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Abstract

Characterizing the underlying mechanism of graph topolog-
ical evolution from a source graph to a target graph has at-
tracted fast increasing attention in the deep graph learning
domain. However, it is very challenging to build expressive
and efficient models that can handle global and local evolution
patterns between source and target graphs. On the other hand,
graph topological evolution has been investigated in the graph
signal processing domain historically, but it involves inten-
sive labors to manually determine suitable prescribed spectral
models and prohibitive difficulty to fit their potential combi-
nations and compositions. To address these challenges, this
paper proposes the deep Graph Spectral Evolution Network
(GSEN) for modeling the graph topology evolution problem
by the composition of newly-developed generalized graph ker-
nels. GSEN can effectively fit a wide range of existing graph
kernels and their combinations and compositions with the the-
oretical guarantee and experimental verification. GSEN has
outstanding efficiency in terms of time complexity (O(n)) and
parameter complexity (O(1)), where n is the number of nodes
of the graph. Extensive experiments on multiple synthetic and
real-world datasets demonstrate outstanding performance.

Introduction
Understanding the mechanism of graph generation and evo-
lution has significant importance in many applications (Guo
and Zhao 2020; Guo et al. 2020; You et al. 2018), such as
brain simulation, mobility network simulation, and social
network modeling and intervention (Zhao 2020). Beyond
the traditional methods from network science domain, graph
generation and evolution have been attracting fast increase
attention by deep graph generative models due to their great
potential of learning the underlying known generation and
evolution mechanism in an end-to-end fashion. Existing deep
generative models for graphs are typically unconditional and
generate graphs from random noise. But in many cases, we
need a “conditional setting”, by generating a target graph
given a source graph. Based on deep graph generative mod-
els, the graph generation problem is considered as decoding
a graph based on latent variables following some underlying
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distribution while graph evolution can be modeled as a map-
ping to a target graph topology given a source graph topology.
Graph evolution based on deep graph learning is a very chal-
lenging problem and is still in its nascent stage because of the
extremely high dimensionality of the data. An ideal model
should be able to capture both the local and global character-
istics of source graph and be able to determine the existence
or weight of potential edges for each pair of nodes. Models
that are both expressive and efficient are in urgent demand.

The domain which has investigated graph evolution for a
long time is graph signal processing, where well-defined
mathematical framework and various techniques such as
graph wavelets and kernels that abstract the graph process
in frequency domain have been hypothesized and verified in
many applications. For example, Kunegis et al. have demon-
strated that triangle-closing kernels fit very well to the evolu-
tion of graph spectrum during the “befriending process” in
some social networks ((Leskovec et al. 2008)). Most recently,
neuroscience researchers found that the functional connec-
tivity shares the same graph Fourier basis with structural
connectivity in several special situations.

Although graph signal processing allows powerful and con-
cise models to characterize many graph evolution processes,
it requires to first determine the potentially suitable type of
graph kernel and then fit the parameters of it. However, this
raises up serious challenges: First, it is difficult to discover or
select suitable kernel types for various applications. Graph
kernels are proposed based on the analyses and abstraction
of the prior knowledge on various graph phenomena. But
until now, quite a lot of phenomena have not yet been ana-
lyzed or interpreted by humans. For example, it is unclear
whether and how the spectrum of resting-state functional con-
nectivity transforms into task-specific functional connectivity
in human brain (Hermundstad et al. 2013). Moreover, for
many sophisticated phenomena, the graph process typically
involves the combination and composition of multiple graph
processes corresponding to multiple kernels. For example,
the evolution of a social networks might involve not only the
triangle closing process (i.e., two friends of a person tend to
be friends) by triangle-closing kernels, but also the behavior
diffusion process which can be characterized by diffusion
kernels. Also, the involvement of different kernel process
might be simultaneous or sequential, and hence prohibitively
difficult to manually determine or combinatorially optimize.



To address these challenges, this paper proposes a novel
end-to-end model named Deep Graph Spectral Evolution
Network (GSEN) to optimally fit the graph evolution process
by the composition of newly-developed generalized graph
kernels. The generalized graph kernels widely cover existing
graph kernels as well as their combination and composition
as special cases, and hence are able to fit them with outstand-
ing expressiveness. In addition to this high expressiveness,
GSEN is highly concise in terms of small parameter com-
plexity and time complexity for training. Specifically, the
number of parameters and memory complexity of GSEN
are independent of the graph size (number of nodes) while
the time complexity for the training of GSEN is linear to
the graph size. This largely outperforms the state-of-the-art,
which typically requires O(n2) time complexity and mem-
ory complexity. Extensive experiments on several synthetic
datasets and multiple real-world datasets in two domains
have been conducted. The results demonstrate the superior
accuracy of GSEN over existing deep generative models and
models based on graph signal processing, besides higher
efficiency of GSEN compared to existing deep generative
models.

Related Work
Spectral Graph Translation Problems
Spectral based approaches in graph translation have been the
focus in many researches over the past decades. To model
how networks are translated, the spectral evolution model
was introduced by (Kunegis, Fay, and Bauckhage 2010). The
growth of large networks is analyzed by studying the changes
in the spectral characteristics of the graph. These changes
are explained using the eigendecomposition of the graph
adjacency matrix or its laplacian. The new link prediction
approach shows how eigenvectors stay constant while the
eigenvalues are evolved over the transition. This model can
also generalize several graph kernels which are expressed
as spectral transformations. (Li, Yu, and Liu 2011) proposes
the MERW (maximum entropy random walk) approach to
the link prediction problem. MERW based approaches are
introduced as various algorithms that could use four separate
graph kernels, in addition to a class of similarity measures,
to capture the proximity between two nodes. The resulting
methods perform the prediction, while maintaining the cen-
trality of the nodes. In (Symeonidis et al. 2013), the link
prediction problem for protein-protein interaction networks
and online social networks is considered. The SpectralLink
algorithm is proposed to compute the similarity between ev-
ery two nodes, by exploiting the top few eigenvectors of the
laplacian matrix, which eliminates the redundant and noisy
information. The link prediction is then performed faster and
more accurate. Variants of the aforementioned method are
also derived for signed and directed graphs. Spectral Graph
analysis has been useful in a behavior related link prediction
problem (Spiegel et al. 2011; Zhao 2020), where there’s a
need to predict whether and how much a user is likely to rate
an item. Multiple network snapshots with temporal trends
are captured and tensor factorization is used to extract hid-
den trends within a multi-dimension array. The higher-order

data is then factorized into a lower dimension, using Parafac
model. The spectral evolution model is finally applied, where
the spectrum of decompositions change, while the eigenvec-
tors stay constant.

Deep Learning Methods in Graph Spectral Domain

There is a large body of research on deep graph learning,
for tasks such as the embedding and classification of nodes
and graphs. (Kipf and Welling 2016) proposed a localized
graph convolutional neural networks (CNNs) based on semi-
supervised learning for graph-structured data, where labels
are available for a small subset of nodes. A neural network
model is designed based on a layer-wise propagation rule.
The model is then trained on the supervised target which
includes all labeled nodes. A novel spectral graph CNN ap-
proach is proposed in (Li et al. 2018) to graph data that varies
in both size and connectivity. To capture the variation in the
input graph topology, training process includes applying a
customized graph Laplacian to each sample input. The Lapla-
cian then becomes trainable by parameterizing the distance
metrics that measure vertex similarity. Deep convolutional
approaches have been applied to data domains with irregular-
ities which lack fundamental statistical properties in (Henaff,
Bruna, and LeCun 2015), to solve for large scale classifica-
tion problems. In (Defferrard, Bresson, and Vandergheynst
2016), CNNs are presented in the context of spectral graph
theory, and fast localized convolutional filters are designed.

Deep Learning Methods for Graph Transformation
Problems

Graph Transformation modeling based on deep neural net-
works has attracted fast-increasing attention recently, where
existing methods are based on spatial domain by operating
the explicit connectivity among the nodes ((Guo et al. 2019),
(Guo, Wu, and Zhao 2018), (Do, Tran, and Venkatesh 2019)).
A systematic survey can be found here (Guo and Zhao 2020).
The prediction in most cases is performed either on node
attributes of the graph or its topology while the other is
fixed. (Guo et al. 2019) proposes NEC-DGT (Node-Edge
Co-evolving Deep Graph Translator) framework as a novel
technique to approach the simultaneous prediction challenge.
A portion of this research is only tailored for specific appli-
cations and domains ((Do, Tran, and Venkatesh 2019)). For
example, (Do, Tran, and Venkatesh 2019) and (Jin et al. 2018)
proposed methods only for transferring molecular graphs.
Spatio-temporal dependencies in traffic flow are modeled as
a diffusion process in a directed graph through DCRNN (Dif-
fusion Convolutional Recurrent Neural Network) model (Li
et al. 2017). Using bidirectional random walks and encoder-
decoder architecture the spatial and temporal dependencies
are captured respectively. In (Li, Guo, and Mei 2016), the
authors propose DeepGraph model to learn topological struc-
ture of a network from the raw adjacency matrix as input, and
use that to predict the growth of the network. However, until
now there is no work in this domain that models the graph
topological transformation in spectral domain.



Graph Topology Transformation via Spectral
Evolution

This paper focuses on a problem of using the topology of a
source graph to predict that of a target graph by characterizing
spectral graph evolution.

Problem Formulation
Define a source graph as an undirected weighted graph
G = (V,E,A) where V is the set of nodes with size of
|V |, E ⊆ V × V is the set of edges, and A ∈ R|V |×|V | is
the adjacency matrix that defines the weights of the edges.
The adjacency matrix A can be normalized by defining
the normalized adjacency matrix N = D−

1
2AD−

1
2 , where

D ∈ R|V |×|V | is the diagonal matrix where each diago-
nal element is the degree of corresponding node. Besides,
the Laplacian matrix of the source graph G is defined as
L = D −A, and the normalized Laplacian matrix is defined
as Z = D−

1
2LD−

1
2 = I −N where I is the identity matrix.

A target graph is defined as G′ = (V ′, E′, A′), where the
set of nodes V ′ = V , edges E′, adjacency matrix A′, nor-
malized adjacency matrix N ′, the Laplacian matrix L′, the
normalized Laplacian matrix Z ′.

Definition 1 (Graph Transformation via Spectral Evolution).
The spectral graph translation problem states that the graph
topological transformation G′ ← F (G) from a source graph
G to target graph G′ can be modeled by a change in graph’s
spectrum, while graph Fourier basis remains the similar.

To determine the function F , various graph kernels based
on the existing research on graph wavelets can be utilized,
including heat kernels KHEAT(L) = exp(−αL) and many
others such as those illustrated in Table 1. Several such graph
kernels have been empirically demonstrated to model some
specific graph process effectively. For example, the evolu-
tion of a social networks typically involves triangle closing
process (i.e., two friends of a person tend to be friends),
which has been verified to be effectively modeled by triangle-
closing kernels (Leskovec et al. 2008). Path count kernels
have been verified to fit very well into the link prediction
problem in some email networks (Kunegis, Fay, and Bauck-
hage 2010)).

Generalized Graph Kernels
We propose a new nonparametric kernel that is highly expres-
sive to cover various graph kernels as well as their compo-
sitions. We first formulate the learning of such expressive
kernel as an optimization problem as follows.

Lemma 0.1. Using matrices (e.g., adjacency matrix, graph
Laplacian, etc.) X and X ′ to represent the graph topology G
and G′, we have X = UΛUᵀ and X ′ = U ′Λ′U ′ᵀ according
to eigen-decomposition. Then the spectral graph transla-
tion problem in Definition 1 can be explicitly formulated as
F (X)→ L′ by an analytic function F , which is learned by
the following equation, given [F (Λ)]kk = f(Λkk):

min
F
‖F (X)−X ′‖22 = min

f

∑
k

(f(Λk,k)− Λ′k,k)2 (1)

Proof. The training purpose of F (·) is to minimize the
squared loss against the real target graph:

‖F (X)−X ′‖22 = ‖F (UΛUᵀ)−X ′‖22

= ‖
∑∞

k=0

F (k)(γ)

k!
(UΛUᵀ)k −X ′‖22 (Power Expansion)

= ‖U

(
∞∑

k=0

F (k)(γ)

k!
(Λ)k

)
Uᵀ −X ′‖22 = ‖UF (Λ)Uᵀ −X ′‖22

= ‖U · diag([F (Λ1,1), · · · , F (Λ|V |,|V |)])U
ᵀ −X ′‖22

= ‖diag([F (Λ1,1), · · · , F (Λ|V |,|V |)])− UᵀX ′U‖22 (UUᵀ = I)

= ‖f(Λk,k)− UᵀU ′Λ′U ′ᵀU‖22
= min

f

∑
k

(f(Λk,k)− Λ′
k,k)2 (‖U − U ′‖ → 0 by Definition 1)

The proof is completed.

We propose the following new generalized graph kernel:

F (Λ) =
∑∞

k=1
αkΛk + γkD

−kΛk + βI (2)

The following introduces some important properties of this
operation.
Lemma 0.2. The generalized graph kernel in Equation 2
has the following properties:

1. Various existing graph kernels such as those listed in Table
1 are special cases of our operation.

2. The additive combinations and compositions of the existing
graph kernels are special cases of our operation.

Proof. Now we prove Property 1. Graph kernels are typi-
cally under four types, namely Laplacian L, adjacency ma-
trix A = D−L, normalized Laplacian Z = D−1/2LD−1/2,
and normalized adjacency matrix N = I −D−1/2LD−1/2,
based on their immediate inputs. Without loss of generality,
in the following we assume we use graph Laplacian to repre-
sent the graph and construct our kernel, namely L = UΛUᵀ,
though other forms (e.g., normalized graph Laplacian and ad-
jacency matrix) can also accomplish the proof. For those
kernels based on L and A, they can be transformed to
[F (Λ)]i,i =

∑∞
k=0

mk,i
k! Λki,i, where mk,i = f (k)(0) for

Laplacian while mk,i = f (k)(Di,i) for adjacency matrix.
Therefore, both of them can be fit into our generalized graph
kernel by setting γk := 0 for all k = 0, 1, · · · . For those
kernels based on N and Z, they can be transformed to
[F (Λ)]i,i =

∑∞
k=0

m
k! (D

−k
i,i Λi,i)

k, wherem = 0 for Z while
m = 1 for N . Hence, both of them can be fit by setting
αk := 0 for all k = 0, 1, · · · .

Now we prove Property 2. Assume there are two general-
ized graph kernels Fa(Λ) and Fb(Λ), then it is easy to see
that both their additive and composition can still be fit by an-
other generalized graph kernel. Specifically, for summation,
two graph kernels can be transformed into corresponding
generalized kernels whose sum is also a generalized kernel
(i.e., Equation 2), and for composition, each kernel can be
transformed into a polynomial (by Equation 2) and a polyno-
mial of a polynomial is still a polynomial, and is covered by
Equation 2.



Kernel Name Matrix Function Spectral Function
Laplacian Commute-time Kernel KCom(L) = L+ UΛ−1Uᵀ, define Λ−1

i,i = 0 if Λi,i = 0

Normalized Laplacian Commute-time Kernel KCom(Z) = Z+ UΛ−1Uᵀ, define Λ−1
i,i = 0 if Λi,i = 0

Normalized Adjacency Exponential Kernel KExp(N) = eαN UeαΛUᵀ

Generalized Laplacian Kernel KGen(L) = (
∑∞
k=0 αkL

k)+ U(
∑∞
k=0 αkΛk)−1Uᵀ

Generalized Normalized Laplacian Kernel KGen(Z) =
∑∞
k=0 αk(I − Z)k U(

∑∞
k=0 αk(I − Λ)k)Uᵀ

Heat Diffusion Kernel KHeat(L) = e−αL Ue−αΛUᵀ

Normalized Heat Diffusion Kernel KHeat(Z) = e−αZ Ue−αΛUᵀ

Normalized Adjacency Neumann Kernel KNeu(N) = (I − αN)−1 U(I − αN)−1Uᵀ

Normalized Adjacency Path Count Kernel KPath(N) =
∑∞
k=0 αkN

k ∑∞
k=0 αk(UD−

1
2ΛD−

1
2 Uᵀ)k

Regularized Laplacian Kernel KReg(N)(I + αN)−1 U(I + αΛ)−1Uᵀ

Normalized Regularized Laplacian Kernel KReg(Z)(I + αZ)−1 U(I + αΛ)−1Uᵀ

Table 1: Existing kernels for graph spectral translation problem

Deep Graph Spectral Evolution Networks
Here, a neural network model based on the proposed gener-
alized graph kernel is established, by reducing order of the
polynomials from infinity to K which is independent of and
typically far less than the graph size. Moreover, our neural
network is composed by stacking multiple such generalized
graph kernels as a special type of multi-order 1-D convo-
lution operation, as illustrated in Figure 1 and described as
follows.

Specifically, each layer can be expressed as follows.

Fl(Λ) = Hl

(∑K

k=1
(αkI + γkD

−k)Fl−1(Λ)k + βI

)
(3)

where the function Hl(·) is an activation function which
performs element-wise activation based on commonly used
ones such as ReLU, sigmoid, or linear. An equivalent scalar
form of the above equation is expressed as fl(Λi,i) =

hl

(∑K
k=1(αk + γkD

−k
i,i )fl−1(Λi,i)

k + β
)

, where hl(·) is
a scalar version of Hl(·).

As shown in Figure 1, we implement the neural net-
work through an M -layer convolution operations from
the source graph to target graph. Specifically, the in-
put, namely F0(Λ), is Λ that is the graph spectrum. For
the l − 1th layer, the diagonal vectors of the matrices
I, Fl−1(Λ), Fl−1(Λ)2, · · · , Fl−1(Λ)K are calculated and
concatenated as shown in the orange region in Figure 1. Simi-
larly, the diagonal vectors of the matrices I,D ·Fl−1(Λ), D2 ·
Fl−1(Λ)2, · · · , DK · Fl−1(Λ)K are calculated and concate-
nated as shown in the yellow region in Figure 1. Then these
two regions are convoluted by the kernels α(l) and γ(l), re-
spectively, to obtain Fl(Λ) after performing activation func-
tion. Such convolution operation is repeatedly performed
until M -th layer, which outputs the predicted graph spectrum
FM (Λ) for the target graph.

Complexity and Efficiency: Training neural network
amounts to solve the optimization problem in Equation 1,
which can be handled by backpropagation. Our method
largely and effectively reduces the number of parameters,
to 2 ·K ·M , which is small and independent of the size of
the graph and hence is highly memory-efficient and scal-
able. In terms of the time complexity, the calculation of
the powers of graph spectrum has a time complexity of

O(K ·N ·M) while the convolution operations involves an-
otherO(K ·N ·M) so the total time complexity of the neural
network is O(K ·N ·M). Note that we focus on the train-
ing runtime (i.e., backpropagation), and eigen-decomposition
is outside backpropagation and is pre-computed, so is ex-
cluded. Also, the generation of the input data involves eigen-
decomposition of the adjacency matrix (or graph Laplacian),
which could be time-consuming for large graphs. To address
this issue, we can leverage reduced eigen-decomposition to
only involve the calculation of lower-rank matrix and hence
largely speed up this process.

Experiment
In this section, the experimental settings are first introduced,
then the performance of the proposed method is presented
through a set of comprehensive experiments. All the experi-
ments are conducted on a 64-bit machine with 40 GB mem-
ory, a 4-core Intel ® CPU and an Nvidia ® RTX-2080 Ti
GPU. The proposed method is implemented with Pytorch
deep learning framework.1

Experimental Setup
We evaluate the effectiveness on synthetic and real-world
datasets on brain network prediction and malware confine-
ment in the Internet of Things (IoT) task. The datasets, evalu-
ation and comparison methods are elaborated in turn.

Datasets Three datasets are involved for evaluations. •
Synthetic Datasets: In each of the 11 synthetic datasets,
we generate 1000 source-target graph pairs. Specifically, first,
1000 unweighted and undirected random graphs with 50
nodes and 200 edges are generated as the source graphs, us-
ing Erdős–Rényi model (Erdos and Renyi 1960), then each
edge in the source graph is assigned a random weight be-
tween 0 and 1. Finally, 1000 target graphs are generated by
applying one of the kernels in Table 1, where each synthetic
dataset utilizes one distinct kernel.
• Real-world HCP Dataset: In these datasets, the source
and the target graphs respectively reflect the structural con-
nectivity (SC) and the functional connectivity (FC) of the
same subject’s brain network. In particular, both types of
connectivity are processed from the Magnetic Resonance

1https://github.com/netemady/GSEN
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Figure 1: The architecture of Deep Graph Spectral Evolution Networks.

Dataset
Method KCom(L) KCom(Z) KExp(N) KGen(L) KGen(Z) KHeat(L) KHeat(Z) KNeu(N) KPath(N) KReg(L) KReg(Z) Overall
KCom(L) - - 0.28 -0.04 -0.15 -0.26 -0.26 0.23 0.26 -0.02 -0.23 0.16
KCom(Z) - - 0.28 -0.04 -0.15 -0.26 -0.26 0.23 0.26 -0.02 -0.23 0.16
KExp(N) 0.23 0.23 - 0.25 0.69 1.00 1.00 -0.88 -0.91 0.13 -0.88 0.17
KGen(L) -0.11 -0.28 -1.00 - 0.83 0.06 0.99 -0.94 -0.99 0.80 0.95 0.11
KGen(Z) -0.02 -0.18 -0.96 -0.05 - 0.21 0.84 -0.84 -0.92 -0.02 0.98 0.00
KHeat(L) 0.23 0.23 1.00 0.25 0.69 - - -0.88 -0.91 0.13 -0.88 0.17
KHeat(Z) 0.23 0.23 1.00 0.25 0.69 - - -0.88 -0.91 0.13 -0.88 0.17
KNeu(N) 0.25 0.29 0.93 -0.08 -0.76 -0.87 -0.99 - 0.98 0.02 -0.91 -0.01
KPath(N) 0.01 0.29 0.95 0.03 -0.77 -0.18 -0.99 1.00 - 0.01 -0.91 0.04
KReg(L) -0.02 -0.23 -0.99 0.36 0.96 -0.11 0.91 -0.91 -0.97 - 1.00 0.09
KReg(Z) -0.02 -0.23 -0.99 0.31 0.97 -0.10 0.91 -0.91 -0.97 0.65 - 0.06
GT-GAN 0.12 0.18 0.26 0.00 0.93 0.48 0.25 0.53 0.69 0.18 0.53 0.38
C-DGT -0.05 0.16 1.00 -0.02 0.80 1.00 1.00 0.92 0.98 -0.02 0.92 0.61
Baseline -0.14 -0.28 -0.99 -0.05 0.27 0.07 0.17 0.76 0.99 -0.03 0.63 0.13
GSEN 0.97 0.72 1.00 0.80 1.00 0.89 1.00 1.00 1.00 0.71 0.85 0.90

Table 2: Pearson correlation between predicted and empirical graph on synthetic datasets. Each column denotes Pearson correlation of the
synthetic dataset generated by kernel function of the second row. Each row denotes Pearson correlation of the prediction method of
first column. Some cells are “gold standard” because the predictor and synthetic data generator use the same graph kernels, hence are
marked as “-”. For those cells the right-most column denotes the average Pearson correlation among all synthetic datasets. The highest
Pearson correlation in each column/dataset is highlighted in bold font while the second highest Pearson correlation is marked with underline.

Imaging (MRI) data obtained from the human connectome
project (HCP) (Van Essen et al. 2013) 2. By following the
preprocessing procedure in (Wang et al. 2019), the SC data
is constructed by applying probabilistic tracking on the dif-
fusion MRI data using the Probtrackx tool from FMRIB
Software Library (Jenkinson et al. 2012) with 68 predefined
regions of interests (ROIs). Then, the FC is defined as the
Pearson’s correlation between two ROIs’ blood oxygen level-
dependent time obtained from the resting-state functional
MRI data. All the 823 pairs of SC and FC adjacency matri-
ces are normalized as defined in Section . • Real-world IoT
Datasets: In these datasets, the nodes represent the Internet
of Things (IoT) devices and the edges denote the communica-
tion links between two devices. Each source graph reflects the
communication status of the network, and some of the nodes
in the network are infected by some types of malware. To
limit the devices that are infected by the malware propagating
to other devices, the malware confinement is conducted by
cutting some of the links while maximizing the functionality
of the network. The confined network is considered as the
target graph that corresponds to the source graph. The IoT
datasets contain three datasets, namely IoT-20, IoT-40, and
IoT-60, which include 20, 40, and 60 devices. There are 343

2http://www.humanconnectomeproject.org/

source-target graph pairs in each IoT dataset.

Methods and Settings The comparison methods include:
Graph spectral transformation kernels: We compared our
method with all single kernel methods defined in Table 1 on
synthetic datasets. The parameters α or {αk}Kk=1 in Table 1
is learned from the training data. Baseline method: For this
method, the eigenvalue transformation function F : Λ→ Λ′

is learned by a fully connected four-layer perceptron acti-
vated by tanh function. Each hidden layer contains 4n neu-
rons, where n is the number of nodes in the graph. This
fully connected network is optimized by the ADAM algo-
rithm with the learning rate of 0.001 and 1000 epochs. The
mean squared error loss is utilized for the baseline method.
Brain network prediction methods: We consider four clas-
sic brain network prediction methods that use SC to FC
(Galán 2008; Abdelnour, Voss, and Raj 2014; Meier et al.
2016; Abdelnour et al. 2018). (Abdelnour, Voss, and Raj
2014) and (Abdelnour et al. 2018) considered the graph spec-
tral transformation kernels by assuming that SC and FC share
the identical eigenvectors on their Laplacians. The remaining
two methods directly consider the graph translation between
SC and FC. GT-GAN: Graph Translation-Generative Adver-
sarial Networks (GT-GAN) by (Guo, Wu, and Zhao 2018) is
a newly proposed general-purpose graph topology translation



Dataset
Method IoT-20 IoT-40 IoT-60 SC-FC Overall

PR R2 PR R2 PR R2 PR R2 PR R2

Galan2008 0.74 0.54 0.79 0.60 0.81 0.65 0.23 -5.7 0.64 -0.99
Abdelnour2014 0.73 -1.83 0.76 -0.00 0.81 -0.64 0.23 -0.88 0.63 -0.83
Meier2016 0.74 0.54 0.78 0.60 0.81 0.65 0.26 -3.55 0.65 -0.44
Abdelnour2018 0.73 -0.00 0.76 -0.00 0.81 -0.00 0.23 -0.88 0.63 -0.22
GT-GAN 0.80 0.66 0.74 0.48 0.64 0.18 0.45 -1.03 0.66 0.07
C-DGT 0.81 0.64 0.82 0.67 0.84 0.71 0.14 -4.1 0.65 -0.53
Baseline 0.70 0.41 0.72 0.46 0.74 0.51 0.33 -0.75 0.62 0.16
GSEN (Ours) 0.82 0.63 0.84 0.71 0.84 0.71 0.35 -0.58 0.71 0.36

Table 3: Pearson correlation (PR) and R2 between predicted and real graphs on real-world datasets

Figure 2: Qualitative analyses of the source, predicted, and real target graph topologies.

method based on the graph generative adversarial network.
C-DGT : node-edge Co-evolving Deep Graph Translator (C-
DGT) by (Guo et al. 2019) is the state-of-the-art deep graph
translation network, which considers both and edge attributes
that are regularized in the spectral domain. For the datasets
without node and edge attributes, the attributes are assigned
as all-ones. The parameter settings of GT-GAN, C-DGT, and
our method are detailed in supplementary materials, where
we also included key parameter sensitivity analyses.

Evaluation Metrics For the effectiveness experiments, the
Pearson correlation is computed between the upper triangular
values of the normalized adjacency matrix of the real target
graph and that of the predicted target graph. R2 is a metric
positively related to the proportion of the variance in the
dependent variable that is predictable from the independent
variable(s). Thus, the higher R2 is, the better the performance
will be. The mean squared error (MSE) results are also pro-
vided in supplementary material due to space limitation. For
all comparison and our methods, 5-fold cross-validation is
performed, where for each run we select one subset as test
and the remaining 4 as training set. In the training set, 20%
is randomly selected as validation to determine hyperparame-
ters through a grid search. For the efficiency experiments, as
the training time depends on the data and maximum number
of epochs for the gradient-based optimization algorithms (e.g.
SGD, ADAM), we use per-epoch training time on CPU as the
evaluation metric. We use CPUs to make fair comparisons,
as the non-deep learning-based comparison methods neither
have a GPU-version nor enjoy the speed-up by GPU.

Performance
In this section, the performance of the proposed method,
namely GSEN, as well as other methods on effectiveness and

efficiency on both 11 synthetic and 4 real-world datasets are
elaborated. In addition, the case studies and the sensitivity
tests on the real-world datasets are also presented.

Performance on synthetic datasets For synthetic datasets,
we compare the Pearson correlation between the target graph
generated by various kernels and the graphs predicted by var-
ious methods. Table 2 summarizes the effectiveness compari-
son for 11 synthetic datasets. Our method achieves 0.90 Pear-
son correlation on average among all 11 synthetic datasets,
outperfoming the second best method, namely C-DGT, by
around 50%. Also, our GSEN achieves best performance in 8
out of 11 datasets among 14 methods. The traditional graph
spectral kernel functions cannot perform well on most of the
datasets that do not follow its prescribed graph transforma-
tion rules. Their average performance are thus worse than
the deep learning-based methods. The deep learning-based
graph translation method C-DGT perform much better than
the other deep learning-based GT-GAN and fully-connected
baseline methods. This is because the C-DGT method par-
tially considers the spectral property as a regularization term
such that it can have relatively good performance (e.g. > 0.7)
on 7 out of 11 synthetic datasets, but not as good as our GSEN,
which typically perform better on normalized Laplacian ma-
trix Z than original Laplacian matrix L. This is because the
eigenvalues of the normalized Laplacian matrix are between
0 and 2, which can have a good estimation when using Taylor
expansion to estimate F(Λ).

Performance on real-world datasets . Here metric-based
evaluation, as well as the qualitative analyses on brain net-
work dataset and malware confinement dataset are presented.

Metric-based evaluation: Table 3 shows the Pearson cor-
relation (PR) and R2 values by comparing the predicted



Ours GT-GAN C-DGT
Dataset time speed up time speed up time speed up
IoT-20 0.06s × 1 31s × 517 2.44s × 41
IoT-40 0.09s × 1 66s × 733 5.86s × 65
IoT-60 0.13s × 1 108s × 831 12.10s × 93
IoT-200 0.21s × 1 174s × 829 40s × 190
IoT-400 0.72s × 1 692s × 961 - -
IoT-600 1.60s × 1 1611s ×1007 - -
IoT-800 2.89s × 1 2964s ×1026 - -
IoT-1000 4.75s × 1 4112s ×866 - -

Table 4: Training time per epoch. (-) indicates out-of-memory
error.

Figure 3: Case study of malware confinement datasets with
our method.

graphs with the empirical target graphs. Our method achieves
the highest Pearson coefficient and R2 on 3 out of 4 datasets,
and significantly outperform all the comparison methods by
over 8% in PR and more than 0.20 in R2. For the malware
confinement datasets, namely the IoT datasets, our method
clearly outperforms the C-DGT method in R2 and PR, which
is the state-of-the-art method on these datasets. Moreover,
as also shown in the next section, our method is over 40
times faster than the C-DGT method. In addition, the C-
DGT method receives low PR and R2 on the brain network
SC-FC translation dataset whose nodes attributes are not
available. The GT-GAN method achieves the highest PR and
second best R2 in SC-FC dataset, but performs worse on the
other datasets. However, the GT-GAN method is the slowest
method in terms of the per epoch training time. SC-FC map-
ping in neuroscience domain is a very challenging problem
and it is not easy for the state-of-the-art (e.g., Galan2008,
Abdelnour2014, Meier2016, and Abdelnour2018) in this do-
main to achieve a PR higher than 0.5. This might be caused
by the noise in the resting-state fMRI data. We will show
some insightful reason through multiple case studies below.

Qualitative analyses on the brain network SC-FC pre-
diction dataset: Figures 2(a) and 2(b) plot two subjects
in: 1) structural connectivity (djacency matrix of the source
graph shown on the left column), 2) empirical functional
connectivity (adjacency matrix of target graph shown on the
middle column), 3) predicted functional connectivity (adja-
cency matrix of target graph shown on the right column. As
shown in Figure 2, the predicted FC using Subject 121’s SC
is very close to the same subject’s empirical FC. On the other
hand, the predicted FC using Subject 88’s SC is different

from Subject 88’s empirical FC, although Subject 88’s SC is
very similar to Subject 121’s SC. This is because SC reflects
human brain’s anatomical neural network, which has rela-
tively less individual differences among the human beings.
Unlike SC, the FC used in this datasets reflects the Pearson
correlations between two time series (i.e., Blood Oxygen
Level Dependent (BOLD) signal) of different brain Regions
Of Interests (ROIs), when the subject is instructed under the
resting-state. In practice, it is difficult to control these sub-
jects’ brain activities, which causes the empirical FC very
noisy such that affects the performance of all prediction meth-
ods. The additional cases are provided in our supplementary
material due to the space limitation.

Qualitative analyses on the malware confinement
(IOT) dataset: We observed numerous interesting predic-
tions and exemplified few here and in supplementary mate-
rials. Figure 3 demonstrates one case of the source graphs,
empirical target graph, and the predicted target graphs by our
method from malware confinement datasets. To prevent the
network ceased by malware, some of the links in the network
are cut while maintaining the optimal functionality of the
entire network, which formulates the empirical target graph
that is sparser than the source graph. When comparing the
empirical target graph with the predicted target graph, it is
obvious that our method can mostly predict which link should
be cut to prevent the malware propagation.

Efficiency evaluation To validate the efficiency as well as
the scalability of the proposed method, we use three real-
world IoT datasets whose number of nodes is from 20 to 60.
We further enlarge the IoT-20 dataset from 200 to 1000 nodes,
which generates four larger datasets, namely the IoT-200, · · · ,
IoT-1000 datasets. We report the results in Table 4 for the
mean training time per epoch using CPU for 100 epochs on
the aforementioned 7 datasets. We compare the results with
the two deep learning-based graph translation methods. For
our network, we set both the degree of power K and the
number of layers to 5. For the other two comparison methods,
the default settings are applied. As shown in Table 4, our
method is on average 967 times faster than the GT-GAN
method and 72 times faster than the C-DGT method. Notice
that the C-DGT is unable to handle the graphs with more than
400 nodes due to the out-of-memory error. The scalability of
the proposed method is remarkable, which can be trained in
4.75 seconds per epoch on the graphs with 1000 nodes.

Conclusions
This paper focuses on the problem of spectral graph topo-
logical evolution, by proposing a novel deep Graph Spectral
Evolution Networks (GSEN) which achieves a compelling
trade-off between model expressiveness and efficiency. The
proposed GSEN solves crucial drawbacks of the existing
models in the graph topological evolution domain, which typ-
ically suffer from superlinear time and memory complexity.
Experimental results on multiple synthetic and real-world
datasets demonstrate the outstanding expressiveness and ef-
ficiency accuracy in terms of the graph topology prediction
accuracy and runtime, as well as qualitative analyses on the
predicted graph topologies.
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