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Abstract—In this paper, we propose a novel DynAttGraph2Seq framework to model complex dynamic transitions of an individual
user’s activities and the textual information of the posts over time in online health forums and learning how these correspond to the
health stage development. To achieve this, we first formulate the transition of user activities as a dynamic attributed graph with
multi-attributed nodes that evolves over time, then formalize the health stage inference task as a dynamic attributed graph to sequence
learning problem. Our proposed model consists of a novel dynamic graph encoder along with a two-level sequential encoder to capture
the semantic features from user posts and an interpretable sequence decoder that learn the mapping between a sequence of
time-evolving user activity graphs as well as user posts to a sequence of target health stages. We go on to propose new dynamic graph
regularization and dynamic graph hierarchical attention mechanisms to facilitate the necessary multi-level interpretability. A
comprehensive experimental analysis on health stage prediction tasks demonstrates both the effectiveness and the interpretability of
the proposed models.
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1 INTRODUCTION

ONLINE healthcare forums and communities such as
the Breast Cancer Community [1], American Bladder

Cancer Society [2], and eHealth Forum [3] have become
an important channel for patients to share and acquire
health-related information and have greatly changes pa-
tients’ daily lives. Unlike traditional approaches, where
patients only receive information about their disease from
their care providers, these online forums and communities
have enabled millions of patients to ask questions related to
their diseases, interact with other patients with similar prog-
noses, and provide support to each other across the world.
The communications and interactions between patients in
online forums can provide valuable information about a
patient’s emotional well-being and behaviors related to the
management of their health that conventional clinical data
collected from hospital information systems and electronic
health records (EHR) is unable to capture. Moreover, beyond
conventional online communities and social media, online
health communities provide a unique way to analyze and
infer patients’ health stages and disease history. Figure 1
shows an example of a patient’s health stage information
extracted from a patient signature that contains the cancer
diagnosis and treatment history, along with the relevant
dates. In all, the synergies between the information on
patients’ online communication and health status make pos-
sible a unique and wide range of research topics on health
informatics, such as patient behavior statistical analyses [4],
[5], longitudinal communication network analyses [6], and
patient participation prediction [7], all of which rely on both
patients’ online participation and their health stage records.

However, the health stage information in the online
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health community has some unique challenges and char-
acteristics. First, though some patients share their disease
history, as shown in Figure 1, such information is not
provided or is simply missing for many others. For instance,
over 36% active users that registered within recent 2 years
have not yet shared their disease history in the Breast Can-
cer Community [1]. Important information about patients’
health stages can significantly facilitate comprehensive in-
vestigations about patients’ health conditions and thus it is
highly desirable to be able to infer or predict these patients’
health stage information. Second, different subforums un-
der specific topics are often correlated to specific disease
stages. For example, in the online breast cancer forum, the
patients who are active in the “Chemotherapy - Before,
During, and After” subforum typically look for information
related to their Chemotherapy treatment. Similarly, user’s
communication can convey schematic and informative in-
formation about the user’s current and past health status.
For example, the user post shown in Figure 1, especially the
words marked in blue, contains rich information about the
patient’s health status. Thus, users’ activities within these
subforums could serve as a strong indicator of an individual
user’s current health stage. Third, as the patients’ health
conditions progress over time, they often move from one set
of subforums to others that are more related to their new
health stages. Therefore, for each patient, these transitions
among subforums can lead to an inter-connected subforum
activity network that evolves over time, which could be
highly entangled with the progress of patient’s health status
or disease stage, as shown in Figure 2.

The ability to accurately infer users’ missing health stage
information is crucial, as it can benefit patients, health care
organizations, and clinical research. Specifically, the benefits
for accurately inferring users’ missing health stage informa-



2

Fig. 1: An example of a patient post in the breast cancer
forum along with the patient’s signature that reveals the
health status. The words that are highlighted in blue color
such as ‘IDC’ and ‘Chemo’ in the post clearly show the
correspondence to the user’s health status in the signature.

tion via their forum activities are three-fold:
1) For patients: The predicted health stage information

can help patients to establish potential connections to
other patients with similar health status to provide
support and offer help and information with each other.

2) For health care organizations: The health care orga-
nizations can be benefited from providing more per-
sonalized guidance and appropriate resources to each
individual patient according to the particular health
stage [8], [9].

3) For clinical research: Because of the large ratio of
missing data on patient health stages information, our
model can be used to provide label supports to benefit
other clinical research such as health condition predic-
tion [10] and health risk prediction [11], [12].

To infer the missing user health stage information, the
correspondence between the users’ forum activities (e.g.
the posts and replies, and the movement from one sub-
forum to another) and their health stage history needs
to be accurately identified and modeled. Naturally, the
networked and time-evolving forum activity data can be
formulated as dynamic sequence of user posts and user
activity transition graphs that change over time. In addition,
the target user health stage history can be formulated as a
sequence prediction problem that needs to be inferred from
both the dynamic graph sequence and text sequence. Thus,
without loss of generality, a new generic task is presented
here where the goal is to learn the mapping from a sequence
of graph-structured data and a sequence of text data to a
target sequence. In this paper, we limit our scope to the
domain of online health forums and focus on health stage
sequence prediction based on online health forums data.

However, capturing the high-level mapping between the
evolution of the user activity networks and the changes
in the corresponding user’s health stage cannot be easily
handled by existing techniques due to the following four
challenges: 1) Difficulty in modeling the forum data, which
is dynamic, networked, and multi-attributed. A user’s
activities in the various subforums can change dynamically
over time and these activity transitions naturally bridge dif-
ferent subforums. In addition, each subforum contains both
unique and shared content, and identifying how this content
is shared among subforums is important. 2) Difficulty in
learning the association between a sequence of user activ-
ity networks and the corresponding sequence of health
stages. The sequence of user activity networks contains

complicated graph-structured information that dynamically
evolves over time. Developing end-to-end learning between
such dynamic complex data and a specific sequence is
highly difficult. 3) Difficulty in jointly modeling the dy-
namic evolution of both the textual information in users’
posts and their forum activities. The posts of the users also
contain crucial information about their health status over
time. For example in Figure 2, we can observe that both the
user posts and the corresponding forum activity graphs are
good indicators of the evolution of the user health status
over time, i.e. from ‘Chemotherapy’ to ‘Radiation Therapy’.
However, capturing the complex correspondences and evo-
lution of both user posts and activity networks as a whole is
very challenging and haven’t been explored before. 4) Lack
of interpretability of the health stage sequence inference
process. The sequence of user activity networks has a two-
level hierarchical structure, namely from the node (i.e.,
subforum) level to the network level, and from the network
level to the health stage level. It is thus a major objective
to incorporate this hierarchical structural information into
the development of an interpretable health stage inference
process.

In this paper, we formally define the generic learning
problem of health stage sequence inference using online
forum data and propose the first framework to address the
aforementioned challenges effectively. The main contribu-
tions are as follows:

1) Defining the novel problem of inferring user health
stage information using dynamic user behavior graph
and text information extracted from online health
forum data. We define the health stage inference prob-
lem in online health forums and formulate the user
activities as transition graphs and time evolving text
sequence that are capable of modeling user dynamic
transitions between subforums and their complex rela-
tionships.

2) Proposing a generic DynAttGraph2Seq framework
for inferring target sequence from a sequence of
attributed graphs and texts. We propose a novel deep
neural encoder-decoder framework for learning the
mapping between complex dynamic graph and text
sequence inputs and the target output sequence.

3) Proposing dynamic graph regularization and a dy-
namic graph hierarchical attention mechanism for
enhancing model effectiveness and interpretability.
We propose a dynamic graph regularization that en-
forces the smooth learning of consecutive graphs while
preserving the heterogeneity across the graph sequence.
In addition, we propose a new dynamic graph hierar-
chical attention mechanism that captures both the time-
level and node-level attention, thus providing model
transparency throughout the whole inference process.

4) Proposing sequential encoder to capture user post
level semantic features and bidirectional temporal de-
pendencies from users’ communication. We propose a
two level bidirectional sequential encoder which used
bi-directional long short-term memory neural network
to capture both the semantic information from user
posts as well as their dynamic evolution over time. This
network enabled the feature learning of both semantic
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Fig. 2: An example of user forum activities and the corresponding health stage evolution. In the first two time windows,
the user is mainly active in Subforum #13 while going through chemotherapy treatment. In the third time window, the
user starts to be active in Subforum #22 at about the time when she undergoes IDC treatment. Finally, in the last three
time windows, the user becomes active in Subforum #14 when she enters the “Radiation Therapy” health treatment stage.

and dynamic characteristics from the user posts.
5) Conducting comprehensive experiments and case

studies to validate the effectiveness and interpretabil-
ity of the proposed model. Experiments on online
health forum dataset demonstrate that our proposed
models outperform conventional sequence inference
methods. In addition, our qualitative analyses and case
studies provide interpretable insights into the learning
results of the proposed model and its variations.

The rest of the paper is organized as follows. Section 2
outlines related research work in online health communi-
ties analysis, dynamic graph representation learning, hier-
archical attention mechanism, and neural encoder-decoder
models. Section 3 represents the problem formulation of dy-
namic graph, user post and sequential output of user health
stage. Section 4 describes in details of each component
of the proposed DynAttGraph2Seq framework. Dynamic
graph encoder was introduced in Section 4.2 along with
regularization that enforces the smooth learning of consecu-
tive graphs while preserving the heterogeneity across the
graph sequence. In Section 4.3, a two-level post encoder
was proposed which enabled the feature learning of both
semantic and dynamic characteristics from the user posts.
Finally, we did ample amount of experimental analysis and
case studies in Section 5 and demonstrated the effectiveness
of proposed framework.

2 RELATED WORK

2.1 Online Health Communities Analysis

A number of studies have focused on the analysis and
utilization of online health communities data. Popular social
media such as Twitter and Facebook are good for aggregate
level pattern mining tasks such as discovering epidemic
outbreaks [13] and other type of events [14], [15]. How-
ever, compared to specialized health forums such as the
Breast Cancer Forum, their power is limited for discovering
individual-level health stages and health network patterns
due to the privacy issues involved and data scarcity. There
have been several analyses of breast cancer forum data [4],
[5] and, more recently, machine learning models have been
used for longitudinal analysis [6] as well as for some binary

classification tasks such as patient participation prediction
[7] and cancer type classification [9]. However, we are the
first to propose a general framework that can achieve health
stage sequence inference using online forum data.

2.2 Dynamic Graph Representation Learning
As an emerging topic in the graph representation learning
domain, dynamic graph learning has attracted a great deal
of attention from researchers in recent years [16]. Most of
the current research falls into the dynamic graph embed-
ding domain. Some of the proposed methods intuitively
extend the idea from static graph embedding approaches
by adding regularization [17], [18], while others propose
specific models for capturing dynamic characteristics of
the graph [19], [20]. There has also been some work on
streaming graph learning [21], [22], where network repre-
sentations are learned dynamically as the network evolves.
Furthermore, dynamic graph is also demonstrated to be
helpful for modeling the inter-dependency relationships
among nodes in time series data [23], [24]. However, these
graph embedding techniques typically focus on learning
representations of the graphs, such as node embedding, but
in many real-world applications the aim is to learn some
high-level knowledge from the graph data, such as graph
classification tasks [25], [26] and graph to sequence tasks
[27]. An end-to-end learning model is thus needed to learn
the mapping between the whole sequence of graph data and
the target output sequence, instead of merely focusing on
learning node representations.

2.3 Hierarchical Attention Mechanism
The attention mechanism first proposed by [28], [29] was
used for machine translation tasks. Here, the attention
mechanism was used to select reference words in the orig-
inal language that matched specific words in the foreign
language before translation. Later on, Hierarchical Attention
Networks [30] was proposed to model the natural hierarchi-
cal structure of word-to-sentence and sentence-to-document
level attention in document classification tasks. Besides
being widely used for machine translation, the attention
mechanism has also been introduced in the graph repre-
sentation learning domain. Graph Attention Networks [31]
introduced node-to-node attention mechanism for graph
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embedding, and many others followed and extended this
idea [32], [33]. However, there is little to no work on study-
ing the unique hierarchical structure that is naturally present
in dynamic graphs.

2.4 Neural Encoder-Decoder Models

The neural encoder-decoder models originally designed to
solve neural machine translation problems [28] have been
widely extended to model the mapping of general object
inputs to their corresponding sequences. A major focus
has been on addressing the limitations of Seq2Seq when
dealing with more complex objects, including Tree2Seq
[34], Set2Seq [35], and TreeStructured LSTM [36]. Recent
advances in graph deep learning and graph convolutional
networks have enabled researchers to utilize various graph
deep learning models to handle challenges in the domains
of machine translation and graph generation [37], [38]. Most
recently, the graph2seq models [39], [40] were proposed
as a general-purpose encoder-decoder model for graph-
to-sequence learning. However, to the best of our knowl-
edge, as yet there is no work that explores dynamic graph
to sequence learning, where the natural sequential order
contained in a dynamic graph and its sequences might be
advantageous for neural encoder-decoder models.

3 PROBLEM FORMULATION

The online health forum data typical consists of complex
user activities and textual information among different sub-
forums as shown in Figure 2, which is hard to model
directly. In this section, we formally define the learning
problem of health stage sequence prediction with the com-
plex online forum data. Specifically, in Section 3.1 we for-
mulate the user activity transition among sub-forums as
dynamic attributed graphs. We then move on to formulate
the user posts as text sequence over time in Section 3.2.
Finally, we formally define the learning problem of health
stage sequence prediction as a dynamic attributed graph to
sequence learning problem in Section 3.3.

3.1 User Forum Activities as a Dynamic Graph

The online forum data records the path of each user’s
transition from one subforum to another, as well as their
activities within each subforum. In order to capture these
complex transitions and model the relationships between
subforums, we propose a novel method to formulate the raw
user subforum activities into activity transition networks
that preserve these characteristics.

An activity transition network is formulated naturally
as follows. User activities are first partitioned into a series
of time windows. We then begin by formulating a node
for each subforum, with a transition from one forum to
the other deemed to occur if the most active forum (based
on visiting time or number of postings) switches from the
former to the latter, creating a directed ‘edge’ between them.
Each node (i.e., subforum) also records the user activity
in the forum to build the activity transition network. For
example in Figure 2, the subforum transition sequence is
{30 → 13 → 6 → 29}, where 30, 13, 6, and 29 are the IDs
of the subforums visited. Thus, the transition edges for the
first snapshot graph will be (30,13), (13,6), and (6,29). The

graph in each time window records all the transitions in
and previous to it.

Naturally, such time-ordered activity transition net-
works can be formally defined as dynamic graphs, also
known as temporal networks in the network science liter-
ature [41], that capture the complex dynamic characteristics
and time-evolving features of graphs, as defined in the
following.

Definition 1. (dynamic attributed graph). A dynamic at-
tributed graph G = {G1, G2, · · · , GT } is an ordered sequence
of t = 1, · · · , T separate graphs on the same set of |V | = N
nodes, with each snapshot graph Gt(V,Et) characterized by a
weighted adjacency matrixAt ∈ RN×N and a set of node features
Ft ∈ RN×D for a given time window, where D represents the
total number of node features.

We can now formulate the activity transition networks
as a dynamic attributed graph, illustrated in Figure 2. Here,
the dynamic attributed graph contains a sequence of snap-
shot graphs G1, G2, · · · , G6 that characterize user activities
in the online forum for a given time period, where Gt

represents the snapshot graph Gt(V,Et) for simplicity. In
this example, the time windows are shown as blue boxes.
Each node v ∈ V represents a subforum devoted to a
specific topic and the edges Et capture the user’s movement
between different subforums at a given time window. In
addition, each node v contains a set of features Ft,v that
represents the topics covered by the specific subforum. By
formulating user online forum activities as dynamic graphs,
the mapping between the evolution of the user activity
graphs and the changes of the corresponding user’s health
stages will be preserved.

3.2 User Posts as Encoded Sequence

In the forum, users’ post convey good amount of informa-
tion about the evolution of their health status. For example
in Figure 3, P2 shows an example of several posts from
a user in timestep 2. We can see from this time period,
the patient is going through the diagnosis testing, and few
days later the patient also finished chemotherapy treatment.
Thus, the posts can be crucial for the health status prediction
task as it not only contains rich semantic information that
depicts patient’s current health stages, but also conveys the
evolution of the health status of the user over time.

To capture both the semantic and time-evolving infor-
mation from the user post, we propose a novel two-level
bidirectional encoder. As shown in Figure 3, we denote
P = {P1, P2, · · · , PT } as an ordered sequence of the collec-
tion of the user posts over time using the same time partition
as in G. Furthermore, each word tokens q in the accumulated
posts t is further projected into the corresponding word
vectors by a pre-trained word2vec model [42], denoted as
Pt = {Pt,1, Pt,2, · · · , Pt,Q}, where Q is the total number of
word tokens within the accumulated posts Pt. The word
vectors, Pt,q will be used as the input to the model to learn
the semantic and contextual information encoded in user
posts within a specific time period t.

3.3 Learning Sequence from Dynamic Graph and Post

As we can see from Figure 2, there is a clear mapping
between the evolution of the user activity dynamic graph
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Fig. 3: The proposed end-to-end Dynamic Attributed Graph to Sequence learning (DynAttGraph2Seq) framework. It
includes a novel dynamic graph encoder, a two-level user post encoder, and a sequence decoder. The proposed framework
can not only encode the complicated interactions of user’s activities in the dynamic graphs, but also capture the time-
evolving semantic features from user posts. Moreover, it provides both time-level and subforum level interpretability of
the correlations between a user’s online forum activities and their current health stages through the proposed two-level
attention mechanism.

and changes in the corresponding user’s health stage. In
addition, from the user posts example shown in Figure
3, we can clearly see the user posts also contain critical
semantic information about the user’s current health status.
Motivated by these observations, we propose to formulate
such learning problems as follows:

Given a dynamic graph G = {G1, G2, · · · , GT } and the
dynamic user posts P = {P1, P2, · · · , PT } as input data
for each user, the goal is to predict the target sequence
S = {s1, s2, · · · , sM}, where M is the output sequence
length and sm ∈ V is the mth token of the output sequence
in vocabulary V that consists of health stages of patients
including ‘Dx’1, ‘Chemotherapy’, ‘Targeted therapy’, ‘Hor-
monal therapy’, ‘Radiation therapy’, and ‘Surgery’. An ex-
ample of S could be {‘Dx’, ‘Targeted Therapy’, ‘Chemother-
apy’, ‘Targeted Therapy’}, as shown in Figure 1. Formally,
this problem is equivalent to learning a translation mapping
from input dynamic graph G and the dynamic user posts P
to a sequence S as {G1, G2, · · · , GT } ∪ {P1, P2, · · · , PT } →
{s1, s2, · · · , sM}.

The translation mapping problem between some source
objects and target sequences is widely studied, including
both graph-to-sequence [39] and sequence-to-sequence [43]
formulations. However, learning the translation from the
user activity in the online forum to the user stage sequence is
a more complex problem as it involves learning of both the
dynamic behavior graphs that describe the user’s activity
transition between subforums as well as the texts that cap-
ture the semantic features from user post. Specifically, the
challenges are four-fold: 1) Difficulty in modeling the forum
data, which is dynamic, networked, and multi-attributed; 2)
Difficulty in learning the association between a sequence of
user activity networks and the corresponding sequence of
health stages; 3) Difficulty in jointly modeling the dynamic
evolution of both the textual information in users’ posts and
their forum activities. 4) Lack of interpretability of the health

1. Short for Oncotype DX test, an initial diagnosis that analyzes how
a cancer is likely to behave and respond to treatment.

stage sequence inference process.

4 MODEL

4.1 The DynAttGraph2Seq Framework
In this section, we introduce our proposed model frame-
work that includes three main components: the dynamic
graph encoder, the dynamic user post encoder, and the
sequence decoder, as shown in Figure 3. To the best of our
knowledge, this is the first end-to-end dynamic graph-to-
sequence learning framework. Our new DynAttGraph2Seq
framework enables the learning paradigm of generating
target sequence outputs by capturing both the complicated
dynamic interactions between a user’s activities over time
from the dynamic attributed graph, and bi-directional se-
mantic features evolution from user posts. In addition, the
dynamic graph encoder also provides both time-level and
subforum level interpretability of the correlations between a
user’s online forum activities and that user’s current health
stages through our two-level attention mechanisms.

For capturing the complex relationships represented in
the graph input and the dynamic changes represented by
the whole sequence of the dynamic graph, we propose a
dynamic graph encoder that consists of three main compo-
nents as follows: the first component contains a sequence
of graph convolutional networks that learns the node level
embeddings ht for each graph snapshot Gt; the learned
node level embeddings are then aggregated into a graph
level embedding gt by an aggregation function; finally, a
sequence encoder is used to take the learned graph level
embedding sequence g = {g1, g2, · · · , gT } and generate a
sequence of patient health stages that capture the entire dy-
namic graph characteristics. In addition, we propose a novel
dynamic graph regularization for sparse feature selection
of the graph convolutional networks that enforces smooth
feature selection for consecutive snapshot graphs locally,
while at the same time preserving the heterogeneity of the
features selected across the entire dynamic graph globally.

To capture both the semantic and temporal information
from user posts, we propose a novel two-level sequential
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encoder. As shown in Figure 3, the first level encoder, i.e.
post level encoder, consists of a set of biLSTM networks
that learn the semantic information from a set of user
posts ct within each timestep t; then the learned post level
embedding sequence c = {c1, c2, · · · , ct} is further feed into
the second level encoder, i.e. user level encoder, to generate
a single user level embedding C(u)

T that captures the overall
dynamic and semantic features of all the user’s posts.

Since our dynamic graph encoder together with our post
encoder are capable of learning the representation of the en-
tire dynamic graph and time evolving semantic information
from the user posts as a single global vector CT , we will be
able to use a conventional sequence decoder as the decoder
for our framework to generate the desired target sequence.
Moreover, we propose a novel dynamic graph hierarchical
attention mechanism that incorporates both node-to-graph
attention and graph-to-sequence attention in order to pro-
mote better interpretability between graph sequences and
output sequences and provide more effective aggregation
function from node embeddings to graph embeddings [44].
A detailed introduction to the proposed encoder and de-
coder will be described in the next two subsections.

4.2 Dynamic Graph Encoder

The base model of our graph convolutional network for
each snapshot graph is inspired by graph2seq [39], which
was originally proposed for addressing static graph-to-
sequence learning problems. The Graph2Seq model em-
ploys an inductive node embedding algorithm that gener-
ates bi-directional node embeddings by aggregating infor-
mation from a node local forward and backward neigh-
borhood within k hops for a static graph. We extend this
idea for dynamic graphs by applying such graph convolu-
tion on each snapshot graph within dynamic graph inputs.
Specifically, suppose the total number of hops is k, then the
hidden representation of n-th node in the snapshot graph
Gt after applying the first graph convolutional layer will be
computed as follows:

h`t,n = mean({σ(W`(1)t Ft,u + b
`(1)
t ), u ∈ N`(v)}) (1)

hat,n = mean({σ(Wa(1)t Ft,u + b
a(1)
t ), u ∈ Na(v)}) (2)

h
(1)
t,n = concat[h`t,n, h

a
t,n] (3)

where N`(v) represents the set of forward neighbor nodes
of node v, whereas Na(v) represents the set of backward
neighbor nodes; Wa(1)t , b

a(1)
t and W

`(1)
t , b

`(1)
t are learnable

parameters for the first convolution layer. Ft,u is the fea-
ture vector of node u in a snapshot graph at time step t;
σ(·) represents the activation function of the network (e.g.
ReLU); the mean(·) function takes the element-wise mean
of the set of vectors in the equation; and concat[vec1, vec2]
concatenates the two row vectors into a single row vector.

Likewise, for hop k, the hidden representation of the
n-th node in the snapshot graph Gt can be computed via
the hidden representations computed from layer k − 1, as
follows:
h`t,n = mean({σ(W`(k)t h

(k−1)
t,u + b

`(k)
t ), u ∈ N`(v)}) (4)

hat,n = mean({σ(Wa(k)t h
(k−1)
t,u + b

a(k)
t ), u ∈ Na(v)}) (5)

h
(k)
t,n = concat[h`t,n, h

a
t,n] (6)

Finally, after applying k layers of convolutions, the final
hidden representation of the n-th node in the snapshot
graph Gt will be output as ht,n = h

(k)
t,n .

In order to capture the high-level representation of
graphs for end-to-end graph learning, aggregating node
level embeddings to graph level embedding that conveys
the entire graph information is essential. To achieve this, we
adopt the max pooling operation proposed by [25], [39] as
the base aggregation function, feed the node embeddings
ht,n to a fully-connected layer and then applies the max
pooling method element-wise for each snapshot graph Gt

to yield a sequence of graph-level representations gt.
To model the graph dynamic changes and long-term de-

pendencies throughout the M steps, we utilize Long Short
Term Memory (LSTM) networks [45] as a graph embedding
sequence encoder to learn the entire dynamic graph-level
embedding. The computation of the LSTM network at time
step t is defined as:

ft = σ(Wf · [ot−1, gt] + bf ) (7)
int = σ(Win · [ot−1, gt] + bin) (8)

C̃
(g)
t = tanh(WC · [ot−1, gt] + bC) (9)

C
(g)
t = f ∗ C(g)

t−1 + int ∗ C̃(g)
t (10)

outt = σ(Wout · [ot−1, gt] + bout) (11)

ot = outt ∗ tanh(C(g)
t ) (12)

where ot is the output of the LSTM network at time step t,
C

(g)
t is the new cell state for the next time step computation,

and the initial cell state for the encoder is set to all-zeros.
In the above encoder formulation, each graph convolu-

tional network needs to learn a set of parameters for each
snapshot graph in order to capture their unique charac-
teristics. However, this will lead to several problems for
the entire model during training: 1) the node embeddings
learned from adjacent snapshot graphs Gt, Gt+1 may yield
inconsistent node embeddings even when the graph char-
acteristics are similar, since there is no constraint on the
parameter set; and 2) the resulting model tends to suffer
from severe over-fitting issue since too many parameters
need to be learned, especially when the total number of time
steps T is large for a given dynamic graph.
4.2.1 Dynamic Regularization for Sparse Feature Selection
To cope with the aforementioned challenges, we propose a
novel temporal feature selection regularization that charac-
terizes feature sparsity, local feature selection consistency,
and global feature selection flexibility across the evolving
graphs over time. Inspired by group sparsity `2,1 regulariza-
tion from group lasso [46] and overlapping group lasso [47],
we propose the following dynamic graph regularization for
the first layer of graph convolutional networks:

Lreg = β
∑T−w+1

t=1
‖Ŵ (1)

[t:t+w]‖2,1 (13)

where w is the sliding window size; and Ŵ
(1)
[t:t+w] is the

concatenated weight matrix from the weight parameters
of a group of consecutive graph convolutional networks
between time step t and t + w. Each row i of the weight
matrix represents the ith feature weights across the w time
steps; β controls the relative strength of the regularization.

Dynamic graph typically enjoys temporally consistent
characteristics, since user transition activity graphs such as
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the example shown in Figure 2 change smoothly over time.
Thus, the model can achieve temporal local consistency
feature selection by adding a sliding window to force the
local model to select similar features, which retains the
flexibility of the feature selection process while still evolving
gradually with time.

The proposed regularization brings several advantages.
First, it promotes the interpretability of the model in term of
node attributes, enabling us to visualize important features
at any given time step and providing useful insights into
how the importance of features evolves through time. Sec-
ond, it also serves as a good regularizer to restrict the large
number of model parameter sets, thus preventing possible
model over-fitting. Lastly, it enhances the generalization
power of the model. These results and analysis will be
discussed in detail in the subsequent experimental section.

4.3 Two-level Post Encoder

Our dynamic graph was efficient to provide the spatial-
temporal information of the node attributes over the time.
Sequential information evaluation over time from the post
conveyed useful information in both direction. Posts’ con-
tent can carry the dependencies of the user’s experience.
To illustrate, at the initial stage (’Dx’) an user may not
have the experience, questions or answers of questions
related to later stages like Chemotherapy, Radiation, etc.
But in the evolution of time an user gains more knowledge
and his/her contribution in question-answering or in post
content also evolved. Our motivation for introducing post
encoder along with graph encoder inspired by the context
of the user’s post.

We proposed to use a two-level biLSTM post encoder
that can capture both semantic information from user posts
and their evolution over time. The proposed post encoder
would give us upper hand to train our model for under-
standing users’ participation in a better way. There are
two angles of information growth in the context of users’
posts. First advancement is happened inside a time step.
For example, in a forum one user can post on different date
in a month. Graph encoder can not capture the information
of sub-step or day by day evaluation in a month within
a forum. So our first level encoder will be useful to en-
code the sub-steps evaluation within a time step. Second
advancement follows along time steps. As we see in the
graph encoder, the participation in different forums varies
month to month. Same way the content of the users’ posts
vary month to month. Our second encoder will serve the
purpose to capture this time-to-time evaluation.

The overall information flow of our proposed two level
Bi-directional Long Short Term Memory (biLSTM) has been
shown at the lower portion in Figure 3. The initial stage
starts by combining all the posts of a specific user in a
single time step, Pt. So, the whole context, Pt is endued
with sub-step evaluation information within a time step. At
the next stage, a domain specific ’Word2vec’ model plays a
vital role to place the word token at the right place in the
embedding space as Pt would contain lot of domain specific
terminologies.Thereafter, the ’Post Level Encoders’ encodes
the Pt as ct which is fed to the ’User Level Encoder’ as a
part of sequence with other encoded time steps. Afterwards
the encoded output from the ’User Level Encoder’, C(u)

T

ameliorates the decoder initial state with more contextual
information along with graph encoder. Concretely, the pro-
posed two level Bi-directional Long Short Term Memory
(biLSTM) network is stated in Equation (14) to (22).

4.3.1 Post-level Encoder
The first level biLSTM encoder (i.e. post level) focus on
encoding all the posts of a single user in that specific
timestep t. We preferred biLSTM to LSTM, as patterns lying
ahead in the earlier posts of a timestep is also relevant as
well as the latest post of the timestep. In these accumulated
posts (Pt = {Pt,1, Pt,2, · · · , Pt,q}); every word token, Pt,q

was initialized by using a pre-trained vector embedding and
act as the input of the encoder. The final state of the encoder
ct will encode the semantic information of the user within
timestep t, and also served as the input of the second level
encoder, i.e. the user level encoder.

~ft,q = σ( ~Wf · [oq,n−1, Pt,q] +~bf ) (14)
~int,q = σ( ~Win · [oq−1, Pt,q] +~bin) (15)
~̃ct,q = tanh( ~Wc · [oq−1, Pt,q] +~bc) (16)

~cp,q = ~f ∗ cq−1 + ~int,q ∗ ~̃ct,q (17)
~f t,q = σ( ~W f · [oq+1, Pt,q] + ~bf ) (18)
~int,q = σ( ~W in · [oq+1, Pt,q] + ~bin) (19)
~c̃t,q = tanh( ~W c · [oq+1, Pt,q] + ~bc) (20)

~cp,q = ~f ∗ cq+1 + ~int,q ∗ ~c̃t,q (21)
ct = concat[~cp,q, ~cp,q] (22)

4.3.2 User-level Encoder
The user level encoder is another biLSTM network that takes
the post level embedding sequence c = {c1, c2, · · · , cT }
of over all timesteps and focus on generating an overall
user level embedding considering both the semantic and
the temporal information in all the user posts. Following the
same architecture like post level encoder, we concatenated
two directional encoded state (~Cu,T and ~Cu,T ) to get the
final state of the user level encoder, C(u)

T . Finally, the final
state of the encoder C(u)

T will be used along with the final
state of graph encoder C(g)

T as the initial state of the decoder.

C
(u)
T = concat[~Cu,T , ~Cu,T ] (23)

CT = σ(concat[C
(g)
T , C

(u)
T ]) (24)

The concatenation in Equation (24) helped our model to
adopt two pathways to capture the user level activities from
dynamic graph encoder and user level context from post
encoder.

5 EXPERIMENTS

For this study, we evaluated the performance of our pro-
posed model utilizing two real-world online health forum,
namely the breast cancer community and American bladder
cancer society. We conducted comprehensive experiments
with both quantitative evaluation and qualitative analyses
of the learning results.

5.1 Experimental Settings
Online Breast Cancer Community Dataset: The Breast
Cancer Community [1] is one of the largest online forums
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designed for patients to share information related to breast
cancer. So far, the forum has enrolled 215,671 registered
members since the forum launch and the site contains a
total of 81 subforums discussing 153,338 topics. The forum
data collected for this study covers an 8 year period from
the beginning of 2010 to the end of 2017. To create user
subforum activity transition graph sequences, we defined
user activities as being when they posted new topics or
replied to existing topics and the time window was set
as one month. After removing common words and stop
words, we extracted the 100 top frequency keywords from
the forum content to construct the feature vectors for the
subforums. For model training and evaluation, we used
a total of 2882 users who provided their health stage in-
formation. More specifically, we randomly selected 70% of
users who provided their health stage history for training,
another 10% for validation, and the remaining 20% for
testing. The predicted health stage sequences in the test data
were validated against the real health stage history extracted
from the corresponding users’ signatures, as exemplified
in Figure 1. The vocabulary of the health stages used in
breast cancer consists of {‘Dx’, ‘Chemotherapy’, ‘Targeted’,
‘Hormonal’, ‘Radiation’, ‘Surgery’}.

Online Bladder Cancer Dataset: The American Bladder
Cancer Society [2] offers a online forums for users to dis-
cuss topics related to bladder cancer, covering topics like
treatment, unusual symptoms, coping, caregiving, recent
research, and etc. So far, the forum has enrolled 6,862
registered members since the forum launch and the site
contains a total of 11 subforums discussing 7,233 subjects.
The forum data collected for this study covers an 13 year
period from the beginning of 2007 to the end of 2020. We
followed the same ways to process user subforum activity
transition graph sequences, and data prepossessing steps
for constructing the feature vectors for the subforums. For
model training and evaluation, we randomly selected 70%
of users who provided their health stage history for training,
another 10% for validation, and the remaining 20% for
testing. The predicted health stage sequences were vali-
dated against the real health stage history extracted from
the users’ signatures. The vocabulary of the health stages
used in breast cancer consists of {‘Dx’, ‘TURBT’2, ‘BCG’3,
‘Chemotherapy’, ‘Surgery’}.

5.1.1 Evaluation Metrics

We used BLEU scores [48] as the primary evaluation met-
ric for determining the closeness of the model predicted
health stage history and the ground truth. In addition, we
also tested the model with ROUGE-1 score [49], which is
commonly used for evaluating machine summarization and
translation tasks.

5.1.2 Comparison Methods

NMT(seq2seq) The Neural Machine Translation model im-
plemented by Luong et al. [50] is a widely used state-of-
the-art sequence-to-sequence model for machine transition

2. Short for Trans Urethral Resection of Bladder Tumour, is usually
the first treatment for early bladder cancer.

3. Short for Bacillus Calmette-Guerin, it is the most common intrav-
esical immunotherapy for treating early-stage bladder cancer.

tasks. Since the NMT model can only handle simple se-
quence inputs, we simplified the input data by concatenat-
ing the transition sequences of user activity for each month
together in time order. The subforum features are omitted in
such formulations. We tested the model settings both with
and without the attention mechanism.
Graph2seq The Graph2seq model [39] was proposed as a
general-purpose encoder-decoder model for static graph to
sequence learning. Since the model cannot handle dynamic
graphs as input, we simplified the input by aggregating all
the edges that appeared in the dynamic graph together into
a single static graph. We tested the model settings both with
and without the attention mechanism.

5.1.3 Hyper-parameter Settings
For the models tested in this experiment, the Adam opti-
mizer [51] was used with a learning rate of 0.001 and a batch
size of 50 for model training; greedy search was used for all
the sequence decoders, selecting the highest scoring token
at each stage. Hyper-parameters were searched and chosen
based on the highest scores achieved on the validation set.
For the graph encoders used in Graph2Seq, DynGraph2Seq,
and DynAttGraph2Seq models, the hop number k was set
to 4. For the proposed dynamic graph regularization, the
window size was set to 12 and β was set to 0.0003.

5.2 Performance
5.2.1 Breast Cancer Dataset
Table 1 shows the model performance of the baseline and
proposed models on Breast cancer dataset. The scores were
obtained from 20 individual runs and presented in a mean
± standard deviation (SD) format. In general, our proposed
DynAttGraph2Seq framework significantly outperformed
both the Seq2Seq and Graph2Seq baselines for the various
model settings and evaluation metrics. Specifically, the full
DynAttGraph2Seq model with the proposed post encoder,
dynamic graph regularization, and the dynamic graph hier-
archical attention achieved the best score on all the metrics,
outperforming the static Graph2Seq and Seq2Seq baseline
models by 12% - 25% on the BLEU scores and 7% - 14%
on the ROUGE scores. This is because neither the static
Graph2Seq nor the Seq2Seq model is able to capture the
dynamic evolution of the user forum activities over time,
and thus is less effective on this prediction task.

Moreover, comparing to the best results from Dyn-
Graph2Seq model [44] with dynamic graph encoder and
hierarchical attention, our new model (i.e. with post encoder
and regularization) further improved the performance by
3.33% to 4.67% on the BLEU score and 1.27% on the ROUGE
score. This is because, different from the formulation in [44],
here we further extended the node attributes to be user
specific and dynamically changes over time, which gave the
model more enriched information about the users in terms
of their health stages evolution. Moreover, the newly added
post encoder could capture the dynamic evolution of the
user specific textual information over time, thus facilitated
the effectiveness of the new model. In addition, we further
studied the effect of the proposed PostEncoder attached to
the baseline methods. Our experimental results in Table 1,
depicts that, Graph2Seq can be enhanced to get a competi-
tive performance with DynGraph2Seq (w/att) with the help
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TABLE 1: Performance Evaluation for Health Stage Prediction on Breast Cancer Dataset. The scores were obtained from 20
individual runs and presented in a mean ± standard deviation (SD) format.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE

NMT(seq2seq) (w/o att) 55.5±2.38 38.4±0.91 27.1±0.90 19.2±0.87 71.6±1.04
NMT(seq2seq) (w/ att) 57.8±1.86 40.4±1.21 29.0±1.28 20.1±1.06 72.9±0.86

NMT(seq2seq) (w/ att & post) 58.05±8.78 38.34±7.72 26.47±5.24 18.88±4.01 79.67±2.05

Graph2Seq (w/o att) 57.5±1.72 41.5±0.94 29.8±0.72 20.3±0.85 75.8±1.20
Graph2Seq (w/ att) 58.2±2.19 41.1±1.38 30.1±0.83 21.0±0.51 76.2±0.96

Graph2Seq (w/ att & post) 62.52±3.39 44.63±3.01 32.09±2.30 22.63±1.90 79.73±2.58

DynGraph2Seq (w/o att) 60.9±1.53 43.7±1.00 31.5±0.63 22.1±0.48 79.3±0.80
DynGraph2Seq (w/ att) 62.3±1.46 44.7±1.29 32.0±0.94 22.5±1.13 80.8±0.36

DynAttGraph2Seq (w/ reg) 61.5±2.42 45.1±1.86 32.3±1.31 23.1±1.05 78.5±0.86
DynAttGraph2Seq (w/ reg & att) 64.1±0.84 45.4±0.31 33.1±0.41 24.1±0.70 81.0±0.69

DynAttGraph2Seq (w/ reg & att & BERT+UL) 63.14±1.83 44.04±2.96 30.73±3.80 21.03±3.82 78.09±1.06
DynAttGraph2Seq (w/ reg, att & post) 65.2±2.00 47.1±1.63 33.6±1.24 23.3± 0.98 81.8±0.58

TABLE 2: Performance Evaluation for Health Stage Prediction on Bladder Cancer Dataset. The scores were obtained from
5 individual runs and presented in a mean ± standard deviation (SD) format.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE

NMT(seq2seq) (w/o att) 42.52±5.05 28.1±3.57 17.22±2.15 0.0±0.0 52.44±5.13
NMT(seq2seq) (w/ att) 46.88±1.32 33.42±2.0 20.08±1.94 0.0±0.0 56.74±3.78

Graph2Seq (w/o att) 46.52±4.48 31.83±5.19 21.17±3.68 15.83±2.80 59.33±4.47
Graph2Seq (w/ att) 47.54±5.50 32.77±5.84 21.76±4.27 16.57±3.83 62.16±4.83

DynAttGraph2Seq (w/ reg) 53.27±1.10 37.48±1.10 24.32±3.94 16.86±9.42 68.99±0.0
DynAttGraph2Seq (w/ reg & att) 48.62±4.43 33.51±4.09 23.21±3.38 18.15±3.28 65.61±6.35

DynAttGraph2Seq (w/ reg, att & post) 53.23±0.54 37.95±0.88 26.75±0.95 21.29±1.78 67.08±1.86

of the proposed post encoder. Specifically, the performance
of Graph2Seq was increased by 6.61% to 8.60% for BLEU
scores and 4.63% for the rouge score. Likewise, in case of
NMT(seq2seq), the post encoder also greatly enhanced the
the ROUGE score of the model by 9.29%. This demonstrated
the importance of the textual information as well as the
effectiveness of the proposed two-level post encoder.

Lastly, we also compared the proposed two-level post
encoder with Bidirectional Encoder Representations from
Transformers (BERT) [52], which is the state-of-the-art
model for textual data. We replaced the proposed ’Post
Level Encoder’ by BERT and kept the ’User Level Encoder’.
As shown in the second last row of Table 1, we see that the
performance is decreased in general, especially for Bleu-4
score. One possible reasoning behind that can be the corpus
BERT used for pre-training is too general, and thus the
embedding is sub-optimal to domain specific dataset. In
contrast, our ’Post Level Encoder’ used the corpus from
biomedical domain [42], which is more suitable for the
medical domain applications.

5.2.2 Bladder Cancer Dataset
Table 2 shows the model performance of the baseline and
proposed models on Bladder cancer dataset. The scores were
obtained from 5 individual runs and presented in a mean ±
standard deviation (SD) format. Again, our proposed Dy-
nAttGraph2Seq framework with the proposed post encoder,
dynamic graph regularization, and the dynamic graph
hierarchical attention significantly outperformed both the
Seq2Seq and Graph2Seq baselines achieved the best score
on all the metrics. Specifically, the proposed model outper-
formed the static Graph2Seq and Seq2Seq baseline models
by 6.51% - 41.23% on the BLEU scores and 16.28% - 31.56%
on the ROUGE scores. This further demonstrated the ef-
fectiveness and generalizability of the proposed framework

on accurately inferring the missing health stage information
of the patients across different disease areas. Moreover, this
model can work with lower sampled dataset. Whether NMT
was not able to produce BLEU-4 score there our model was
able to generate the result.

5.3 Interpretability Analysis

5.3.1 Dynamic Graph Hierarchical Attention

Figure 4 shows an example of the learned dynamic graph
hierarchical attention by DynAttGraph2Seq for test data.
The left part of the figure shows the graph-to-sequence
attention learned by the model, where each column is a
grayscale heatmap representing the amount of attention be-
ing paid to each snapshot graph when the model predicted
a specific health stage. The darker the color, the greater
the attention being paid. We can see much attention was
paid to the graphs around the months being labeled in the
figure. The graphs for each labeled months are shown on
the right. Interestingly, the graphs in the first two months
attracted more attention from the model because those were
the months when the patient first became active in the breast
cancer online forum. The last two labeled snapshot graphs
relate approximately to the time when the user engaged in
extensive activities in a wide variety of subforums.

However, it is still hard to understand why these partic-
ular snapshot graphs were important and of interest to the
model when predicting the user health stage sequence. To
explore this issue, we went one step deeper by examining
the node-to-graph level attention of these graphs. The red
spots on the nodes shown on the right side of Figure 4
represent the amount of attention being paid to each node
(i.e. subforum) when the model aggregated the node level
information into the graph level representation. Again the
darker the red spot, the greater the attention being paid.
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Fig. 4: An example of learned dynamic graph hierarchical
attention by DynAttGraph2Seq on breast cancer dataset. The
darker the color, the greater the attention being paid.

TABLE 3: Top 15 static subforum features (keywords) se-
lected by dynamic graph regularization for the second half
of the year 2017 of breast cancer dataset. The keywords in
boldface are commonly selected during the year and have
high correspondences with patient health stage evolution.

July Aug Sep Oct Nov Dec
help bone bc today help bone
sister treatment family mets support chemo

treatment therapy sisters scared new help
negative scared year news chemo mets

today mom hair diagnosed results please
bone diagnosed reconstruction support bone newly
mom family care negative mets bc
year question tumor scan please survivor

please radiation positive vs ca diagnosed
new pain lymph results pain ladies

tumor diagnosis node therapy sisters support
lymph back treatment people tamoxifen anyone
share looking back mom diagnosed today
lump new please new life share

results bc research newly show vs

Now the attention becomes even more interesting and inter-
pretable. For example, when constructing the representation
of the May-2012 snapshot graph, Subforums #14, #19, and
#2 received attention, with Subforum #14 being assigned
the most attention. The title of Subforum #14 is actually
“Radiation Therapy - Before, During and After”, which
is strongly correlated to the health stage ‘Radiation’. This
explains why that particular graph received more graph-to-
sequence attention when the model predicted ‘Radiation’.
Likewise, we further discovered that Subforum #2, entitled
“Not Diagnosed but Worried”, has a strong correlation with
‘Dx’ and Subforum #19, entitled “DCIS (Ductal Carcinoma
In Situ)”, is a strong indicator for the model to predict
‘Surgery’. These observed correspondences confirm that the
proposed dynamic graph hierarchical attention mechanism
greatly enhances the interpretability of the model.

5.3.2 Dynamic Graph Feature Selection
Table 3 shows an example of the top subforum features
(keywords) selected by the proposed dynamic graph regu-
larization for the second half of the year 2017. The keywords
in boldface were commonly selected during the year and
exhibited high correspondences with patient health stage

TABLE 4: Health Stage Sequence Prediction for Breast Can-
cer (Top two) and Bladder Cancer (Bottom one)

Model Health stage sequence

Ground Truth Dx Surgery Surgery Hormonal Surgery Surgery

DynAttGraph2Seq Dx Surgery Surgery Hormonal Surgery Surgery

Graph2Seq Dx Surgery Chemotherapy Hormonal

Seq2Seq Dx Surgery Chemotherapy Hormonal Surgery

Ground Truth Dx Chemotherapy Chemotherapy Surgery Radiation

DynAttGraph2Seq Dx Chemotherapy Chemotherapy Surgery Radiation

Graph2Seq Dx Surgery Chemotherapy Radiation

Seq2Seq Dx Chemotherapy Surgery Surgery

Ground Truth Dx TURBT TURBT BCG

DynAttGraph2Seq Dx TURBT TURBT BCG

Graph2Seq Dx TURBT BCG

Seq2Seq TURBT BCG

evolution. For instance, treatment-related keywords (e.g.
‘diagnosed’, ‘treatment’, ‘therapy’, and ‘chemo’) could be
a strong indication of whether the patient was undergoing
specific examinations or treatments. Moreover, the key-
words containing temporal information, such as ‘today’,
‘year’, ‘new’, and ‘newly’, were also selected in many of the
consecutive months. This is because these keywords could
provide a temporal bridge to link dynamic graph sequences
to the corresponding patient health stage sequences. Thus,
the proposed dynamic graph regularization not only reg-
ularized the massive model parameters, but also brought
significant benefits to enhance the model interpretability.

5.4 Health Stage Sequence Analysis

5.4.1 Correct Health Stage Sequence Predictions

Table 4 shows examples of health stage sequences that
DynAttGraph2Seq was able to infer correctly from breast
cancer dataset and also bladder cancer dataset. In the first
two examples from breast cancer, the first patient underwent
four surgeries, while the second patient had two consecutive
chemotherapy treatments. The baseline Graph2Seq failed
miserably in terms of capturing such duplication due to the
fact that a static transition network cannot preserve such
information on the dynamic evolution of user forum activ-
ity. In the third example from bladder cancer, the patient
went through two consecutive TURBT treatments and then
underwent one BCG treatment after got diagnosed with
bladder cancer. Although all 3 models are able to capture
the pattern ’TURBT→ BCG’, the seq2seq model missed the
diagnosis stage (’Dx’) due to a lack of overall understanding
of the relationships between stages from sequential data
alone, while the graph2seq model failed to capture the re-
occurrence pattern of TURBT as it lacks temporal informa-
tion from overall static behavior graph.

5.4.2 Interpretable Sequential Pathway Patterns in Stage
Sequence Predictions

In general, there is no fixed sequential for each individual
user’s health stage sequence, as different patient can go
through quite diverge direction of treatment based on their
personal health status evolution over time. However, we
indeed observed that there some pathway patterns in stage
sequence predictions the proposed model is able to learn
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from the data which are reasonable and interpretable in clin-
ical perspective. For example, from the breast cancer dataset,
we observed that the proposed model is likely to predict a
pathway like ’Dx→ Surgery→ Chemotherapy→ Radiation
→ Hormonal’. This order of treatments is well aligned with
the typical pathway that doctors would recommend to the
patients in common practice for breast cancer treatment.
Similarly, for bladder cancer, the model learns a sequential
pathway of ’Dx → TURBT → BCG → Surgery’. Which is
also will suited for the patients to go through in practice
for bladder cancer treatment. Those observations suggest
that the proposed model can effectively capture the common
patterns of the health stage sequence, and therefore can be
applied to infer the missing health stage of the patients and
benefit the patients, the health care organizations, and the
future clinical research.

6 CONCLUSION

In this paper, we formulated the task of health stage in-
ference using online health forum data as a dynamic at-
tributed graph as a dynamic attributed graph to sequence
learning problem and propose a novel and generic Dy-
nAttGraph2Seq framework that can handle this new type
of learning problem effectively. Our DynAttGraph2Seq con-
sists of a novel dynamic graph encoder along with a two-
level sequential encoder to capture the semantic features
from user posts and an interpretable sequence decoder that
learn the mapping between a sequence of time-evolving
user activity graphs as well as user posts to a sequence of
target health stages. In addition, we propose a new dynamic
graph regularization and dynamic graph hierarchical atten-
tion mechanisms to facilitate the necessary multi-level in-
terpretability. Comprehensive experimental analysis on the
health stage prediction task demonstrates the effectiveness
and the interpretability of the proposed models.

Like any deep learning model, this model also faces
the challenges of data-hungry. This model performed better
for Online Breast Cancer Community Dataset [1] compared
to Online Bladder Cancer Dataset [2] as the second one
does not have abundant training samples. Moreover, it is
important to have properly guided and well-documented
health stage of the patients from the forum. Otherwise,
as a supervised learning model, the model will face the
challenge to train properly. We also observed that domain-
specific ’Word2vec’ is very important factor. This model
performance can be improved further if we can use a pre-
trained ’Word2vec’ model based on a cancer-specific corpus.
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