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Abstract—In recent years, graph neural networks (GNNs)
and the research on their explainability are experiencing rapid
developments and achieving significant progress. Many methods
are proposed to explain the predictions of GNNs, focusing on
“how to generate explanations”. However, research questions
like “whether the GNN explanations are inaccurate”, “what if
the explanations are inaccurate”, and “how to adjust the model
to generate more accurate explanations” have not been well
explored. To address the above questions, this paper proposes a
GNN Explanation Supervision (GNES)1 framework to adaptively
learn how to explain GNNs more correctly. Specifically, our
framework jointly optimizes both model prediction and model ex-
planation by enforcing both whole graph regularization and weak
supervision on model explanations. For the graph regularization,
we propose a unified explanation formulation for both node-
level and edge-level explanations by enforcing the consistency
between them. The node- and edge-level explanation techniques
we propose are also generic and rigorously demonstrated to
cover several existing major explainers as special cases. Extensive
experiments on five real-world datasets across two application
domains demonstrate the effectiveness of the proposed model on
improving the reasonability of the explanation while still keep or
even improve the backbone GNNs model performance.

Index Terms—Graph Neural Networks, Explainability,
Human-in-the-loop

I. INTRODUCTION

As Deep Neural Networks (DNNs) are widely deployed in
sensitive application areas, recent years have seen an explosion
of research in understanding how DNNs work under the hood
(e.g., explainable AI, or XAI) [1], [2] and more importantly,
how to improve DNNs using human knowledge [3]. In par-
ticular, Graph Neural Networks (GNNs) have been increas-
ingly grabbed attention in several research fields, including
computer vision [4], [5], natural language processing [6],
medical domain [7], and beyond. Such trend is attributed
to the practical implication of graphs data—many real-world
data, such as social networks [8], chemical molecules [9], and
financial data [10], are represented as graphs.

However, similar to other DNNs’ architectures, GNNs also
offer only limited transparency, imposing significant chal-
lenges in observing when GNNs make successful/unsuccessful
predictions [3], [11]. This issue motivates a surge of recent
research on GNN explanation techniques, including gradients-
based methods, where the gradients are used to indicate the
importance of different input features [4], [12]; perturbation-
based methods, where an additional optimization step is typ-

1Code available at: https://github.com/YuyangGao/GNES.

ically used to find the important input that influences the
model output the most with input perturbations [13]–[15];
response-based methods, where the output response signal is
backpropagated as an importance score layer by layer until
the input space [4], [12], [16]; surrogate-based methods, where
the explanation obtained from an interpretable surrogate model
that is trained to fit the original prediction is used to explain
the original model [17]–[19]; and global explanation methods,
where graph patterns are generated to maximize the predicted
probability for a certain class and use such graph patterns to
explain the class [20].

Despite the recent fast progress on GNN explanation tech-
niques, the existing research body focuses on “how to generate
GNN explanations” instead of “whether the GNN explanations
are inaccurate”, “what if the explanations are inaccurate”, and
“how to adjust the model to generate more accurate expla-
nations”. Answering the above questions is highly beneficial
to the model developers and the users of GNN explanation
techniques, but are also extremely difficult due to several
challenges: 1) Lack of an automatic learning framework
for identifying and adjusting unreasonable explanations on
GNNs. Although there are plenty of existing works on GNN
explanations, they are not able to ensure the correctness of
explanations, not able to identify the incorrect explanations,
nor able to adjust the unreasonable explanations. The tech-
nique that can enable this has not been well explored yet and
is technically challenging due to the additional involvement
of another backpropagation originated from explanation error.
2) Difficulty in aligning the node and edge explanations.
Existing GNN explanation works usually focus on either node
and edge explanation while the interplay and consistency
between the explanations of nodes and edges are extremely
challenging to maintain and jointly adjusted. 3) Difficulty in
jointly improving model performance and explainability
with limited explanation supervision. Due to the high cost
for human annotation, it can be impractical to assume the
full accessibility to the human explanation label during model
training. Thus designing an effective framework that can
best leverage a partially labeled dataset is on-demand yet
challenging.

To address the above challenges, beyond merely generating
GNN explanations, this paper focuses on a generic GNN ex-
planation supervision framework for correcting the unreason-
able explanations and learning how to explain GNNs correctly.
Specifically, we first propose a unified explanation method
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Fig. 1. Cases for adjusting model explanation to improve Graph Neural Networks (GNNs). Scene Graph (left three): From the left, an input image, explanation
before adjustment (1-a, inaccurate), and explanation after the adjustment (1-b, accurate). Note that the model explanation has been shifted from puppy eyes and
back, rods, and an artificial tree to curtains, a clock, and a rug. Molecular formula (right three): From the left, an input formula, explanation before the adjustment
(2-a, inaccurate), and explanation after the adjustment (2-b, accurate). Reactivity for this molecule is mostly affected by benzene ring sub-components in the
overall molecular structure. 2-b highlights the main benzene rings of the molecule more effectively than 2-a.

for GNNs that can generate node and edge explanations with
consistency regularization among them. The generality of the
proposed method over existing node-explanation methods is
rigorously demonstrated. Finally, we develop a learning ob-
jective that jointly optimizes model prediction and explanation
with weak supervision from human explanation annotations.

Specifically, the main contributions of our study are as
follows:

1) Developing a generic framework for adaptively learn-
ing how to explain GNNs with weak explanation
supervision. We present a new learning objective for
joint optimization among the model prediction loss,
the explanation loss, and the graph regularization loss
on regulating the model explanation. In addition, our
framework can treat the explanation loss as an optional
term and thus work effectively in scenarios where the
human annotation on explanation is limited.

2) Developing a unified graph-based explanation frame-
work for calculating both node-level and edge-level
explanation of GNNs. We proposed a unified frame-
work for both node-level and edge-level explanations
that is suitable for explanation supervision and general-
izable to the existing differentiable explanation methods.

3) Proposing a model that can regularize both the node-
level and edge-level explanations to form a better
graph-level explanation. We propose to apply novel
explanation regularizations (i.e., explanation consistency
and sparsity) onto the model-generated explanation to in-
ject general graph principles and prior knowledge about
the explanation that enhance the quality and consistency
among the multiple levels of explanations.

4) Conducting comprehensive experiments to validate
the effectiveness of the proposed model. Extensive
experiments on five real-world datasets in two domains,
chemical (molecular graphs) and vision (scene graphs),
demonstrate that the proposed models improved the
backbone GNN model both in terms of prediction power
and explainability across different application domains.
In addition, qualitative analyses, including case studies
and user studies of the model explanation, are provided
to demonstrate the effectiveness of the proposed frame-
work.

II. RELATED WORK

Our work draws inspiration from the research fields of
graph neural network explanations that provide the model
generated explanations, and explanation supervision on DNNs
which enables the design of pipelines for the human-in-the-
loop adjustment on the DNNs based on their explanations.

A. Graph Neural Networks Explanations

Most of the existing GNN explanation methods are instance-
level methods, where the methods explain the models by
identifying important input features for its prediction [21]. The
first category is gradients-based methods, where the gradients
are used to indicate the importance of different input features.
Existing methods are SA [12], Guided BP [12], CAM [4],
and GradCAM [4]. The second category is perturbation-based
methods, where an additional optimization step is typically
used to find the important input that influences the model
output the most with input perturbations. Existing methods
are GNNExplainer [13], PGExplainer [14], GraphMask [15].
The third category is the response-based method, where the
output response signal is backpropagated as an importance
score layer by layer until the input space. Existing methods in
this category including LRP [12], Excitation BP [4] and GNN-
LRP [16]. The last category is surrogate-based methods, where
the explanation obtained from an interpretable surrogate model
that is trained to fit the original prediction is used to explain
the original model. The surrogate methods include GraphLime
[17], RelEx [18], and PGM-Explainer [19]. Besides instance-
level explanation methods, very recently, the global explana-
tion of the GNN model has also been explored by XGNN [20].
Please see Yuan et. al. [21] for a survey of explainability in
Graph Neural Networks.

Even though there are plenty of existing explanation meth-
ods for GNNs, most of the methods above can not be applied to
explanation supervision mechanism, as the goal is to apply su-
pervision on the generated explanation such that the backbone
GNN model itself can be fine-tuned accordingly to generate
better explanations as well as keep or even improve the model
performance. To enable this fine-tuning process over the expla-
nation, the explanation itself needs to be differentiable to the
backbone GNN model’s parameters. In other words, only the
explanation that is directly calculated from the computational



Fig. 2. The proposed GNN Explanation Supervision (GNES) framework
that jointly optimized the GNN models based on 1) a prediction loss, 2)
an explanation loss on the human annotation and model explanation, and 3) a
graph regularization loss to inject high-level principles of the graph-structured
explanation. Notice that we only assume limited accessibility to the human
annotation for only a small set of samples (10% in our experiments).

pipeline (such as gradients-based and response-based methods)
can be used to apply this additional explanation supervision
to fine-tune the backbone GNN models explanation. The
perturbation-based and surrogate-based methods all require
additional optimization steps to obtain the explanation and
thus are unable to be end-to-end trained with the explanation
supervision on the backbone GNNs.

B. Explanation Supervision on DNNs

The potential of using explanation–methods devised for
understanding which sub-parts in an instance are important for
making a prediction–in improving DNNs has been studied in
many domains across different applications. In fact, explana-
tion supervision has been widely studied on image data by the
computer vision community [22]–[28]. Linsey et al. [22] have
demonstrated that the benefit of using stronger supervisory sig-
nals by teaching networks where to attend, which looks similar
to the proposed approach. Moreover, Mitsuhara et al. [23] have
proposed a post hoc fine-tuning strategy where an end-user is
asked to manually edit the model’s explanation to interactively
adjust its output. Such edited explanations are then used as
ground-truth explanations (from humans) to further fine-tune
the model. In addition, several works in the Visual Question
Answering (VQA) domain have proposed to use explanation
supervision to obtain improved explanation on both the text
data and the image data [24], [26]–[28]. Besides image data,
the explanation supervision has also been studied on other data
types, such as texts [29], [30], attributed data [31], and more.
However, to our best knowledge, explanation supervision on
graph-structured data with graph neural networks has not been
explored before, and we are the first to propose a framework
to handle this open research problem.

III. MODEL

In this section, we first introduce the proposed GNES
framework that boosts the model explainability via explanation

supervision and the novel explanation regularizations (i.e.,
explanation consistency and sparsity) that enhance the quality
and consistency among the multiple levels of explanations. We
then move on to introduce the proposed unified formulations
for both node-level and edge-level explanation that are suitable
for explanation supervision.

Problem formulation: Let G = (X,A) denote a attributed
graph with N nodes be defined with its node attributes X ∈
RN×din and its adjacency matrix A ∈ RN×N (weighted or
binary), where din denotes the dimension of input feature.
Let y be the class label for graph G, the general goal for a
GNN model is to learn the mapping function f for each graph
G to its corresponding label, f : G → y.

Following the definition of Graph Convolutional Networks
(GCN) [32], a graph convolutional layer can be defined as:

F (l) = σ(D̃−
1
2 ÃD̃−

1
2F (l−1)W (l)) (1)

Where F (l) denotes the activations at layer l, and F (0) =
X; Ã = A + IN is the adjacency matrix with added self
connections where IN ∈ RN×N is the identity matrix; D̃ is
the degree matrix of Ã, where D̃ii =

∑
j Ãij ; The trainable

weight matrix for layer l is denoted as W (l) ∈ Rd(l)×d(l+1)

;
σ(·) is the element-wise nonlinear activation function.

In addition, to deal with variable size graphs in the dataset
where the number of nodes can be different among graph
samples, we adopt a similar design as in [4] to our backbone
GNN model using several layers of graph convolutional layers
followed by a global average pooling (GAP) layer over the
graph nodes (e.g., atoms for the molecular graph and objects
for the scene graph).

A. GNES Framework

The general goal for the GNES framework is to boost the
model explainability via explanation supervision such that the
model performance could also benefit from assigning more
importance to the right features. Specifically, for graph data,
the explanation supervision can be done in two main ways:
1) by applying some high-level graph-structured rules to the
explanation, and 2) by adding human annotation samples as
additional guidance. Thus, we present the learning objective
of the GNES framework to be a joint optimization among
the model prediction loss, the explanation loss, and graph
regularizations on regulating the model explanation, as shown
in Figure 2. Concretely, we propose the objective function as:

min LPred + LAtt(〈M,M ′〉, 〈E,E′〉)︸ ︷︷ ︸
explanation loss

+ Ω(A,M,E)︸ ︷︷ ︸
regularization

(2)

where M ∈ RN×1 and E ∈ RN×N denote the model gener-
ated node-level and edge-level explanations using a given ex-
planation method. and M ′, E′ are the corresponding ground-
truth explanations marked by the human annotators. LPred is
the typically prediction loss (such as the cross-entropy loss) on
the training set. The proposed explanation loss LAtt measures



the discrepancies between model and human explanations on
both node-level and edge-level, as:

LAtt(〈M,M ′〉, 〈E,E′〉) = αndist(M,M ′)︸ ︷︷ ︸
node-level loss

+αedist(E,E′)︸ ︷︷ ︸
edge-level loss

(3)
Where αn and αe are the scale factors for balancing node-level
and edge-level loss; the function dist(x, y) measures the mean
element-wise distance between the inputs x and y, a common
choose can be absolute difference or squared difference. In
practice, we found that the absolute difference is more robust
to the labeling noise from the annotator.

However, due to the high cost of human annotation on
the explanations, obtaining the human explanations for the
whole dataset can be prohibitive in practice. To deal with
this issue, we propose to only apply the explanation loss to
the samples that have the ground-truth labels for the human
explanations, and apply the high-level graph rules to regulate
the model explanation for each sample even if the human
annotation is unavailable. Specifically, we propose a novel
explanation consistency regularization term that regulates the
node and edge explanation simultaneously so that the model
is more likely to generate a globally consistent and smooth
explanation over nodes and edges. Besides, we use sparsity
regularization to regulate the model to only focus on a few
important nodes and edges for the explanations. Thus, we
propose the following graph regularizations to obtain more
reasonable model explanations:

Ω(A,M,E) = βΩc(A,M,E)︸ ︷︷ ︸
explanation consistency

+ γΩs(M,E)︸ ︷︷ ︸
sparsity

(4)

Where β is the scaling factor for the explanation consistency
between node and edge explanations, γ is the scaling factor for
the sparsity constraints on both node and edge explanations.
Concretely, each regularization and its desirable effects for
regulating the graph explanation is described in more detail
below:

Explanation consistency regularization. The node expla-
nation and edge explanation are not independent, but rather
highly correlated with each other. One natural assumption
about the node explanation smoothness is that the adjacent
nodes should share similar importance. However, this assump-
tion can be too strong and sometimes lead to over-smoothing
of the node explanation and tend to yield indistinguishable
patterns for the explanation. In addition, it ignored the con-
nection between the node and edge explanations, which can be
a crucial factor for the explanation model to generate a global
consistent explanation.

Here, we propose to take one step further regarding the
smoothness assumption about the explanation by considering
both node and edge explanations and making them more
consistent with each other. Concretely, instead of treating all
pairs of adjacent nodes equally important when enforcing
the smoothness constraint, we propose to weight them by
the corresponding edge importance such that the explanation
consistency is better enforced on those nodes and edges

that are deemed important. Mathematically, the explanation
consistency can be measured by:

Ωc(A,M,E) =
1

2N2

∑
i,j

Ei,jAi,j‖Mi −Mj‖2 (5)

The above regularization can be interpreted as follows:
given a pair of nodes i and j that is adjacent (i.e., Ai,j = 1),
if the edge that connects the two nodes is important (i.e., Ei,j

is high), then the nodes it connects also tend to be consistent.
Sparsity regularization. As sparsity is a common practice

for the model explanation, we apply the `1 norm to regulate
both the node-level and the edge-level explanations, as:

Ωs(M,E) =
1

N
‖M‖1 +

1

N2
‖E‖1 (6)

Overall, the benefits of applying the proposed regularization
terms are threefold. First, the regularization terms do not rely
on the specific human labels on the explanation, which can
be very limited and hard to acquire in practice. Thus they
can be very crucial in the scenarios where the explanation
labels are scarce. Second, since the explanation for the node
and edge can be highly relevant, the proposed explanation
consistency regularization can be critical for enforcing the
model to generate more reasonable and consistent results
that better align with the human explanation. Lastly, our
overall framework is very flexible such that the regularization
terms are not affected by changing the specification of the
node and edge explanation formulation in Equation (7) and
Equation (10), respectively, making the proposed framework
easily applicable to give explanation and apply explanation
supervision on any downstream applications with little to no
overhead.

B. Node Explanation Formulation for Explanation Supervi-
sion

Although the node-level explanation is the most studied
topic in the instance-based graph explanation domain, there
are still several challenges to apply the node explanation
supervision: First, most existing methods do not apply to
the explanation supervision as the generated explanations
are no longer differentiable to the backbone GNN model’s
parameters. Moreover, there is no unified formulation for the
node-level explanation supervision.

To handle those challenges, we propose the first unified
node explanation formulation for node-level explanation su-
pervision. Concretely, we first identify that the gradient and
the response/activation can be the major information that
can produce the model-generated explanation that remains
differentiable to the backbone GNN model’s parameters so
that the explanation supervision can be performed to affect
the model during training. We then propose to integrate both
aspects to form a general formulation for the node explanation.
Mathematically, given the output yc on class c, the explanation
for node n at layer l can be computed as:

M (l)
n = ‖ReLU(g(

∂yc

∂F
(l)
n

) · h(F (l)
n ))‖ (7)



Where ∂yc

∂F
(l)
n

represents the gradient of the features of node n

at layer l given class c, and F (l)
n denotes the node activation

at layer l, g(·) and h(·) are the functions that can be further
defined to cover more complicated computation over the
gradient as well as the activation, respectively.

The formulation above is a generic framework that covers
as special cases major existing works where the gradient of
the node features and the activation of the node are used
to calculate the node explanation or the node importance, as
shown in the following theorem.

Theorem 1 (Generality of Equation (7)). The proposed
generic node-level explanation formulation in Equation (7)
covers a broad range of important existing works on node-
level explanation as special cases with specification of h(·)
and g(·), such as the gradient-based saliency maps (GRAD),
GradCAM [4], [33], Layer-wise Relevance Propagation (LRP)
[12], [34], and Excitation Backpropagation (EB) [4], [35].

Proof. The specification for the function g(·) and function h(·)
for each existing methods are listed in detail below:

Simple gradient-based saliency maps (GRAD): For simple
GRAD, only the function g(·) is active, and it is simply the
identity function, i.e. g( ∂yc

∂F
(l)
n

) = ∂yc

∂F
(l)
n

; the function h(·) will

trivially return 1 (i.e. h(F
(l)
n ) = 1) as the activation is not

used in simple GRAD situation.
GradCAM: For the GradCAM [4], [33], since it uses both

gradient information and node activation, both functions will
be non-trivial. Specifically, the function g(·) can be defined
as g( ∂yc

∂F
(l)
n

) = 1
N

∑N
n=1

∂yc

∂F
(l)
n

; and the function h(·) is the

identity function (i.e. h(F
(l)
n ) = F

(l)
n ).

Layer-wise Relevance Propagation (LRP): For LRP [12],
[34], gradient information is ignored and only the node acti-
vation is used. Concretely, the function g(·) will trivially return
1 (i.e. g( ∂yc

∂F
(l)
n

) = 1); the function h(F
(l)
n ) = 1

dl

∑dl

k=1 ĥ(F
(l)
k,n)

where ĥ(F
(l)
k,n) can be calculated via a relevance propagation

as shown below.
For notational simplicity, we first decompose a graph con-

volutional operator into:{
F̂

(l)
k,n =

∑
m Vn,mF

(l)
k,m

F
(l+1)
k′,n = σ(

∑
k′ F̂

(l)
k,nW

(l)
k,k′),

(8)

where V = D̃−
1
2 ÃD̃−

1
2 is the normalized graph Laplacian;

the first equation is a local averaging of nodes, and the second
equation is a fixed perceptron applied to each node (analogous
to one-by-one convolutions in CNNs).

To capture both activatory and inhibitory parts of the
forward pass, the αβ−rule is applied in RP, and the cor-
responding backward passes for these two functions can be
defined as:
ĥ(F

(l)
k,n)=

∑
m

Vn,mF
(l)
k,n∑

n Vn,mF
(l)
k,m

ĥ(F̂
(l)
k,m)

ĥ(F̂
(l)
k,n)=

∑
k′(α

F̂
(l)
k,nW

(l)+

k,k′∑
k F̂

(l)
k,nW

(l)+

k,k′
+β

F̂
(l)
k,nW

(l)−
k,k′∑

k F̂
(l)
k,nW

(l)−
k,k′

)ĥ(F
(l+1)
k′,n ),

(9)

where W (l)+
k,k′ = max(0,W

(l)
k,k′), and W (l)−

k,k′ = min(0,W
(l)
k,k′),

and typically α + β = 1 in order to uphold conservativity of
relevance between layers.

Excitation Backpropagation (EB): For EB [4], [35], it
follows the same setting as in LRP, except the parameter
α = 1, β = 0 in Equation (9), which only focus on
the activatory or excitation part of the forward pass when
calculating h(F

(l)
n ).

Here we have demonstrated the broad coverage of the
proposed node-level explanation formulation for enabling the
unified node explanation supervision. Other existing gradient-
based methods and response-based methods can also be easily
derived and fitted into this framework by specifying the
functions g(·) and h(·) respectively.

C. Edge Explanation Formulation for Explanation Supervi-
sion

Besides node-level explanation, the edge-level explanation
can also be very crucial in many applications to highlight the
important relationships between nodes. Unfortunately, most
existing methods that focus on edge-level or subgraph-level
explanations such as GNNExplainer [13], PGExplainer [14],
and GraphMask [15] can not be used under the explanation
supervision framework, as those explanations typically require
additional objectives and optimization steps, making it not
differentiable to the backbone model’s parameters. Existing
gradients-based methods and response-based methods typi-
cally focused only on node-level explanation, while little to no
work has explored the edge-level explanation. Very recently,
GNN-LRP [16] explored the higher-order edge-level expla-
nation based on LRP. However, the multiple levels/orders of
explanations on the edges are generally very hard to interpret
and align with human annotations.

To enable edge-level explanation supervision, we propose
the first unified edge-level explanation formulation following
a similar path from node-level explanation. Concretely, using
the chain rule, we identify that the gradient of the adjacency
matrix, as well as the response/activation of the pairs of nodes
that are associated with the edges can be the major information
that can produce the model generated explanation that remains
differentiable to the backbone GNN model’s parameters. We
then propose to integrate both aspects together to form a
general formulation for the edge-level explanation. Concretely,
given the output yc on class c, the edge explanation between
node n and node m at layer l can be computed as:

E(l)
n,m = ‖ReLU(g(

∂yc
∂F (l)

· ∂F
(l)

∂An,m
) · h(F (l)

n , F (l)
m ))‖ (10)

Where ∂yc

∂F (l) · ∂F (l)

∂An,m
represents the gradient of the edge that

connects node n and node m at layer l given class c; F (l)
n

and F (l)
m denote the activation of node n and node m at layer

l, respectively; again g(·) and h(·) are the two functions that
can be further defined to cover more complicated computation
over the gradient as well as the activation, respectively.



Again, the formulation above should be able to generalize
to most cases where the gradient of the edge and the activation
of the pair of nodes are used to calculate the edge explanation.
Although there is not yet any existing work that falls under
this umbrella, we propose two possible specifications of the
edge-level explanation from the above formulation as shown
below.

Gradient-based: This can be seen as the extension from
GRAD to edge-level explanation. Specifically, only the gra-
dient information is used, as g( ∂yc

∂F (l) · ∂F (l)

∂An,m
) = ∂yc

∂F (l) ·
∂F (l)

∂An,m
, and the node activation information is ignored, i.e.

h(F
(l)
n , F

(l)
m ) = 1.

Response-based: This can be seen as the extension from
LRP to edge-level explanation. In this specification, the gradi-
ent information is ignored, i.e. g(·) = 1, and the function h(·)
is defined as:

h(F (l)
n , F (l)

m ) = Vn,m

dl∑
k=1

(ĥ(F̂
(l)
k,m) + ĥ(F̂

(l)
k,n)) (11)

where ĥ(F̂
(l)
k,n) can be computed by Equation (8) and Equation

(9).

IV. EXPERIMENTS

We test our GNES framework on two application domains,
visual scene graphs and molecules. We first describe the
detailed settings for the experiments and then present the
quantitative studies on both model prediction as well as the
explanation. In addition, we include several qualitative studies,
including case studies and user studies, to make a qualitative
assessment of how the proposed model has enhanced the
explainability of the GNNs.

A. Experimental Settings

Molecular Graphs: We study three binary classification
molecular datasets2, BBBP, BACE, and task NR-ER from
TOX21 [36], where the general goal for the classification
task is identifying functional groups on organic molecules for
biological molecular properties. Each dataset contains binary
classifications of small organic molecules as determined by
the experiment. The details of each dataset are listed below:

1) BBBP: The Blood-brain barrier penetration (BBBP)
dataset comes from a recent study [37] on the modeling
and prediction of barrier permeability. As a membrane
separating circulating blood and brain extracellular fluid,
the blood-brain barrier blocks most drugs, hormones,
and neurotransmitters. Thus penetration of the barrier
forms a long-standing issue in the development of drugs
targeting the central nervous system. This dataset in-
cludes binary labels for 2053 compounds (graphs) on
their permeability properties.

2) BACE: The BACE dataset provides quantitative (IC50)
and qualitative (binary label) binding results for a set
of inhibitors of human b-secretase 1 (BACE-1) [38].

2Available online at: http://moleculenet.ai/datasets-1

This dataset contains a collection of 1522 compounds
(graphs) with their 2D structures and binary labels.

3) TOX21: The “Toxicology in the 21st Century” (TOX21)
initiative created a public database measuring the toxic-
ity of compounds. The original dataset contains qualita-
tive toxicity measurements for 8014 compounds (graphs)
on 12 different tasks, here we selected the NR-ER task,
which is concerned with the activation of the estrogen
receptor [39].

Following the existing works on molecule classification [36],
we split the dataset into train/validation/test with an 80/10/10
split ratio. In addition, we use the “scaffold” split algorithm
for BBBP and BACE, where structurally similar molecules are
partitioned in the same split. For TOX21, the random split is
used.

Scene Graphs: We obtain the scene graphs from the Visual
Genome dataset3 [40]. The Visual Genome dataset consists
of images and a corresponding scene graph where the nodes
are objects in the scene and edges are relationships between
objects. Objects and relationships are of many types and the
data is collected from free-text responses obtained from crowd-
sourced workers. Objects have an associated region of the
image, defined by a bounding box. Following the previous
work by [4], we construct two binary classification tasks:
country vs. urban, and indoor vs. outdoor. The data samples
for the two tasks are selected based on a set of pre-defined
keywords which are used to query the Visual Genome data
for matches in any attribute of an image. Specifically, the
keywords used to define each class are listed below:
• country: countryside, farm, rural, cow, crops, sheep
• urban: urban, city, downtown, building
• indoor: indoor, room, office, bedroom, bathroom
• outdoor: outdoor, nature, outside

Notice that the keywords are non-comprehensive and the
generated datasets are just for the purpose of studying the
explanation on graphs. We balanced the sample size for each
class by randomly selecting 1000 samples out of the image
pools from the Keyword match. Again, we randomly split the
dataset into train/validation/test with an 80/10/10 split ratio.

To convert the visual genome data to the graph input data,
we treat each object as a unique node in the graph and the
edge will be the corresponding relationship between a pair of
objects. For the node feature for each object, we use a pre-
trained InceptionV3 [41] network to extract the deep features
from the image region defined by the bounding box associated
with each object. The feature dimension for all visual genome
nodes is of size d = 2048.

Evaluation Metrics: We evaluate the model in terms of
performance as well as in terms of explainability. Specifically,
for model performance assessment, we use accuracy (ACC)
and Area Under the Curve (AUC) scores to measure the
prediction power of the GNNs on the prediction tasks for
sense graph datasets, and only AUC scores for molecular
graph datasets as the sample size can be imbalanced. Besides,

3Available online at: https://visualgenome.org/



we leverage the human-labeled explanation on the test set to
quantitatively assess the goodness of the model explanation.
Specifically, for both node-level and edge-level explanations,
we treat the human explanation as the gold standard, and
compute the distance between human and model explanation
via Mean Square Error (MSE) and Mean Absolute Error
(MAE). To match with human annotation, both node-level and
edge-level explanations are normalized in the range of (0, 1]
by dividing the corresponding max values.

Comparison Methods: Since there is no existing work
on explanation supervision on GNNs and graph data, we
demonstrate the effectiveness of our model in the following
two aspects: First, we compare the explanation obtained by the
proposed model with the explanation generated by the existing
explanation methods on the backbone GNN as baselines to
assess the improvement in terms of the model explainability.
Concretely, we compare the explanation generated by Grad-
CAM as the gradient propagation-based explanation, and EB
as the relevance propagation-based explanation on a GNN
with the same architecture as used in the proposed framework.
Next, we conduct the ablation study of the proposed GNES
framework to assess the effect of each proposed component.
Specifically, we studied the following variations of GNES:

• GNES−human
+reg : The variation where we ablate the human

annotation and use graph regularization only to regulate
the model explanation.

• GNES+human
−reg The variation where we ablate the regu-

larization and only use the human annotation to supervise
the model explanation.

• GNES+human
+reg The complete pipeline where we leverage

both human annotation as well as graph regularization to
supervise the model explanation.

Implementation details. Following the previous work on
the explainability method on GNNs, we used a 3 layer GCN
as our backbone GNN model. More specifically, the hidden
dimension size for the three graph convolutional layers are
of size 512, 256, and 128, respectively, followed by a global
average pooling (GAP) layer, and a softmax classifier. Models
were trained for 100 epochs using the ADAM optimizer [42]
with a learning rate of 0.001. The models were implemented in
Keras with Tensorflow backend [43] and the newly proposed
explanation loss and regularization loss were implemented by
the custom loss function in Keras. We studied the node and
edge explanation at the last GCN layer (i.e. l = 3). The
node-level explanation for the GNES was specified following
the GradCAM formulation, and the edge-level explanation
is specified following the gradient-based formulation accord-
ingly. The scale factors αn and αe for balancing node-level
and edge-level loss in (3) were set to 1 by default; and the
scale factors β and γ for the regularization in Equation (4)
were grid researched via the AUC score on the validation set.
Notice that for the human explanation annotation, we only
used 10% of the human annotation for the training data for
every dataset to simulate a more piratical situation where we
only have partial human label data available. The samples in

the test set are all labeled for evaluation purposes.

B. Performance

Table I shows the model performance and model generated
explanation quality for the three molecular datasets. The
results are obtained from 5 individual runs for every setting.
The best results for each dataset are highlighted with boldface
font and the second bests are underlined. For the models with
human annotation (i.e., GNES+human

−reg and GNES+human
+reg ),

we only assume 10% of the training sample has the expla-
nation label for the node-level and edge-level explanations
while all the remaining are treated as unlabeled samples. In
general, our proposed GNES model variations outperformed
the explanations from the backbone GNN model in terms
of both prediction power as well as explainability on all 3
molecular datasets. More specifically, the ablation study of
the model variations suggested that both the human annotation
and graph regularization can have positive effects in different
scenarios, and the full GNES model (i.e., GNES+human

+reg )
achieved the best performance, out-performing baseline GNN
by 1% - 4% on AUC score. In addition, the full GNES model
also significantly enhanced the explainability of the backbone
GNNs by a great margin, both on node-level explanation
(outperformed baselines by 20% - 37% and 6% - 16% on
MSE and MAE, respectively) and on edge-level explanation
(outperformed baselines by 9% - 36% and 1% - 13% on
MSE and MAE, respectively). Those results demonstrated
the effectiveness of the proposed framework not only on
enhancing the model to pay correct explanation to the critical
nodes and edges, but also consequently improved the model
performance and prediction power on the prediction tasks.

Next, we examine the model performance and explanation
quality on the two scene graph tasks. As shown in Table II, all
the setting are the same as in molecular graph tasks, except this
time we also studied the accuracy (ACC) as the sample size for
each class are balanced. We continue to see that the proposed
GNES model achieved the best performance in terms of
both ACC and AUC, and largely improved the GNN model’s
explainability on both node-level and edge-level explanations.
Specifically, we observed a 5%-22% improvement on node-
level explanation, and a 7% - 30% improvement on edge-level
explanation. All the above results have further demonstrated
the general effectiveness of the proposed framework across
different application domains.

C. Qualitative Analysis of the Explanation

1) Case Studies: Here we provide some case studies about
the model explanation for both molecular graphs and scene
graphs, as illustrated in Figure 3.

Molecular graphs: As shown in the bottom 3 rows of
Figure 3, nodes and edges for molecular graphs were marked
as important if they presented unique characteristics of signif-
icant reactivity or stability. For reactivity, special importance
and annotations were provided if the atoms (nodes) and
bonds (edges) were included in functional groups, highly polar



TABLE I
THE PERFORMANCE AND MODEL GENERATED EXPLANATION EVALUATION AMONG THE PROPOSED MODELS AND THE BASELINES ON 3 MOLECULAR

GRAPH DATASETS. THE RESULTS ARE OBTAINED FROM 5 INDIVIDUAL RUNS FOR EVERY SETTING. THE BEST RESULTS FOR EACH DATASET ARE
HIGHLIGHTED WITH BOLDFACE FONT AND THE SECOND BESTS ARE UNDERLINED.

Dataset Exp Method AUC Node MSE Node MAE Edge MSE Edge MAE

BBBP

EB 0.659 ± 0.011 0.572 ± 0.010 0.590 ± 0.009 0.050 ± 0.003 0.051 ± 0.002
GradCAM 0.659 ± 0.011 0.460 ± 0.008 0.545 ± 0.004 0.042 ± 0.001 0.050 ± 0.001

GNES−human
+reg 0.662 ± 0.012 0.375 ± 0.018 0.514 ± 0.008 0.029 ± 0.001 0.047 ± 0.001

GNES+human
−reg 0.665 ± 0.009 0.449 ± 0.005 0.540 ± 0.006 0.041 ± 0.001 0.049 ± 0.001

GNES+human
+reg 0.676 ± 0.007 0.358 ± 0.007 0.504 ± 0.007 0.032 ± 0.001 0.048 ± 0.001

BACE

EB 0.703 ± 0.030 0.517 ± 0.008 0.548 ± 0.003 0.033 ± 0.001 0.035 ± 0.000
GradCAM 0.703 ± 0.030 0.483 ± 0.006 0.544 ± 0.002 0.032 ± 0.000 0.036 ± 0.000

GNES−human
+reg 0.729 ± 0.009 0.427 ± 0.004 0.525 ± 0.002 0.026 ± 0.000 0.036 ± 0.000

GNES+human
−reg 0.732 ± 0.020 0.421 ± 0.004 0.522 ± 0.003 0.024 ± 0.001 0.035 ± 0.000

GNES+human
+reg 0.733 ± 0.010 0.391 ± 0.005 0.519 ± 0.003 0.023 ± 0.001 0.035 ± 0.000

TOX21

EB 0.788 ± 0.010 0.560 ± 0.028 0.622 ± 0.007 0.081 ± 0.006 0.091 ± 0.004
GradCAM 0.788 ± 0.010 0.466 ± 0.018 0.566 ± 0.005 0.071 ± 0.002 0.084 ± 0.003

GNES−human
+reg 0.789 ± 0.020 0.460 ± 0.024 0.562 ± 0.004 0.068 ± 0.004 0.081 ± 0.001

GNES+human
−reg 0.789 ± 0.008 0.393 ± 0.009 0.537 ± 0.008 0.065 ± 0.003 0.083 ± 0.001

GNES+human
+reg 0.794 ± 0.012 0.392 ± 0.008 0.523 ± 0.004 0.065 ± 0.002 0.079 ± 0.001

TABLE II
THE PERFORMANCE AND MODEL GENERATED EXPLANATION EVALUATION AMONG THE PROPOSED MODELS AND THE BASELINES ON 2 SCENE GRAPH

CLASSIFICATION TASKS. THE RESULTS ARE OBTAINED FROM 5 INDIVIDUAL RUNS FOR EVERY SETTING. THE BEST RESULTS FOR EACH TASK ARE
HIGHLIGHTED WITH BOLDFACE FONT AND THE SECOND BESTS ARE UNDERLINED.

Dataset Exp Method ACC AUC Node MSE Node MAE Edge MSE Edge MAE

Indoor vs. Outdoor

EB 0.922 ± 0.009 0.965 ± 0.001 0.304 ± 0.002 0.361 ± 0.001 0.013 ± 0.000 0.016 ± 0.000
GradCAM 0.922 ± 0.009 0.965 ± 0.001 0.280 ± 0.002 0.439 ± 0.006 0.010 ± 0.000 0.016 ± 0.000

GNES−human
+reg 0.927 ± 0.003 0.964 ± 0.002 0.274 ± 0.004 0.420 ± 0.007 0.010 ± 0.000 0.016 ± 0.000

GNES+human
−reg 0.925 ± 0.004 0.965 ± 0.001 0.270 ± 0.002 0.419 ± 0.005 0.010 ± 0.000 0.015 ± 0.000

GNES+human
+reg 0.930 ± 0.005 0.965 ± 0.002 0.267 ± 0.003 0.406 ± 0.005 0.009 ± 0.000 0.014 ± 0.000

Country vs. Urban

EB 0.991 ± 0.000 0.965 ± 0.003 0.271 ± 0.006 0.373 ± 0.008 0.015 ± 0.000 0.022 ± 0.000
GradCAM 0.991 ± 0.000 0.965 ± 0.003 0.257 ± 0.006 0.433 ± 0.008 0.016 ± 0.000 0.023 ± 0.000

GNES−human
+reg 0.992 ± 0.000 0.965 ± 0.004 0.243 ± 0.001 0.414 ± 0.003 0.015 ± 0.000 0.022 ± 0.001

GNES+human
−reg 0.993 ± 0.000 0.969 ± 0.004 0.217 ± 0.008 0.347 ± 0.022 0.014 ± 0.001 0.020 ± 0.001

GNES+human
+reg 0.994 ± 0.001 0.975 ± 0.005 0.212 ± 0.010 0.343 ± 0.020 0.014 ± 0.000 0.020 ± 0.001

bonds, and or groups with electron-donating and/or electron-
withdrawing groups. Likewise, nodes and edges involved
in resonance or conjugated systems that provide substantial
electron delocalization (which are often attributes of highly
stable compounds) were also indicated with high priority.
Considering the examples from the TOX21 dataset at the
last row of Figure 3, GNES is more accurate than Grad-
CAM baseline in assessing the importance of the sulfonyl
functional group and the corresponding resonance stabilization
it experiences from the connected ring. Likewise, in the BACE
example shown in the 4th row of Figure 3, GNES has a better
focus in highlighting functional groups and reducing priorities
for irrelevant regions compared to the baselines models.

Scene graphs: As shown in the top 4 rows in Figure 3, for
scene graph data, the size of the circle denotes the size of the
bounding box of the object, and the importance of the nodes
and the edges are marked by the lightness of the circles and
lines, respectively. As can be seen, in general, the GNES model
can more accurately focus on the importance of objects (nodes)
and relationships (edges) than the Grad-CAM baselines. For

example, as shown in the first row in Figure 3, the GNES
explanation successfully found it is important to highlight not
only the giraffe itself, but also the background (such as the
fields) and the relationship between the giraffe and the fields.
In contrast, the Grad-CAM baseline, however, only focused on
the giraffe itself. Another example can be the indoor example
at the 3rd row in Figure 3, and we can see that GNES gave
more importance to the background objects and relationships,
which are more accurate explanation and decisive factor for
classifying this sample as the ”indoor” scene.

2) User Study Results on Scene Graphs: To further assess
the quality and interpretability of the model generated expla-
nation, we conducted a user study on scene graph datasets.
The annotators were asked to give an overall evaluation of
each of the model explanations, specifically focus on the
quality and interpretability of the given explanation, including
both node-level and edge-level explanation, as well as the
consistency between the two as an overall explanation. The
final results were obtained by a joint work of 3 annotators.
Specifically, the process is as follows: the first annotator gives
the initial assessment to all the samples considering only the



Fig. 3. Selected explanation results for Scene graph dataset (top 4 rows)
and molecule datasets (bottom 3 rows). For scene graph data, the size of the
circle denotes the size of the bounding box of the object and the importance is
marked by the lightness of the circle and the yellow boundaries. For molecule
graphs, the importance is marked by the darkness of blue circles on nodes
and blue lines on edges. Darker color means more importance is given.

graph explanation itself; then, after the first annotator finished
labeling the dataset, the second annotator is asked to review
the initial assessment and provide a list of samples he/she
disagrees with the first annotator; finally, the third annotator
will look into the list of samples where the first two have a
disagreement on the label and make a final decision for those
samples.

As shown in Table III, we studied the quality for the two
baseline explanations and our full framework (i.e., with both
human annotation and graph regularization). As can be seen,
our user study results further demonstrated that the proposed
framework enhanced the GNN model’s explainability by a

TABLE III
USER STUDY ON SCENE GRAPH DATASETS. THE ANNOTATORS WERE

ASKED TO GIVE AN OVERALL EVALUATION SPECIFICALLY ON THE
QUALITY OF THE GRAPH EXPLANATION (INCLUDING BOTH NODE-LEVEL

AND EDGE-LEVEL EXPLANATIONS). THE FINAL RESULTS WERE OBTAINED
BY A JOINT WORK OF 3 ANNOTATORS.

Dataset Exp Method # good # bad Positive rate

Indoor vs. Outdoor
EB 100 100 50.0%

GradCAM 140 60 70.0%
GNES 181 19 90.5%

Country vs. Urban
EB 96 94 50.5%

GradCAM 140 50 73.7%
GNES 165 25 85.8%

huge margin. More specifically, our GNES model improved
the quality of explanation on more than 40 (20%) samples in
the test set of Indoor vs. outdoor datasets, and similarity turned
more than 25 (13%) samples’ explanation from bad to good
quality. We argue that these results may have suggested that the
GNES framework can have a big impact on the domains and
applications, where the explainability of the machine learning
model is crucial, and the data can be naturally presented in
graphs/networks.

V. CONCLUSIONS

This paper proposes a GNN Explanation Supervision
(GNES) framework to adaptively learn how to explain GNNs
more correctly. Specifically, our framework jointly optimizes
both model prediction and model explanation by enforcing
both whole graph regularization and weak supervision on
model explanations. For the graph regularization, we propose
a unified explanation formulation for both node-level and
edge-level explanations by enforcing the consistency between
them. The node- and edge-level explanation techniques we
propose are also generic and rigorously demonstrated to cover
several existing major explainers as special cases. Extensive
experiments on five real-world datasets across two application
domains demonstrate the effectiveness of the proposed model
on improving the reasonability of the explanation while still
keep or even improve the backbone GNNs model performance.

However, the improvement of the model explainability and
the model performance does not come for free, as we have
leveraged additional inputs from human explanation labels
which may not be easily accessible. Although in our study we
have demonstrated the effectiveness of the proposed GNES
framework by only leveraging 10% of the training samples
with human annotation on the explanations, this can still be
prohibitive and unrealistic in practice for large-scale applica-
tions. To mitigate this limitation, our experimental studies sug-
gest that proposing effective regularization terms that enforce
some general rules can make the explanation more reasonable
without the need for additional human annotation. In addition,
designing effective unsupervised learning algorithms based on
the model explanation might be one of the promising future
directions to further overcome this limitation.
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