
Prediction-time Efficient Classification Using Feature
Computational Dependencies

Liang Zhao, Amir Alipour-Fanid, Martin Slawski, Kai Zeng

George Mason University

{lzhao9,aalipour,mslawsk3,kzeng2}@gmu.edu

ABSTRACT
As machine learning methods are utilized in more and more real-

world applications involving constraints on computational budgets,

the systematic integration of such constraints into the process of

model selection and model optimization is required to an increas-

ing extent. A specific computational resource in this regard is the

time needed for evaluating predictions on test instances. There is

meanwhile a substantial body of work concerned with the joint opti-

mization of accuracy and test-time efficiency by considering the time

costs of feature generation and model prediction. During the feature

generation process, significant redundant computations across dif-

ferent features occur in many applications. Although the elimination

of such redundancies would reduce the time cost substantially, there

has been little research in this area due to substantial technical chal-

lenges involved, especially: 1) the lack of an effective formulation for

feature computation dependency; and 2) the nonconvex and discrete

nature of the optimization over feature computation dependency. In

order to address these problems, this paper first proposes a heteroge-

neous hypergraph to represent the feature computation dependency,

after which a framework is proposed that jointly optimizes the

accuracy and the exact test-time cost based on a given feature com-

putational dependency. A continuous tight approximation to this

original problem is proposed based on a non-monotone nonconvex

regularization term. Finally, an effective nonconvex optimization

algorithm is proposed to solve the problem, along with a theoretical

analysis of the convergence conditions. Extensive experiments on

eight synthetic datasets and six real-world datasets demonstrate

the proposed models’ outstanding performance in terms of both

accuracy and prediction-time cost.

CCS CONCEPTS
• Computing methodologies→ Cost-sensitive learning;

ACM Reference Format:
Liang Zhao, Amir Alipour-Fanid, Martin Slawski, Kai Zeng. 2018. Prediction-

time Efficient Classification Using Feature Computational Dependencies.

In KDD ’18: The 24th ACM SIGKDD International Conference on Knowledge
Discovery Data Mining, August 19–23, 2018, London, United Kingdom. ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3219819.3220117

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’18, August 19–23, 2018, London, UK
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-5552-0/18/08. . . $15.00

https://doi.org/10.1145/3219819.3220117

Table 1: An example of the features extracted from a set of raw data.
N denotes the number of elements in input feature vector x .

Feature ID:Name Description Generation Time

V1 : mean x̄ = 1

N
∑N
i=1

x (i) 0.672 microsecond

V2 : median The higher half value of a data sample. 4.365 microsecond

V3 : MAD
1 MAD =median(|x (i) −median(x) |) 8.346 microsecond

V4 : STD
1 σ =

√
1

N−1

∑N
i=1
(x (i) −mean(x))2 1.608 microsecond

V5 : Skewness γ = 1

N
∑N
i=1
(x (i) −mean(x)/σ)3 14.917 microsecond

V6 : Kurtosis β = 1

N
∑N
i=1
(x (i) −mean(x)/σ)4 14.095 microsecond

V7 : MAX H = (Max (x (i)) |i=1. . .N) 0.464 microsecond

V8 : MIN L = (Min(x (i)) |i=1. . .N) 0.652 microsecond

V9 : Mean Square (ms) MS = 1

N
∑N
i=1
(x (i))2 1.147 microsecond

V10 : Root Mean Square RMS =
√
MS (x) 1.273 microsecond

V11 : Pearson’s Skewness 3 · (mean(x) −median(x))/σ 8.011 microsecond

1 INTRODUCTION
Machine learning methods are now widely used in many real-world

applications, including earthquake detection [28], adult content fil-

tering [15], and intruder detection [26]. Additional requirements

from industrial fields must be taken into account, especially the

timeliness of the prediction [31]. Given that Google expects to pro-

cess over 40,000 search queries every second on average in 2018,

running a machine learning algorithm is clearly impractical unless

it is capable of generating timely predictions in tens of millisec-

onds. Also, as machine learning models are being applied in smaller

devices, the requirements in terms of the CPU time and energy con-

sumption are becoming higher and higher [27]. This means that the

prediction time cost is a hurdle machine learning must overcome if

it is to be widely adopted outside academic settings. The feature ex-

traction cost dominates the test-time runtime cost, especially when

linear models such as those commonly used in industrial settings

are utilized [3, 6, 9, 14, 22].

To address this problem, in recent years there has been a steady

increase in the amount of research on test-time cost-aware machine

learning. This research can generally be categorized into implicit

and explicit methods. Implicit methods typically employ boosting,

heuristic, or greedy strategies to guide the model towards greater

test-time efficiency [17, 19, 20]. Explicit methods optimize criteria

involving a trade-off between prediction accuracy and prediction

cost [8, 10, 12]. A key observation when minimizing test-time cost

is that the costs for extracting different feature subsets vary. For

example, for intruder detection, many features can be extracted

from a raw input time series, including mean and standard deviation.

Naturally, the time cost for extracting standard deviation is larger

than that required to calculate the mean. Existing methods generally

aim at the selection of those features with relatively low cost while

still achieving high prediction accuracy.

In a number of important applications, some computations for

generating different features tend to be shared [30], whereupon

we refer to their generation processes as being computationally

1
MAD: median absolute deviation; STD: standard deviation

https://doi.org/10.1145/3219819.3220117
https://doi.org/10.1145/3219819.3220117

dependent on each other. Table 1 illustrates some of the features

commonly used in signal processing for intruder device detection.

As shown in the table, the features “mean”, “Kurtosis”, “Skewness”,

“standard deviation”, and “Pearson’s Skewness” all share the compu-

tation of “mean”; the feature “MAD” also contains the computation

of “median”; and the computation for the feature “root mean square”

includes that of “mean square”. Therefore, in our machine learning

model, if both “mean” and “standard deviation” are selected then

it is only necessary to calculate “mean” once. Similarly, if “mean

square” has already been selected, then the additional cost of adding

the feature “root mean square” requires only the calculation of the

root of a scalar value, which considerably reduces the extra time

cost incurred when including that additional feature.

Even though the apparent potential for cost reduction result-

ing from the aforementioned feature computational dependency
deserves a comprehensive consideration and treatment, as yet lit-

tle attention has been paid to this issue due to several technical

challenges. 1) Difficulty in optimizing the cost associated with
computationally dependent feature sets. To identify a globally

optimal set of features, a suitable criterion for quantifying the costs

of all possible feature set is required. Unlike the situation in existing

work, in the formulation proposed herein the total time cost of all

the features combined will no longer be the direct summation of the

respective costs for individual features. Instead, each candidate set

of features will have its exclusive set of shared computations with

the corresponding shared time cost. Given that there are exponen-

tially many possible feature subsets, enumeration of the individual

costs for each of possible set is prohibitive. 2) Ineffectiveness of
convex approximation for cost optimization with feature de-
pendency. In addition to feature selection, which is well known

as a computationally hard problem, shared computations of the se-

lected features should be counted once in cost optimization, which

is actually a second discrete problem in which positive integers are

mapped to {0,1}. This requirement typically cannot be satisfied by a

convex approximation such as the ℓp norm (p ∈ [1, 2)) as shown in

Section 4.3.1 below. 3) Algorithmic efficiency for a re-weighted
nonconvex-regularized problem. A complex optimization prob-

lem with exponentially many solutions requires efficient methods.

Moreover, to ensure that the model is applicable in real-world appli-

cations with large datasets optimization methods that are efficient

(ideally with linear complexity) and scalable are preferred.

To the best of our knowledge, there is no existing work capable

of addressing all the above challenges and providing a concrete

framework for the formulation and treatment of cost-efficient ma-

chine learning with feature computation dependency. In order to

address these challenges simultaneously, this paper proposes a com-

prehensive framework that explicitly minimizes the prediction error

and runtime cost by optimally utilizing the feature computational

dependency among different features. The feature computational

dependency is represented in terms of a heterogeneous hypergraph

whose nodes are the features and the edges are the computation

components of the features; the feature computational dependency

is then embedded into the formulated framework. The resulting opti-

mization problem is nonconvex and discontinuous, which is difficult

to solve. To address this, we propose a tight relaxation equivalent to

the original problem, which is easier and more efficient to solve. A

new efficient algorithm based on nonconvex Alternating Direction

Methods of Multipliers (ADMM) is proposed which has lately been

shown to converge to local optima under specific conditions. The

major contributions of this paper can be summarized as follows:

• We characterize feature computational dependency using het-

erogeneous hypergraphs that yield a concise representation

of feature dependency and the computational costs associated

with each feature subset.

• We optimize prediction accuracy and test-time efficiency uti-

lizing feature computational dependency. A continuous re-

laxation of the original discrete function for the runtime cost

is proposed to provide a tight approximation. This approxi-

mation is proved to be equivalent to a class of re-weighted

nonconvex regularized problems.

• We develop an effective algorithm to solve these noncon-

vex problems with theoretical guarantees. The proposed al-

gorithm is fast and scalable to large datasets. A theoretical

analysis of the convergence properties is provided as well.

• We conduct extensive experiments on eight synthetic datasets

and six real-world datasets. The proposed method is com-

pared with several state-of-the art methods. The analyses of

the performance and effectiveness of feature selection demon-

strate the advantage the proposed methods over existing

methods.

2 RELATEDWORK
At the beginning of this section, we briefly review prior work on

test-time cost-efficient models, including both implicit and explicit

methods. We then continue with an overview on related areas in-

cluding budgeted learning, cost-aware data acquisition, and sparse

feature learning.

Implicit cost-aware methods. There is typically a trade-off be-

tween prediction accuracy and prediction cost when incorporating

runtime into model optimization. Implicit cost-efficient methods

do not necessarily model this trade-off directly, but tend to employ

heuristic or greedy strategies to guide the model prediction towards

cost efficiency. There is extensive research under this category, in-

cluding: 1) Cascades of classifiers. Here, several classifiers are ordered
as a sequence of stages. Each classifier can either reject inputs by

predicting them, or pass them on to the next stage. To reduce the

test-time cost, these cascade algorithms enforce that classifiers in

early stages use very few and/or cheap features and reject many

easily classifiable inputs [17, 18]. 2) Decision-tree based. Decision
tree (and forest) induction methods have been extensively used for

decision making when the cost of acquiring the features are con-

sidered [13]. For example, Tan and Schlimmer [20] employed an

entropy-based strategy to estimate the cost while Ferri et al. [7]

leveraged the feature cost to prune the tree after it had been built. Li

et al. [14] employed a cost-efficient decision tree based on a heuristic

strategy to coarsely partition the feature space, and then applied

local SVM classifiers to further refine them. 3) Boosting-based. For

example, Reyzin et al. [19] extended AdaBoost and employed weak

learners with fewer features in order to reduce the feature cost.

Explicit cost-aware methods. In general, these methods ex-

plicitly aim at a balance between prediction accuracy and cost, for

example by jointly optimizing a trade-off or optimizing the accuracy

under the constraint of a specified cost budget. For this category, the

most common method is ℓ1-regularization, where a sparse set of fea-

tures will be learned in order to not only ensuremodel generalization

but also a reduction in computational total cost [5]. To consider the

different costs of the various features, a number of approaches have

been proposed. For example, Grubb et al. [8] proposed an algorithm

for “anytime prediction” which outputs predictions with increasing

quality as the cost budget increases. Xu et al. [24] developed Greedy

Miser, a variant of regular stage-wise regression, which updates the

selected features using a greedy optimization strategy. Kusner et

al. [12] formulated the cost-sensitive feature selection as an approx-

imate submodular optimization problem, while Huang and Wang

[10] developed a genetic algorithm-based method to maximize an

objective function consisting of classification accuracy and inverse

cost.

Budget learning and cost-aware data acquisition. In addi-

tion to the test-time cost, which is the focus of this paper, several

related works pay close attention to the training cost, including

budgeted learning and cost-aware data acquisition. The difference

between active feature acquisition and budgeted learning is that

budgeted learning usually has a hard budget set up-front, while

active feature acquisition does not have a hard budget [11]. For

example, Deng et al. [4] designed algorithms for the multi-armed

bandit problem to select specific features for specific instances un-

der a limited budget. Nan and Saligrama [16] developed an adaptive

method which learns both a low-cost and a high-cost models by

maximizing the utilization of low-cost models while maintaining

the performance, and hence controlling total cost. Cost-aware data

acquisition is commonly applied in models for medical diagnosis.

For example, Ling et al. [15] proposed a lazy-tree learning to jointly

minimize the misclassification cost and the sum of feature costs.

However, none of the above methods considers computation de-

pendency and thus do not factor in redundant computations among

features to further reduce their computational cost. To address this

problem, this paper proposes an optimization problem based on

the representation of feature computation dependency in terms of

heterogeneous hypergraphs and proposes an effective algorithm to

select those features with a low total cost.

3 PROBLEM SETUP
Define X = {X1,X2, · · · ,Xn } ∈ R

n×k
as the input data containing

n samples under k features, where each sample is a row vector

X j ∈ R
1×k

. The i-th element of X j corresponds to a feature Vi ∈ V ,

where V = {V1, · · · ,Vk }. For each X j , there is a corresponding

Yj ∈ {0, 1} such that Yj = 1 means it is labeled as positive; Yj = 0

otherwise. The prediction runtime consists of: 1) feature generation

and 2) model prediction. The prediction runtime depends on how

many and which features are to be selected and can be denoted as

T = T1 + T2 + const , which is the sum of the parts that are relevant

and irrelevant to the selected features. Specifically, “const” denotes
the runtime that is irrelevant for the selected features, such as the

computation of the sigmoid function when using logistic regression

for prediction, given the already calculated linear combination of

all the feature values. Moreover, T1 denotes the time for feature

generation and T2 represents the time for feature utilization, namely

the computation directly utilizing the generated features (e.g., the

first layer of neural network). For the latter, the computation time

is only relevant to the number of features selected, while for the

former, the computation time is not only relevant to how many but

also which features are selected. For example, Table 1 shows the

feature generation runtime for 11 features.

As shown in Table 1, different features potentially share a number

of computations during their generations in which case we say that

these features have feature computational dependency. When evaluat-

ing the computational cost of a group of features, it is desirable that

only distinct computations are counted. To explicitly express the

selected featuresU and their time cost estimation T(U ;G) based on

the feature computational dependency G, the entire computational

runtime can be rewritten as T(U ;G) = T1(U ;G) + T2(U) + const ,
where the feature computation dependency G is used to take into

account shared computations for all possible feature subsets.

At a high level, our goal is to select a subset of features U ⊆ V
that can jointly achieve fast and accurate prediction. One problem is

to maximize the prediction accuracy within the required prediction

time, which can be formulated as the minimization classification

error subject to an upper bound on the total prediction time:

min

W ,U ⊆V
L(Y , f (W ,X)), s .t . T(U ;G) ≤ τ (1)

where τ is an upper bound on the admissible prediction time. More-

over,W ∈ R1×k
is the set of feature weights such thatWi denotes

the weight for feature Vi ; L(·) is the empirical loss function quan-

tifying prediction error, such as the logistic loss or hinge loss for

classification problems. Finally, f (W ,X) denotes the corresponding
classifier. Alternatively, when there is no explicit upper bound on

prediction time, the prediction error and time cost can be jointly

minimized:

min

W ,U ⊆V
L(Y , f (W ,X)) + λT(U ;G) (2)

where λ ≥ 0 is the trade-off parameter between classification error

and time cost.

Solving the above problems in Equations (1) and (2) entail two

challenges: 1. An exponentially large number of records in G for

shared computations. Due to the existence of feature computational

dependency, each combination of features will have its own exclu-

sive pattern of shared computations. However, it is not feasible to

enumerate all possible feature subsets and the associated computa-

tional costs. A concise representation of G is mandatory as a first

step towards efficient optimization. 2. The joint optimization of con-

tinuous and discrete terms. In Equations (1) and (2), optimization

forW is a continuous problem while that inU is discrete.

4 MODELS
To solve the problems in Equations (1) and (2) and to address the

above challenges, we first propose a new heterogeneous hypergraph

for modeling the feature computational dependency (FCD) and then

propose our model named Cost-Aware classification using the FCD

Heterogeneous hypergraph (CAFH).

4.1 Heterogeneous hypergraph for feature
computational dependency

This section presents a concise representation of the feature compu-

tational dependency G via a heterogeneous hypergraph.

For each feature combination, in order to specify shared com-

putations as well as those exclusive to each feature, the concept

of “feature computation component (FCC)” is employed. FCCs are

V4 V5
V6

V1

V11

V2

V3

V7

V8

V9

V10

Node: a feature

Edge type 1: a feature generation component

Edge type 2: feature utilization runtime

Figure 1: An overview of the feature computational depen-
dency heterogeneous hypergraph for Table 1.

the basic units that collectively represent the computation process

underlying the generation of all features. For example, standard

deviation would have three FCCs, the first being the computation of

“mean”, the second being the calculation of the “standard deviation”

using the computed mean, and the third being the computation

where the prediction model utilizes the computed standard devia-

tion to make its prediction. In this example, the first two FCCs are

for feature generation while the third is for the feature utilization

by the prediction model.

This means that each feature can contain multiple FCCs and an

FCC can also be shared by multiple features. This notion can be

naturally captured by a hypergraph. However, since in our problem

there are two types of FCCs, one for feature generation (Type 1) and

one for utilization (Type 2), a new heterogeneous hypergraph must

be formulated to represent the feature computational dependency

G, which is subsequently referred to as feature computational
dependency heterogeneous hypergraph (FCD heterogeneous
hypergraph). The formal definition is as follows:

Definition 1 (FCD Heterogeneous Hypergraph). An FCD
heterogeneous hypergraph is a heterogeneous hypergraph where a
node is a feature and an hyperedge is an FCC. There are two types of
hyperedges: 1) Type 1: FCCs for feature generation, and 2) Type 2: FCCs
for feature utilization. Several nodes can be linked by the same Type-1
hyperedge if they share the same FCC. Each feature has only one Type-
2 hyperedge. More formally, denote an FCD heterogeneous hypergraph
as G = (V ,E,w(E)), where the node set is the set of featuresV and the
hyperedge set E is the set of all the FCCs.w(E) denotes the weights of
all the hyperedges. The weight of hyperedge Ei is represented asw(Ei),
denoting time cost for the corresponding FCC.

The FCD heterogeneous hypergraph of the feature set in Table

1 is shown in Figure 1. In this example, there are 11 nodes corre-

sponding to features and 10 hyperedges denoting the corresponding

computation components. Each node is linked to at least one hyper-

edge, while each hyperedge covers at least one node. There are 6

singleton hyperedges, each of which cover a single node, signifying

that the computation is exclusive to single features. For example, as

shown in Table 1 and Figure 1, the features “Skewness” and “stan-

dard deviation” both include the computation component “mean”

so that these two nodes are linked by the hyperedge of the same

computation component.

The proposed FCD heterogeneous hypergraph has several basic

properties: 1) The total computation time for a feature is the sum of

all the hyperedges having connections to it; 2) The total computation

time for a set of features is the sum of all the hyperedges having

connections to them; 3) All the Type-2 hyperedges typically have

equal weights with each other; and 4) Each Type-2 hyperedge spans

one and only one node.

4.2 Cost-aware classification using FCD
Heterogeneous Hypergraph (CAFH)

This section presents our model for Cost-aware classification using

FCD Heterogeneous Hypergraph (CAFH). The selection of a feature

is indicated by its weight:Wi = 0 means featureVi is not being used
and thus can be ignored in the prediction phase, andWi , 0 means

it is included. Accordingly, we use the indicator function: we have

I (Wi) = 0 whenWi = 0, and whenWi , 0, then I (Wi) = 1; these two

cases correspond to exclusion and inclusion of feature i , respectively.
The set of selected featuresU ⊆ V is thus defined asU = {Vi |I (Wi) =

1,Vi ∈ V }. Then FCCs involved are E ′ =
⋃U
v e(v) ⊆ E and the total

runtime is T1(U ;G) + T2(U) =
∑E′
e w(e).

Define I(W) ∈ {0, 1} |V |×1
as an indicator vector such that its ith

element is [I(W)]i = I (Wi). Using matrix representation, the above

notion of cost can be concisely expressed as follows:

T1(U ;G) + T2(U) =
∑E′

e
w(e) = DT · I(H · I(W)), (3)

whereH ∈ {0, 1} |E |× |V | is the incidence matrix of the proposed FCD

heterogeneous hypergraph such that Hi, j = 1 means the hyperedge

Ei ∈ E is an incident edge of Vj ∈ V ; and, Hi, j = 0 means Ei is

not connected to Vj . D ∈ R
|E |×1

is a vector whose elements are

the weights of the hyperedges in FCD heterogeneous hypergraph,

namely Di = w(Ei) for each ith hyperedge Ei ∈ E. In practice,

typically T1 ≫ T2 [25], so that in some practical applications we

may only need to consider Type 1 edge when formulating H and D.
Considering T(U ;G) = T1(U ;G) + T2(U) + const , Equations (1)

and (2) can be transformed to the following two optimization prob-

lems, respectively:

minW L(W), s .t ., D
T · I(H · I(W)) ≤ τ − const , (4)

and minW L(W) + λ · D
T · I(H · I(W)), (5)

where the constant term “const” has been absorbed and the deno-

tation of L(Y , f (W ,X)) in Equation (1) has been simplified into

L(W).

4.3 Optimization Objective
The optimization problem in Equations (4) and (5) are highly discrete

and nonconvex, which makes optimization a demanding task. In this

section, we will transform the original problem in order to solve it

effectively with a theoretical guarantee. As the formulations in Equa-

tions (4) and (5) are equivalent, we will focus on the regularization

form (5) in the following.

First, Equation (5) can be simplified by applying an equivalent

formwhere the inside indicator function is replaced with an element-

wise absolute-value operation:

minW L(W) + λ · D
T · I(H · |W |) (6)

where |W | ∈ R |V |×1
is an absolute valued vector ofW such that

each element [|W |]i = |Wi |.

As next step, the second term in Equation (6) is replaced by a

simple indicator function in an auxiliary variableM

min

W ,M
L(W) + λ · DT · I(M), s .t ., M = H · |W | (7)

which has two nonconvex parts due to the indicator function as well

as the nonlinear equality constraint. In the following, we will focus

on finding an effective convex relaxation.

4.3.1 Continuous relaxation of the objective function. The dis-
continuity and nonconvexity of the indicator function makes an

effective and efficient optimization difficult. A (re-weighted) ℓ1-norm

is conventionally used as a convex relaxation of the cardinality func-

tion (aka ℓ0-norm). But this convex relaxation is too loose for our

problem because it totally discards feature computational depen-

dency. Indeed, relaxing the indicator function in (6) or (7) into the

absolute value function, one obtains the optimization problem

minW L(W) + λ · D
T · |H · |W | | (8)

which entails that the FCCs associated with each row of H are

weighted by the ℓ1-norm ofW ; the penalty thus is composed of

individual feature contributions and hence does not capture at all

the aspect of cost sharing. In order to take into account feature

dependency, we consider a nonconvex regularization term (which is

actually concave) that yields a tight continuous approximation to the

proposed form of discrete regularization. Specifically, we leverage a

re-weighted nonconvex regularization to achieve the approximation.

min

W ,M
L(W) + λ · Rc (M,D) s .t ., M = H · |W | (9)

where Rc (M,D) denotes a re-weighted version of the nonconvex

regularization term such that Rc (M,D) =
∑ |E |
i Di · R(Mi). Here

R(·) can be a commonly used concave regularization term such

as MCP, SCAD, and ℓp quasi-norms (0 < p < 1) [2]. For exam-

ple, when we use re-weighted ℓp quasi-norms, then Rc (M,D) =

∥diag(D1/p) · M ∥
p
p , which is easy to compute and also satisfies

the triangle inequality. Here diag(D1/p) denotes the diagonal ma-

trix whose diagonal elements are the vector pth root of D, namely

[diag(D1/p)]i,i = D
1/p
i . As a nonsmooth component, we can use

proximal algorithms to handle the second term when the proximal

operator can be computed in closed form, which is only the case

when p is equal to some special values, i.e., p = 1/2 or p = 2/3.

4.3.2 Convex equivalence of the nonconvex constraint. The con-
straint M = H · |W | is nonconvex due to the non-linearity of |W |.
Here we propose a convex constraint and prove their equivalence.

First, we introduce the auxiliary variables B+ ∈ R |V |×1
and B− ∈

R |V |×1
such that their ith elements [B+]i = max(0,Wi) and [B

−]i =

max(−Wi , 0). Therefore,W = B+ − B−, and we have |W | = B+ + B−

if given B+i · B
−
i = 0, i = 1, · · · , |V |. Using matrix notation, we can

denoteW = Ω1 ·B and |W | = Ω2 ·B, where B = [B
+

;B−] ∈ R2 |V |×1
,

Ω1 = [A,−A], and Ω2 = [A,A]. A ∈ R
|V |× |V |

denotes the identity

matrix. Therefore, Equation (7) is transformed into the following:

min

M,B≥0

L(Ω1 · B) + λ · Rc (M,D), s .t ., M = H · Ω2 · B (10)

This indicates that the equality constraint in Equation (10) is convex.

Now we can formally state and prove the equivalence of Equations

(9) and (10):

Theorem 4.1 (Eqivalence of Formulations (10) and (9)). When
Rc is strictly monotonically increasing in [0,+∞), formulations (10)
and (9) are equivalent. When Rc is monotonically non-decreasing in
[0,+∞), the optimal solution of Equation (10) must be the optimal
solution of Equation (9).

Proof. As defined above, B = [B+;B−]. The proof amounts to

proving B+i · B
−
i = 0 for any i = 1, · · · , |V | for the optimal solution

of B in Equation (10). In the following, we prove by contradiction.

Assume there exists the situation that for some values of i we have
B+i · B

−
i , 0, this means both B+i > 0 and B−i > 0 for the optimal

solution. Now we prove there must exist another solution B+
′

i ,B
−′

i
satisfying B+

′

i · B
−′

i = 0 that provides a solution that is better (when

Rc is strictly monotonically increasing) or not worse (when Rc is

monotonically non-decreasing).

Without loss of generality, we assume that for any i , B+i ≥ B−i .
By denoting ∆Bi = B+i − B−i ≥ 0, we denote a new solution B′

that replaces B+i and B−i in the original solution B with ∆Bi and
0, respectively. We now prove that B′ is better than B when Rc is

strictly monotonically increasing and is not worse than B whenRc is

monotonically non-decreasing. First, it is obvious thatΩ1 ·B ≡ Ω1 ·B
′
.

Then, we can denote H ·,i as the ith column of H . Provided the fact

that H ≥ 0 and any of its column is not all-zeros, we have M ′ =
H ·Ω2 ·B

′ < M = H ·Ω2 ·B, and thusRc (M
′,D) < Rc (M,D)whenRc

is strictly monotonically increasing, while Rc (M
′,D) ≤ Rc (M,D)

when Rc is monotonically non-decreasing. Therefore, the proof is

completed. □

In the domain [0,+∞), common concave regularizers are indeed

monotonically non-decreasing, including SCAD and MCP [2]. The

ℓp -quasi norm [23] and the Log-Sum Penalty (LSP) [1] are strictly

monotonically increasing.

5 PARAMETER OPTIMIZATION
We propose an algorithm based on nonconvex Alternating Direction

Methods of Multipliers (ADMM) [23] to achieve the optimization

of the model in Equation (1). Here we provide the algorithm when

Rc (M,D) is instantiated by the ℓp -quasi norm; the algorithm can eas-

ily accommodate other nonconvex regularization terms such as LSP

and MCP introduced above by embedding their corresponding prox-

imal operators. We employ the following augmented Lagrangian

form of the original problem in Equation (10):

Lρ (M,B)=L(Ω1B)+λ∥diag(D
1/p)M ∥

p
p +

ρ

2

∥M−HΩ2B+Γ∥
2

F (11)

where ρ is the penalty parameter and Γ is the dual variable. Thus,

solving Equation (11) amounts to alternately optimizing the sub-

problem of B and that ofM , as illustrated in Algorithm 1 and detailed

in the following.

1. Update B.
The subproblem of B-update is as follows:

minB≥0 L(Ω1 · B) +
ρ

2

∥M − HΩ2B + Γ∥2F (12)

Algorithm 1 Parameter Optimization Algorithm

Require: Ω1 , Ω2 , H , D , and η .

Ensure: Solutions of B andM .

1: Initialize ρ = 1, B, M = 0.
2: Choose εp > 0 and εd > 0.

3: repeat
4: repeat
5: ∆B = B − η∇BLρ (M, B)
6: B ← max(∆B, 0)
7: until Convergence
8: for i = 1, · · · , |E | do
9: Mi ← Equation (15)

10: end for
11: Calculate the primal residual p and dual residual d .
12: if r > 10d then
13: ρ ← 2ρ
14: else if 10r < d then
15: ρ ← ρ/2
16: else
17: ρ ← ρ
18: end if

19: until p < εp and d < εd

where we use proximal gradient descent with a backtracking Armijo

line search [28] to solve this problem. The following proximal gradi-

ent is calculated at each iteration:

prox≥0
(B − η∇BLρ (M,B)) = max(B − η∇BLρ (M,B), 0) (13)

2. UpdateM .

The subproblem ofM-update is as follows:

minM ≥0 λ∥diag(D
1/p)M ∥

p
p +

ρ

2

∥M − HΩ2B + Γ∥2F (14)

which is separable and each subproblem ofMi is as follows:

minMi ≥0 h(Mi) = λDi ·M
p
i +

ρ

2

(Mi − HiΩ2B + Γi)
2

(15)

which has analytical solutions when p is equal to special values,

namely when p = 1/2 or p = 2/3:

1. When p = 1/2. By denoting M
1/2

j = x , the derivative of

Equation (15) can be transformed to the following:

x3 − (HiΩ2B − Γi)x + λ/(2ρ)Di = 0 (16)

where x∗ = {x1,x2,x3} ⊂ C is the set of analytical solutions to the

cubic equation using Cardano’s formula [1]. C denotes the complex

value domain. Therefore, the analytical solution toMi is:

M∗i = max(max(x∗r), 0)
2,where x∗r = {s |s ∈ R, s ∈ x

∗} (17)

2. When p = 2/3. By denoting M
1/3

j = x , the derivative of

Equation (15) can be transformed to the following:

x4 − ρ(HiΩ2B + Γi)x + λ/(2ρ)Di = 0 (18)

Therefore, we have:

M∗i =

{
max(max(x∗r), 0)

3, when x∗r , ∅

0 , when x∗r = ∅
(19)

where x∗r = {s |s ∈ R, s ∈ x
∗} is the set of real-number solutions.

Algorithm Initialization. The algorithm is initialized as the

case for p = 1, which is a convex problem and can provide a good

initial guess. In addition, ADMM typically does not support a con-

vergence guarantee for nonconvex problems in general situations.

However, we can show that the proposed ADMM-based method is

guaranteed to converge to a local minimizer under certain condi-

tions, as described in the following theorem:

Theorem 5.1 (Convergence Analysis). Given that the loss func-
tion L(·) is a Lipschitz-differentiable function (e.g., logistic loss), and
the function L(Ω1 · B) + λ · Rc (HΩ2B,D) is a coercive function [1],
then the proposed ADMM-based method will converge when optimiz-
ing Equation (10) when the following conditions are satisfied: 1) the
matrix H · Ω2 has full rank, 2) the number of FCCs is not larger than
the number of features.

Sketch of Proof. Due to the space limitation, the detailed proof

is provided in our supplementary material
1
. The following is the

sketch of proof. The sufficient conditions for the convergence of

a nonconvex ADMM is provided in Theorem 1 of [23], where five

assumptions must be satisfied. In our method, because of the co-

ercivity of L(Ω1 · B) + λ · Rc (HΩ2B,D) and assuming that L is

Lipschitz-differentiable, the first and fifth assumptions are satisfied.

As our regularization term Rc (·) is chosen as nonconvex regular-

ization terms such as SCAD, MCP, or ℓp quasi-norm, the regular-

ization term Rc (·) satisfy the property of restricted prox-regularity

as proved in Corollary 1 in [23]. Therefore, the fourth assumption

is also satisfied. Finally, because the matrix H · Ω2 ∈ R
|E |×2 |V |

has

full rank and 2|V | ≥ |E |, we have Im(A |E |) ⊆ Im(H · Ω2), where

Im(·) returns the image of a matrix and A |E | ∈ R
|E |× |E |

denotes an

identity matrix. Hence the second and third assumptions are also

satisfied. The proof is completed. □

6 EXPERIMENTS
In this section, the performance of the proposed model FDH is

evaluated using eight synthetic datasets and six real-world datasets.

First, the experimental setup is introduced. The performance of the

proposed model in terms of accuracy and prediction runtime is then

evaluated against several existing methods. Finally, the analyses

on feature computational dependency on the selected features are

elaborated. All the experiments were conducted on a 64-bit machine

with a quad-core processor (i7CPU@3.40GHz) and 16.0GB memory.

6.1 Experimental Settings
6.1.1 Synthetic dataset. In this experiment, 8 synthetic datasets

were generated with different settings. The generation procedures

were as follows. We generate the predictors of the design matrix

X ∈ R20000×100
using a Gaussian distribution with a zero mean

and a standard deviation of “1”. The sparse vectorW ∈ R1×100
is

generated by a pairwise multiplication between a binary vector and a

real-valued vector, namelyWi = αi ·βi . Here each αi is sampled from

a Gaussian distribution with a mean of zero and a variance of one

while βi is sampled from a Bernoulli distribution with a probability

of success of 0.5. Then the dependent variable Y ∈ {−1, 1}20000×1

is generated through the mapping Y = sign(X ·WT + ε), where ε
is sampled from a Gaussian distribution with a mean of zero and

standard a deviation of one. The basic feature cost D ∈ R200×1

is generated from a Gaussian distribution with zero mean and a

standard deviation of one. The incidence matrix H = [H1;H2] ∈

{0, 1}200×100
consists of two incidence matrices H1 ∈ {0, 1}

100×100

for nodes and Type-1 edges and H2 ∈ {0, 1}
100×100

for nodes and

Type-2 edges. To ensure that none of the columns or rows of H1 is

an all-zero vector, H1 = Φ ◦ Ψ is generated from a pairwise “OR”

operation of two binary matrices Φ and Ψ with the same size as H ,

1
http://mason.gmu.edu/~lzhao9/materials/papers/kdd2018.pdf

http://mason.gmu.edu/~lzhao9/materials/papers/kdd2018.pdf

where ◦ denotes a pairwise “OR” operation, soH1,i, j = Φi, j
∨

Ψi, j ,Φ
is an identity matrix while the elements in Ψ are randomly sampled

from a Bernolli distribution with successful probability ranging

from “0.1” to “0.8”. This method was used to generate 8 synthetic

datasets with different sparsities of the H matrix, reflecting different

degrees of feature computational dependency. For all the methods,

the first 5000 samples are used as the training set, the next 5000 as

the validation set and the remaining 10000 as the test set.

6.1.2 Real-world datasets. Six real-world datasets for intruder

detection were utilized for performance evaluation. Specifically, the

network traffic-flow data of the communication signals of intruder

devices in a WLAN environment were collected; 3 types of intruder

devices and 2 types of network traffic mode were used for this detec-

tion. The datasets are: 1) Parrot Bebop with bidirectional traffic flow

(35,143 samples); 2) DBPower UDI with bidirectional flow (31,374

samples); 3) DJI Spark with bidirectional flow (10,000 samples); 4)

Parrot Bebop with unidirectional flow (21,225 samples); 5) DBPower

UDI with unidirectional flow (27,024 samples); and 6) DJI Spark with

unidirectional flow (132 samples). For all the datasets, the packet

sizes and packet inter-arrival time are the raw data sources. For

each source, the first 9 features in Table 1 are extracted. For those

based on bidirectional flow, the uplink, downlink, and total traffic

are considered while for those based on unidirectional flow, only

the total traffic is considered. Therefore, the first three datasets have

9 features × 2 sources × 3 direction flow = 54 features and there are

9 features × 2 sources = 18 features for the remaining 3 datasets.

Each sample has a label of either positive (existence of intruder) or

negative (no intruder). For each dataset, both the feature generation

and feature utilization runtime is measured. For the feature gen-

eration time, each feature generation runtime is computed based

on the average time required to run 1000 data samples. A feature

computational dependency hypergraph such as the one in Figure 1

was created and the generation time measured for each basic feature

computation component (i.e., the weight of each hyperedge of Type

1) based on the average computation time for 1000 data samples.

For example, for the feature “standard deviation”, its feature gen-

eration runtime consists of the feature component “mean” and the

remaining computation utilizing the computed “mean”. The feature

utilization runtime is measured as follows: we first calculate the

model runtimeTa without any features (i.e., only the bias term), and

then compute the model runtimeTb with all features selected. Then

the feature utilization runtime (i.e., the hyperedges of Type 2) is

generated as Tb −Ta divided by the number of all the features. For

all the datasets, the half of all the samples are randomly selected for

training while the other are for testing.

6.1.3 Metrics. In this experiment, the accuracy of the classifica-

tion problem was utilized as the metric for performance evaluation,

namely the number of samples that are correctly classified divided

by the total number of samples. Another metric is the prediction

runtime, which represents the total amount of time spent on pre-

diction including both feature generation and the model prediction

using the generated features.

6.1.4 Competing Methods. This experiment utilizes 5 compari-

son methods: ℓ1-regularized logistic regression [5, 29], re-weighted-

ℓ1-regularized logistic regression [1], Cost-Sensitive Tree of Clas-

sifiers (CSTC) [25], GreedyMiser [24], and Directed Acyclic Graph

for cost-constrained prediction (DAG) [21]. These are described in

turn below.

ℓ1-regularized logistic regression (L1). This is a classic way

to conduct cost-efficient classifications by enforcing the sparsity

of the selected features. It includes a parameter that trades off the

regularization term; typically, the larger this parameter is, the fewer

the selected features will be.

Re-weighted-ℓ1-regularized logistic regression (re-weighted
L1). This is a generalized version of L1. Here the respective cost

of each features can be considered so that features with a higher

time cost will be assigned a larger penalty. Similar to L1, there is a

trade-off parameter that balances empirical loss and time cost.

Cost-Sensitive Tree of Classifiers (CSTC). Similar to the re-

weighted L1, this method also directly trades off the empirical loss

and the runtime cost. However, this method considers the feature

generation time and the feature utilization runtime separately. The

trade-off parameter is tunable, as in the above two methods.

GreedyMiser. This method again trades off accuracy and feature

cost in terms of the feature generation cost and the runtime of the

algorithm. To approximate an optimal trade-off, an update rule based

on greedy optimization is utilized with stage-wise regression.

DirectedAcyclicGraph for cost-constrainedprediction (DAG).
This method considers the situation when several features can be

budgeted together with a fixed total cost, by utilizing directed acyclic

graph to search for the best combination of features.

The performance of the new methods proposed here, namely

Cost-Aware classification using FCD Heterogeneous hypergraph

(CAFH), was compared with the above methods. Depending on

the nonconvex regularization term utilized, we have CAFH (p=1/2)

and CAFH(p=2/3) where the ℓ
1/2 and ℓ

2/3 quasi-norms are utilized,

respectively. The comparison and proposed methods were compared

by extensively varying their trade-off parameters to ensure that the

whole trade-off curve between runtime and accuracy is illustrated

and compared.

6.2 Performance
In this section, the performance of the proposed and comparison

methods are illustrated and discussed on synthetic dataset and real-

world dataset in turn.

6.2.1 Performance on Synthetic Datasets. Figure 2 shows the

accuracy-runtime performance curves for all the methods on the

8 synthetic datasets with increasing percentages of shared feature

components. Clearly, the closer the curves are to the point (0,1), the

better the performance obtained. The proposed CAFH (p=1/2) and

CAFH (p=2/3) consistently outperforms the other methods on all

datasets. Moreover, the advantage over other methods increases as

the percentage of the shared feature components increases. This

verifies the effectiveness of the proposed methods in considering

and utilizing the shared feature components to reduce runtime. In

contrast, the performance of the L1 and re-weighted L1 models tends

to decrease as the percentage of the shared feature components in-

creases because they are unable to take advantage of shared compu-

tations. This observation confirms that the incurred computational

costs are not well reflected by those schemes, and consequently

the results get steadily worse. GreedyMiser achieves a competitive

performance that is better than that of L1 and re-weighted L1 but

not as good as the proposed method, because it does not incorporate

L1

reweighted L1

CSTC

GreedyMiser

DAG

CAFH (p=1/2)

CAFH (p=2/3)

0 100 200 300 400
0.4

0.6

0.8

1

Prediction Runtime (microsecond)

(a) Synthetic Dataset 1

0 100 200 300 400
0.4

0.6

0.8

1

Prediction Runtime (microsecond)

(e) Synthetic Dataset 5

A
c
c
u
ra
c
y

A
c
c
u
ra
c
y

0 100 200 300 400
0.4

0.6

0.8

1

Prediction Runtime (microsecond)

(b) Synthetic Dataset 2

0 100 200 300 400
0.4

0.6

0.8

1

Prediction Runtime (microsecond)

(f) Synthetic Dataset 6

A
c
c
u
ra
c
y

A
c
c
u
ra
c
y

0 100 200 300 400
0.4

0.6

0.8

1

Prediction Runtime (microsecond)

(c) Synthetic Dataset 3

0 100 200 300 400
0.4

0.6

0.8

1

Prediction Runtime (microsecond)

(g) Synthetic Dataset 7

A
c
c
u
ra
c
y

A
c
c
u
ra
c
y

0 100 200 300 400
0.4

0.6

0.8

1

Prediction Runtime (microsecond)

(d) Synthetic Dataset 4

0 100 200 300 400
0.4

0.6

0.8

1

Prediction Runtime (microsecond)

(h) Synthetic Dataset 8

A
c
c
u
ra
c
y

A
c
c
u
ra
c
y

Figure 2: The Accuracy v.s. Prediction runtime per sample for all the synthetic datasets

Figure 3: Accuracy v.s. prediction runtime per sample for the
real world datasets

0 1000 2000 3000 4000 5000
10

−15

10
−10

10
−5

10
0

number of iterations

re
si

d
u

a
l

primal residual

dual residual

(a) Convergence situation 1

0 1000 2000 3000 4000 5000

10
−5

10
0

number of iterations

re
si

d
u

a
l

primal residual

dual residual

(b) Convergence situation 2

Figure 4: The convergence process in two situations, where
the first one satisfies the conditions required by Theorem 5.1
while the second one does not.

feature computation dependency either. CSTC did not achieve a

competitive performance on the synthetic datasets, showing that

the ensemble of weak classifiers where each works with just a few

features may not perform well in situations where the output is ac-

tually determined collectively by all the input features. The method

DAG tended to consume more runtime when achieving the same

level of accuracy as the proposed methods and some of the other

competing methods because DAG does not effectively represent the

costs for using individual features.

6.2.2 Performance on Real-world Datasets. Figure 3 demonstrates

the effectiveness of the proposed methods CAFH (p=1/2) and CAFH

(p=2/3) in all datasets, compared with the other methods. For ex-

ample, for the three datasets shown in Figures 3(a), (b), and (c), the

proposed CAFH obtained the best trade-off points with an accuracy

of 1 and runtime of less than 0.1 millisecond, less than half of the low-

est time cost with the same accuracy among the compared methods.

For the datasets shown in Figure 3(d), the accuracy of the proposed

CAFH is consistently 1, outperforming the accuracy obtained by

the best performer among the compared methods, re-weighted L1,

which drops off to 0.9 at the end. The proposed CAFH models are

also among the best performers in all the methods for the last two

datasets. Among all compared methods, re-weighted L1 performed

best because it faithfully represents the feature utilization cost while

the feature computation dependency is actually not very dense in

the real-world datasets. CSTC also performed highly competitively

for the same reason. DAG achieved a limited performance in our

case because it is not good at considering the runtime cost for indi-

vidual features. L1 failed to effectively remove costly features and

wrongly dropped the key features for accurate prediction of the

outputs, causing a large drop in accuracy.

6.2.3 Empirical analysis on algorithm convergence. Theorem 5.1

presents the algorithm convergence and provides the condition of

convergence. By using a sufficiently large number of iterations,

Figures 4(a) and 4(b) illustrate the two situations when the conver-

gence condition is satisfied and unsatisfied, respectively. Figure 4(a)

shows the linear convergence rate of the algorithm, which achieves

a tiny residual of around 10
−12

at the 5000th iteration. This contrasts

markedly with the situation in Figure 4(b), where the convergence

is fast with a linear rate during the first 500 iterations but then slows

down and makes little further progress. However, even though the

algorithm cannot achieve convergence in this situation, the residual

0 50 100
0.4

0.6

0.8

1

Number of selected features

(a) Synthetic Dataset 1

L1

reweighted L1

CAFH (p=1/2)

CAFH (p=2/3)

0 50 100
0.4

0.6

0.8

1

Number of selected features

(b) Synthetic Dataset 3

L1

reweighted L1

CAFH (p=1/2)

CAFH (p=2/3)

0 50 100
0.4

0.6

0.8

1

Number of selected features

(c) Synthetic Dataset 5

L1

reweighted L1

CAFH (p=1/2)

CAFH (p=2/3)

0 50 100
0.4

0.6

0.8

1

Number of selected features

(d) Synthetic Dataset 7

L1

reweighted L1

CAFH (p=1/2)

CAFH (p=2/3)

Figure 5: The Accuracy vs. number of selected features for all the synthetic datasets

Figure 6: Accuracy vs. number of selected features for the real
world datasets

Table 2: Selected features, feature computation components,
and time costs (in microsecond).

Method # selected features # selected FCC time cost (ms)

L1 17 82 219.6456

Reweighted L1 23 91 242.8939

CAFH (p=1/2) 22 83 209.0018

CAFH (p=2/3) 15 72 171.7118

is already less than 10
−5
, much lower than the initial residual of

around 1, which is sufficient precision for practical applications.

6.3 Analysis of Feature Computational
Dependency

This section analyzes the effectiveness of the selected features in

reducing runtime and retaining accuracy. First, the accuracy vs. the

number of selected features is evaluated for the synthetic and real

0 50 100

0

20

40

60

80

100

features

(a) L1

fe
a
tu

re
 c

o
m

p
o
n
e
n
ts

0 50 100

0

20

40

60

80

100

features

(c) CAFH (p=1/2)
fe

a
tu

re
 c

o
m

p
o
n
e
n
ts

0 50 100

0

20

40

60

80

100

features

(b) reweigthed L1

fe
a
tu

re
 c

o
m

p
o
n
e
n
ts

0 50 100

0

20

40

60

80

100

features

(d) CAFH (p=2/3)

fe
a
tu

re
 c

o
m

p
o
n
e
n
ts

Figure 7: Selected features and the feature components they
triggered
world datasets. Only 4 of all the datasets are used to show the trends

for synthetic datasets due to space limitation. Next, the selected

feature computational components are illustrated and analyzed.

6.3.1 Accuracy vs. Number of selected features. Unlike the pat-
tern shown in Figure 2, in Figure 5 the curves of the proposed CAFH

models are typically below the curves for L1 and the re-weighted

L1. This is interesting because it shows that although the proposed

CAFH selects more features than L1 and the re-weighted L1, it usu-

ally incurs a smaller time cost. This confirms the effectiveness of the

new approach proposed in this paper for optimizing the total time

cost instead of the number of features. By selecting more features,

CAFH models actually benefit from having more opportunity to

include the features that are crucial for determining the outputs.

When comparing Figure 6 with Figure 3, the curves for L1 tend to

shift left. This shows that L1 indeed favors enforcing a small number

of features, instead of the total runtime. Similarly, the re-weighted

L1 also shifts left a little, especially in Figure 6(f) where it achieves

a much small number of selected features. However, the total time

cost was still equal to or larger than that incurred by our new model,

as shown in Figure 3.

6.3.2 Selected features vs. selected feature components. Figure 7
shows the incidence matrices H between the nodes (i.e., features)

and the hyperedges (i.e., feature computation components). The

incidence matrices are the same for all four subplots, where blue

points denote the nonzero elements in the matrix. When a feature is

selected, the corresponding column is shown in yellow, and the rows

(i.e., feature computation components) where the blue points interact

with the yellow columns are marked in green. This is actually just

the selected feature computation components based on the selected

features. Table 2 shows the number of selected features and the

number of selected FCCs in Figure 7. Both Table 2 and Figure 7

show that when selecting almost the same number of features, the

proposed CAFH methods tend to select fewer FCC, showing that the

CAFH models do better at exploiting shared computations among

the features to reduce the runtime cost.

7 CONCLUSIONS
To effectively reduce the prediction-time cost and retain the model

accuracy, this paper proposes a novel framework that jointly mini-

mizes the classification error and the prediction runtime cost by con-

sidering feature computational dependency. We first model feature

computational dependency as FCD heterogeneous hypergraph and

propose a concise objective function with a faithful representation of

the runtime costs. To optimize this objective function which consists

of both continuous and discrete parts, we propose a tight contin-

uous approximation to the original problem and an ADMM-based

algorithm to solve it effectively with a convergence guarantee under

specific conditions. Extensive experiments on several synthetic and

real-world datasets demonstrated the advantageous performance of

the proposed model over the existing methods for cost-sensitive clas-

sification. Detailed analysis on the selected features and FCCs were

also presented to show the effectiveness of the proposed method.

ACKNOWLEGEMENT
This work was supported by the National Science Foundation grant:

#1755850.

REFERENCES
[1] Aleksandr Y Aravkin, James V Burke, and Gianluigi Pillonetto. 2013. Sparse/robust

estimation and kalman smoothing with nonsmooth log-concave densities: Mod-

eling, computation, and theory. The Journal of Machine Learning Research 14, 1

(2013), 2689–2728.

[2] Rick Chartrand and Wotao Yin. 2016. Nonconvex sparse regularization and

splitting algorithms. In Splitting Methods in Communication, Imaging, Science, and
Engineering. Springer, 237–249.

[3] Lingwei Chen, Shifu Hou, and Yanfang Ye. 2017. SecureDroid: Enhancing

Security of Machine Learning-based Detection Against Adversarial Android

Malware Attacks. In Proceedings of the 33rd Annual Computer Security Appli-
cations Conference (ACSAC 2017). ACM, New York, NY, USA, 362–372. https:

//doi.org/10.1145/3134600.3134636

[4] Kun Deng, Yaling Zheng, Chris Bourke, Stephen Scott, and Julie Masciale. 2013.

New algorithms for budgeted learning. Machine learning 90, 1 (2013), 59–90.

[5] Bradley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani, et al. 2004. Least

angle regression. The Annals of statistics 32, 2 (2004), 407–499.
[6] Yujie Fan, Yanfang Ye, and Lifei Chen. 2016. Malicious sequential pattern mining

for automatic malware detection. Expert Systems with Applications 52 (2016), 16 –
25. https://doi.org/10.1016/j.eswa.2016.01.002

[7] César Ferri, Peter Flach, and José Hernández-Orallo. 2002. Learning decision trees

using the area under the ROC curve. In ICML, Vol. 2. 139–146.
[8] Alex Grubb and Drew Bagnell. 2012. Speedboost: Anytime prediction with uniform

near-optimality. In Artificial Intelligence and Statistics. 458–466.
[9] Shifu Hou, Yanfang Ye, Yangqiu Song, and Melih Abdulhayoglu. 2017. HinDroid:

An Intelligent Android Malware Detection System Based on Structured Heteroge-

neous Information Network. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD ’17). ACM, New York,

NY, USA, 1507–1515. https://doi.org/10.1145/3097983.3098026

[10] Cheng-Lung Huang and Chieh-Jen Wang. 2006. A GA-based feature selection

and parameters optimizationfor support vector machines. Expert Systems with
applications 31, 2 (2006), 231–240.

[11] Aloak Kapoor and Russell Greiner. 2005. Learning and classifying under hard

budgets. In European Conference on Machine Learning. Springer, 170–181.
[12] Matt J Kusner, Wenlin Chen, Quan Zhou, Zhixiang Eddie Xu, Kilian QWeinberger,

and Yixin Chen. 2014. Feature-Cost Sensitive Learning with Submodular Trees of

Classifiers.. In AAAI. 1939–1945.
[13] Liyun Li, Umut Topkara, Baris Coskun, and Nasir Memon. 2009. CoCoST: a

computational cost efficient classifier. In Data Mining, 2009. ICDM’09. Ninth IEEE
International Conference on. IEEE, 268–277.

[14] Liyun Li, Umut Topkara, and Nasir Memon. 2011. ACE-Cost: acquisition cost

efficient classifier by hybrid decision tree with local SVM leaves. In International
Workshop on Machine Learning and Data Mining in Pattern Recognition. Springer,
60–74.

[15] Charles X Ling, Victor S Sheng, and Qiang Yang. 2006. Test strategies for cost-

sensitive decision trees. IEEE Transactions on Knowledge and Data Engineering 18,

8 (2006), 1055–1067.

[16] Feng Nan and Venkatesh Saligrama. 2017. Adaptive Classification for Prediction

Under a Budget. In Advances in Neural Information Processing Systems. 4730–4740.
[17] Junbiao Pang, Huihuang Lin, Li Su, Chunjie Zhang, Weigang Zhang, Lijuan Duan,

Qingming Huang, and Baocai Yin. 2016. Accelerate convolutional neural networks

for binary classification via cascading cost-sensitive feature. In Image Processing
(ICIP), 2016 IEEE International Conference on. IEEE, 1037–1041.

[18] Jay Pujara, Hal Daumé III, and Lise Getoor. 2011. Using classifier cascades for scal-

able e-mail classification. In Proceedings of the 8th Annual Collaboration, Electronic
messaging, Anti-Abuse and Spam Conference. ACM, 55–63.

[19] Lev Reyzin. 2011. Boosting on a budget: Sampling for feature-efficient prediction.

In Proceedings of the 28th International Conference on Machine Learning (ICML-11).
Citeseer, 529–536.

[20] Ming Tan and Jeffrey C Schlimmer. 1989. Cost-sensitive concept learning of sensor

use in approach and recognition. In Proceedings of the sixth international workshop
on Machine learning. Elsevier, 392–395.

[21] JosephWang, Kirill Trapeznikov, and Venkatesh Saligrama. 2015. Efficient learning

by directed acyclic graph for resource constrained prediction. InAdvances in Neural
Information Processing Systems. 2152–2160.

[22] Junxiang Wang and Liang Zhao. 2018. Multi-instance Domain Adaptation for

Vaccine Adverse Event Detection. In Proceedings of the 2018 World Wide Web
Conference (WWW ’18). International World Wide Web Conferences Steering

Committee, Republic and Canton of Geneva, Switzerland, 97–106. https://doi.org/

10.1145/3178876.3186051

[23] Yu Wang, Wotao Yin, and Jinshan Zeng. 2015. Global convergence of ADMM in

nonconvex nonsmooth optimization. arXiv preprint arXiv:1511.06324 (2015).
[24] Zhixiang Xu, Kilian Q Weinberger, and Olivier Chapelle. 2012. The greedy miser:

learning under test-time budgets. In Proceedings of the 29th International Coference
on International Conference on Machine Learning. Omnipress, 1299–1306.

[25] Zhixiang Eddie Xu, Matt J Kusner, Kilian QWeinberger, Minmin Chen, and Olivier

Chapelle. 2014. Classifier cascades and trees for minimizing feature evaluation

cost. Journal of Machine Learning Research 15, 1 (2014), 2113–2144.

[26] Yanfang Ye, Tao Li, Donald Adjeroh, and S. Sitharama Iyengar. 2017. A Survey

on Malware Detection Using Data Mining Techniques. ACM Comput. Surv. 50, 3,
Article 41 (June 2017), 40 pages. https://doi.org/10.1145/3073559

[27] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-

silient Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster

Computing. In Proceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation (NSDI’12). USENIX Association, Berkeley, CA, USA,

2–2. http://dl.acm.org/citation.cfm?id=2228298.2228301

[28] Liang Zhao, Qian Sun, Jieping Ye, Feng Chen, Chang-Tien Lu, and Naren Ra-

makrishnan. 2015. Multi-task learning for spatio-temporal event forecasting.

In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 1503–1512.

[29] Liang Zhao, Qian Sun, Jieping Ye, Feng Chen, Chang-Tien Lu, and Naren Ra-

makrishnan. 2015. Multi-Task Learning for Spatio-Temporal Event Forecasting.

In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ’15). ACM, New York, NY, USA, 1503–1512.

https://doi.org/10.1145/2783258.2783377

[30] Liang Zhao, Jieping Ye, Feng Chen, Chang-Tien Lu, and Naren Ramakrishnan. 2016.

Hierarchical Incomplete Multi-source Feature Learning for Spatiotemporal Event

Forecasting. In Proceedings of the 22Nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD ’16). ACM, New York, NY, USA,

2085–2094. https://doi.org/10.1145/2939672.2939847

[31] W. Zhuang, Y. Ye, Y. Chen, and T. Li. 2012. Ensemble Clustering for Internet

Security Applications. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews) 42, 6 (Nov 2012), 1784–1796. https://doi.org/10.1109/
TSMCC.2012.2222025

https://doi.org/10.1145/3134600.3134636
https://doi.org/10.1145/3134600.3134636
https://doi.org/10.1016/j.eswa.2016.01.002
https://doi.org/10.1145/3097983.3098026
https://doi.org/10.1145/3178876.3186051
https://doi.org/10.1145/3178876.3186051
https://doi.org/10.1145/3073559
http://dl.acm.org/citation.cfm?id=2228298.2228301
https://doi.org/10.1145/2783258.2783377
https://doi.org/10.1145/2939672.2939847
https://doi.org/10.1109/TSMCC.2012.2222025
https://doi.org/10.1109/TSMCC.2012.2222025

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Setup
	4 Models
	4.1 Heterogeneous hypergraph for feature computational dependency
	4.2 Cost-aware classification using FCD Heterogeneous Hypergraph (CAFH)
	4.3 Optimization Objective

	5 Parameter Optimization
	6 Experiments
	6.1 Experimental Settings
	6.2 Performance
	6.3 Analysis of Feature Computational Dependency

	7 Conclusions
	References

