
ReForm: Static and Dynamic Resource-Aware DNN
Reconfiguration Framework for Mobile Device

Zirui Xu†, Fuxun Yu†, Chenchen Liu‡, Xiang Chen†
†George Mason University, Fairfax, Virginia, {zxu21, fyu2, xchen26}@gmu.edu

‡Clarkson University, Potsdam, New York, chliu@clarkson.edu

ABSTRACT
Although the Deep Neural Network (DNN) technique has been
widely applied in various applications, the DNN-based applications
are still too computationally intensive for the resource-constrained
mobile devices. Many works have been proposed to optimize the
DNN computation performance, but most of them are limited in
an algorithmic perspective, ignoring certain computing issues in
practical deployment. To achieve the comprehensive DNN perfor-
mance enhancement in practice, the expected DNN optimization
works should closely cooperate with specific hardware and system
constraints (i.e. computation capacity, energy cost, memory occu-
pancy, and inference latency). Therefore, in this work, we propose
ReForm – a resource-aware DNN optimization framework. Through
thorough mobile DNN computing analysis and innovative model
reconfiguration schemes (i.e.ADMM based static model fine-tuning,
dynamically selective computing), ReForm can efficiently and effec-
tively reconfigure a pre-trained DNN model for practical mobile
deployment with regards to various static and dynamic computa-
tion resource constraints. Experiments show that ReForm has ∼3.5×
faster optimization speed than state-of-the-art resource-aware op-
timization method. Also, ReForm can effective reconfigure a DNN
model to different mobile devices with distinct resource constraints.
Moreover, ReForm achieves satisfying computation cost reduction
with ignorable accuracy drop in both static and dynamic computing
scenarios (at most 18% workload, 16.23% latency, 48.63% memory,
and 21.5% energy enhancement).
ACM Reference Format:
Zirui Xu†, Fuxun Yu†, Chenchen Liu‡, Xiang Chen†. 2019. ReForm: Static
and Dynamic Resource-Aware DNN Reconfiguration Framework for Mobile
Device . In The 56th Annual Design Automation Conference 2019 (DAC ’19),
June 2–6, 2019, Las Vegas, NV, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3316781.3324696

1 INTRODUCTION
In the past few years, the Deep Neural Network (DNN) technique
has been widely applied in various cognitive applications, such as
image classification [14], voice recognition [22], etc. Although effec-
tive and popular, the DNN-based applications are still too compu-
tationally intensive for resource-constrained platforms, especially

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DAC ’19, June 2–6, 2019, Las Vegas, NV, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00
https://doi.org/10.1145/3316781.3324696

the mobile devices. Therefore, many works have been proposed
to optimize the DNN computation performance leveraging novel
model designs [20], parameter compression [11], etc.

However, most optimization works are driven merely by a the-
oretical algorithm perspective, ignoring specific hardware and
system constraints associated with practical computing scenarios.
Therefore, many “algorithm-oriented” works fail to achieve compre-
hensive performance enhancement. For example, [27] shows that,
although the advanced DNN model of MobileNetV1 [10] achieves
19% computation workload reduction on the Pixel-1 Android smart-
phone, its practical inference latency gains 29%. Such contradictory
performance changes are caused by inconsistent optimization tar-
gets, where the aggressive structural compression fragments the
computation process and introduces considerable latency.

To achieve the comprehensive performance enhancement in
practical deployment, many recent DNN design and optimization
works have taken into account of various hardware and system
resource constraints, such as computation capacity, energy cost,
memory occupancy, inference latency, etc. [5, 25, 27]. For example,
Wang et al. [24] formulated energy loss in addition to the accuracy
loss, which guides the DNN training for certain energy budgets.
These works are referred as “resource-aware” DNN optimization.

Generally, these “resource-aware” DNN optimization works have
several critical challenges: (1) The adaptability for inconsistent re-
source constraints in various computing scenarios. Since different
computing scenarios have distinct specifications, the optimization
works need to be capable to identify and adapt to different con-
straint requirements. (2) The comprehensiveness for multiple re-
source constraints. To achieve comprehensive optimization, the
optimization works are expected to handle multiple constraints
simultaneously. (3) The reconfigurability for dynamic resource con-
straint change. During the practical deployment, especially on the
multi-task system like mobile devices, the constraints may be con-
tinuously changed by various applications. Therefore the optimiza-
tion work is expected be dynamically configurable for real-time
requirements. However, most of emerging “resource-aware” DNN
optimization work can’t fulfill all the challenges simultaneously.

To tackle these challenges, in this paper, we propose ReForm –
a resource-aware DNN optimization framework, which can com-
prehensively enhance DNN models’ computation performance on
mobile devices. Through innovativemodel reconfiguration schemes,
ReForm can efficiently and effectively optimize mobile DNN models
with regards to various static and dynamic resource constraints.

Specifically, we have the following contributions in this work:
• We identify and formulate the major computation resource
constraints for DNN computation on mobile devices.

• We propose a static DNN reconfiguration scheme to fine-
tune a pre-trained DNN model to a specific mobile device’s

*

*

*

*

…

…

…

…

Original
Model

Pruned
Model

Layer i Filters

Layer i Output
Feature Maps

Layer i+1 Filters

Layer i+1
Output

Feature Maps

Figure 1: Structural Filter Pruning Overview
default computation resource. We formulate the fine-tuning
process as an ADMM [2] optimization problem, which can
retain optimal accuracy performance under multiple config-
urable constraints with satisfying efficiency.

• We propose a dynamic DNN reconfiguration scheme to adapt
a DNN model into real-time mobile computing scenarios. By
evaluating individual model component’s resource consump-
tion and accuracy impact, the proposed scheme selectively
compute the model components to balance the accuracy per-
formance and real-time constraints without model retraining.

• We implemented ReForm on multiple types of mobile devices,
and quantitatively evaluated its performance with practical
mobile dynamic computing scenarios.

The experiment results show that ReForm has optimal efficiency
with ∼3.5× faster speed than state-of-the-art resource-aware opti-
mization method. Also, ReForm can effectively reconfigure a DNN
model to different mobile devices with distinct resource constraints.
Moreover ReForm achieves satisfying cost reduction with ignorable
accuracy drop in both static and dynamic computing scenarios.

2 PRELIMINARY
2.1 DNN Computation Optimization
Considering the intensive DNN computation cost, many works
have been proposed for DNN computation optimization. Specifi-
cally, the optimization works can be categorized into several ma-
jor approaches: (1) Novel Model Design, such as ShuffleNet [20],
SqueezeNet [12], Xception [3]; (2) Parameter Compression, such as
filter pruning [11, 18, 21] andweight sparsity [7, 8]; (3) Approximate
Calculation, such as low rank [13] and quantization [4].

These “algorithm-oriented” works mainly take the model pa-
rameters and computing mechanism as the optimization targets.
For example, the filter pruning is considered as one of the most
effective optimization methods, which eliminates the insignificant
filters to reduce the major DNN computation workload – filter
convolution process. Fig. 1 illustrates the filter pruning process in
the ith convolutional layer. By pruning the insignificant filters, the
correspondingly feature maps are also eliminated in the ith layer’s
output. As the ith layer’s output feature maps are the inputs of the
(i + 1)th layer, all the filters in the (i + 1)th layer therefore have less
computation workload.

In this work, we adopt the filter pruning as the major tool for re-
configuration, expecting to take the advantages of both “algorithm-
oriented” and “resource-aware” optimization approaches.

2.2 Resource-Aware DNN Optimization
As aforementioned, the “algorithm-oriented” works can’t achieve
comprehensive optimization result. While, many “resource-aware”
optimization works have emerged by taking into account of prac-
tical computation resource constraints: (1) For the computation

Memory
ADMM based

Fine-tuning

Computation Resource Constraints

Identification

Computation

Capacity
Energy

Well-trained

Model

Reconfigured

Model

Figure 2: Scheme Overview of Static DNN Reconfiguration

capacity constraint, Gordan et al. [6] evaluated the computation
workload of each DNN component and dynamically reconfigured
the model for different computing scenarios. (2) For the energy
constraint, Yang et al. [26] identified the DNN layer-wise energy
consumption and implemented corresponding filter pruning for
energy-constrained system. (3) For the memory constraint, Liu et
al. [19] leveraged the reinforcement learning to optimize the DNN
model to meet certain memory budget.

However, most existing“resource-aware” DNNoptimizationworks
only address single constraint in a specific computing scenario,
which can’t fulfill the comprehensive optimization expectation.

2.3 Mobile DNN Computation Constraints
Although the mobile devices are considered as the most promising
platform for DNN computing, the “resource aware” optimization
works for mobile DNN computing have even more critical require-
ments than the general challenges as aforementioned:

(1) Compared to general computing platforms, the computation
constraints of mobile devices have significant diversity with re-
gards to default device configurations, computing scenarios, and
real-time requirements. In other words, the computation resource
constraints on mobile devices have greater complexity. Therefore,
the mobile optimization works should be designed with more flexi-
bility and effectiveness. (2) The mobile computing scenarios have
distinct dynamics. When deployed on mobile devices, DNN based
applications will be affected by much more real-time issues. For
example, with starting a new application or closing an existing
one, the available system computation resource will be dynamically
changed. Conventionally, the optimization methods of DNNmodels
replies on heavy model component analysis and hours of model
retraining [6, 9]. Considering the real-time requirement, the mobile
optimization works are expected with certain efficiency.

Motivated by these challenges, we propose our “resource-aware”
optimization framework for mobile DNN computing.

3 STATIC DNN RECONFIGURATION
WITH ADMM BASED FINE-TUNING

In this work, we propose ReForm – a resource-aware DNN optimiza-
tion framework, which can comprehensively enhance DNNmodels’
computation performance on mobile devices. In ReForm, two DNN
optimization schemes are proposed to optimize the DNN computa-
tion performance with regards to static and dynamic computing
scenarios, respectively.

In the static scheme, the reconfiguration is focused on fine-tuning
a pre-trained DNN model to adapt to a specific mobile device’s de-
fault computation resource configuration. Fig. 2 shows the overview
of the proposed scheme: The scheme first identifies and formulates
specific device’s computation resource constraints in terms of mem-
ory, energy, and computation capacity. Then, a pre-trained DNN

model is reconfigured via an ADMM based fine-tuning process to
meet all the constraints and enhance the computation performance.

3.1 Computation Resource Constraints
Identification and Formulation

In mobile device, there are various computation resource con-
straints, which can be formulated into mathematical expression
and be easily inserted into the optimization objective function. In
our scheme, we focus on three typical constraints, including com-
putation capacity, memory occupancy and energy consumption.

3.1.1 Computation Capacity Constraint. Usually, the compu-
tation capacity C required by a DNN computation is represented
as the total number of MACs (Multiply-Accumulate Operations),
which can be modeled as:

C =
L∑
i=1

ni∑
j=1

r ji s
j
i ni−1h

j
iw

j
i (1)

where r ji and s
j
i represent j

th filter’s kernel size in ith layer, hji and
w
j
i denote the corresponding height and width of output feature

map, L is the total layer number and ni is the filter numbers in ith
layer. According to the computation unit’s specification, the total
computation cost C has a upper budget bound BC , which denotes
its maximum capability.

3.1.2 Memory Occupancy Constraint. We then calculate the
memory for running a DNN using the total number of bits as-
sociated with weights and the feature maps as:

M = Bf
L∑
i=1

ni∑
j=1

r ji s
j
i ni−1+Ba

L∑
i=1

ni∑
j=1

h jiw
j
i , (2)

whereM is the total memory cost. Bf and Ba are data bandwidth
which usually equals to 32 bits in the hardware platforms. We set
different memory cost budget BM during the DNN reconfiguration
process according to specific hardware platforms.

3.1.3 Energy Consumption Constraint. We then formulate the
total energy consumption E and its constraint. Usually, the total
energy consumption in a DNN includes two main parts: computa-
tion energy cost Ec and memory access energy cost Em . According
to the formulation of computation capacity, the former one can be
represented as total cost of all MACs in the DNN, i.e., Ec = εcC .
Whereas the latter one is depended on the stored weights and fea-
ture maps. In this paper, according to [19], we assume that all the
weights are stored in the Cache while all the feature maps are stored
in the DRAM. Therefore, the total energy consumption is:

E =Ec + Em = εc
L∑
i=1

ni∑
j=1

r ji s
j
i ni−1h

j
iw

j
i +

εf Bf
L∑
i=1

ni∑
j=1

r ji s
j
i ni−1 + εaBa

L∑
i=1

ni∑
j=1

h jiw
j
i ,

(3)

where εc represents the energy consumption for each MAC opera-
tion. εf and εa denote the energy cost per bit when accessing the
Cache and DRAMmemory, respectively. Denote BE as the available
energy budget which can be allocated to DNN during executing.

3.2 Fine-tuning Process Formulation
After identifying the potential computation resource constraints for
specific device, we leverage the filter pruning technique to realize
DNN reconfiguration. Firstly, we multiply each output feature map
with a gate F

j
i for filter selection, where j means the jth output

feature map in ith layer. The original value of gate F ji equals to 1.
During the fine-tuning process, we will leverage the lasso regular-
ization to force the F ji approach to 0 and we remove output feature
map whose gate F

j
i value below a given threshold value. There-

fore, for DNN model fine-tuning to specific hardware platform, we
aim to solve the following optimization problem by embedding all
potential resource constraints:

min
F ∈{0,1},θ

Loss(F , θ) + λR(F), s .t ., Ccon
m (F) ≤ bm , (4)

where Loss(F , θ) is used to maintain the model accuracy, F denotes
the set of all F ji . R(·) is a sparse regularization term to achieve the
filter pruning based model regulation, which usually denotes as
norm-1 value: ∥F ∥1. Cconm (F) represents the mth type of compu-
tation resource constraint which mentioned above and bm is its
corresponding budget. Since we want to speed up the optimization
process, we change ≤ to = in our reconfiguration scheme. There-
fore, the objective function could be interpreted as minimizing both
accuracy loss and filter numbers in the network but approximat-
ing to the given budget at the same time. In the next step, we will
introduce how to use ADMM algorithm to optimize the objective
function we formulated above.

3.3 Fine-tuning Process Optimization with
ADMM-based Algorithm

Although the formulated DNN fine-tuning process with Eq. 4 is flex-
ible and comprehensive, it will be prohibitively difficult to solve via
directly stochastic gradient descent method, since the constraints
Cconm (F) could be complex, non-differentiable, and non-convex.
Therefore, we explore the ADMM algorithm to decompose the
original optimization problem down into several easier-to-solve
sub-problems. Before applying ADMM, to simplify computation
process, we first put the constraintsCconm (F) = bm into the Eq. 4 as
norm-2 term:

min
F ∈{0,1},θ

Loss(F , θ) + λ1R(F) + λ2 ∥Ccon
m (F) − bm ∥22 . (5)

Leveraging the ADMM algorithm, we further introduce a simple
auxiliary variable Z to replace F in the equation terms of sparse
regularization and hardware constraints. Then, the augmented La-
grange function of Eq. 5 will be formulated as:

L(F , Z , u) =Loss(F , θ) + λ1R(Z) + λ2 ∥Ccon
m (Z) − bm ∥22

+ uT (F − Z) +
ρ
2
∥F − Z ∥22 ,

(6)

where u is a Lagrange Multiplier. Then by defining u = ρs , we
derive the scaled form of ADMM and get:

L(F , Z , s) =Loss(F , θ) + λ1R(Z) + λ2 ∥Ccon
m (Z) − bm ∥22

+
ρ
2
∥F − Z + s ∥22 −

ρ
2
∥s ∥22 .

(7)

We could use ADMM to solve the problem Eq. 7 through decom-
position and iteratively solving subproblems in the kth iteration:

F k+1 = argmin
F

L(F k , Zk , sk), (8)

Zk+1 = argmin
Z

L(F k+1 , Zk , sk), (9)

sk+1 = sk+F k+1−Zk+1 . (10)
In every sub-problem, we only optimize the targeted variable

and fix the other variables with values taken from last iterations.
For example, in Eq. 8, we fix Z and u but optimize F according
to the Eq. 7. Therefore, F and Z are updated iteratively and in an
alternating way. ADMM converges when the difference between F
and Z is smaller than a given threshold ϵ .

Dynamic

Resource

Mapping

Dynamic Selective

Computing Paradigm

Static Reconfigured

Model

Selective Computing

Model

Filter Selection Priority Indicator

Accuracy

Impact

Analysis

Figure 3: Scheme Overview of Dynamic
DNN Reconfiguration

By using proposed static DNN reconfiguration scheme, we can
optimize a DNN model under all potential computation resource
constraints for specific platforms with high optimization efficiency.

4 DYNAMIC DNN RECONFIGURATION
WITH SELECTIVE COMPUTING

Although the static DNN reconfiguration scheme can customize
DNN models for static platform requirements, dynamic compu-
tation resource constraints might still be introduced by various
real-time mobile applications. Therefore, in this section, we pro-
pose a dynamic DNN model reconfiguration scheme to adapt DNN
model to dynamic computation resource by selectively computing
filters in the network.

Fig. 3 shows the overview of proposed dynamic DNN model
reconfiguration scheme. Firstly, we determine the filter computing
priority by identifying a filter selection priority indicator. This in-
dicator can be derived by conducting filter resource mapping and
filter accuracy impact analysis. Then, with selection priority indica-
tor obtained, we further propose our dynamic selective computing
paradigm to dynamically reconfigure the DNN model generated
from the static reconfiguration. By doing this, the DNN model can
be optimized for all dynamic computation resource constraints.

4.1 Resource Aware Filter Significance
4.1.1 Dynamic Resource Mapping. Since filters in same layer

has identical resource consumption, based on the neural network
structure and computation mechanism, we can formulate the re-
source consumption for any filter in the ith layer with regard to
memoryMi , energy Ei , and latency Li :

Mi = B(ri sini−1+hiwi+ri+1si+1ni+1), (11)

Ei =εc (ri sini−1hiwi + ri+1si+1ni+1hi+1wi+1)+

εwB(ri sini−1 + ri+1si+1ni+1) + εaBhiwi ,
(12)

Li = (ri sini−1hiwi+ri+1si+1ni+1hi+1wi+1)/p , (13)
where risi and hiwi represent the calculated sizes of the filter and
feature map. ni−1 is the number of the output feature maps in the
(i − 1)th layer, B is the data bandwidth (usually 32-bit). p means the
processor’s average computation capability in terms of MACs.

Based on these formulations, a preliminary resource-mapping
analysis for VGG-13 [23] is shown in Fig. 4. (a), (b), and (c) rep-
resent each filter’s corresponding energy consumption, memory
occupancy and inference latency, respectively. We can find that
all 13 layers in VGG-13 have distinct resource consumption prefer-
ences. For energy consumption and inference latency, stop one filter
computation in 2nd layer can lead to largest energy and latency
reduction. On the contrary, stopping filter’s computation in last 4
layers will cause larger memory reduction.

4.1.2 Accuracy Impact Analysis. To obtain the consumption-
accuracy trade-off, we need to further investigate each filter’s accu-
racy impact. Since the accuracy impact differs for different layers,

20
16
12

8
4
0

En
er

gy
 (𝜇

J)
La

te
nc

y
(𝜇
𝑆

)

50
40
30
20
10

0

25
20
15
10

5
0

Increasing Layer Depth

1.0
0.8
0.6
0.4
0.2

0

M
em

or
y

(k
B)

A
cc

ur
ac

y
Im

pa
ct

(a) (b)

(c)
Increasing Layer Depth

(d)
Figure 4: Resource Mapping and Layer Accuracy Impact

we need to divide the analysis into two steps: comparing layer’s
accuracy impact firstly and then measuring the filter’s accuracy
impact in each layer.

1. Layer Accuracy Impact Analysis. The first step aims to reveal
layer’s accuracy impact. For each layer, the impact can be measured
by the model’s accuracy drop when a certain portion of filters are
gradually stop computing in this layer (empirically, we adopt 20% in
each time). Larger accuracy drop indicates the layer’s bigger impact
(denoted as LI) to the classification results. For example, Fig. 4 (d)
shows the LI distribution of all layers in VGG-13. We can find that
2nd to 7th layers have relatively larger LI values, which indicate
higher accuracy impact.

2. Filter Accuracy Impact Analysis. The second step aims to deter-
mine filter’s accuracy impact in each layer. In here, we introduce
contribution index (CI) to indicate the filter’s accuracy impact,
which is defined by each filter’s total differential impact to the
network’s final loss value Z:

Z (Aj
i+δ) = Z (A

j
i)+

∂Z (Aj
i)

∂Aj
i

∗∆, (14)

CI ji =
∑

|
∂Z (Aj

i)

∂Aj
i

|, (15)

where Aj
i denotes the activation of jth filter in ith layer and Z (Aj

i)

means its corresponding final loss value. The coefficients matrix
∂Z (Aj

i)

∂Aj
i

represents filter’s contribution to the nth task. We use aver-

age L1-norm of the coefficients as CI, which is the filter’s average
contribution to final accuracy. With higher CI, the filter has more
impact to the network accuracy.

4.1.3 Selection Priority Indicator. Based on the analysis above,
we can evaluate the consumption-accuracy trade-off for each filter,
which can be used as the priority indicator for selective computing:

P I ji =
LIi×norm(CI ji)

αMnorm(Mi)+αEnorm(Ei)+αLnorm(Li)
, (16)

where LIi × norm(CI
j
i) is the comprehensive accuracy impact for

jth filter in ith layer, norm(Mi), norm(Ei), and norm(Li) are respec-
tively the normalized memory, energy, and latency consumption.
αM , αE , and αL are the consumption weights determined by practi-
cal constraints. The filters with higher PI ji values are supposed to
have higher accuracy impact and less resource consumption, which
will be favored by selective computing.
4.2 Dynamic Selective Computing Paradigm
Since the resource constraints are dynamic during the DNN recon-
figuration, we further propose the DNN dynamic selective com-
puting algorithm to optimize the network without retraining. The

Algorithm 1 DNN Dynamic Selective Computing Algorithm
Input: 1)Reconfigured DNN model after fine-tuning process; 2)total
computation cost C total

m , real-time resource budget br ;
2: Initialize the Selection Priority Index P Il

while C total
m −

∑
Di
j > br do

4: Masking the filter computing with least P Il ;
Regard filter with sub-least P Il value as least one

6: end while
Return Reconfigured DNN

algorithm is shown inAlgorithm. 1. DuringDNN-based applications
executing, the system consistently obtains the available resource
br that can be allocated to DNN. Once any DNN computation costs
Ctotal
m exceeds the available budgetbr , the filter with least PI

j
i value

in current status will be masked for computing in a filter pruning
manner. Then the DNN total computation cost Ctotal

m is updated
and the filter with sub-least PI ji value will be updated as the least
one in next masking status. The system iteratively executes the
masking process until Ctotal

m below br . By applying this algorithm,
a DNN can be dynamically reconfigured to meet any resource con-
straints introduced by real-time applications. Since all PI ji values
are determined by pre-analysis, no further computation cost will
be introduced. Also, to ensure the real-time performance, no model
retraining is utilized. Although slight accuracy drop is inevitable,
the consumption-accuracy trade-off is highly manageable based on
thorough trade-off analysis.
5 EXPERIMENT
In this section, we conduct comprehensive evaluations to demon-
strate the effectiveness of the proposed framework through three
perspectives: optimization efficiency, static reconfiguration and
dynamic reconfiguration.

5.1 Experiment Setup
We implement the static DNN reconfiguration scheme in ReForm
in Tensorflow [1] environment. The dynamic DNN reconfiguration
scheme is implemented with Tensorflow Lite.

To evaluate the performance of the proposed ReForm, two well-
known models are considered: LeNet [17] and VGG-13 [23]. The
corresponding datasets are MNIST [16] and CIFAR-10 [15]. The
original accuracy is 97% for LeNet and 90% for VGG-13. We evaluate
ReForm on 4 commercial off-the-shelf mobile platforms, including
3 smartphones and 1 smart home device, which are Nexus 4, Honor
8, Redmi 3S and Xiaomi Box. These 4 platforms are equipped with
different hardware configurations in perspectives of processors,
DRAM size, battery capacity.
5.2 Experiment Evaluation

5.2.1 ReForm Optimization Efficiency Evaluation. We first eval-
uate ReForm’s static DNN reconfiguration efficiency and compare
its performance with NetAdapt [27], which is one of the state-of-
the-art resource-aware DNN optimization methods. It should be
notified that, for simplicity, the original NetAdapt only consider
inference latency constraint. Since latency is not a constraint during
DNN static reconfiguration, we reproduce their method with mem-
ory occupancy consideration in our experiment. We reconfigure
the LeNet model on MNIST and VGG-13 model on CIRFAR-10 by
utilizing both methods. The memory constraints are set as 12.4MB

and 31MB respectively. During the evaluation, we set λ1 and λ2
with values from 10−2 to 102.

Tab. 1 shows the static DNN reconfiguration efficiency evalua-
tion by comparing the optimization time cost. The notes below the
table are the original baselines for LeNet and VGG-13. It is observed
that both methods can keep original accuracy for LeNet on MNIST,
and ReForm needs 3 minutes to finish the reconfiguration. Mean-
while, the time consumed by NetAdapt is 10 minutes. For VGG-13
on CIFAR-10, the proposed ReForm needs 19 minutes while the
NetAdapt needs 72 minutes. Therefore, ReForm has 3.3× and 3.8×
speed-up than NetAdapt, indicating a better optimization efficiency.

5.2.2 ReForm Static Reconfiguration Evaluation. Our proposed
framework’s static reconfiguration is further evaluated by compar-
ing theVGG-13 reconfiguration results of both ReForm andNetAdapt
on 4 mobile platforms mentioned above with different computation,
energy and memory budgets. The accuracy drop is constrained
within 1.5%. NetAdapt is evaluated under individual computation,
energy, and memory constraints that is shown as the first three
histograms in Fig. 5, and ReForm is evaluated under all constraints
which is demonstrated as last histogram. The original VGG-13 com-
putation costs are used as baseline, which are 317.04M(Million
MACs) for computation capacity, 62MB for memory occupancy,
and 33.06mJ for energy cost.

Fig. 5 indicates that both ReForm and NetAdapt can reconfig-
ure the original network under the given constraints. However,
the reconfigured network may still exceed the other constraints as
NetAdapt only consider one constrain during reconfiguration. For
example, NetAdapt can reduce the memory below to memory bud-
get 45MB when it used to reconfigure network on Nexus 4, while
the energy and computation capacity are still larger than the given
budgets. On the contrary, ReForm can optimize VGG-13’s resource
consumption since it takes all computation resource constraints
into consideration during the reconfiguration process. Take Nexus
4 as an example, the given budget are 270M, 45MB, and 26mJ. After
reconfiguration, the proposed framework reduce computation ca-
pacity from 317.04M to 259.46M, memory occupancy from 62MB to
43.25MB, and energy consumption from 33.06mJ to 25.96mJ.

Therefore, compared with NetAdapt, our proposed framework
can optimize the network under all computation resource con-
straints with neglect accuracy drop and can achieve at most 18%
capacity, 30% memory, and 21.5% energy reduction.

5.2.3 ReFormDynamic Reconfiguration Evaluation. The dynamic
reconfiguration of the proposed framework is also evaluated on
Honor 8 and its specific VGG-13 model. The model is obtained from
the above static reconfiguration and runs in an image recognition
application. According to our measurement, the memory occupancy
of this VGG-based application includes model size, application na-
tive data size, camera graphic size and other overhead which is 2.5

Table 1: DNN Optimization Efficiency Comparison

Accuracy Memory Time Cost

LeNet
NetAdapt [27] 97% 12.38MB 10min
ReForm 97% 12.35MB 3min

VGG-13
NetAdapt [27] 90% 30.67MB 72min
ReForm 90% 30.3M 19min

∗Original LeNet Computation Cost Baseline: Capacity:42.77M Memory: 12.6MB Energy:3.56mJ
∗Original VGG-13 Computation Cost Baseline: Capacity:317.04M Memory: 62MB Energy:33.06mJ

Computation
Capacity(M) Energy(mJ)

N
ex

us
 4 Budget:

270M
45 MB
26 mJ

H
on

or
 8 Budget:

320M
N/A MB
30 mJ X

ia
om

i B
ox Budget:

260M
30 MB

N/A mJ Re
dm

i 3
S Budget:

300M
50 MB
30 mJ

Memory(MB)
N

et
A

da
pt

(C
om

pu
)

N
et

A
da

pt
(E
ne
rg
y)

N
et

A
da

pt
(M

em
or
y)

R
eF

or
m 259.46

43.25

301.11

29.61 26.8225.96
61.15

290.35
50.1

29.88 29.23

254.22

268.3

43.0326.98

259.41
62

33.06

317.04

32.68 27.99

298.46
52.89

32.07

25.86

25.99

43.01
258.85 289.32

59.64
29.79

317.04 289.32
59.64

29.79

279.85

62
33.06

44.2529.47

250.41

28.68

285.56
62

33.06

317.04

49.71
30.41

Figure 5: The Static Reconfiguration Performance for
Various Mobile Platforms

times as model size. Three sets of representative mobile applica-
tions are considered as the background computing scenarios which
includes gaming, Internet and VR camera. In addition, we add VR
camera (charging) to show a more clear comparison, meaning that
the mobile device is charging during VR scenario. The experiment
results are obtained based on 10000 times task executions.

Fig. 6 shows ReForm adaptation result in the four computing sce-
narios. With different applications running, the resource budgets
left for model execution are different (denoted by black lines). And
some scenarios can not afford the computation resource for the
VGG-based application execution, such as gaming and VR applica-
tions. For example, in VR camera scenario, ReForm first examines
the energy budget and finds the original VGG-based task’s energy
consumption exceeds the budget. In such case, ReForm dynamically
masks 19.8% filters with 1.3% accuracy drop and reduces model
consumption to meet the energy constraint. On the contrary, in VR
camera(charging) scenario, ReForm finds there is no constraint for
energy consumption because of charging. It further examines the
memory budget and reduce the memory occupancy until meets the
given budget with only 0.8% accuracy drop.

Therefore, the DNN related applications can be well balanced
with acceptable accuracy performance and manageable resources
under the dynamic reconfiguration of ReForm.

6 CONCLUSION
In this paper, we propose a resource-aware DNN reconfiguration
framework ReForm to solve the challenges of deployingDNNs inmo-
bile platforms. Through innovative model reconfiguration schemes,
ReForm can efficiently and effectively optimize mobile DNN models
with regards to various static and dynamic computation resource
constraints. The experiment results show that ReForm has optimal
efficiency with ∼3.5× faster speed than state-of-the-art resource-
aware optimization method. Also, ReForm can effective reconfigure
a DNN model to different mobile devices with distinct resource con-
straints. Moreover, ReForm achieves satisfying computation cost
reduction with ignorable accuracy drop in both static and dynamic
computing scenarios (at most 18% workload, 16.23% latency, 48.63%
memory, and 21.5% energy enhancement). In summary, our work
can comprehensively optimize DNN models to various constraints
simultaneously and provide optimal performance enhancement in
various computing scenarios.
Acknowledgment: This work was supported in part by NSF CNS-
1717775.

FMR: Filter Masking Rate(%)
ADR: Accuracy Drop Rate(%)

En
er

gy
 (J

)

No budget

430
550 420

ReForm VGG Specific to Honor 8

In
fe

re
nc

e
Ti

m
e

(s
) 550 700

600 600

Gaming Internet VR Camera VR Camera
(Charging)

M
em

or
y

(M
B

)

140 200 130 130

FMR:19.8
ADR:1.1

No
Constraint

FMR:20.6
ADR:1.4

FMR:15.4
ADR:0.8

Figure 6: The Reconfiguration Performance for Various
Mobile computing Scenarios

REFERENCES
[1] Martín Abadi and et al. 2016. Tensorflow: A System for Large-scale Machine

Learning. In OSDI, Vol. 16. 265–283.
[2] Stephen Boyd. 2011. Alternating direction method of multipliers. In Talk at NIPS

workshop on optimization and machine learning.
[3] François Chollet. 2017. Xception: Deep Learning with Depthwise Separable

Convolutions. arXiv preprint (2017), 1610–02357.
[4] Matthieu Courbariaux and et al. 2016. Binarized neural networks: Training Deep

Neural Networks with Weights and Activations Constrained to+ 1 or-1. arXiv
preprint arXiv:1602.02830 (2016).

[5] Biyi Fang and et al. 2018. NestDNN: Resource-Aware Multi-Tenant On-Device
Deep Learning for Continuous Mobile Vision. In Proc. of MobiCom.

[6] Ariel Gordon and et al. 2017. MorphNet: Fast & Simple Resource-Constrained
Structure Learning of Deep Networks. arXiv preprint arXiv:1711.06798 (2017).

[7] Song Han and et al. 2015. Deep compression: Compressing Deep Neural Net-
works with Pruning, Trained Quantization and Huffman Coding. arXiv preprint
arXiv:1510.00149 (2015).

[8] Song. Han and et al. 2015. Learning Both Weights and Connections for Efficient
Neural network. InAdvances in neural information processing systems. 1135–1143.

[9] Yihui He and et al. 2018. Amc: Automl for Model Compression and Acceleration
on Mobile Devices. In Proc. of ECCV.

[10] Andrew G Howard and et al. 2017. Mobilenets: Efficient Convolutional Neural
Networks for Mobile Vision Applications. arXiv preprint arXiv:1704.04861 (2017).

[11] Hengyuan Hu and et al. 2016. Network trimming: A data-driven Neuron Pruning
Approach Towards Efficient Deep Architectures. arXiv preprint arXiv:1607.03250.

[12] Forrest N Iandola and et al. 2016. Squeezenet: Alexnet-level Accuracy with 50x
Fewer Parameters and Less 0.5mb Model Size. arXiv preprint arXiv:1602.07360.

[13] Max Jaderberg and et al. 2014. Speeding up Convolutional Neural Networks with
Low Rank Expansions. arXiv preprint arXiv:1405.3866 (2014).

[14] Alex Krizhevsky and et al. 2012. Imagenet Classification with Deep Convolutional
Neural Networks. In Proc. of NIPS.

[15] Alex Krizhevsky and Geoffrey Hinton. 2009. Learning Multiple Layers of Features
from Tiny Images. (2009).

[16] Yann LeCun, Corinna Cortes, and CJ Burges. 2010. MNIST Handwritten Digit
Database. AT&T Labs [Online]. Available: http://yann. lecun. com/exdb/mnist.

[17] Yann LeCun and et al. 2015. LeNet-5, convolutional neural networks. URL:
http://yann. lecun. com/exdb/lenet (2015), 20.

[18] Hao Li and et al. 2016. Pruning Filters for Efficient Convnets. arXiv preprint
arXiv:1608.08710 (2016).

[19] Sicong Liu and et al. 2018. On-Demand Deep Model Compression for Mobile
Devices: A Usage-Driven Model Selection Framework. (2018).

[20] Ningning Ma and et al. 2018. Shufflenet v2: Practical guidelines for efficient cnn
architecture design. arXiv preprint arXiv:1807.11164 (2018).

[21] Adam Polyak and Lior Wolf. 2015. Channel-level Acceleration of Deep Face
Representations. IEEE Access 3 (2015), 2163–2175.

[22] Changhao Shan and et al. 2018. Attention-based End-to-end Speech Recognition
on Voice Search. In Proc. of ICASSP.

[23] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Net-
works for Large-scale Image Recognition. arXiv preprint arXiv:1409.1556 (2014).

[24] Yue Wang and et al. 2018. EnergyNet: Energy-Efficient Dynamic Inference.
[25] Zirui Xu and et al. 2018. DiReCt: Resource-Aware Dynamic Model Reconfigura-

tion for Convolutional Neural Network in Mobile Systems. In Proc. of ISLPED.
[26] Tien-Ju Yang and et al. 2016. Designing Energy-efficient Convolutional Neural

Networks using Energy-aware Pruning. arXiv preprint arXiv:1611.05128 (2016).
[27] Tien-Ju Yang and et al. 2018. Netadapt: Platform-aware Neural Network Adapta-

tion for Mobile Applications. Energy 41 (2018), 46.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 12.60 points
 Normalise (advanced option): 'original'

 32

 D:20190429080835
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 12.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

