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Abstract— It is important for decision-makers to effectively
and proactively differentiate the significance of various public
concerns, and address them with optimal strategy under the
limited resources. Online Petition Platforms (OPPs) are replacing
traditional social and market surveys for the advantages of
low financial cost and high-fidelity social indicators. Despite
benefits from OPPs, the raw information from millions of petition
signers can easily overwhelm decision makers. In addition, spatio-
temporal and semantic dissemination patterns increase the com-
plexity of such OPP data. These two aspects show the necessity of
a framework that learns from all available data, which is encoded
by dynamic representation of features, to predict whether a
petition will successfully lead to a change by decision makers. To
build such framework, we need to overcome several challenges
including: 1) missing values in dynamic features; 2) strong
uncertainty in petition prediction; 3) unknown labels for ongoing
petitions and 4) Scalability regarding increasing features and
petitions. To address these difficulties simultaneously, we propose
a novel chain-structure Multi-task Learning framework with
Uncertainty Estimation (MLUE) to predict potentially victorious
petitions, which facilitates the process of decision making. Specif-
ically, we divide data into different Increasing Feature Blocks
(IFBs) according to missing patterns. Besides, we propose a novel
criterion to estimate uncertainty in order to label petitions as
early as possible. To handle the challenge of scalability, we present
an Expectation-Maximization (EM)-based algorithm to optimize
the non-convex objective function accurately and efficiently.
Various experiments on six petition datasets demonstrate that
our MLUE outperformed other baselines by a large margin.

Index Terms—petition victory prediction, unlabeled data, miss-
ing value, multi-task learning, uncertainty estimation

I. INTRODUCTION

The rise of Online Petition Platform (OPP), which is a
form of web-based petition host, came out over the recent
decades and spurred with the internet and social networking.
For example, Change.org 1, which was founded in 2007, has
owned over 190 million users and hundreds of daily petitions
covering various social aspects from health, economics, to
government policies by July 2017. These petition websites
have grown to be an important way to detect and track timely
public concerns toward societal issues, as well as a creative
attempt to fill the gap between the increasing public concerns
and the decision-makers’ attention. One classic example of
victorious online petitions which aimed at reducing serious
food waste was achieved by making the decision-makers of

1Change.org: https://www.change.org/.
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Fig. 1. An example of petition victory prediction task

Whole Foods Market agree on stopping discarding “ugly
looking fruits”2.

Typically, an online petition can be easily created by using
some web-based petition hosts to gather enough signatures in
order to get the attention of the responsible decision-makers. A
victorious petition means that the decision-makers take action
to address the concern of the petition-launcher. Although the
outstanding benefits of OPPs such as low financial cost and
easy accessibility attract millions of users, this also make the
online petitions suffer from two challenges: firstly, they are
usually poorly organized so that massive nearly-duplicated and
correlated petitions overwhelm the decision-makers; moreover,
decision-makers are distracted by sophisticated problems of
spatio-temporal and semantic dissemination from various sim-
ilar petitions. There is a critical need for decision-makers to
optimize the utilization of their limited resource and prioritize
those petitions with higher victory probability more efficiently
and proactively in order to minimize the social upheavals and
uncertaintys.

However, developing such a petition victory prediction
framework is a non-trivial task, which needs to tackle several
difficulties: 1. Missing values in dynamic features. Many
features are unavailable at the beginning of petitions, which
makes it challenging to model petitions at the early stage due
to the paucity of available features. As shown in Figure 1, the
input consists of eight features. However, only four features
“text of petition content”, “petitioner’s profile”,“number of

2Stop contributing to massive food waste in the us-victory:
https://www.change.org/p/whole-foods-and-walmart-stop-contributing-to-
massive-food-waste-in-the-us-31



signatures” and “petition comments” are accessible at the
first day. One more feature “topic labels of the petitions” are
available at the second day. 2. Strong uncertainty in petition
prediction. The victory of a petition is largely influenced by a
lot of factors and thus is challenging and with high uncertainty.
Thus, uncertainty estimation is an important aspect of petition
victory prediction because it provides an accuracy estimation
of the uncertainty of label predictions. However, evaluating
the uncertainty of labels is difficult due to two reasons: on
one hand, the uncertainty follows a temporal dependency:
that is, the uncertainty is very high as a new petition is
launched, then drops towards to zero as petition process
approaches to the end since the progress becomes clearer and
clearer, which is shown in Figure 1; and more importantly,
all features are subject to change during the petition process
while most current classifiers assume the fixed input. For
example, in Figure 1, the feature “updated appeal process”
which provides updated information about petition process up
to now is dynamic. Due to unknown patterns of dynamic
features, it is challenging to estimate label uncertainty by
fitting a monotonically decrease function. 3. Unknown labels
for ongoing petitions. Most petition processes will persist for
a long period of time due to a required large collection of
signatures. Therefore, the label of a petition is unknown for
most of the time. In Figure 1, the petition is ongoing for the
first three days and is declared victory at the fourth day. In
other words, the labels of this petition on the first three days
are missing. In practice, some petitions run without labels for
years. It will be a huge information loss if these petitions
which provide abundant feature information are discarded. 4.
Scalability regarding increasing features and petitions. The
task of petition victory prediction is conducted online and
hence computational scalability is critical. However, this is
challenging for several reasons, including (1) a fast growing
number of online petitions; (2) an increasing number of
features for each petition and (3) frequent updates of petition
information. That means that even for a medium size dataset
of 10,000 petitions, and even in the case where we consider
only the information derived from comments of signers of a
petition, we may have tens of thousands of signer comments
per petition, each represented by a thousand numeric features.
This yields a dataset having hundreds of billions of data
points, which entails massive storage and time-consuming
computation. As a result, petition victory prediction requires
large-scalable optimization algorithms.

In order to simultaneously address all these technical prob-
lems, we propose a novel Multi-task Learning model with
Uncertainty Estimation (MLUE). Specifically, given data with
dynamic features and missing values, we divide data into
several increasing feature blocks according to missing patterns.
A multi-task learning strategy is presented to handle missing
values. In order to deal with unlabeled labels and uncertainty
estimation of petitions, we propose a novel measurement to
evaluate uncertainty and assign labels to unlabeled petitions as
accurately as possible. As for the challenge of scalability, we
develop an EM-like optimization algorithm to process large-

scale petition data in a decentralized fashion: in the E-step,
we propose a dynamic programming method to estimate the
labels of unlabeled petitions; in the M-step, we introduce
an Alternating Direction Method of Multipliers (ADMM)
[4] approach to optimize parameters in parallel. The parallel
implementation of the MLUE solves the problem of large-
scale petition processing.

The main contributions of our research are summarized as
follows:
• Design a MLUE framework to address the petition

victory prediction problem. A generic framework is
proposed for petition victory prediction to deal with
missing values in dynamic features. We give the definition
of increasing feature blocks and present a multi-task
learning model with chain structure to handle missing
values. Our framework can be generalized into more
window sizes.

• Propose a novel criterion to estimate uncertainty.
To estimate the uncertainty of predicted petition labels,
we propose a new criterion to compare the performance
difference between two classifiers in two adjacent blocks.
This criterion can also generalized to more window sizes.

• Develop an efficient nonconvex optimization algo-
rithm. The optimization problem is non-convex due to
the fact that decision variables involve discrete unknown
labels. An effective EM-like algorithm is developed to
optimize parameters efficiently and accurately, which
is scalable to the number of petitions and features. A
dynamic programming method and an ADMM method
are presented in the E-step and the M-step, respectively.

• Conduct extensive experiments for performance eval-
uations. Experiments on six real petition datasets show
that our MLUE dominated other models. Residuals and
scalability are explored as well. In the sensitivity analysis,
we analyze the sparsity patterns of our MLUE and
investigate key parameters.

The rest of the paper is organized as follows. In Section
II, we summarize recent research work related to this paper.
In Section III, we present the problem formulation. In Section
IV, we propose the novel MLUE framework. In Section V,
we develop an effective EM-like optimization algorithm. In
Section VI, extensive experiments are conducted to validate
the effectiveness of our model. Section VII concludes by
summarizing the whole paper.

II. RELATED WORK

The idea of mining and predicting petitions obtained from
OPPs has recently been proposed in a vision paper by Li et
al. [14]. This vision paper broadly surveys the applications of
using OPP for petition victory prediction, but does not give
an solutions, algorithms or implementations to achieve this
goal. To the best of our knowledge, no other existing research
employs OPP data for victory prediction. Yet, there is a large
research body related to the sub-problems that we encountered
to build our petition victory prediction framework. These sub-
problems include the estimation of missing values, uncertainty



estimation of unlabeled data and multi-task learning in time-
series data. This research is surveyed in the following.

Estimation of missing values: The figure and analysis of
missing values have been explored in some early literatures,
surveyed in [10]. Other early work estimates missing values
from observed values [8]. These methods performed well when
missing values were rare, but they were ineffective when the
proportion of missing values became large. To deal with such
sparse data, Hernandez et al. proposed a probabilistic matrix
factorization model for collaborative filtering to handle non-
random missing values [11]. Yuan et al.[24] and Xiang et al.
[22] utilized multi-task learning to learn a consistent feature
selection pattern across different missing groups. Zhao et al.
presented a multi-source learning framework to address hier-
archical missing values [31]. Some deep learning literatures
also deal with missing data: Che et al. developed a recurrent
neural network model and represented missing patterns as
masking and time interval [5]; Lipton et al. made use of binary
indicators to directly model missing clinical time series data
[17]. However, none of these approaches focuses specifically
on missing values in dynamic features.

Uncertainty estimation of unlabeled data: Recently, the
uncertainty estimation of unlabeled data has attracted the
attention of researchers. Several ideas from semi-supervised
learning and domain adaptation were also relevant[16][19].
Some work attempted to approximate the distribution of
unlabeled data either by importance weighting[20] or mis-
specified models[3]. See [21] for a review. A.P.Dawid and
A.M.Skene estimated error-rates for polytomous facets when
true responses from patients were unavailable in early days
[6]. However, the problem of uncertain uncertainty estimation
was first formally introduced by Donmez et al. [7]. Inspired
by Dawid-Skene estimator, Zhang et al. proposed a two-stage
EM-based algorithm for multi-class crowd labeling problem
in the setting of a non-convex log-likelihood function [27].
Platanios et al. estimated the accuracy of unlabeled data by
a collection of competing classifiers [18]. Other work such
as Jaffe et al. considered dependent classifiers [13] and Bala-
subramanian et al. introduced a continuous loss function and
showed that the distribution of errors was often approximately
Gaussian [2]. However, none of these literatures focuses on a
time-dependent uncertainty estimation.

Multi-task learning in time series data: Multi-task learn-
ing (MTL) aims to leverage useful information from mul-
tiple related tasks to improve the generalization of models.
Typically, multi-task learning approaches can be categorized
into many classes such as feature learning approach, low-rank
approach and task clustering approach. For a completed list of
categorization, see [26] for review. MTL is widely applied in
time series data as well as other domains. For example, Zhao et
al. proposed two MTL models by considering heterogeneous
relationships for different location resolutions in the spatial
event forecasting problem [29]; Xu et al. proposed an online
MTL framework with temporal smoothness for ensemble
forecasting [23]; Zhou et al. developed a MTL model to
predict the disease progression with temporal regularization

TABLE I
IMPORTANT NOTATIONS AND DESCRIPTIONS

Notations Descriptions
Yi,t The label of the i-th petition at time t.
Xi,t The i-th input petition matrix on the date t.
di the label time of the i-th petition.

IFB(j) The j-th Increasing Feature Block.
ATj

(Xi,t) the set of available features of the data Xi,t ⊂ IFB(j).
βj The coefficient feature vector of IFB(j).
n The number of petitions.
m The number of features.
A The number of increasing feature blocks.
T All the time intervals.
Tj The time interval of the j-th Increasing Feature Block.

λ1, λ2 regularization parameters.
w window size.

[33]; Zhao et al. utilized multi-lingual indicators to forecast
social events [30]. However, to the best of our knowledge, ours
is the first work to apply MTL for petition victory prediction.

III. PROBLEM SETUP

In this section, the problem addressed by this research
is formulated. Section III-A defines the problem of petition
victory prediction; and Section III-B discusses challenges of
the problem.

A. Problem Formulation

We firstly introduce necessary mathematical notations dis-
played in Table I, and then provide the problem formulation.

A petition will be labeled as victorious if the required
number of signatures is satisfied or the appeals of the petition-
launcher have been addressed by the decision-makers within
a limited time interval. Otherwise, the petition is labeled as
failed. A petition is launched by the petitioner and then it goes
through a period of time until reaching the time point when
we know whether the it is labeled as a victory or not, called
label time. Define T as all the time intervals. The label time
of the i-th petition is defined as di ∈ T . Therefore, for all the
time intervals before di, the i-th petition is “unlabeled” which
means its victory (or failure) status is unknown, while the
petition is “labeled” when after di, namely t ≥ di where t ∈ T
is current time. Xi = {Xi,t}t∈T denotes the set of the i-th
petition in all the different time intervals T where Xi,t ∈ Rm
denotes the feature vector of the i-th petition at time t ∈ T and
m is the number of features of a petition. Xi can be split into
two subsets by the label time li: The unlabeled petition set is
Xu
i = {Xi,t}t<di while the labeled set is X l

i = {Xi,t}t≥di .
X l = {X l

i}1≤i≤n and Xu = {Xu
i }1≤i≤n are denoted as the

labeled petition set and the unlabeled petition set, respectively.
The petition set is denoted as X = X l ∪ Xu = {Xi}1≤i≤n
where n is the number of petitions. For any Xi,t ∈ X l

i , it has
a corresponding label Yi,t ∈ {−1, 1} denotes the label of the
i-th petition at time t: Yi,t = 1 means that the i-th petition is
under victory status at time t while Yi,t = −1 implies that it is
under failure status at time t. For any Xi,t ∈ Xu

i , its label Yi,t
is unknown. Yi = {Yi,t}t∈T denoting the label set of the i-th
petition. Y = {Yi}1≤i≤n denotes the labels of all petitions.



The petition victory prediction problem can be formulated as
follows:
Problem Formulation: Given the petition vector Xu

i,t with
label Yi,t, the goal of the problem is to predict whether the
i-th petition will succeed at time t+τ by learning the mapping
f : Xi,t → Yi,t+τ , where τ is the lead time.

B. Challenges

In order to solve the petition victory prediction problem,
we still need to tackle several challenges: 1). The available
feature set of a petition in the beginning is very small, while
more features are gradually involved along with time. In
other words, for the i-th petition, the available feature set of
Xi,t at time t is smaller than that of Xi,s at time s where
t < s. 2). According to the problem formulation, for any
Xi,t ∈ Xu, its label is unknown. If we discard them, a
majority of information is at a loss because the number of
unlabeled petition samples |Xu| outnumber greatly that of
labeled petition samples |X l|. 3). Even we predict the labels
from the set of unlabeled petitions Xu, the uncertainty of these
predictions is unknown. Wrong predictions may introduce
extra noise to the classifier. 4). An optimization algorithm to
solve this problem meets the difficulty of a growing amount
of computation as the petition set |X|, the time intervals T ,
and the number of features increase jointly. Thus in the next
two sections, a novel multi-task learning model is proposed to
address these problems in turn.

IV. MLUE MODEL

In this section, we develop the novel MLUE model.
Specifically, we introduce a new definition to handle missing
values in Section IV-A; Section IV-B provides a criterion to
discuss uncertainty estimation problem; Section IV-C gives
the complete framework of our model; In Section IV-D, we
generalize our model to more window sizes.

A. Missing Values in Dynamic Features

One simple method to deal with missing values is to
impute them with zeros. However, it fails to consider temporal
smoothness of time series data. To deal with this problem, we
consider multi-task learning as a good strategy to deal with
missing values [9]: it divides data into several building blocks
and learn their own parameters by relatedness among building
blocks, which are defined on time intervals. We introduce the
definition of increasing feature blocks as follows.

Definition 1 (Increasing Feature Block). The j-th Increasing
Feature Block (IFB) IFB(j) is a block of petition sets
{Xi,t}

t∈Tj

1≤i≤n (Tj ⊂ T ) that share the same available feature
sets generated by interval Tj . Define ATj (Xi,t) as the set
of available features of the data Xi,t ⊂ IFB(j). Assume the
total number of IFBs is A, then they must satisfy the following
three criteria:
• Completeness: T = ∪Aj=1Tj .
• Coherence: ∀p, q ∈ Tj : ATj (Xi,p) = ATj (Xi,q).
• Orderliness: ∀q ∈ Ta, p ∈ Tb, a < b : ATa(Xi,q) $

ATb
(Xi,p).

According to the orderliness properties of IFB, each feature
block has an increasing set of features. Suppose βj and bj are
denoted as the weight and the intercept learned by the IFB(j),
respectively, then the weight and intercept over all IFBs are
denoted as β = ∪Aj=1[βj ] and b = ∪Aj=1[bj ], respectively.

B. Uncertainty Estimation

In practice, a petition may take years to succeed, which
means the label time di could be very large. As a result, most
of the i-th petition data points whose time is earlier than di are
unlabeled. The majority of unlabeled petitions provide useful
information from many available dynamic features. Therefore,
discarding them will lead to a huge information loss. In
other words, we can achieve better prediction performance
with the introduction of available features from unlabeled
petitions. However, as shown in Figure 1, in the beginning
of a petition, only few features are available which makes the
petition-victory prediction highly uncertain. The uncertainty in
prediction would decrease as the number of features increases.
And typically the prediction is more and more certain towards
the label, because the increase of the number of features more
and more clearly indicates the victory or failure of the petition.

Therefore, given the label time di, we extend the idea of
[16] and design a novel criterion to characterize the uncertainty
in prediction by comparing the predicted labels of the i-
th petition in IFB(j − 1) and IFB(j), respectively. First,
if the prediction in IFB(j − 1) is inaccurate while that in
IFB(j) is accurate, more certainty is obtained and thus we
earn certainty along with time. Mathematically, this is denoted
by earn(Yi,q, Yi,p, Yi,di), namely, the accuracy earning of the
classifier: Yi,p = Yi,di but Yi,q 6= Yi,di where p ∈ Tj and
q ∈ Tj−1. In contrast, if the prediction in IFB(j) is not
accurate while that in IFB(j − 1) is accurate, less certainty
is earned and hence we lose certainty across time. Likewise,
we denote lose(Yi,q, Yi,p, Yi,di) as the accuracy losing of
classifier, namely Yi,p 6= Yi,di but Yi,q = Yi,di where p ∈ Tj
and q ∈ Tj−1. More specifically:

earn(Yi,q, Yi,p, Yi,di) = I(Yi,q 6= Yi,di)I(Yi,p = Yi,di)

= (1− Yi,qYi,di)(1 + Yi,pYi,di)/4

lose(Yi,q, Yi,p, Yi,di) = I(Yi,q = Yi,di)I(Yi,p 6= Yi,di)

= (1 + Yi,qYi,di)(1− Yi,pYi,di)/4

where I(•) is an indicator function.
In all, since we will always want to maximize the prediction

accuracy, and thus we need to minimize the lose and maximize
the earn, which is equal to miminize the following:

R(Yi,q,Yi,p,Yi,di)= lose(Yi,q,Yi,p,Yi,di)−earn(Yi,q,Yi,p,Yi,di)

Obviously, more value of lose(Yi,q, Yi,p, Yi,di) and less
value of earn(Yi,q, Yi,p, Yi,di) lead to more uncertainty
R(Yi,q, Yi,p, Yi,di). The uncertainty function of the i-th
petition R(Yi) is the sum of the uncertainty function
R(Yi,q, Yi,p, Yi,di) at IFB-adjacent data points p and q:
R(Yi) =

∑A
j=2

∑
p∈Tj

∑
q∈Tj−1

R(Yi,q, Yi,p, Ydi). The over-
all uncertainty function R(Y ) is the sum of uncertainty



functions of all petitions: R(Y ) =
∑n
i=1R(Yi).

With the overall uncertainty function R(Y ), we encourage
accurate labels are assigned at the early days and the weight βj
and intercept bj in the IFB(j) can be learned by accurately
assigned labels with limited available features.

C. Overall Model

The above consideration of IFB and uncertainty estima-
tion lead to a new mutli-task learning framework that jointly
minimizes the empirical error and the uncertainty:

(Y, β∗, b∗) = arg minY,β,b Loss(Y ;β, b) + λ1Ω(β) + λ2R(Y )

s.t.∀q ≤ p, Yi,q ≤ Yi,p (1)

where Loss(Y ;β, b) = 1/|X|
∑A
j=1

∑
Xi,t∈IFB(j) max(0, 1−

Yi,t(X
T
i,tβj + bj)) is a hinge loss function,

Ω(β) =
∑A−1
j=1 ‖βj , βj+1‖2,1 is a chain-structure penalty

term which enforces two IFB-adjacent petition data points
to share the same sparsity pattern, and λ1, λ2 > 0 are
regularization parameters to control the balance between the
loss function Loss(Y ;β, b), the chain-structure penalty Ω(β)
and the uncertainty function R(Y ). The inequality constraint
∀q ≤ p, Yi,q ≤ Yi,p means that a petition label at a given time
is subject to its successors, i.e. if Yi,p = −1, then Yi,q = −1
for 0 ≤ q ≤ p.

D. Model Generalization

Suppose the window size w is defined as the number
of adjacent IFBs to consider, then we consider our model
with w = 2 in the previous sections. Our model can be
further generalized to more window sizes, i.e. the predicted
labels in IFB(j) and IFB(j + 1), · · · , IFB(j + w − 1).
The novelty of this generalization consists in the exponential
weighted smoothing technique: the more adjacent two IFBs
are, the more weight we assign. The uncertainty function of
the i-th petition R(Yi) is defined recursively as follows:

R(1)(Yi) =
∑A

j=w

∑
p∈Tj

∑
q∈Tj−w+1

R(Yi,q, Yi,p, Ydi)

R(k)(Yi)=α
∑A

j=w−k+1

∑
p∈Tj

∑
q∈Tj−w+k

R(Yi,q, Yi,p, Ydi)

+ (1− α)R(k−1)(Yi), (2 ≤ k ≤ w − 1)

where R(k)(Yi) is the k − th iteration of computing R(Yi),
R(Yi) = R(w−1)(Yi) and 0 ≤ α ≤ 1 is a weight parameter.
Correspondingly, the chain-structure penalty with windows
size w is denoted as:

Ω(β) =
∑A−w+1

j=1
‖βj , · · · , βj+w−1‖2,1.

V. OPTIMIZATION ALGORITHM

The Equation (1) is non-convex due to the fact that
decision variables involve discrete variables Y . An EM-like
algorithm is proposed to minimize Y and β alternatively. The
overall algorithm is presented in Algorithm 1. The E-step
and M-step in Line 3 and 4 update Y k+1 and (βk+1, bk+1)
alternately. Therefore, the following two sections focus on two
subproblems, respectively. Specifically, Section V-A discusses

a dynamic programming approach to update Y ; in the Section
V-B, an Alternating Direction Method of Multipliers (ADMM)
[4] algorithm is developed to update β and b.

Algorithm 1 Overall Algorithm
Require: X , Y , λ1, λ2.
Ensure: Y, β, b
1: Initialize β, b, Y , k = 0.
2: repeat
3: E-step: update Y k+1 in Equation (2) while fixing β and b.
4: M-step: update (βk+1, bk+1) in Equation (3) while fixing Y .
5: k = k + 1.
6: until convergence.
7: Output Y, β, b.

A. E-step: Assigning Labels to Petitions

The E-step update is formulated as follows:

Y k+1 ← arg minY Loss(Y ;β, b) + λ2R(Y )

s.t.∀p ≤ q, Yi,p ≤ Yi,q (2)

Given the weight β and the intercept b, solving Equation (2)
amounts to label assignments to unlabeled petitions. We design
a dynamic programming approach to solve this subproblem
described in Algorithm 2. The label set of the i-th petition Yi is
updated independently of other petitions. The time complexity
of this algorithm is O(n2A).

One important aspect of this algorithm is the initial value of
β and b. This is because the output of β and b is sensitive to
initialization. It is recommended that an initial point of β and
b for each task be set to of a classifier trained independently.

Algorithm 2 E-step: Assign Labels to Unlabeled Petitions.
Require: λ2, β, b,X
Ensure: Y
1: for i=1 to n # The outer loop can be implemented in parallel. do
2: for j=A-1 to 1 do
3: Find label set {Yi,t} s.t. Xi,t ∈ IFB(j + 1).
4: if ∃t s.t. Yi,t = −1 then
5: for all Xi,t ∈ IFB(j) do
6: Yi,t = −1
7: end for
8: else
9: for all Xi,t ∈ IFB(j) do

10: Yi,t = argminYi,t
max(0, 1 − Yi,t(X

T
i,tβj + bj)) +

λ2
∑

p∈Tj+1
R(Yi,t, Yi,p, Ydi

)

11: end for
12: end if
13: end for
14: end for
15: Output Y .

B. M-step: Solving the Chain-structure Multi-task Learning
Problem

The M-step update is formulated as follows:

(βk+1, bk+1)← arg minβ,b Loss(Y ;β, b) + λ1Ω(β) (3)

The chain-structure penalty Ω(β) makes this subproblem
difficult to solve because most βjs appear twice in `21 penal-
ties. We develop an ADMM-based algorithm to handle it. By



introducing two auxiliary variables S and φ, Equation (3) can
be transformed equivalently to the following formulation:

minβ,b,S Loss(Y ;S) + λ1Ω(β, φ)

s.t. βj+1 = φj ; Si,t = XT
i,tβj + bj , Xi,t ∈ IFB(j). (4)

where Loss(Y ;S) = (1/|X|)
∑A
j=1

∑
Xi,t∈IFB(j) max(0, 1−

Yi,tSi,t), Ω(β, φ) =
∑A−1
j=1 ‖βj , φj‖21 and φ = ∪A−1j [φj ].

The augmented Lagrangian function of Equation (4) is:

Lρ(φ, β, b, S, u, v) = Loss(Y ;S) + λ1Ω(β, φ)+

(ρ/2)‖S−Xβ−b+u‖22 + (ρ/2)
∑A−1

j=1
‖βj+1 − φj + vj‖22

where ρ > 0 is a penalty parameter and u and v are
dual variables. The M-step update is shown in Algorithm
3. Concretely, Lines 10-14 calculate residuals and Lines 3-9
update each parameter alternately by solving the subproblems
described below.

Algorithm 3 M-step: Chain-structure Multi-task Learning
Require: X , Y , λ1.
Ensure: β, b
1: Initialize S, β, b, ρ = 1, k = 0.
2: repeat
3: Update ρk+1 if necessary.
4: Update Sk+1 by Equation (5).
5: for j between 1 and A− 1 do
6: Update (βk+1

j , bk+1
j , φk+1

j ) by Equation (6).
7: end for
8: Update (βk+1

A , bk+1
A ) by Equation (7).

9: Update (uk+1, vk+1) by Equation (8).
10: for j between 1 and A− 1 do
11: rj = βj+1 − φj

12: end for
13: rA = Sk+1 −Xβk+1 − bk+1.
14: r =

√∑A
j=1 r

2
j .#Calculate residual.

15: k = k + 1.
16: until convergence.
17: Output β, b.

1. Update Sk+1.
The auxiliary variable S is updated as follows:

Sk+1←argminSLoss(Y ;S)+ρk+1/2‖S−Xβk−bk+uk‖22 (5)

This subproblem has a closed solution as follows:

Sk+1
i,t = Zi,t+Yi,t/(|X|ρk+1) ∗max(sgn(1− Yi,tZi,t), 0)

where Zi,t = XT
i,tβ

k
j + bkj − uki,t.

2. Update (βk+1
j , bk+1

j , φk+1
j ),(1 ≤ j ≤ A− 1).

The variable triple (βj , bj , φj) is updated as follows:

(βk+1
j , bk+1

j , φk+1
j )← arg minβj ,bj ,φj

λ1‖βj , φj‖2,1

+ (ρk+1/2)
∑T

Xi,t∈IFB(j)
(Sk+1
i,t −Xi,tβj − bj + uki,t)

2

+ (ρk+1/2)‖βkj+1 − φj + vj‖22 (6)

This subproblem is a least square loss function with a
`21 penalty. An accelerated gradient descent method [32] is
applied to solve this problem.
3. Update (βk+1

A , bk+1
A ).

The variable pair (βA, bA) is updated as follows:

(βk+1
A , bk+1

A )← arg minβA,bA(ρk+1/2)‖βA − φk+1
A−1 + vkA‖22

+(ρk+1/2)
∑T

Xi,t∈IFB(A)
(Sk+1
i,t −Xi,tβA−bA+uki,t)

2 (7)

TABLE II
FEATURE REPRESENTATION OF ALL PETITIONS

Petition Field Number of Features
basic properties 10
petition topic 21
petition tag 128
petition title 288

petition description 711
petition body 210

victory description 79
petition comment 74

all 1521

TABLE III
LABEL INFORMATION OF SIX DATASETS.

Country Victorious
#Petitions

Failed
#Petitions

Ongoing
#Petitions

Philippines 60 202 750
India 237 2,527 3,110

Germany 776 2,691 5,594
Australia 479 1,374 2,525
Canada 398 1,475 1,951

United States 4,081 7,405 18,404

This subproblem is a sum of two least sqaure error function
and hence has a closed-form solution.
4. Update (uk+1, vk+1)

The dual variable pair (u, v) is updated as follows:

uk+1 ← uk + Sk+1 −Xβk+1 − bk+1.

vk+1
j ← vk+1

j + βk+1
j − φk+1

j−1 . (8)

VI. EXPERIMENT

In this section, we evaluate the MLUE using six real
online petition datasets3. The effectiveness and the efficiency
of the MLUE are assessed against several state-of-the-art
methods. They were conducted on a 64-bit machine with
Intel(R) core(TM)processor (i7-6820HQ CPU@ 2.70GHZ)
and 16.0GB memory.

A. Experiment Setup

1) Input Petition Data Retrieval: The petitions description
data in this paper were retrieved by the following process:
First, we queried the Change.org4 API to obtain information
from 54,039 petitions during Jan 1, 2009 and Dec 17, 2017
from six countries: Philippines, India, Germany, Australia,
Canada, and United States. All experiments were analyzed
in compliance with the Change.org policies4. Second, all
corresponding comments were retrieved by Change.org API
again. The feature representation of each petition is illustrated
in Table II. All fields except basic petition properties were un-
structured raw texts and were represented by a set of keywords
provided by domain experts. Basic petition properties such as
“calculated goal” and “weekly signature count” were obtained
originally on the Change.org website. The label information
of six datasets, which was extracted by the “is victory” field,
is detailed in Table III.

3The data and the code are available at http://mason.gmu.edu/∼lzhao9/
4Change.org: https://www.change.org/policies



2) Metrics and Parameter Settings: In the experiments,
five metrics were utilized to evaluate model performance: the
Accuracy (ACC) is the ratio of accurately labeled petitions
to all petitions; the Precision (PR) is the ratio of accurately
labeled as positive petitions to all labeled as positive petitions;
the Recall (RE) defines the ratio of accurately labeled as
positive petitions to all positive petitions; the F-score (FS)
is the harmonic mean of precision and recall; the Receiver
Operating Characteristic (ROC) curve delineates the classifi-
cation ability of a model as its discrimination threshold varies;
the Area Under ROC (AUC) is an important measurement of
classification ability.

The lead time τ defined in the problem formulation was
set to one year. The number of IFBs A was set to 3. Two
tuning variable λ1 and λ2 were set to 0.01 and 0.01 based
on the AUC of the 5-fold cross-validation on the training set,
respectively. We applied the under-sampling strategy [25] to
avoid the class imbalance problem shown in Table III. The
penalty parameter of the ADMM ρ was set to 1. The maximum
number of iteration in the EM-like algorithm was set to 20.
The maximum number of iteration in the ADMM algorithm
was set to 100.

3) Comparison Methods: Since our method utilized
multi-task learning strategies and unlabeled data, two
types of state-of-the-art methods: multi-task learning and
semi-supervised learning methods served as baselines for
the performance comparison: the first three were multi-
task classification approaches while the last three were
semi-supervised classification methods. For the multi-
task classification approaches, all tasks were grouped by
the missing patterns. For the semi-supervised classification
methods, the missing values were filled with 0. All parameters
were set by 5-fold cross-validation on the training set.

1. Constrained Multi-Task Feature Learning I (cMTFL-I)
[28]. cMTFL-I aims to directly control the number of features
to be selected rather than control the group sparsity.

2. convex relaxed Clustered Multi-Task Learning(CMTL)
[32]. CMTL assumes that tasks in the same group are more
similar to the tasks in the different group. The loss function
was set to the logistic log function.

3. multi-task learning with Joint Feature Selection (JFS)
[1], [32]. JFS is one of the most commonly used strategies
in multi-task learning. It captures the relatedness of multiple
task by a constraint of weight matrix to share a common set
of features, which can be realized by a `1/`2 regularization
to ensure group sparsity. The loss function was set to the
logistic log function.

4. WEakly LabeLed Support Vector Machines
(WELLSVM) [15]. WELLSVM is proposed to solve the
problem of weakly labeled data by a label generation strategy.
As a convex relaxation of Mixed-Integer Programming
(MIP) problem, WELLSVM can be solved by a sequence of
subproblems to ensure scalability.

5. Stochastic optimization for Cluster Kernel(SoCK) [12].
SoCk is a graph-based semi-supervised learning method
subject to the storage budget limit. It finds the low-rank

approximation of the similarity matrix. SoCK is optimized
stochastically and converges globally to the low-rank
approximator.

6. Nystrom Cluster Kernel (NysCK) [12]. NysCK is very
similar to the SoCK except that the NysCK is optimized by
the Nystorm method and is suitable for online learning.

B. Performance

In this section, experimental results for the MLUE
are analyzed for all the comparison methods. Table IV
summarizes prediction results of the MLUE compared with
other methods on the six petition datasets.

1) Model Performance on Six Petition Datasets: The first
part of the results demonstrated in Table IV indicated that the
MLUE outperformed any other baseline in any petition dataset.
It ranked the first in the four metrics out of five except PR
and RE. As the most important metric of five, the AUC of the
MLUE dominated all baselines: the AUC of the MLUE was
higher than 0.82 in six petition dataset and performed the best
in the United States petition dataset, which achieved as high as
0.914, while all four baselines were lower than 0.8 in the AUC.
When it came to the ACC, the MLUE was again superior to
others: all of ACCs reached over 0.8 except the Philippines
dataset. However, none of comparison methods had a perfor-
mance of over 0.8 in the ACC. Due to the advantage over
others in the ACC, the MLUE also performed competitively
in the PR and FS. For example, its performance was 0.887
and 0.8110 on the PR and FS metrics in the Australia dataset,
respectively, whereas these of JFS were 0.4582 and 0.6278,
respectively. The MLUE also achieved a competitive score
in the RE metric, surpassing 0.8 in the Germany dataset,
whereas the RE of the WELLSVM was only around 0.66.
The superiority of the MLUE consisted in effective utilization
of unlabeled petitions as well as sparsity perseverance between
two adjacent IFBs, while multi-task learning methods lacked
the ability to leverage unlabeled petitions and the three semi-
supervised learning methods suffered from missing values.
As for competition among six baselines, the WELLSVM
outperformed multi-task learning methods thoroughly. The
ACC of the WELLSVM was higher than 0.67 in the Canada
dataset, whereas the best score of multi-task learning methods,
which was achieved by the cMTFL-I, was only lower than
0.52. The AUC of the WELLSVM was in the vicinity of 0.78
in the Australia dataset. However, none of three multi-task
learning methods scored over 0.7. Interestingly, we found that
the JFS achieved the best of the RE metric in every petition
dataset. As for the SoCK and NysCK, they achieved higher
performance than WELLSVM.

Figure 2 shows the ROC curves of the MLUE and baselines
on the six petition datasets. In each ROC curve, the X axis and
the Y axis denote False Positive Rate (FPR) and True Positive
Rate (TPR), respectively. Overall, the ROC curve of the MLUE
almost covered baselines, which was consistent with Table
IV. The WELLSVM contained other three multi-task learning



methods. The SoCK and the NysCK performed the best of
all baselines, which was a littel inferior to the MLUE. The
cMTFL-I annd JFS were comparable to each other: they were
both slightly better than the random guess.

TABLE IV
MODEL PERFORMANCE ON THE SIX PETITION DATASETS UNDER FIVE

METRICS: MLUE OUTPERFORMED OTHERS ON FOUR METRICS OUT OF
FIVE.

Philippines
Method ACC PR RE FS AUC

cMTFL-I 0.5869 0.4677 0.6716 0.5464 0.6113
CMTL 0.4014 0.3914 1 0.5618 0.5666

JFS 0.4726 0.4199 0.9609 0.5836 0.6330
WELLSVM 0.6301 0.8000 0.0616 0.1132 0.6669

SoCK 0.7777 0.8203 0.5241 0.6202 0.7843
NysCK 0.7678 0.8296 0.5232 0.6315 0.7667
MLUE 0.7875 0.8777 0.5300 0.6591 0.8281

India
Method ACC PR RE FS AUC

cMTFL-I 0.4616 0.1896 0.6429 0.2906 0.5638
CMTL 0.2680 0.1747 0.8895 0.2918 0.5988

JFS 0.2349 0.1775 0.9537 0.2982 0.5776
WELLSVM 0.4523 0.4268 0.6299 0.2732 0.5920

SoCK 0.8582 0.7622 0.2428 0.3664 0.7680
NysCK 0.8657 0.7334 0.3254 0.4506 0.8036
MLUE 0.8780 0.7672 0.4048 0.5295 0.8271

Germany
Method ACC PR RE FS AUC
CMTL 0.4385 0.4376 0.9976 0.6081 0.6107
rMTFL 0.4925 0.4370 0.5636 0.4855 0.4952

JFS 0.4400 0.4382 0.9961 0.6084 0.6016
WELLSVM 0.5318 0.6188 0.6630 0.4903 0.7015

SoCK 0.8083 0.7982 0.7519 0.7741 0.8737
NysCK 0.8357 0.8149 0.8076 0.8110 0.8900
MLUE 0.8744 0.8814 0.8239 0.8514 0.9098

Australia
Method ACC PR RE FS AUC

cMTFL-I 0.4086 0.4178 0.7709 0.5416 0.4829
CMTL 0.4580 0.4531 0.9595 0.6153 0.6130

JFS 0.4624 0.4582 0.9991 0.6278 0.6656
WELLSVM 0.6726 0.8284 0.4086 0.5144 0.7766

SoCK 0.7965 0.7897 0.7606 0.7729 0.8526
NysCK 0.8145 0.8163 0.7692 0.7905 0.8592
MLUE 0.8412 0.8870 0.7484 0.8110 0.8915

Canada
Method ACC PR RE FS AUC

cMTFL-I 0.5164 0.4162 0.6880 0.5154 0.5736
CMTL 0.3803 0.3754 0.9909 0.5445 0.6050

JFS 0.3838 0.3763 0.9857 0.5446 0.5625
WELLSVM 0.6707 0.9551 0.1287 0.2230 0.7345

SoCK 0.7397 0.7296 0.4838 0.5809 0.7733
NysCK 0.7774 0.7770 0.5677 0.6557 0.8058
MLUE 0.8236 0.8329 0.6614 0.7365 0.8498

United States
Method ACC PR RE FS AUC

cMTFL-I 0.5435 0.5588 0.9377 0.7003 0.4869
CMTL 0.5674 0.5695 0.9799 0.7203 0.5842

JFS 0.5735 0.5738 0.9773 0.7228 0.5996
WELLSVM 0.5359 0.7648 0.4915 0.4451 0.7250

SoCK 0.8202 0.8644 0.8112 0.8369 0.8719
NysCK 0.8347 0.8882 0.8117 0.8482 0.8880
MLUE 0.8602 0.9247 0.8212 0.8698 0.9140

2) The Effect of Iteration on the Residual and Objective
Value: This part of experiments examined the effect of it-
erations on the residual and the objective value using the
Philippines petition dataset. Figure 3(a) shows the change of
residuals r with respect to iteration in the ADMM algorithm.
The residual r began with a sharp decline and remained a
smooth decline toward 0. This implies that tens of iterations

(a) Philippines (b) India

(c) Germany (d) Australia

(e) Canada (f) United States
Fig. 2. ROC curves on six petition datasets: the MLUE was superior to
baselines.

(a) Residual versus iteration (b) Objective versus iteration
Fig. 3. The effect of iteration on the residual and objective value: r and the
objective value declined with iteration.

were enough for practical optimization. The objective value
of all training data and test data with regard to iteration is
displayed in Figure 3(b). The objective value dropped linearly
as expected.

3) The Effect of λ1 on the Sparsity Pattern: Because λ1
controls the chain-structure penalty Ω(β), we investigated how
λ1 affected sparsity patterns. We chose three possible values
of λ1: 0.01, 0.1 and 1 while keeping λ2 = 0.01. We denote
#β(1) , #β(2) and #β(3) as the number of features such that
(1)(β1 = 0, β2 = 0, β3 6= 0), (2)(β1 6= 0, β2 = 0, β3 = 0) and
(3)(β1 = 0, β2 = 0, β3 = 0), respectively. Table V shows the
change of sparsity patterns decided by λ1. Overall, sparsity
patterns were more obvious as λ1 increased. Concretely,
the #β(1) and #β(3) were correlated positively with λ1.



Furthermore, there was a boom of #β(1) as λ1 ranged from
0.01 to 0.1. For example, when λ1 varied from 0.01 to 0.1,
#β(1) and #β(3) increased from 93 and 126 to 1,340 and
148 in the Canada dataset, respectively. Surprisingly, #β(2)
was much fewer than #β(1) and #β(3) and reduced to 0 with
the increase of λ1. As an instance, #β(2) dropped from 32
to 0 as λ1 varied from 0.01 to 1.

TABLE V
THE EFFECT OF λ1 ON THE SPARSITY PATTERNS: THE SPARSITY PATTERNS

WERE MORE OBVIOUS AS λ1 INCREASED.

λ1
Philippines India Germany

#β(1) #β(2) #β(3) #β(1) #β(2) #β(3) #β(1) #β(2) #β(3)
0.01 61 32 375 230 8 204 234 11 98
0.1 1063 1 441 1272 1 218 1317 2 116
1 1079 0 443 1303 0 219 1401 0 118

λ1
Australia Canada United States

#β(1) #β(2) #β(3) #β(1) #β(2) #β(3) #β(1) #β(2) #β(3)
0.01 271 6 123 93 5 126 82 2 28
0.1 1357 0 137 1340 1 148 1231 0 30
1 1385 0 137 1373 0 149 1479 0 30
4) Scalability analysis: To examine the scalability of the

MLUE, we measured the training times of all methods when
varying number of features and number of petitions using
5,000 petitions in the United States petition dataset. The
training time was calculated by the average of running 20
times.

Figure 4(a) compares the running time for all methods
when the number of features varied from 100 to 1,500.
Basically, the running time of all methods increased linearly
with number of features. Among them, the WELLSVM and
the JFS were implemented the most efficiently compared
with other methods. The CMTL and the MLUE were also
very efficient and consumed less than 50 seconds with 1,500
available features. The efficiency of the MLUE consisted in the
parallel computing strategy of the ADMM as well as proper
initialization of parameters. Obviously, the cMTFL-I was the
slower than most baselines and kept steady no matter how
many features were given. It tripled the training time of the
MLUE when 1, 500 features were used for training. For the
SoCK and the NysCK, they consumed similar running time
and were the slowest among all baselines.

To examine the scalability for an increasing number of pe-
titions, Figure 4(b) illustrates the running time of all methods
when number of petition ranged from 100 to 5,000. Similar
to the patterns shown in Figure 4(a), the running time of
all methods increased linearly with number of petitions. This
illustrated that our MLUE was scalable with respect to features
and petitions. cMTFL-I was still the most time-consuming
algorithm of all. However, the increased trend was suppressed
with the introduction of more petitions.

5) Feature Analysis: In addition to petition victory predic-
tion, the proposed MLUE can also find important features,
which helps petition-launcher increase the possibility to set
up victorious petitions. Table VI illustrates the top-10 features
with the highest value of weight. The significance of features
is ranked decreasingly with regard to weight value. Most

(a) Scalability on number
of features

(b) Scalability on number
of petitions

Fig. 4. Scalability on number of features and petitions: all methods increased
linearly with the number of features and petitions.

features originate from the fields of petition tag and petition
title. It seems that some types of petitions are more likely
to succeed in different countries: For example, the decision-
makers in India attach importance to petitions concerning food,
environment, veterans and cancer; the petitions about disability
rights, criminal justice and business and brands are prioritized
in Germany; the petitions regarding healthcare, gay rights,
disability rights and education are given priority by decision-
makers in the United States. Thus the favorite petitions from
the developing countries tend to focus on basic needs of the
people while for developed countries education and human
rights gain more concerns.

VII. CONCLUSION

Petition victory prediction is an important task in order
to accelerate the process of petition reaction to public con-
cerns. In this paper, we proposed a novel Multi-task Learning
framework with uncertainty Estimation (MLUE) to predict po-
tentially victorious petitions. Specifically, we divided data into
different Increasing Feature Blocks (IFBs) according to miss-
ing patterns. We also presented a novel criterion to estimate
uncertainty and introduced a chain-structured regularization
term. Besides, we provided an EM-like algorithm to optimize
the non-convex objective function in two stages: we proposed
a dynamic programming method to make out the label of the
unlabeled petitions in the E-step and introduced an ADMM-
based method to optimize the coefficient of the classifier
in the M-step. Various experiments on six petition datasets
demonstrate that our MLUE dominated other baselines.
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