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ABSTRACT
Spatial networks represent crucial data structures where the nodes

and edges are embedded in a geometric space. Nowadays, spatial

network data is becoming increasingly popular and important, rang-

ing from microscale (e.g., protein structures), to middle-scale (e.g.,

biological neural networks), to macro-scale (e.g., mobility networks).

Although, modeling and understanding the generative process of

spatial networks are very important, they remain largely under-

explored due to the significant challenges in automaticallymodeling

and distinguishing the independency and correlation among vari-

ous spatial and network factors. To address these challenges, we

first propose a novel objective for joint spatial-network disentan-

glement from the perspective of information bottleneck as well as a

novel optimization algorithm to optimize the intractable objective.

Based on this, a spatial-network variational autoencoder (SND-

VAE) with a new spatial-network message passing neural network

(S-MPNN) is proposed to discover the independent and dependent

latent factors of spatial and networks. Qualitative and quantitative

experiments on both synthetic and real-world datasets demonstrate

the superiority of the proposed model over the state-of-the-arts by

up to 66.9% for graph generation and 37.3% for interpretability.

CCS CONCEPTS
• Computing methodologies→ Unsupervised learning; Neu-
ral networks; Generative and developmental approaches; •Math-
ematics of computing → Graph algorithms; • Information sys-
tems→ Data mining; • Networks→ Topology analysis and gener-
ation.
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Figure 1: Spatial networks contain not only network and spatial in-
formation but also information describing their close interactions.
The three real-world examples of spatial networks show the dif-
ferent patterns needed for different spatial networks: (1) a protein
tertiary structure graph is invariant to the rotation in a geometric
space; (2) two cities’ absolute locations indicate key spatial hetero-
geneity information in their mobility networks; and (3) people who
live nearer are more likely to be friend in social networks.

Virtual Event, Singapore. ACM, New York, NY, USA, 11 pages. https://doi.

org/10.1145/3447548.3467394

1 INTRODUCTION
Spatial and network data are both popular types of high-dimensional

complex data that are being used in a wide variety of applications

in the big data era. The study of spatial data usually focuses on the

properties of continuous spatial entities under specific geometric

patterns (Fig. 1(a)), while the analysis of network data concentrates

on the properties of discrete objects and their pairwise relation-

ships (Fig. 1(b)). Spanning these two data types, spatial networks

represent a crucial data structure where the nodes and edges are em-

bedded in a geometric space (Fig. 1 (c)). Nowadays, spatial network

data is becoming increasingly popular and important, ranging from

micro-scale (e.g., protein structures), to middle-scale (e.g., biological

neural networks), to macro-scale (e.g., mobility networks). Spatial

networks cannot be modeled using either spatial or network infor-

mation individually, but require the simultaneous characterization

of both the data and their interactions, which results in various

patterns [5]. For example, a protein structure can be formalized as

a spatial network with patterns that are invariant to rotation and

translation. But in a mobility network, the absolute locations of the

nodes are meaningful to indicate spatial heterogeneity for different

nodes (e.g., cities) of networks, as shown in Fig. 1(d). Moreover, the

interactions between the patterns of network topology and spatial

features are also very important, as shown in the example of a social

network in Fig. 1(d), where the edge formation can be dependent

on the geodesic distance.
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(b) Variation of two dependent semantic factors of spatial/network (e.g., 
density of network/distance between nodes increase as human grows) 

(c) Variation of a semantic factor of network (e.g., connection 
changes for different functional tasks) 

(a) Variation of a semantic factor of spatial-related (e.g., rotation angle) 

Figure 2: Visualizing the variations of three groups of semantic
factors of (1) spatial, (2) spatial network, and (3) network for the
spatial network example of brain network.

Modeling and understanding the generative process of spatial

networks are vital for a wide variety of important applications,

such as protein structure generative modeling [3, 18, 39], biologi-

cal neural nets [1], and mobility network analysis [24]. Until now,

the commonly-used models extend graph theory into spatial net-

works [5], resulting in models such as geometric graphs [38] and

spatial small-world graphs [28]. These typically rely on a set of

network generation principles predefined by human heuristics and

knowledge. Such methods usually fit the properties that have been

covered by the predefined principles very well, but are not as effec-

tive for those that have not been. Unfortunately, in many domains,

the network properties and generation principles remain largely

unknown, such as models that explain the mechanisms of mental

diseases in brain networks like functional connectivity [1] and pro-

tein structure folding. This motivates us to find ways to directly

learn the underlying spatial and graph-structure distribution pat-

terns from the data without the needs to predefine the generation

rules manually.

Recent advanced deep generative models, such as variational

auto-encoders (VAE) [31], have made important progress towards

modeling and understanding complex data, such as spatial data

(e.g., point clouds) and graph data (e.g., molecules). The goal here

is to first learn the underlying (low-dimensional) distribution of

the objects and then generate the data by sampling this learned

distribution. Despite many deep generative models that have been

proposed for dealing with either spatial data or graph data individu-

ally, as yet the deep generative models for spatial networks remain

to be explored which cannot be handled by existing techniques

due to several significant challenges: (1) Difficulty in capturing
and separating various types of semantic factors: There are
three groups of semantic factors to be captured: one is related to

spatial information that is independent from networks, such as the

rotation of the brain network, as shown in Fig. 2(a); one is related to

network information that is independent from spatial information,

such as functional connectivity of brain network when people are

doing different tasks, shown in Fig. 2(c); and one contains the se-

mantic factors spanning both spatial and network dimensions that

encompass the interactions between geometry and networks, such

as the joint changes of size, shape, and connectivity of human brain

network when growing, shown in Fig. 2(b). (2) Difficulty in cap-
turing the distribution that models the interaction between
spatial and networks: it is often necessary to capture the com-

plex and various interaction patterns between spatial and network

dimensions. For example, network features like friendship between

two people may have mutual correlation with their spatial loca-

tions. Many real-world networks are planar which require that their

edges do not cross in a plane. How to jointly learn the shared latent

dimensions for both the continuous-valued spatial information and

discrete-valued graph information is extremely challenging. (3) Dif-
ficulty in preserving all the information in spatial networks.
As illustrated in Fig. 1, spatial network generative models are re-

quired to capture all the information available in spatial, network,

and their joint dimensions. For example, both rotation invariant

and rotation variant properties need to be modeled. Similarly, both

transformation invariant and variant properties need also be char-

acterized. Graph-structured information and their interaction with

spatial information need also be covered in the model. This not only

challenges the spatial network encoder and decoder, but also call

for effective strategies in optimizing the information bottlenecks.

To address all the above challenges, here we for the first time

propose a novel disentangled deep generative model for spatial

networks. Specifically, a novel objective for spatial-network joint

disentanglement is derived and proposed based on the variational

autoencoder (VAE) from the perspective of an information bottle-

neck. To optimize the intractable objective, a novel Spatial-Network

Disentangled Variational Auto-encoder (SND-VAE) model is pro-

posed to discover the independent and dependent latent factors

of spatial and networks. To deal with the information bottlenecks

affecting spatial, network, and spatial-network-joint factors, a novel

optimization strategy is proposedwith a theoretical analysis. Finally,

a new spatial-network message passing neural network (S-MPNN)

is proposed that is capable of both learning the spatial-network

joint embedding and preserving geometric graph information. The

contributions of this paper are summarized as follows:

• Anovel spatial network generativemodel and its learning
objective are proposed. The proposedmodel learning objective

is derived from the perspective of the information bottleneck and

are able to capture three semantic factors including that merely

explaining spatial patterns, merely explaining network patterns,

and the one that spans spatial-network-joint patterns.

• A novel spatial network generative model inference algo-
rithm is proposed with theoretical guarantees. To optimize

the information bottlenecks for spatial, network, and spatial-

network-joint semantic factors, a model inference algorithm

with a two-loop optimization strategy is proposed.

• A new spatial network message passing neural network
is proposed. The proposed spatial message passing neural net-

works conduct the two/three-order message transmissions fea-

tured by angle and dihedral distances for 2D/3D spatial networks.

• Comprehensive experiments were conducted. Qualitative
and quantitative experiments on two synthetic and two real-

world datasets demonstrate that SND-VAE and its extensive



models are indeed capable of learning disentangled factors for

different types of spatial networks.

2 RELATEDWORKS
Deep Generative Models on Network Data. Graph generation

involves learning the distributions of given graphs and gener-

ating more novel graphs. Most of the existing deep generative

models for network/graph data are based on variational autoen-

coders(VAE) [16, 21, 41], generative adversarial nets (GANs) [19],

and others [20]. For example, graphRNN builds an auto-regressive

generative model on these sequences utilizing LSTM model [47];

while graphVAE [41] represents each graph in terms of its adjacent

matrix and feature vector and utilizes the VAE model to learn the

distribution of the graphs conditioned on a latent representation at

the graph level. Graphite [16] encode the nodes of each graph into

node-level embedding and predict the links between each pair of

nodes to generate a graph. However, these existing graph genera-

tion methods do not consider the geometry space of the network

during the generation process.

Deep Generative Models on Spatial Data. State-of-the-art
deep learning methods have shown a remarkable capacity to model

complex spatial data, including 3D objects [15, 32, 42, 48], and

geospatial data [29]. Generative models of 3D objects exists in

a variety of forms, including ordered [36] and unordered point

clouds [4, 42], voxels [12], and manifolds [37, 40]. As deep graph

convolution continues to develop, several groups have begun to

extend the applications of graph neural network into the generation

of 3D objects [43]. Most of these methods construct the nearest

neighbor graphs from the 3D point clouds thus transforming the

point cloud generation problem into a graph generation problem.

Spatial Graph Convolution Neural Networks. Graph neural
networks (GNNs) are currently attracting considerable attention

in multiple domains. Recently, to accommodate both graph con-

stitution and graph geometry, there have been efforts to extend

GNNs by incorporating 3D/2D node coordinates in graph convo-

lutions [13, 25, 30, 44, 46]. One line of inquiry treats the spatial

information of the nodes as node features and then conducts the

spatial graph convolution via a conventional GNN [44, 46], which,

however, are not invariant to graph rotation and translation. An-

other approach that has been proposed utilizes the mutual distances

to store geometric information, with some being domain-specific.

For example, Klicpera et al [30] proposed a 2D geometry graph

convolution for molecular representations that used the directional

information by transforming messages based on the angles between

edges. Some works are generic [9, 11] only considering the adjacent

nodes in describing the 3D/2D structure without considering the

and angles dihedrals that feature the geometry of nodes.

Disentanglement Representation Learning. Disentangled
representation learning has gained considerable attention, in partic-

ular in the field of image representation learning [2, 10, 17, 23, 26].

The goal here is to learn representations that separate out the un-

derlying explanatory factors responsible for variations in the data.

Such representations have been shown to be relatively resilient

to the complex variants involved [6], and can be used to enhance

generalizability as well as improve robustness against adversarial

attack [2]. This has prompted a number of approaches that modify

the VAE objective by adding, removing, or altering the weight of in-

dividual terms in the task of interpretable data generation [10, 26].

Disentanglement representation and generation on spatial data

have been explored recently in the domain of point clouds [4, 42],

mesh [15, 32] and manifolds [37, 40]. Meanwhile, the exploration

of the interpretable representation learning of graphs, which ex-

pose the semantic factors of nodes and edges is also starting to

bear fruit [14, 22, 34]. However, learning representations that dis-

entangle the latent factors of a spatial network remains largely

unexplored.

3 METHODOLOGY
In this section, the problem formulation is first provided before

moving on to derive the overall objective from the perspective of

the information bottleneck, following which a novel optimization

algorithm to optimize the intractable proposed objective is proposed.

Finally, the overall architecture as well as the novel spatial network

message passing operations are introduced.

3.1 Problem Formulation
Define an input spatial network as 𝑋 = (𝑆,𝐺), where 𝑆 = (𝒱, 𝐿)
represents the geometric information of the set of nodes 𝒱 . 𝐿 ∈

ℛ𝑁×2
or 𝐿 ∈ ℛ𝑁×3

denote to the 2D/3D geometric coordinates

of nodes, respectively. 𝑁 refers to the number of nodes. 𝐺 =

(𝒱, ℰ, 𝐹 , 𝐸) refers to a network [5], where ℰ ⊆ 𝒱 × 𝒱 is the set of

edges. 𝐸 ∈ ℛ𝑁×𝑁
refers to the edge weights or adjacent matrix of

the topology. 𝐹 ∈ ℛ𝑁×𝑓
denote to the node feature and 𝑓 is the

length of each node feature vector. It is worth noting that the spa-

tial information 𝑆 cannot be simply represented as a node feature

in the network since this form of representation can not capture

the patterns that are invariant to rotation and translation of the

network in the geometric space.

The goal of learning disentangled generative models for a spa-

tial network is to learn the conditional distribution 𝑝(𝑆,𝐺∣𝑍) of
the spatial network (𝑆,𝐺) given three groups of generative latent

variables 𝑍 = (𝑧𝑠 ∈ R𝐿1 , 𝑧𝑔 ∈ R𝐿2 , 𝑧𝑠𝑔 ∈ R𝐿3), where 𝐿1, 𝐿2, and
𝐿3 are the number of variables in each group, in order to captures

the three types of semantic factors. Specifically, 𝑧𝑠 is required to

capture just the independent spatial semantic factors; 𝑧𝑔 is required

to capture just the independent network factors; and 𝑧𝑠𝑔 is required

to capture just the correlated spatial and network factors. Three

challenges must be overcome to achieve this goal: (1) The lack of a

co-decoder for the generation of a spatial network that is capable

of jointly generating both the spatial and network data; (2) the diffi-

culty of capturing the joint patterns of spatial and network, which

exposes the correlated spatial and network semantic factors; and

(3) the difficulty of enforcing the structured latent representations

that separate the independent and dependent semantic factors of

the spatial and network data.

3.2 The objective on spatial graphs generation
3.2.1 The derivation of the overall objective. As defined in the prob-

lem formulation, the goal here is to learn the conditional distribu-

tion of 𝑋 given 𝑍 , namely, to maximize the marginal likelihood of

the observed spatial network 𝑋 in expectation over the distribution

of the latent variable set (𝑧𝑠 , 𝑧𝑔, 𝑧𝑠𝑔) as E𝑝𝜃 (𝑍)(𝑝𝜃 (𝑋 ∣𝑧𝑠 , 𝑧𝑔, 𝑧𝑠𝑔)).



For a given observation of spatial network 𝑋 = (𝑆,𝐺), we describe
the prior distribution of the latent representation as 𝑝(𝑧𝑠 , 𝑧𝑔, 𝑧𝑠𝑔),
which, however, is intractable to infer. We propose solving it based

on variational inference, where the posterior needs to be approx-

imated by another distribution 𝑞𝜙(𝑧𝑠 , 𝑧𝑔, 𝑧𝑠𝑔∣𝐺, 𝑆). So, the goal is
also to minimize the Kullback–Leibler (KL) divergence between the

true prior and the approximate posteriors. In order to encourage

this disentangling property of 𝑞𝜙(𝑧𝑠 , 𝑧𝑔, 𝑧𝑠𝑔∣𝐺, 𝑆), we introduce a
constraint by trying to match the inferred posterior configurations

of the latent factors to the prior 𝑝(𝑧𝑠 , 𝑧𝑔, 𝑧𝑠𝑔). This can be achieved

if we set each prior to be an isotropic unit Gaussian, i.e.,𝒩 (0, 1),
leading to the constrained optimization problem as:

max

𝜃,𝜙
E𝑆,𝐺∼𝐷[E𝑞𝜙 (𝑍 ∣𝑆,𝐺)𝑙𝑜𝑔𝑝𝜃 (𝐺, 𝑆∣𝑧𝑠 , 𝑧𝑔, 𝑧𝑠𝑔)] (1)

s.t. E𝑆,𝐺∼𝐷[𝐷𝐾𝐿(𝑞𝜙(𝑧𝑠 , 𝑧𝑔, 𝑧𝑠𝑔∣𝑆,𝐺)∣∣𝑝(𝑧𝑠 , 𝑧𝑔, 𝑧𝑠𝑔)] < 𝐼 ,

where 𝐷 refers to the observed dataset of the spatial networks.

First, we decompose the main objective term based on the as-

sumption that 𝑆 ⊥ 𝐺∣(𝑧𝑠 , 𝑧𝑔, 𝑧𝑠𝑔) and 𝑆 ⊥ 𝑧𝑔 and 𝐺 ⊥ 𝑧𝑠 (since 𝑧𝑠
only captures information on 𝑆 and 𝑧𝑔 only captures information

on 𝐺), where ⊥ indicates an independent relationship. We then

obtain:

E𝑞𝜙 (𝑍 ∣𝑆,𝐺)[log𝑝𝜃 (𝐺, 𝑆∣𝑧𝑠 , 𝑧𝑔, 𝑧𝑠𝑔)] (2)

= E𝑞𝜙 (𝑍 ∣𝑆,𝐺)[log𝑝𝜃 (𝐺∣𝑧𝑠 , 𝑧𝑔, 𝑧𝑠𝑔) + log𝑝𝜃 (𝑆∣𝑧𝑠 , 𝑧𝑔, 𝑧𝑠𝑔)]
= E𝑞𝜙 (𝑍 ∣𝑆,𝐺)[log𝑝𝜃 (𝐺∣𝑧𝑔, 𝑧𝑠𝑔) + log 𝑝𝜃 (𝑆∣𝑧𝑠 , 𝑧𝑠𝑔)].

Next, we decompose the constraint term based on the assumption

that 𝑝(𝑧𝑠), 𝑝(𝑧𝑔), and 𝑝(𝑧𝑠𝑔) are independent given 𝑆 and 𝐺 as:

𝑝𝜙(𝑧𝑠 , 𝑧𝑔, 𝑧𝑠𝑔∣𝑆,𝐺) = 𝑝𝜙(𝑧𝑠 ∣𝑆)𝑝𝜙(𝑧𝑔∣𝐺)𝑝𝜙(𝑧𝑠𝑔∣𝑆,𝐺). (3)

Then the objective is written as:

max

𝜃,𝜙
E𝑆,𝐺∼𝐷E𝑞𝜙 (𝑍 ∣𝑆,𝐺)[log𝑝𝜃 (𝐺∣𝑧𝑔, 𝑧𝑠𝑔) + log 𝑝𝜃 (𝑆∣𝑧𝑠 , 𝑧𝑠𝑔)]

s.t. E𝑆∼𝐷[𝐷𝐾𝐿(𝑞𝜙(𝑧𝑠 ∣𝑆)∣∣𝑝(𝑧𝑠)] < 𝐼𝑠 .

E𝐺∼𝐷[𝐷𝐾𝐿(𝑞𝜙(𝑧𝑔∣𝐺)∣∣𝑝(𝑧𝑔)] < 𝐼𝑔 .

E𝑆,𝐺∼𝐷[𝐷𝐾𝐿(𝑞𝜙(𝑧𝑠𝑔∣𝑆,𝐺)∣∣𝑝(𝑧𝑠𝑔)] < 𝐼𝑠𝑔,

where we decompose 𝐼 into three separate parts of the informa-

tion capacity to control each group of latent variables, so that the

variables inside each group of latent variables are disentangled.

As stated in the problem formulation, the latent 𝑧𝑠 should capture

just the independent spatial factors and 𝑧𝑠𝑔 should capture just the

correlated spatial/graph factors. However, the above objective only

ensures that 𝑧𝑠𝑔 captures all the correlated spatial/graph factors, and

cannot enforce 𝑧𝑠 captures all the independent spatial factors, which

means that there is a chance that some of the independent spatial

factors can also be captured by 𝑧𝑠𝑔 . Similarly, there is a chance that

some of independent graph factors can also be captured by 𝑧𝑠𝑔 .

To address this issue, we first interpret the constraints based on

the information bottleneck theory, as stated by Burgess et al.[8].

The posterior distribution 𝑞𝜙(𝑧𝑠 ∣𝑆) and 𝑞𝜙(𝑧𝑠𝑔∣𝑆,𝐺) are inter-

preted as an information bottleneck for the reconstruction task

E𝑞𝜙 (𝑍 ∣𝑋 )𝑙𝑜𝑔𝑝𝜃 (𝑆∣𝑧𝑠 , 𝑧𝑠𝑔). Similarly,𝑞𝜙(𝑧𝑔∣𝐺) and𝑞𝜙(𝑧𝑠𝑔∣𝑆,𝐺) are
interpreted as the information bottleneck for the reconstruction task

E𝑞𝜙 (𝑍 ∣𝑋 )𝑙𝑜𝑔𝑝𝜃 (𝐺∣𝑧𝑔, 𝑧𝑠𝑔). We then propose that, by constraining

the information flow through 𝑧𝑠𝑔 to be less than the maximum in-

formation (entropy) 𝐶𝑠𝑔 of the correlated factors, namely 𝐼𝑠𝑔 ≤ 𝐶𝑠𝑔 ,

the latent 𝑧𝑠𝑔 will only capture information on correlated factors

when well-optimized. Thus, the final objective is expressed as:

max

𝜃,𝜙
E𝑆,𝐺∼𝐷E𝑞𝜙 (𝑍 ∣𝐺)[𝑙𝑜𝑔𝑝𝜃 (𝐺∣𝑧𝑔, 𝑧𝑠𝑔) + 𝑙𝑜𝑔𝑝𝜃 (𝑆∣𝑧𝑠 , 𝑧𝑠𝑔)]

s.t. E𝑆∼𝐷[𝐷𝐾𝐿(𝑞𝜙(𝑧𝑠 ∣𝑆)∣∣𝑝(𝑧𝑠)] < 𝐼𝑠 ,

E𝐺∼𝐷[𝐷𝐾𝐿(𝑞𝜙(𝑧𝑔∣𝐺)∣∣𝑝(𝑧𝑔)] < 𝐼𝑔, (4)

E𝑆𝐺∼𝐷[𝐷𝐾𝐿(𝑞𝜙(𝑧𝑠𝑔∣𝑆,𝐺)∣∣𝑝(𝑧𝑠𝑔)] < 𝐼𝑠𝑔,

𝐼𝑠𝑔 ≤ 𝐶𝑠𝑔

The above objective is derived based on the concept that by

constraining the information flow through 𝑧𝑠𝑔 to be less than the

maximum information (entropy) of the correlated semantic factors,

the latent 𝑧𝑠𝑔 will only capture information on correlated factors

when well-optimized. Thus, the independent semantic factors of

spatial and network will be forced into 𝑧𝑠 and 𝑧𝑔 , as the following

theorem which is proved in Appendix A.

Theorem 1. Given that (1) 𝐼𝑠 and 𝐼𝑔 are large enough to contain
the information on the independent graph and spatial factors, and (2)
𝐼𝑠𝑔 ≤ 𝐶𝑠𝑔 , hence to achieve the maximum objective, the information
captured by 𝑧𝑠𝑔 needs to be all on the correlated semantic factors.

Algorithm 1 Two-loop Optimization for SND-VAE

Input: The initialized parameter set 𝒲 ; the initialized 𝐼𝑠𝑔 = 0 (𝐼𝑠𝑔 ∉

𝒲); the increase step 𝛾 for optimizing 𝐼𝑠𝑔 ; the max value𝐶𝑚𝑎𝑥 as stop

criterion; the number of epochs 𝑃 of optimization for each updated 𝐼𝑠𝑔 .

Output: The optimized parameter set𝒲 .

while 𝐼𝑠𝑔 ≤ 𝐶𝑚𝑎𝑥 do
for 𝑒𝑝𝑜𝑐ℎ = 1 ∶ 𝑃 do

Compute the gradient of 𝒲 via Back Propagation.

Update𝒲 based on gradient with 𝐼𝑠𝑔 fixed.

end for
𝐼𝑠𝑔 ∶= 𝐼𝑠𝑔 + 𝛾

end while

3.3 Optimization Strategy
To optimize the overall objective, we transform the inequality con-

straint into an tractable formulation. Given that 𝐼𝑠 and 𝐼𝑔 are con-

stants, the first two constraints in Eq. 4 are rewritten based on the

Lagrangian algorithm under KKT condition [35] as:

ℛ1 = 𝛽1𝐷𝐾𝐿(𝑞𝜙(𝑧𝑠 ∣𝑆)∣∣𝑝(𝑧𝑠) + 𝛽2𝐷𝐾𝐿(𝑞𝜙(𝑧𝑔∣𝐺)∣∣𝑝(𝑧𝑔), (5)

where the Lagrangian multipliers 𝛽1 and 𝛽2 is the regularization

coefficients that constrains the capacity of the latent information

channels 𝑧𝑠 and 𝑧𝑔 , respectively, and puts implicit independence

pressure on the learned posterior.

In the third constraint, 𝐼𝑠𝑔 is a trainable parameter since the

fourth constraint requires that 𝐼𝑠𝑔 < 𝐶𝑠𝑔 . Thus, it can be rewritten

as a Lagrangian under the KKT condition as:

ℛ2 = 𝛽3(𝐷𝐾𝐿(𝑞𝜙(𝑧𝑠𝑔∣𝑆,𝐺)∣∣𝑝(𝑧𝑠𝑔)) − 𝐼𝑠𝑔). (6)

Thus, the overall objective is formalized as:

max

𝜃,𝜙
E𝑆,𝐺∼𝐷[E𝑞𝜙 (𝑍 ∣𝐺)[log𝑝𝜃 (𝐺∣𝑧𝑔, 𝑧𝑠𝑔) + log𝑝𝜃 (𝑆∣𝑧𝑠 , 𝑧𝑠𝑔)] −ℛ

1
−ℛ

2

s.t. 𝐼𝑠𝑔 < 𝐶𝑠𝑔

Since𝐶𝑠𝑔 is unknown, it is hard to optimize this objective. To deal

with this, we introduce a novel optimization strategy that utilizes a



Figure 3: The proposed SND-VAE: (a) The overall architecture, which consists of a spatial encoder, a network encoder and a spatial network
encoder, as well as a spatial decoder and a network decoder; (b) The S-MPNN; (c) the message passing operations for 2D S-MPNN in the
spatial-network encoder; (d) the message passing operations for 3D S-MPNN in the spatial-network encoder.

two-loop optimization strategy: one loop is for the optimization of

𝐼𝑠𝑔 , and the other loop is for the optimization of the model, as shown

in Algorithm 1. We propose to gradually increase 𝐼𝑠𝑔 by 𝛾 every 𝑃

epoch, until it reaches 𝐶𝑚𝑎𝑥 , where 𝐶𝑚𝑎𝑥 is a hyper-parameter.

The most important advantage of the proposed model is that

the optimization result is not sensitive to 𝐶𝑚𝑎𝑥 for the following

reasons: (1) if 𝐶𝑚𝑎𝑥 ≤ 𝐶𝑠𝑔 , we have 𝐼𝑠𝑔 < 𝐶𝑠𝑔 , where the con-

straint is satisfied; and (2) if 𝐶𝑚𝑎𝑥 > 𝐶𝑠𝑔 , during the optimization

process where 𝐼𝑠𝑔 ≤ 𝐶𝑠𝑔 , all the correlated spatial and network

information will flow into 𝑧𝑠 and 𝑧𝑔 , respectively, based on Theo-

rem 1. During the optimization process where 𝐼𝑠𝑔 > 𝐶𝑠𝑔 , though

the condition of Theorem 1 is no longer met, it is proved that fur-

ther increasing the value of 𝐼𝑠𝑔 will not change the assignment of

information on each latent representation, as defined in Theorem 2,

which is proved in Appendix C.

Theorem 2. During training process, if (1) 𝑧𝑠 and 𝑧𝑔 have captured
the information of all the independent semantic factors of spatial and
network respectively, and (2) 𝑧𝑠𝑔 captured all the correlated semantic
factors of spatial and network, increasing the value of 𝐼𝑠𝑔 will not
change the information assignment of independent semantic factors
of spatial and network, and correlated semantic factors of spatial
network to the 𝑧𝑠 , 𝑧𝑔 and 𝑧𝑠𝑔 .

3.4 Spatial Network Encoders and Decoders
Based on the above inference for the objective, we are proposing

our new Spatial-Network Disentangled VAE model (SND-VAE). In

addition, to capture the correlated semantic factors within the spa-

tial and network information, we propose a novel spatial network

message passing neural network (S-MPNN) as one component in

SND-VAE. Both will be described in detail in this section.

3.4.1 Architecture of SND-VAE. The architecture of the proposed
model is shown in Fig. 3. The overall framework is based on a

conventional VAE, where encoders learn the mean and standard

deviation of the latent representation of the input and the decoder

decodes the sampled latent representation vector to reconstruct

the input. The proposed framework has three encoders, each of

which models one of the distributions 𝑞𝜙(𝑧𝑠 ∣𝑆), 𝑞𝜙(𝑧𝑔∣𝐺), and
𝑞𝜙(𝑧𝑠𝑔∣𝑆,𝐺); and two novel decoders to model 𝑝𝜃 (𝐺∣𝑧𝑔, 𝑧𝑠𝑔) and

𝑝𝜃 (𝑆∣𝑧𝑠 , 𝑧𝑠𝑔), that jointly generate the graph and spatial based on

the three types of latent representations. Each type of represen-

tations is sampled using its own inferenced mean and standard

derivation. For example, the representation vectors 𝑧𝑠 are sampled

as 𝑧𝑠 = 𝑠 +𝑠 ⋅𝜖 , where 𝜖 follows a standard normal distribution.

There are three encoders and two decoders in the overall archi-

tecture (shown in Fig. 3(a)). Specifically, for the spatial encoder, we

utilize a convolution neural network. For the graph encoder, we

utilize the typical graph convolution neural network [27]. For the

spatial-network encoder, we propose a novel Spatial-Network Mes-

sage Passing Neural Network (S-MPNN) (shown in Fig. 3(b)) which

is detailed in the following. For the spatial decoder, we utilize the

typical convolution neural network. For the graph decoder, we uti-

lize a similar graph decoder to that proposed in NED-VAE [19]. The

details of all the encoders and decoders are provided in Appendix D.

3.4.2 S-MPNN for 2D Graphs. In this section, we introduce the

S-MPNN for the 2-D spatial network by first introducing a novel

expression of geometry information of spatial network and then

the two-order message passing layers of S-MPNN.

Expression of 2D geometry information. Normally, the ge-

ometry of 2-D graphs is specified in terms of the Cartesian coordi-

nates of nodes, but doing so means that the specification depends on

the (arbitrary) choice of origin and is thus too general for specifying

a geometry that is invariant to both the rotation and translations in

the graph. Thus, we propose to representing the spatial information

by the distances between all pairs of nodes and the angles between

all pair of edges. Specifically, we first define the edge distance as

the distance between two nodes connected together and the angle

as the angle formed between three nodes across two edges, as illus-

trated by 𝛼𝑘,𝑗,𝑖 in Fig. 3(c). To adopts a unified scheme (distance)

and reflects pairwise node interactions and their generally local

nature, we introduce the angle distances to represent angles in

the spatial network. The angle distance (e.g., 𝑑𝑘,𝑗,𝑖 ) is the distance

between the end nodes of an angle (e.g., 𝛼𝑘,𝑗,𝑖 ).

Two-order Message Passing. The key point for message pass-

ing operation is to define which nodes will influence and can pass

messages to the target node. For each node in 2D graphs, its geom-

etry information will be featured or determined not only by its first

order neighbors, but also by its second order neighbors, as well as



the angle distance between its first and the relevant second order

neighbors. For example, as shown in Fig. 3 (c), the connectivity and

geometry of target node 𝑣𝑖 can be described at least by its first-order

neighboring node 𝑣 𝑗 , second-order neighboring nodes 𝑣𝑘 as well

as the angle distances 𝑑
𝑎𝑛𝑔𝑙𝑒

𝑘,𝑗,𝑖
. Thus, the message passing process at

each layer for each node in 2D spatial network involves three steps:

(1) the second-order nodes transmit the message into the first-order

nodes carrying the angle distances information; (2) the first-order

nodes collect all the received messages and transmit them to the

target node; and (3) the embedding of target node is updated based

on the messages. The detailed operations are shown as follows.

First, featured by its relevant angle distance, each second-order

message (e.g.,𝑚
(𝑙+1)
𝑘,𝑗,𝑖

) is flown from a second-order neighbor (e.g.,

node 𝑣𝑘 ) to its relevant first-order neighbor (e.g., node 𝑣 𝑗 ) regarding

the target node (e.g., 𝑣𝑖 ) at the (𝑙 + 1)-th layer as:

𝑚
(𝑙+1)
𝑘,𝑗,𝑖 = 𝑀(ℎ𝑙𝑖 , ℎ𝑙𝑗 , ℎ𝑙𝑘 , , 𝑑

𝑒𝑑𝑔𝑒

𝑗,𝑘 , 𝑑
𝑎𝑛𝑔𝑙𝑒

𝑘,𝑗,𝑖 ), (7)

where ℎ
𝑙
𝑖 refers to the latent embedding of node 𝑖 at the 𝑙-th layer,

𝐸𝑖, 𝑗 refers to the edge weights (if applicable) of edge 𝑒𝑖, 𝑗 . 𝑑
𝑒𝑑𝑔𝑒

𝑘,𝑗

refers to the distance between node 𝑣𝑘 and 𝑣 𝑗 .

Next, based on the messages from all the second neighbors,

the first-order message (e.g.,𝑚
(𝑙+1)
𝑖, 𝑗 ) is flown from the first-order

neighbor (e.g., node 𝑣 𝑗 ) to the target node (e.g., 𝑣𝑖 ) as:

𝑜
(𝑙+1)
𝑖,𝑗 = 𝑂(ℎ𝑙𝑖 , ℎ𝑙𝑗 , 𝑑

𝑒𝑑𝑔𝑒

𝑖,𝑗 ,∑
𝑘∈𝒩 (𝑗)𝑚

(𝑙+1)
𝑘,𝑗,𝑖 ). (8)

At last, after calculating the first-order messages passing onto

the target node, the embedding of target node 𝑣𝑖 is updated as:

ℎ
(𝑙+1)
𝑖 = 𝑈 (ℎ𝑙𝑖 ,∑𝑗∈𝒩 (𝑖) 𝑜

(𝑙+1)
𝑖,𝑗 ). (9)

The functions 𝑀(⋅), 𝑂(⋅) and 𝑈 (⋅) can be implemented by the

Multi-Later Perceptions (MLPs).

3.4.3 S-MPNN for 3D Graphs. Here we introduce the the S-MPNN

for the 3-D spatial network by first introducing a novel expression

of geometry information of 3D spatial network and then a three-

order message passing layer.

Expression of 3D geometry information Compared to 2D

spatial network, the geometry of a 3D graph is fully specified not

only with edge and angles distances, but also dihedral distance. A

dihedral is the angle between the plane formed by the target node

𝑣𝑖 , its first-order neighbor 𝑣 𝑗 and its second-order neighbor 𝑣𝑘 , and

the plane formed by its first-order neighbor 𝑣 𝑗 , the second-order

neighbor 𝑣𝑘 and the third-order neighbor 𝑣𝑝 . Thus, the dihedral

distance is to represent dihedral in the spatial graph and denotes

the distance between the target node 𝑣𝑖 and its third-order neighbor

𝑣𝑝 , as illustrated by 𝑑
𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙
𝑝,𝑘,𝑗,𝑖 in Fig. 3 (d).

Three-order Message Passing. For each target node 𝑣𝑖 in 3D

spatial networks, its connectivity and geometry will be featured not

only by its first and second order neighbors, but also the relevant

angle and dihedral distances, as shown in Fig. 3 (d). Thus, the

message passing process of 3D spatial network involves four steps.

First, featured by its relevant dihedral distances, the third-order

message 𝑚
(𝑙+1)
𝑝,𝑘,𝑗,𝑖

is flown from a third-order neighbor 𝑣𝑝 to its

associated second-order neighbor 𝑣𝑘 regarding the target node 𝑣𝑖

and first order node 𝑣 𝑗 at the 𝑙 + 1-th layer as:

𝑡
(𝑙+1)
𝑝,𝑘,𝑗,𝑖

= 𝑇 (ℎ𝑙𝑖 , ℎ𝑙𝑗 , ℎ𝑙𝑘 , ℎ
𝑙
𝑝 , 𝑑

𝑒𝑑𝑔𝑒

𝑘,𝑝
, 𝑑
𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙
𝑝,𝑘,𝑗,𝑖 ). (10)

Next, given the messages from the third-order neighbors, featured

by the angle distance, the second-order message𝑚
(𝑙+1)
𝑘,𝑗,𝑖

is flown

from the second-order neighbor to the first-order neighbor as:

𝑚
(𝑙+1)
𝑘,𝑗,𝑖 = 𝑀(ℎ𝑙𝑖 , ℎ𝑙𝑗 , ℎ𝑙𝑘 , 𝑑

𝑒𝑑𝑔𝑒

𝑗,𝑘 , 𝑑
𝑎𝑛𝑔𝑙𝑒

𝑘,𝑗,𝑖 ,∑
𝑘∈𝒩 (𝑘) 𝑡

𝑙+1
𝑝,𝑘,𝑗,𝑖), (11)

Then, given the messages from the second-order neighbors, fea-

tured by the edge distance, the first-order message 𝑜
(𝑙+1)
𝑘,𝑗,𝑖

is flown

from the second-order neighbor to the first-order neighbor as:

𝑜
(𝑙+1)
𝑖,𝑗 = 𝑂(ℎ𝑙𝑖 , ℎ𝑙𝑗 , 𝑑

𝑒𝑑𝑔𝑒

𝑖,𝑗 ,∑
𝑘∈𝒩 (𝑗)𝑚

𝑙+1
𝑘,𝑗,𝑖). (12)

At last, the node embedding of the target node 𝑣𝑖 is updated as:

ℎ
𝑙+1
𝑖 = 𝑈 (ℎ𝑙𝑖 ,∑𝑗∈𝒩 (𝑖) 𝑜

𝑙+1
𝑖,𝑗 ). (13)

The functions 𝑇 (⋅) can also be implemented by MLPs.

4 EXPERIMENT
This section reports the results of both qualitative and quantitative

experiments that are carried out to test the performance of SND-

VAE and its extensions on two synthetic and one real-world datasets.

All experiments are conducted on a 64-bit machine with an NVIDIA

GPU (GTX 1070, 1683 MHz, 16 GB GDDR5)
1

.

4.1 Dataset
Waxman graphs. The Waxman random graph model places 𝑛

nodes uniformly at random in a rectangular domain [45]. There

are three types of factors. The independent graph factor 𝑏 (control-

ling node attributes), the independent spatial factor 𝑝 (controlling

the overall node positions) and the graph-spatial correlated factor

𝑠 (controlling both graph and spatial density). There are 80, 000

samples for training and 80, 000 for testing.

Randomgeometric graph. The randomgeometric graphmodel

places 𝑛 nodes uniformly at random in a rectangular domain [7].

There are three types of factors. The independent graph factor

𝑏 (controlling node attributes), the independent spatial factor 𝑝

(controlling the overall node positions) and the graph-spatial cor-

related factor 𝑠 (controlling both graph and spatial density). There

are 80, 000 samples for training and 80, 000 for testing.

Protein Structure dataset. Protein structures can be formu-

lated as graph structured data where each amino acid is a node and

the geo-spatial distances between them are edges. The density of

graphs (contact maps) and the folding degree of protein (reflected by

locations of amino acids) are correlated graph-spatial factors. There

are 38, 000 samples for training and 38, 000 samples for testing.

4.2 Comparison Methods
The comparison methods can be divided into three categories as:

• To validate the significance of the proposed disentanglement

objective and the optimization strategy, the proposed model is

compared with (1) beta-VAE [23]; (2) beta-TC-VAE [10]; (3) DIP-
VAE [31]; and (4)NED-IPVAE [22], where the overall architectures

1

The code and details of datasets are available at: https://github.com/xguo7/SGD-VAE

https://github.com/xguo7/SGD-VAE


Table 1: The evaluation results for the generated spatial graphs for different dataset (kld_cls refers to the KLD of graph clus-
tering coefficient. kld_connect refers to for KLD of node connectivity. kld_dense refers to for KLD of graph density.

Dataset Method Node_MSE Spatial_MSE Edge_ACC kld_cls kld_dense kld_connect avgMI

Waxman graph

beta-VAE 0.22 3.01 66.83% 0.67 1.23 1.61 1.44

beta-TCVAE 0.84 4.80 61.62% 0.40 1.12 1.56 1.85

NED-IPVAE 2.28 1.80 66.73% 1.33 2.00 2.68 1.56

SGD-VAE(geo-GCN) 6.12 31.20 64.59% 2.70 2.83 2.88 1.65

SGD-VAE(pos-GCN) 6.84 34.80 64.61% 2.92 3.16 3.25 1.66

SGD-VAE (single) 0.24 34.80 64.67% 0.20 0.32 0.29 N/A

SGD-VAE 0.12 0.18 67.40% 0.39 0.50 0.53 1.10

Random Geometry graph

beta-VAE 6.84 34.80 71.29% 2.87 3.27 3.40 1.65

beta-TCVAE 6.96 34.21 59.76% 1.55 2.31 2.37 1.73

NED-IPVAE 1.44 1.80 76.65% 0.67 0.65 1.15 1.42

SGD-VAE(geo-GCN) 6.80 31.20 71.32% 3.04 3.10 3.57 1.65

SGD-VAE(pos-GCN) 6.75 33.21 71.27% 3.06 3.84 3.34 1.64

SGD-VAE (single) 0.36 0.22 79.90% 0.28 0.46 0.61 N/A

SGD-VAE 0.36 0.19 80.80% 0.79 1.48 1.85 0.89

Protein structure

beta-VAE N/A 0.06 99.76% 2.09 2.91 3.69 0.93

beta-TCVAE N/A 0.78 91.40% 3.05 3.27 4.81 0.97

NED-IPVAE N/A 0.25 99.54% 2.31 2.36 4.01 0.91

SGD-VAE(geo-GCN) N/A 0.08 99.24% 1.78 2.37 3.49 1.02

SGD-VAE(pos-GCN) N/A 0.07 99.25% 1.97 1.86 3.26 1.01

SGD-VAE (single) N/A 0.01 99.63% 1.78 1.51 2.39 N/A

SGD-VAE N/A 0.06 99.95% 1.58 1.46 2.71 0.77

of comparison models are the same to the proposed SND-VAE,

except for the disentanglement objective.

• To validate the superiority of proposed spatial message passing

neural netwotk (S-MPNN), the proposed model is compared with

two existing spatial graph convolution network: (1) geo-GCN [13]

(2) pos-GCN [25] by replacing the spatial-network joint encoder

with these two networks respectively.

• A baseline model (named as SND-VAE (single)), which has the

same decoders to those of SND-VAE but with only one encoder

(i.e. the proposed S-MPNN) is utilized to validate the necessity of

structured latent representation for spatial network generation.

4.3 Evaluation on Spatial Network Generation
To evaluate the reconstruction performance of different generation

models on both datasets, we calculate the MSE (mean squared

error) between the generated and real node attributes or spatial

locations, and calculate the accuracy of edge prediction. To evaluate

the generation performance of the different models, we calculate

the Kullback–Leibler divergence (KLD) between the generated and

real spatial graphs to measure the similarity of their distributions

in terms of: (1) density; (2) average clustering coefficient; and (3)

the average node connectivity of networks.

4.3.1 Evaluation for Waxman graphs. The evaluation results of dif-

ferent models on generating Waxman graphs are shown in Table 1.

The proposed SND-VAE outperforms the beta-VAE, beta-TCVAE

and NED-VAE by about 65% in terms of reconstruction performance

and about 47.6% in terms of generation performance. This validates

the superiority of the proposed objective for disentangled structured

latent representation as well as the effectiveness of the proposed

optimization algorithm. The proposed SND-VAE outperforms the

SND-VAE (geo-GCN) and SND-VAE (pos-GCN) by about 66.93% in

terms of reconstruction performance and about 82.6% in terms of

generation performance, showing the big advantage of the S-MPNN

over the comparison spatial graph neural networks.

4.3.2 Evaluation results for Random Geometric graphs. The evalua-
tion results of different models on generating Random Geometric

graphs are shown in Table 1. The proposed SND-VAE outperforms

the beta-VAE, beta-TCVAE and NED-VAE by about 68.97% in terms

of reconstruction performance. This validate the superiority of the

proposed objective for disentangled structured latent representation

as well as the effectiveness of the proposed optimization algorithm.

The proposed SND-VAE outperforms the SND-VAE (geo-GCN) and

SND-VAE (pos-GCN) by about 94.7% in terms of reconstruction

performance and about 3.9% in terms of generation performance.

This validates the proposed S-MPNN is better at captuing the inter-

action patterns of spatial and networks over the comparison spatial

graph convolution neural network.

4.3.3 Evaluation results for Protein structure generation. The eval-
uation results of different models on protein structure dataset are

shown in Table 1. The proposed SND-VAE outperforms the beta-

VAE, beta-TCVAE and NED-VAE by about 42.8% in terms of re-

construction performance and about 38.8% in terms of generation

performance. This validate the superiority of the proposed objec-

tive for disentangled structured latent representation as well as the

effectiveness of the proposed optimization algorithm. The proposed

SND-VAE outperforms the SND-VAE (geo-GCN) and SND-VAE

(pos-GCN) by about 10.5% in terms of reconstruction performance

and about 22.1% in terms of generation performance. This validates

the superiority of the proposed SGCN over the comparison spatial

graph convolution neural network.

4.4 Evaluation on Disentangled
Representations

We evaluate the proposed models and comparison models in the

task of disentangled representation learning and provide both the

quantitative evaluation and qualitative evaluation results.



 

Figure 4: Visualizing the variations of generated spatial network regarding three groups of semantic factors on (1) Waxman graphs and (2)
Random geometry graphs.

 

Figure 5: Visualizing the variations of generated protein structures in terms of the joint related semantic factors of (a) protein chain folding
and (b) the density of contact graphs. The more black blanks in a contact graph, the higher density it has.

4.4.1 Quantitative Evaluation. As defined in the problem formu-

lation, the main target of disentangled representation learning

is to disentangle and capture the spatial-independent, network-

independent and spatial-network correlated semantic factors by

the structured latent representation 𝑧𝑠 , 𝑧𝑔 and 𝑧𝑠𝑔 . Thus, if the goal

is fully satisfied, the standard mutual information matrix between

three groups of semantic factors and three groups of latent rep-

resentation will be a unit diagonal matrix (ground truth). Thus,

we utilize avgMI [33] as metric which denotes to the distance be-

tween the real standard mutual information matrix and the ground

truth matrix. The last column in Table 1 shows the avgMI eval-

uated on different models regarding different datasets that have

the ground truth semantic factors. As shown in the results, the

proposed SND-VAE achieves the best performance in disentangling

the three groups of semantic factors into three pre-defined latent

representation with the smallest avgMI. Specifically, the proposed

SND-VAE have smaller avgMI than all the comparison methods by

about 32.6%, 44.7%, and 20.5% on controlling the Waxman graphs,

geometry graphs and protein structures, respectively. This is be-

cause the architecture of the proposed SND-VAE naturally enforce

the disentangled 𝑧𝑠 and 𝑧𝑔 to capture the spatial and network seman-

tic factors, respectively. Moreover, the proposed objective enforce

the information of correlated spatial and network semantic factors

flows into the latent representation 𝑧𝑠𝑔 .

4.4.2 Qualitative Evaluation. To measure the level of disentan-

glement achieved by different models, we search to qualitatively

demonstrate that our proposed SND-VAE model consistently dis-

cover more latent factors and disentangles them in a cleaner fashion.

As the same to the conventional qualitative evaluation in disentan-

glement representation learning [10, 23], by changing the value of

one variable continuously while fixing the remaining variables, we

can visualize the variation of the corresponding semantic factors

in the generated spatial networks.

Fig. 4 shows the generated Waxman graphs and random geome-

try graphs when traversing the relevant latent variables in 𝑧𝑠 , 𝑧𝑔
and 𝑧𝑠𝑔 . The values of the latent variables range in [−2, 2]. The
first line shows the variation of graph-related semantic factors (i.e.,

mean of node feature𝑏), as reflected by the color of nodes. There are

clear variation of the color of nodes in both generated waxman and

random geomrty graphs. The second line shows the variation of the

spatial-network joint related semantic factors. It can be easily ob-

served that both the mutual distances between nodes and density of

networks of the generated Waxman and random geometry graphs

decrease when traversing one of latent variables in 𝑧𝑠𝑔 . To highlight

the variation of the absolute locations of the whole spatial network,

a larger coordinate system is utilized, as shown in the bottom line of

Fig. 4. The overall location of the generated Waxmanx and random

geometry graphs continously change from the left-bottom to the

upper right corner. These qualitative evaluation results validate the

effectiveness of the proposed SND-VAE in learning a structured

latent representation, each of which has successful captured the

relevant semantic factors of spatial network.



Fig. 5 shows the generated protein structure and contact maps

when traversing the relevant latent in 𝑧𝑠𝑔. The values of the latent

variables range in [−2, 2]. As shown in Fig. 5, while traversing the

values of latent variable, the folding degree of the protein structure

increases and the density of the contact maps also increase accord-

ingly. Thus, the proposed SND-VAE shows great capabilities in

discovering the correlated semantic factors of spatial and network

information in the protein structure data.

5 CONCLUSION
We have introduced SND-VAE, a novel and the first method for

disentangling on spatial networks as far as we know. Moreover, we

propose a generic framework and objectives to learn a structured

latent representation, which explicitly disentangle the independent

and correlated spatial and network semantic factors. The derived

objective is analyzed from the perspective of information bottleneck

and optimized by a novel optimization algorithm. Comprehensive

experiments are conducted on the tasks of data generation and dis-

entangled representation learning qualitatively and quantitatively.

The comparison with five comparison models and a baseline model

validates the effectiveness of the spatial network disentanglement

architecture and the necessities of separately learning three types

of latent representations.
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A PROOF OF THEOREM 1
Proof. To assist the proof, we introduce four groups of semantic

factors. The spatial data is assumed to be simulated via two types

of semantic factors as 𝑆 = Sim(𝑠+, 𝑠−) and the network data is

also assumed to be simulated via two parts of semantic factors as

𝐺 = Sim(𝑔+, 𝑔−), which follows the conventional definition in the

domain of disentangled representation learning [10, 23, 26]. Here

𝑠
+
⊥ 𝑠

−
,𝑔

+
⊥ 𝑔

−
, 𝑠
+
⊥ 𝑔

+
, and 𝑠

− ⫫̸ 𝑔
−
. That is, 𝑠

+
⊥ and𝑔

+
⊥

refers to the independent semantic factors of spatial and network

data, respectively. 𝑠
−
⊥ and 𝑔

−
⊥ refers to the correlated semantic

factors of spatial and network data.

First, the objective can be rewrite based on the information

bottleneck principle(see the derivation process in Appendix 2) as :

max

𝜃,𝜙
𝐼(𝑧𝑠 , 𝑧𝑠𝑔 ; 𝑆) + 𝐼(𝑧𝑔, 𝑧𝑠𝑔 ;𝐺) (14)

s.t. 𝐼(𝑆 ; 𝑧𝑠) ≤ 𝐼𝑠 ,

s.t. 𝐼(𝐺 ; 𝑧𝑔) ≤ 𝐼𝑔,

s.t. 𝐼(𝑆 ; 𝑧𝑠𝑔) + 𝐼(𝐺 ; 𝑧𝑠𝑔) ≤ 𝐼𝑠𝑔,

where 𝐼(𝑧𝑠 , 𝑧𝑠𝑔 ; 𝑆) refers to themutual information between 𝑝(𝑧𝑠 , 𝑧𝑠𝑔)
and 𝑝(𝑆) and 𝐼(𝑧𝑔, 𝑧𝑠𝑔 ;𝐺) refers to the mutual information between

𝑝(𝑧𝑔, 𝑧𝑠𝑔) and 𝑝(𝐺). Considering 𝑧𝑠 ⊥ 𝑧𝑠𝑔 and 𝑧𝑔 ⊥ 𝑧𝑠𝑔 , we have

𝐼(𝑧𝑠 , 𝑧𝑠𝑔 ; 𝑆) = 𝐼(𝑧𝑠 ; 𝑆) + 𝐼(𝑧𝑠𝑔 ; 𝑆) and 𝐼(𝑧𝑔, 𝑧𝑠𝑔 ;𝐺) = 𝐼(𝑧𝑔;𝐺) +
𝐼(𝑧𝑠𝑔;𝐺). Considering the graph 𝐺 and spatial information 𝑆 are

generated based on four categories of semantic factors, namely

independent spatial factors 𝑠
+
, independent graph factors 𝑔

+
, and

the correlated spatial and graph factors 𝑔
−
and 𝑠

−
, we have 𝑝(𝑆) =

𝑝(𝑠+)𝑝(𝑠−) and 𝑝(𝐺) = 𝑝(𝑔+)𝑝(𝑔−). We also have 𝑠
+

⊥ 𝑔
+
.

Thus, we can have

𝐼(𝑧𝑠 , 𝑆) + 𝐼(𝑧𝑠𝑔, 𝑆) = 𝐼(𝑧𝑠 , 𝑠−) + 𝐼(𝑧𝑠 , 𝑠+) + 𝐼(𝑧𝑠𝑔, 𝑠+) + 𝐼(𝑧𝑠𝑔, 𝑠−)
𝐼(𝑧𝑔,𝐺) + 𝐼(𝑧𝑠𝑔,𝐺) = 𝐼(𝑧𝑔, 𝑔−) + 𝐼(𝑧𝑔, 𝑔+) + 𝐼(𝑧𝑠𝑔, 𝑔+) + 𝐼(𝑧𝑠𝑔, 𝑔−)

Since 𝑧𝑠 ⊥ 𝑧𝑔 and 𝑠
− ⫫̸ 𝑔

−
, we have 𝐼(𝑧𝑠 , 𝑠−) = 0 and 𝐼(𝑧𝑔, 𝑔−) =

0, thus, the objective can be rewritten as:

max 𝐼(𝑧𝑠 , 𝑠+)+𝐼(𝑧𝑠𝑔, 𝑠+) + 𝐼(𝑧𝑠𝑔, 𝑠−) + 𝐼(𝑧𝑔, 𝑔+) + 𝐼(𝑧𝑠𝑔, 𝑔+) + 𝐼(𝑧𝑠𝑔, 𝑔−)
(15)

s.t. 𝐼(𝑠+; 𝑧𝑠) ≤ 𝐼𝑠

s.t. 𝐼(𝑆 ; 𝑧𝑠𝑔) + 𝐼(𝐺 ; 𝑧𝑠𝑔) ≤ 𝐼𝑠𝑔

s.t. 𝐼(𝑔+; 𝑧𝑔) ≤ 𝐼𝑔

since 𝑧𝑠 ⊥ 𝑧𝑠𝑔 and 𝑧𝑔 ⊥ 𝑠𝑠𝑔 , the information of 𝑠
+
captured by

𝑧𝑠 has no intersection with the information of 𝑠
+
captured by 𝑧𝑠𝑔 ,

thus we can have:

𝐼(𝑧𝑠 ; 𝑠+) + 𝐼(𝑧𝑠𝑔 ; 𝑠+) ≤ 𝐼(𝑠+; 𝑠+) = 𝐻(𝑠+)
𝐼(𝑧𝑔 ;𝑔+) + 𝐼(𝑧𝑠𝑔 ;𝑔+) ≤ 𝐼(𝑔+;𝑔+) = 𝐻(𝑔+). (16)

Based on the second constrain and 𝑠
+
⊥ 𝑠

−
and 𝑔

+
⊥ 𝑔

−
, we also

have

𝐼(𝑧𝑠𝑔 ; 𝑠+) + 𝐼(𝑧𝑠𝑔 ; 𝑠−) + 𝐼(𝑧𝑠𝑔 ;𝑔+) + 𝐼(𝑧𝑠𝑔 ;𝑔−) ≤ 𝐶𝑠𝑔 . (17)

By summarizing the inequalities Eq 16 and Eq. 17, we have:

𝐼(𝑧𝑠 ; 𝑠+) + 2 ∗ 𝐼(𝑧𝑠𝑔 ; 𝑠+) + 𝐼(𝑧𝑠𝑔 ; 𝑠−)+
+𝐼(𝑧𝑠 ;𝑔+) + 2 ∗ 𝐼(𝑧𝑠𝑔 ;𝑔+) + 𝐼(𝑧𝑠𝑔 ;𝑔−)

≤ 𝐻(𝑠+) +𝐶𝑠𝑔 + 𝐻(𝑔+), (18)

which can be further written as:

𝐼(𝑧𝑠 ; 𝑠+) + 𝐼(𝑧𝑠𝑔 ; 𝑠+) + 𝐼(𝑧𝑠𝑔 ; 𝑠−)+
+𝐼(𝑧𝑠 ;𝑔+) + 𝐼(𝑧𝑠𝑔 ;𝑔+) + 𝐼(𝑧𝑠𝑔 ;𝑔−)

≤ 𝐻(𝑠+) +𝐶𝑠𝑔 + 𝐻(𝑔+) − 𝐼(𝑧𝑠𝑔 ; 𝑠+) − 𝐼(𝑧𝑠𝑔 ;𝑔+). (19)

Since 𝐼(𝑧𝑠𝑔 ; 𝑠+) ≥ 0 and 𝐼(𝑧𝑠𝑔 ;𝑔+) ≥ 0, and 𝐻(𝑠+) and 𝐻(𝑔+) are
constants, the left side of Inequality (13) achieves its maximum

when 𝐼(𝑧𝑠𝑔 ; 𝑠+) = 0 and 𝐼(𝑧𝑠𝑔 ;𝑔+) = 0. Thus, to achieve the most

optimal objective, 𝑧𝑠𝑔 need to only capture the information from

correlated semantic factors 𝑠
+
and 𝑔

+
. □

B THE ASSISTANT DERIVATION OF
THEOREM 1

In this section, we derive the process how the initial objective for

spatial graph generation (as shown in Eq. (4)) can be written as the

information bottleneck format (as shown in Eq. (15)).

Specifically, for the first part of Eq. (4), we have:

E𝑆,𝐺∼𝐷E𝑞(𝑍 ∣𝑆,𝐺)[log 𝑝(𝐺∣𝑧𝑔, 𝑧𝑠𝑔) + log𝑝(𝑆∣𝑧𝑠 , 𝑧𝑠𝑔)]
= E𝑝(𝑍,𝑆,𝐺)[log𝑝(𝐺∣𝑧𝑔, 𝑧𝑠𝑔) + log 𝑝(𝑆∣𝑧𝑠 , 𝑧𝑠𝑔)]

= E𝑝(𝑧𝑔,𝑧𝑠𝑔,𝐺)[log
𝑝(𝐺∣𝑧𝑔, 𝑧𝑠𝑔)

𝑝(𝐺) ] + E𝑝(𝐺) log 𝑝(𝐺)]

+ E𝑝(𝑧𝑔,𝑧𝑠𝑔,𝑆) log
𝑝(𝑆∣𝑧𝑠 , 𝑧𝑠𝑔)

𝑝(𝑆) ] + E𝑝(𝑆) log𝑝(𝑆)]

= 𝐼(𝑧𝑠 , 𝑧𝑠𝑔 ; 𝑆) + 𝐼(𝑧𝑔, 𝑧𝑠𝑔 ;𝐺) (20)

For the first constraint, we have:

E𝑆∼𝐷[𝐷𝐾𝐿(𝑞(𝑧𝑠 ∣𝑆)∣∣𝑝(𝑧𝑠)] (21)

= E𝑆∼𝐷E𝑞(𝑧𝑠 ∣𝑆)[log
𝑞(𝑧𝑠 ∣𝑆)
𝑝(𝑧𝑠)

]

= E𝑆∼𝐷E𝑞(𝑧𝑠 ∣𝑆)[log
𝑞(𝑧𝑠 ∣𝑆)
𝑞(𝑧𝑠)

𝑞(𝑧𝑠)
𝑝(𝑧𝑠)

]

= E𝑆∼𝐷E𝑞(𝑧𝑠 ∣𝑆)[log
𝑞(𝑧𝑠 ∣𝑆)
𝑞(𝑧𝑠)

+ log

𝑞(𝑧𝑠)
𝑝(𝑧𝑠)

]

= E𝑆∼𝐷[𝐷𝐾𝐿(𝑞(𝑧𝑠 ∣𝑆)∣∣𝑞(𝑧𝑠)] + E𝑆∼𝐷E𝑞(𝑧𝑠 ∣𝑆)[log
𝑞(𝑧𝑠)
𝑝(𝑧𝑠)

]

= 𝐼(𝑧𝑠 ∣𝑆) + E𝑞(𝑧𝑠)[log
𝑞(𝑧𝑠)
𝑝(𝑧𝑠)

]

= 𝐼(𝑧𝑠 ∣𝑆) + 𝐷𝐾𝐿(𝑞(𝑧𝑠)∣∣𝑝(𝑧𝑠)

Considering 𝐷𝐾𝐿(𝑝(𝑧𝑠)∣∣𝑞(𝑧𝑠) is a constant that has nothing to
do with the parameters 𝜃 and 𝜙 , thus the first constrain is rewritten

as: 𝐼(𝑆 ; 𝑧𝑠) ≤ 𝐼
′
𝑠 . Since 𝐼

′
𝑠 is a hyper-parameter which is select

before training, for simplicity, we still use 𝐼𝑠 as the right side of

the constraint. We can have the same derivation for the second

constraints in Eq.5.



Table 2: Encoders and decoders architectures (Each layers is expressed in the format as <filter_size><layer
type><Num_channel><Activation function><stride size>. FC refers to the fully connected layers). c-deconv and c-conv
refers to the cross edge deconvolution and convolution respectively. The activation functions after each layer are all ReLU
except the last layers.

Spatial Encoder Joint Encoder Network encoder Network decoder(for edge) Network decoder(for node) Spatial Decoder

Input: 𝐿 ∈ R25×2
Input: 𝐸, 𝐿 Input: 𝐸 ∈ R25×25

,𝐹 ∈ R25

Input:𝑧𝑔 ∈ R100

,𝑧𝑠𝑔 ∈ R200

Input:𝑧𝑔 ∈ R100

,𝑧𝑠𝑔 ∈ R200

Input:𝑧𝑠 ∈ R100

,𝑧𝑠𝑔 ∈ R200

5 conv1D.10. stride 1 S-MPNN.20 GCN.10 FC.500 FC.500 FC.500

5 conv1D.10. stride 1 S-MPNN.50 GCN.20 5 × 5 deconv.50. stride 1 5 conv1D.50. stride 1 5 conv1D.50. stride 1

5 conv1D.20. stride 1 FC.200. FC.100. 5 × 5 deconv.20. stride 1 5 conv1D.20. stride 1 5 conv1D.20. stride 1

FC.100. FC.200 FC.100 FC.1 FC.1 5 conv1D.10. stride 1

FC.100 FC.2

Next, we consider the third constraint in Eq. (4). Given 𝑆 ⊥ 𝐺∣𝑧𝑠𝑔 ,
We can have:

E𝑆,𝐺∼𝐷[𝐷𝐾𝐿(𝑞(𝑧𝑠𝑔∣𝑆,𝐺)∣∣𝑝(𝑧𝑠𝑔)] (22)

= E𝑆,𝐺∼𝐷E𝑞(𝑧𝑠𝑔∣𝑆,𝐺) log
𝑞(𝑧𝑠𝑔∣𝑆,𝐺)𝑞(𝑆,𝐺)𝑞(𝑧𝑠𝑔)
𝑝(𝑧𝑠𝑔)𝑞(𝑆,𝐺)𝑞(𝑧𝑠𝑔)

= E𝑆,𝐺∼𝐷E𝑞(𝑧𝑠𝑔∣𝑆,𝐺) log
𝑞(𝑆,𝐺∣𝑧𝑠𝑔)
𝑞(𝑆,𝐺) + E𝑞(𝑧𝑠𝑔) log

𝑞(𝑧𝑠𝑔)
𝑝(𝑧𝑠𝑔)

= E𝑆,𝐺∼𝐷E𝑞(𝑧𝑠𝑔∣𝑆,𝐺) log
𝑞(𝑆,𝐺∣𝑧𝑠𝑔)
𝑞(𝑆)𝑞(𝐺) − E𝑆,𝐺∼𝐷 log

𝑞(𝑆,𝐺)
𝑞(𝑆)𝑞(𝐺)

+ E𝑞(𝑧𝑠𝑔) log
𝑞(𝑧𝑠𝑔)
𝑝(𝑧𝑠𝑔)

= E𝑆,𝐺∼𝐷E𝑞(𝑧𝑠𝑔∣𝑆,𝐺) log
𝑞(𝑆∣𝑧𝑠𝑔)𝑞(𝐺∣𝑧𝑠𝑔)

𝑞(𝑆)𝑞(𝐺) − 𝐼(𝑆 ;𝐺)

− 𝐷𝐾𝐿(𝑝(𝑧𝑠𝑔)∣∣𝑞(𝑧𝑠𝑔))
= 𝐼(𝑆, 𝑧𝑠𝑔) + 𝐼(𝐺 ; 𝑧𝑠𝑔) − 𝐼(𝑆 ;𝐺) − 𝐷𝐾𝐿(𝑝(𝑧𝑠𝑔)∣∣𝑞(𝑧𝑠𝑔))

Considering 𝐷𝐾𝐿(𝑝(𝑧𝑠)∣∣𝑞(𝑧𝑠) and 𝐼(𝑆 ;𝐺) is a constant that has
nothing to do with the parameters 𝜃 and 𝜙 , thus the third constrain

is rewritten as: 𝐼(𝑆 ; 𝑧𝑠𝑔) + 𝐼(𝐺 ; 𝑧𝑠𝑔) ≤ 𝐼
′
𝑠𝑔 .

C PROOF OF THEOREM 2
Proof. To assist the proof, we introduce four groups of semantic

factors. The spatial data is assumed to be simulated via two types

of semantic factors as 𝑆 = Sim(𝑠+, 𝑠−) and the network data is

also assumed to be simulated via two parts of semantic factors as

𝐺 = Sim(𝑔+, 𝑔−), which follows the conventional definition in the

domain of disentangled representation learning [10, 23, 26]. Here

𝑠
+
⊥ 𝑠

−
,𝑔

+
⊥ 𝑔

−
, 𝑠
+
⊥ 𝑔

+
, and 𝑠

− ⫫̸ 𝑔
−
. That is, 𝑠

+
⊥ and𝑔

+
⊥

refers to the independent semantic factors of spatial and network

data, respectively. 𝑠
−
⊥ and 𝑔

−
⊥ refers to the correlated semantic

factors of spatial and network data.

(1) Given the situation that 𝑧𝑠 and 𝑧𝑔 have already captured all

the independent semantic factors 𝑠
+
and 𝑔

+
, we have 𝐼(𝑧𝑠 , 𝑠+) =

𝐼(𝑠+, 𝑠+) and 𝐼(𝑧𝑔, 𝑔+) = 𝐼(𝑔+, 𝑔+). Given the situation that 𝑧𝑠𝑔

captured all the dependent semantic factors 𝑠
−
and 𝑔

−
, we can have

𝐼(𝑧𝑠𝑔, 𝑠+) = 0 and 𝐼(𝑧𝑠𝑔, 𝑔+) = 0. We also can have 𝐼(𝑧𝑠𝑔, 𝑠−) =

𝐼(𝑠−, 𝑠−) and 𝐼(𝑧𝑠𝑔, 𝑔−) = 𝐼(𝑔−, 𝑔−). Thus, the value of the current
loss is equal to: 𝐼(𝑠+, 𝑠+) + 𝐼(𝑠−, 𝑠−) + 𝐼(𝑔+, 𝑔+) + 𝐼(𝑔−, 𝑔−).

(2) Next, we come back to the original objective function, which

is expressed as:

max 𝐼(𝑧𝑠 , 𝑠+) + 𝐼(𝑧𝑠𝑔, 𝑠+) + 𝐼(𝑧𝑠𝑔, 𝑠−) + 𝐼(𝑧𝑔, 𝑔+)
+𝐼(𝑧𝑠𝑔, 𝑔+) + 𝐼(𝑧𝑠𝑔, 𝑔−). (23)

Since 𝑧𝑠 ⊥ 𝑧𝑠𝑔 and 𝑧𝑔 ⊥ 𝑧𝑠𝑔 , we have:

𝐼(𝑧𝑠 , 𝑠+) + 𝐼(𝑧𝑠𝑔, 𝑠+) ≤ 𝐼(𝑠+, 𝑠+) (24)

𝐼(𝑧𝑔, 𝑔+) + 𝐼(𝑧𝑠𝑔, 𝑔+) ≤ 𝐼(𝑔+, 𝑔+). (25)

We also have 𝐼(𝑧𝑠𝑔, 𝑠−) ≤ 𝐼(𝑠−, 𝑠−) and 𝐼(𝑧𝑠𝑔, 𝑔−) ≤ 𝐼(𝑔−, 𝑔−).
Thus, the value of the most optimal loss is 𝐼(𝑠+, 𝑠+) + 𝐼(𝑠−, 𝑠−) +
𝐼(𝑔+, 𝑔+) + 𝐼(𝑔−, 𝑔−).

As a summary, given the situation that 𝑧𝑠 and 𝑧𝑔 have already

captured all the independent semantic factors 𝑠
+
and 𝑔

+
and 𝑧𝑠𝑔

captured all the dependent semantic factors 𝑠
−
and 𝑔

−
, the loss has

already achieved the optimal one. As the 𝐼𝑠𝑔 increases, though the

constraint is removed, the loss can not be maximized anymore no

matter how the assignment of information change through 𝑧𝑠 , 𝑧𝑔
and 𝑧𝑠𝑔 . Thus, training while increasing 𝐶𝑠𝑔 will not change the

current status of information flow. □

D ARCHITECTURE AND
HYPER-PARAMETERS

The detailed setting of the encoders and decoders in the model for

the experiment are provided in Table 2.

The network decoder have two parts: one is for nodes and one

is for edges, which are detailed as follows. The nodes feature/labels

are generated by a set of conventional 1D convolution layers. The

edge weights/adjacent matrix are generated based on a set of edge

deconvolution layers and fully connected layers. The input is the

concatenation of both the network representation 𝑧𝑔 and the spa-

tial network representation 𝑧𝑠𝑔 . First, the input vector is mapped

into a node-level feature vector through a fully connected layer

and is converted into a matrix by being replicated. The same node

assignment vector 𝑆 is also concatenated to this feature matrix.

The hidden edge latent representation matrices are then generated

by the node-to-edge deconvolution layer [19] by decoding each

of the node-level representations, where the principle is that each

node’s representation can make contributions to the generation of

its related edges latent representation. Thirdly, the edge weights

oradjacent matrix 𝐸 is generated through the edge-edge deconvolu-

tion layer, where the principle is that each hidden edge feature can

contribute to the generation of its adjacent edges.
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