which
yields a standardized method to make comparisons across
different neurons and from different layers.

4 AN EXAMPLE WITH MNIST
We first provide an example of applying the PCACE algorithm
to the MNIST dataset to produce a ranking of the neurons in the
first convolutional layer for each of the 10 digits. The size of the
activation matrix of the hidden units of the first convolutional layer
in our architecture is 26 × 26, which means there are 676 predictor
variables 𝑋𝑖 . For each input image, we record the activation value
that each of the elements in the activation matrix achieves, store it,
and record the final class score. After feeding𝑚 input images into
the network, we obtain 676 vectors of length𝑚 for the predictor
variables, and one vector of length 𝑚 for the response variable.
We use 500 input images of each particular digit from the training
dataset. After repeating this procedure with all the neurons in the
layer for each of the 10 digits, we obtain the final PCACE rankings.

We observe that many of the channels that PCACE ranks as the
most important for each digit are precisely the ones that focus on
the surroundings and details of the digit instead of the global shape,
which we call reverse channels. The reverse channels for MNIST are
numerically characterized by having a negative weight mean. They
appear to activate at the edges, corners, and surroundings of the
digit when the input digit is a real image from the training set (or
a mean of the images in the training set), but are nearly dead (i.e.,
activation close to 0) when the input image is the ideal class digit
created with the activation maximization method.

This indicates a potential shortcoming of the activation maxi-
mization method: the artificial image produced by the activation
maximization does not activate most of the channels that are ranked
by the PCACE algorithm as the most important for the correct clas-
sification of the digit. These channels do not focus on the main
class object (the digit), and therefore are not fired because the pixels
that they identify are not maximized by backpropagation. More
broadly, we aim to point out that interpretability methods that are
gradient-based (such as CAM or saliency maps) do not necessarily
correlate well with those that are statistics-based (such as the cor-
relation method of PCACE). As we further develop in Sections 5
and 6, the channels in CNN architectures encode more information
than that explicitly related to the class object, and this complexity
is oftentimes lost with gradient-based methods.
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5 IMAGENET RESULTS
We try our PCACE algorithm with the more complex ImageNet
(1,000) dataset, on both the architectures ResNet-18 and VGG-16.
With ResNet-18 we are able to use CAM, and thus we can compare
the CAM visualizations with the activation maps of the top PCACE
channels. While it is not possible to obtain CAM visualizations
with VGG-16 [29], the first convolutional layers preserve the size
of the input image, which allows for a clearer visualization of the
activation maps (112 × 112 for ResNet-18 as opposed to 224 × 224
for VGG-16). We apply the PCACE algorithm on all convolutional
layers of both architectures for several ImageNet classes, using 300
input images for each class (randomly selected from the ImageNet
dataset), and using PCA to reduce by half the size of the matrix
that we input to the ACE algorithm. The algorithm yields class-
specific rankings of the neurons in each convolutional layer (ranked
independently in each layer).

We then plot the activation maps of the top PCACE channels
(i.e., those that show the highest correlations) and compare them to
the CAM visualization of [29]. Examples are shown in Figure 2. We
support the claim in [3, 28] that object detectors emerge in CNNs
despite having no supervised training. Not only so, but we observe
that the different channels are detectors for different kinds of objects
in the input image, and that they are strongly consistent across
multiple input images. For example, as shown in Figure 3, channel 6
in the first convolutional layer of ResNet 18 always detects (i.e., has
higher activation values) the object immediately next to the class
object (which in this case is Egyptian cat). Moreover, channel 6
is the top 2 highest-ranked PCACE channel, whereas channel 24
(which consistently focuses on the main class object) ranks last in
the PCACE algorithm. The magnitudes of the activations are also
consistent in each channel. We visualize different PCACE-ranked
channels across the figures in the paper for breadth purposes.

Figure 2: CAM visualization (left), activationmap of the bot-
tom PCACE channel (middle), and activationmap of the sec-
ond highest PCACE channel (rigth) with ResNet-18 for the
ImageNet class Egyptian cat.

Not only does this show the locative power of CNNs despite
being trained on only labels, but we also observe that the most
correlated channels tend to be those that do not target the main
class object, and focus on different objects in the images or the
edges of the shapes in the images. Figure 3 shows how some of the
top 5 PCACE channels consistently focus on objects that are not the
class object or the edges of the image shape, whereas they tend to
not highlight the main class object. There are also instances when
this is not the case and some of the top PCACE channels focus on
the main class object, but they are scarce.

We repeated the same visualizations with VGG-16 and obtained
the same observations, which are shown in Figure 4 (note that
VGG-16 does not allow for CAM visualizations, which is why they
do not appear in Figure 4). Therefore, these findings are not specific
to the ResNet-18 architecture, and we hypothesize that they extend
to other architectures as well. These observations are coherent
with the findings in [17], where they argue that different neural
networks learn the same representations.

Figure 3: CAMvisualization (left) and the activationmaps of
two of the top 5 PCACE channels (middle, right) for the Im-
ageNet classes Egyptian cat, German shepherd, and Church
in ResNet-18.

Finally, Figure 5 shows sorted PCACE values for all the convo-
lutional layers in the VGG-16 architecture for the ImageNet class
Egyptian cat in order to analyze how the correlation values vary
across the different convolutional layers. The PCACE values fol-
low similar trends across the different layers, and they are almost
superposed. Deeper layers tend to have lower PCACE values at
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the smaller end, but higher correlations on the larger end (e.g., the
highest PCACE value in the first Conv layer does not exceed 0.32,
whereas the highest PCACE value in Features 28 exceeds 0.65).
However, Figure 5 shows that the count distribution of the PCACE
values within the same block still differs across layers.

As with MNIST, we find no relevant correlation between PCACE
rankings of ImageNet classes, hereby indicating that a global rank-
ing cannot be directly deduced from the class-based PCACE ranking.
We repeated the same experiment with the activation maximiza-
tion method as we did for MNIST: we feed into the network the
ideal image generated through activation maximization for each
class and record the activations of each channel. We do not find
any correlation between PCACE values and the maximum or mean
activation of each channel, which again indicates some discrepancy
between gradient-based and correlation-based methods.

Figure 4: Activation maps of three of the top 5 PCACE chan-
nels for Egyptian cat and German shepherd in VGG-16.

6 FILTER VISUALIZATIONWITH
ACTIVATION MAXIMIZATION

As explained in Section 5, it becomes harder to visualize activa-
tion maps of the deeper convolutional layers as their size reduces.
Therefore, we turn to the technique of activation maximization in
order to analyze the feature visualizations of the different channels
across multiple convolutional layers.

We produce the ideal synthesized image for each channel in all
convolutional layers of VGG-16 using the library tf-keras-vis.3
We minimize in the ℓ2 norm using loss steps of size 50. In Figure 6
we show the filter visualization of the top 5 PCACE channels for
the class Egyptian cat for each convolutional layer in VGG-16. Note
3https://github.com/keisen/tf-keras-vis.

block 1 block 2 block 3 block 4 block 5

0.0 0.2 0.4 0.60.0 0.2 0.4 0.60.0 0.2 0.4 0.60.0 0.2 0.4 0.60.0 0.2 0.4 0.6
0

50

100

PCACE value

C
ou

nt

feature

layer 0

layer 2

layer 5

layer 7

layer 10

layer 12

layer 14

layer 17

layer 19

layer 24

layer 28

Figure 5: Histogram of the PCACE values for the succes-
sive convolutional layers in VGG-16 computed with the Im-
ageNet class Egyptian cat.

that the ideal image of a channel is independent of the class, but
the PCACE ranking is not. As in previous situations, showing the
feature visualizations for all channels would have required 4,224
images. With the PCACE algorithm, we can meaningfully decide
which subset to visualize without this choice being arbitrary. Fig-
ure 6 also shows how the channels are sequentially encoding more
complex information as we inquire deeper into the network.

7 APPLICATION OF PCACE TO
STREET-LEVEL IMAGES FOR AIR
POLLUTION DETECTION

In this section, we show how our ranking algorithm yields a rig-
orous method for interpreting deep learning models trained on
spatiotemporal data. Specifically, we study the PCACE algorithm
in a real-word application where the aim is to predict air pollu-
tion levels from street-level images. We use weights from a model
trained by by [23] using a slightly modified ResNet-18 architecture
where the outputs are continuous pollutant levels. In this paper, we
use the weights trained using a subset of images from the city of
London for predicting annual NO2 levels.

We include this application for two reasons: first, to present the
use of PCACE towards explainable deep learning systems trained
on spatial and temporal coverage of air quality levels. Secondly,
we note that Sections 4 and 5 are centered around classification
tasks. In this section, the task to predict air pollution from images
corresponds to a regression task, in which there is only one final
score instead of all the class scores. Still, since in this paper we
have analyzed PCACE from a class-based perspective, we apply the
PCACE algorithm to 300 input images from most polluted areas in
the city of London (i.e., top decile). For each of these 300 images,
both the true and predicted NO2 values are above 84 𝜇g/m3. This
prompts the following question: what are the channels detecting
in high-pollution images? In Figure 7 we present some examples
of the original input street-level image, its CAM visualization, and
the activation maps of the bottom 2 and top 2 PCACE channels.

Our results show that the channels continue to act as object
detectors despite having trained the architecture with a regression
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Figure 6: Activationmaximizationmethod optimizing the top 5 PCACE channels of all convolutional layers of VGG-16 for the
ImageNet class Egyptian cat (left to right from first convolutional layers to the deeper ones).

Figure 7: Input image (4 street-level images from a single vantage point covering 360°), CAM visualization, and activationmaps
of lowest 2 PCACE channels (top) and highest 2 PCACE channels (bottom) with ResNet-18.

task instead of a classification one. Since in this setting we do not
have a class object as reference, understanding what the neurons
are focusing on becomes a more open-ended question. We find that
while some channels continue to focus on the edges of the image,
many act as object detectors for buildings and, more remarkably,
trees. As it was the case for MNIST and ImageNet, the activation
maps of a fixed channel across different input images are consistent.
For example, as can be seen in Figure 7, channel 42 consistently
activates at the edges of the image whereas channel 45 detects the
trees in the input image. Importantly, we remark that this allows
to perform computer vision tasks which are very relevant to spa-
tiotemporal data, such as image segmentation, in an unsupervised
manner, given that the training has occurred in a regression setting.

In particular, channel 45, which is the second highest ranked
PCACE channel, is a surprisingly powerful tree detector, even when

they appear as very small parts of the image, as it is the case of
the top right image in Figure 8. More surprisingly, there is no
class tree in ImageNet 1,000, which provides more evidence for the
strong object detection capabilities. Moreover, we observe that the
bottom PCACE channels are not doing tree detection, as shown in
Figure 7. This further indicates how the PCACE ranking can help
in interpreting how the network is encoding the key concepts and
identifying certain classes of objects.

When we compare the activation maps of the PCACE channels
to the CAM visualizations of the same street-level images of [23], as
we exemplify in Figure 7, we observe that the CAMmethod tends to
highlight the pixels that correspond to parts of the road, which likely
indicate higher levels of pollution. Since the activation maps act
as object detectors, in the case of regression tasks we recommend
leveraging CAM methods (which can highlight particular areas
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Figure 8: Channel 45 in the first convolutional layer of ResNet-18 trained on ImageNet and fine-tuned with street-level images
acts as a powerful tree detector. Channel 45 was the second highest scoring using PCACE, as seen in Fig. 7 (colorbar to scale).

of the image beyond specific objects) with the PCACE activation
maps. However, the PCACE method alone is able to rank highest
the neurons that do tree object detection, and thus it is sensible
to conclude that trees in cities are most predictive for pollutant
methods. This indicates the effectiveness of the PCACE ranking in
interpreting deep learning models trained on spatiotemporal data.

8 CONCLUSIONS AND DISCUSSION
In this paper we have presented the PCACE algorithm: a new sta-
tistical method that combines Principal Component Analysis for
dimensionality reduction with the Alternating Conditional Expecta-
tion algorithm to find the maximal correlation coefficient between
a hidden neuron and the final class score. PCACE yields a rigorous
statistical and, most importantly, standardized method which is
able to quantify the relevance of each neuron towards classification.
Thus, PCACE constitutes a useful tool to analyze deep learning
models trained on spatiotemporal data, as shown by the top ranking
of tree detector channels on our street-level air pollution imagery.

We have tested our algorithm in two well-known datasets for
classification tasks, MNIST and ImageNet. We have also used it
in a real-world application to street-level images for detecting air
pollution, which shows how we can use PCACE in regression tasks
beyond classification ones. We have provided extensive evidence
that the channels in CNN architectures act as object detectors, and
not only for the main class object in the case of classification tasks,
but also for secondary objects in the images as well. Moreover,
most of the top PCACE channels tend to be those that detect these
secondary objects or corners and edges of the input image. We
have shown that the type of object detection ability is consistent
for each particular channel independent of the input image (e.g.,
edges, small set of pixels, secondary object). Moreover, these object
detection capabilities are preserved in the case of regression tasks,
as we have shown through the strong tree detection properties of
the top PCACE channels in the street-level air pollution images.

The PCACE values of each layer can be used in several ways.
Firstly, one could study the correlation values directly, as in Figure 5.
We showed that the PCACE values across the different convolu-
tional layers in an architecture are coherent and follow the same

trend within each block, with deeper layers acquiring higher corre-
lation values. We believe that the coherence of the PCACE values
across layers justifies using the algorithm to compare channels
between different layers. We have ranked the neurons within the
same convolutional layer, but for future work it would be interest-
ing to rank and compare the PCACE values of all the neurons in
the architecture, given the standardized properties of PCACE.

Secondly, we can use the PCACE rankings for visualization pur-
poses. In this paper we have focused on producing the activation
maps of the top PCACE channels, as well as the synthesized image
produced by the activation maximization method when optimizing
for each of the channels separately. The activation maps are meant
to be interpreted with respect to an input image, and hence are
better for showing the object detection properties of CNNs. On
the other hand, the activation maximization method allows us to
perform a feature visualization study of the top PCACE channels,
as shown in Figure 6. We believe that many other visualization and
interpretability methods which are channel-based can be added on
top of PCACE with the goal of interpreting CNN models trained on
spatiotemporal data. A pressing issue in the current research work
on explainability is the infeasibility of visualizing all of the neurons
in an architecture, which range in the thousands. Previous works
needed to make an arbitrary choice of which neurons to illustrate
when presenting an interpretability method. The PCACE algorithm
now allows to make this choice in a rigorous manner.

Other directions for future work include pruning on top of
PCACE to further understand the impact of the top-ranked neu-
rons. It would also be necessary to compare the PCACE rankings to
other quantifications of the definition of importance of a channel,
as recently done in [3]. However, there is a scarcity of work in this
direction, and thus a lack of standardized methods to compare to.
We hope that our algorithm provides a first step towards a quan-
tifiable notion of explainability in the deep learning field. Beyond
street-level images for air pollution, we hope to apply PCACE to
other types of sensing imagery in the settings of Earth sciences, ur-
ban planning, public safety, and epidemiology, among many others.
There is still much to be done to open up these black boxes.
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9 SUPPLEMENTARY MATERIAL
We provide pseudocode for the PCACE algorithm in Algorithm 1.
For reproducibility purposes, the relevant code and data can be
found at https://github.com/silviacasac/ranking-CNN-neurons.

Algorithm 1 PCACE Algorithm.
1: For each channel 𝑐 in the conv layer 𝑙 do:
2: For each input image do:
3: Store the activations of channel 𝑐 into matrix 𝑋𝑐,𝑙 .
4: Store the final class score into vector 𝑌𝑐,𝑙 .
5: Apply PCA to reduce the dimensionality of matrix 𝑋𝑐,𝑙 .
6: Obtain newly reduced matrix 𝑋 ′

𝑐,𝑙
= {𝑋 ′1, 𝑋

′
2, . . . , 𝑋

′
𝑝 }.

7: Let Θ(𝑌𝑐,𝑙 ), 𝜙1 (𝑋 ′1), . . . , 𝜙𝑝 (𝑋
′
𝑝 ) be zero-mean functions.

8: Let 𝑒2 (Θ, 𝜙1, . . . , 𝜙𝑝 ) =
E[Θ(𝑌𝑐,𝑙 )−

∑𝑝

𝑖=1 𝜙𝑖 (𝑋 ′𝑖 )2 ]
E[Θ2 (𝑌𝑐,𝑙 ) ] .

9: Let 𝑇 be the error tolerance.
10: While 𝑒2 > 𝑇 , do:
11: Holding 𝜙1 (𝑋 ′1), . . . , 𝜙𝑝 (𝑋

′
𝑝 ) fixed, minimizing 𝑒2 yields

12: Θ1 (𝑌𝑐,𝑙 ) = E[
∑𝑝

𝑖=1 𝜙𝑖 (𝑋
′
𝑖
) | 𝑌𝑐,𝑙 ].

13: Normalize Θ1 (𝑌𝑐,𝑙 ) to unit variance.
14: For each 𝑘 , fix other 𝜙𝑖 (𝑋 ′𝑖 ) and Θ(𝑌𝑐,𝑙 ) minimizing 𝑒2.
15: The solution is 𝜙𝑘 = E[Θ(𝑌𝑐,𝑙 ) −

∑
𝑖≠𝑘 𝜙𝑖 (𝑋 ′𝑖 ) | 𝑋

′
𝑘
].

16: Return the absolute value of the Pearson product-moment
17: correlation coefficients.
18: Sort the final 𝑐 values.

https://github.com/silviacasac/ranking-CNN-neurons
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