
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Deep Graph Translation
Xiaojie Guo , Lingfei Wu , Member, IEEE, and Liang Zhao , Senior Member, IEEE

Abstract— Deep generative models for graphs have recently
achieved great successes in modeling and generating graphs for
studying networks in biology, engineering, and social sciences.
However, they are typically unconditioned generative models that
have no control over the target graphs given a source graph.
In this article, we propose a novel graph-translation-generative-
adversarial-nets (GT-GAN) model that transforms the source
graphs into their target output graphs. GT-GAN consists of a
graph translator equipped with innovative graph convolution and
deconvolution layers to learn the translation mapping considering
both global and local features. A new conditional graph discrimi-
nator is proposed to classify the target graphs by conditioning on
source graphs while training. Extensive experiments on multiple
synthetic and real-world datasets in the domain of cybernet-
works, the Internet of Things, and neuroscience demonstrate
that the proposed GT-GAN model significantly outperforms other
baseline methods in terms of both effectiveness and scalability.
For instance, GT-GAN outperforms the classical state-of-the-art
(SOTA) methods in functional connectivity (FC) prediction of
brain networks by at least 32.5%.

Index Terms— Deep graph generation, deep graph translation
(DGT), generative adversarial networks, graph neural network
(GNN).

I. INTRODUCTION

IN RECENT years, deep learning on graphs (DLG) has
seen a surge of interest, especially for graph representation

and recognition tasks, such as node-level classification [1]–[5]
and graph-level classification [6]–[8]. Because of the successes
in graph neural networks (GNNs), researchers have recently
started to explore the use of deep generative models for
graph synthesis on practical applications, such as designing
new chemical molecular structures [9], [10]. This has led to
many of the recent advances in deep graph generative mod-
els, some of which are domain-dependent models [11], [12]
for generating graphs with physical constraints, while others
consider the generation of generic graphs [13]–[15].

In many applications, it is crucial to guide the graph gen-
eration process by conditioning on an input graph, which can

Manuscript received December 1, 2020; revised November 18, 2021;
accepted January 12, 2022. This work was supported in part by the
National Science Foundation (NSF) under Grant 1755850, Grant 1841520,
Grant 2007716, Grant 2007976, Grant 1942594, and Grant 1907805, a Jeffress
Memorial Trust Award, Amazon Research Award, NVIDIA GPU Grant; in
part by the Design Knowledge Company under Contract 10827.002.120.04;
and in part by CIFellowship (2021CIF-Emory-05). (Corresponding author:
Liang Zhao.)

Xiaojie Guo and Lingfei Wu are with JD.COM Silicon Valley Research
Center, Mountain View, CA 94043 USA (e-mail: xguo7@gmu.edu;
lwu@email.wm.edu).

Liang Zhao is with Emory University, Atlanta, GA 22043 USA (e-mail:
liang.zhao@emory.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2022.3144670.

Digital Object Identifier 10.1109/TNNLS.2022.3144670

be cast as a graph translation learning problem—translating
the graph in the source domain to the graph in the target
domain. Such graph translation can be highly desirable for
applications such as molecule optimization and rare event
forecasting, where rare and abnormal graph patterns (e.g., traf-
fic congestion and terrorism events) can be inferred prior to
their occurrence even without historical data on the abnormal
patterns for this specific graph (e.g., a road network or a
human contact network). For example, in social networks
where nodes represent people and edges represent their con-
tacts, their contacting graphs vary dramatically across different
circumstances. For instance, when people are organizing a
riot, their contact graph is expected to become denser and
have several special “hubs” (e.g., key players). Therefore, it is
highly beneficial to accurately predict contact graphs in target
circumstances regarding situational awareness and resource
allocation.

This type of new problem is formulated as deep graph
translation (DGT), which aims at translating the graph in the
source domain into the distribution of corresponding output
graphs in the target domain based on deep GNNs [16]. This
problem is analogical to image-to-image translation in image
processing [17] and language translation in natural language
processing (NLP) [18]. Unfortunately, similar to the consensus
that the existing image or text generation methods are not
appropriate to be directly applied to graph generation [9],
existing image or text translation methods cannot be directly
applied to DGT problems.

Few works have been proposed in the domain of graph
translation, however, with their own limitations. Some works
propose to only handle some specific tasks without generality,
such as molecule reaction prediction or molecule optimization
in the domain of biology [19], [20]. Others utilize the sequen-
tial generating technique that has difficulty in preserving the
global probability of graphs due to the lack of long-term
dependency in the sequence [21]. Thus, there are still critical
challenges that hurdle the further scientific exploration of the
DGT domain.

1) Difficulty in Jointly Learning Both Local and Global
Information for Translation: One needs to learn the
translation mapping not only in the local information
(i.e., neighborhood pattern of each node) but also in the
global property of the whole graph (e.g., node degree
distribution or graph density).

2) Difficulty in Transferring the Extracted Patterns of Mul-
tiple Levels From the Input Graph Into the Generated
Target Graph: In the DGT process, multiple levels’
graph information or latent features can be learned
from the input graph and have different contributions

2162-237X © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: George Mason University. Downloaded on May 31,2022 at 15:51:48 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1946-1179
https://orcid.org/0000-0002-3660-651X
https://orcid.org/0000-0002-2648-9989

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

on generating the target graph. How to utilize this
hierarchical information in generating the target graph
is a problem.

To address the aforementioned challenges, we present novel
neural network architecture: graph-translation-generative-
adversarial-nets (GT-GAN). We first propose a conditional
graph GAN architecture that consists of an encoder–decoder
translator and a conditional graph discriminator (CGD) to learn
the conditional distribution for graph translation. In addition,
a novel graph U-net translator with graph skips is proposed
to guarantee the model to learn multiple levels’ information
in the graph encoder and select valuable ones to generate
the target graphs in the graph decoder. To corporate with
the U-net structure, a set of mirrored graph convolution and
deconvolution layers is designed, including both the edge
and the node convolution and deconvolution. Furthermore, the
proposed graph convolution and deconvolution layers are able
to jointly embed the local and global information. Finally,
GT-GAN is scalable with at most quadratic computation and
memory consumption in terms of the number of nodes in
a graph, making it suitable for at least modest-scale graphs.
We highlight our main contributions as follows.

1) We develop a generic framework, which consists of a
novel graph translator and CGD for learning a con-
ditional distribution of target graphs given the input
graphs.

2) We propose a novel graph encoder consisting of “edge
convolution” layers and “node convolution” layers that
can embed both local and global information from
multiple levels.

3) We propose a novel graph decoder consisting of the
“edge deconvolution” and “node deconvolution” layers,
which hierarchically decodes the node representations
first into the edge representations and then generates
the final target graph. The graph skip-connection is also
utilized to map the learned multiple-levels’ information
to the target graphs.

4) We conduct extensive experiments on both synthetic
and real-world datasets on five performance metrics
to demonstrate the effectiveness and efficiency of the
proposed model.

II. RELATED WORKS

A. Graph Neural Networks (GNNs)

The recent surge of research into GNN can be generally
divided into two categories: graph recurrent networks and
graph convolutional networks. Graph recurrent networks orig-
inate from early work [22], [23] and are based on recursive
neural networks that have been extended by modern deep
learning techniques, such as gated recurrent units [1]. The
other category, graph convolutional networks, originates from
spectral graph convolutional neural networks (GCNs) [24],
which were extended by using fast localized convolutions [25]
and further approximated by an efficient architecture for
a semisupervised setting [2]. Self-attention mechanism and
subgraph-level information were also explored later to further
improve the representation power of learned node embeddings

[3], [26]–[28]. GNNs are mostly utilized for first learning the
latent representation of the nodes or graphs and then apply
the learned representation to many downstream tasks, such as
node classification, graph classification, and link prediction.

B. Graph Generative Models
Most of the existing graph generation methods for general

graphs have been proposed in the last two years and are
based on variational autoencoders (VAE) [9], [14], generative
adversarial nets (GANs) [29], and others [10], [13]. The
current deep graph generation methods can be categorized into
two main branches.

1) Sequential Generating [10], [13]: This generates the
nodes and edges in a sequential way, one after another.
Sequential generating performs the local decisions made
in the preceding one in an efficient way with a time
complexity of only O(N), but it has difficulty in pre-
serving the long-term dependency. Thus, some global
properties (e.g., scale-free property) of the graph are
hard to include.

2) One-Shot Generating [9], [14]: This refers to build-
ing a probabilistic graph model based on the matrix
representation that can generate all nodes and edges
in one shot. One-shot generating methods have the
capacity of modeling the global property of a graph
by generating and refining the whole graph (i.e., nodes
and edges) synchronously through several iterations, but
most of them are limited to small graphs (i.e., the size
of node set is less than 20) since the time complexity
is not less than O(N4). In this article, we adopt the
one-shot generation process considering that the global
information and the local information are both critical to
be captured in the graph translation task. Furthermore,
our one-shot generation process is validated to enjoy
less complexity [i.e., O(N2)] compared to the existing
one-shot generation methods.

C. Graph-Based Translation Methods
A variety of graph-to-sequence models [30] have been

proposed to cope with different tasks, including machine trans-
lation [31], [32], semantic parsing [33]–[35], question genera-
tion [36], and health status prediction [37], [38]. The sequence-
to-graph algorithms are generally popular with those work-
ing on NLP methods, including generating Abstract Mean-
ing Representation (AMR) structures [39] and dependency
graphs [40], [41]. A few very recent attempts have been made
to develop graph-to-graph translation models. Jin et al. [19]
proposed a domain-specific graph translation model to deal
with the molecular optimization task through junction-tree-
VAE. Do et al. [20] dealt with the chemical reaction product
prediction problem by predicting the products based on the
input graph of reactants. Sun and Li [21] proposed a recurrent
neural network (RNN)-based model for encoding and decod-
ing the directed acyclic graph (converted from regular graphs),
which can be viewed as a contemporary work to our work.
Guo et al. [42] proposed the node edge co-disentanglement
(NEC)-DGT model to deal with the transformation between
multiattributed graphs, which, however, is trained for pre-
diction tasks instead of learning a distribution. The above

Authorized licensed use limited to: George Mason University. Downloaded on May 31,2022 at 15:51:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GUO et al.: DEEP GRAPH TRANSLATION 3

existing methods are either domain-specific methods [15], [20]
or cannot handle the graph translation within a fixed set of
nodes, which is the most desirable task in many real-world
applications, which is the most desirable task in many real-
world applications.

III. OVERALL ARCHITECTURE OF GT-GAN

In this section, we first formulate the DGT problem. We then
propose the GT-GAN model for graph translation and discuss
each component in detail in Sections III-B–III-D.

A. Problem Formulation for Deep Graph Translation

Our goal is to learn an end-to-end translation mapping
from an source graph to a target graph. Let a source graph
G X = (V, A, S) such that V is the set of N nodes and
A ∈ R

N×N is an adjacency matrix (binary or weighted), where
G X can be weighted or unweighted, directed or undirected.
Let S ∈ R

N×F be a node feature matrix with each row
representing a node feature vector Si . Ai, j ∈ A denotes the
corresponding weight of the edge between node vi and v j .
Similarly, we define a target graph GY = (V �, E �, A�, S�)
that shares the same node sets and node features with G X

but with different topology and connection weights. Formally,
graph translation is learning a translator from a source graph
G X ∈ GX with a random noise U to generate a target graph
GY ∈ GY , where GX and GY denote the domains of the source
and target graphs, respectively. The translation mapping is
denoted as T : U,G X → GY .

It is worth noting that our aim is to learn a conditional
distribution of the target graphs given a source graph, which
is cast as a conditional graph generation problem instead of
a predict task. The source graph can be mapped into many
diverse target graphs that may have different topologies yet
follow the same distribution.

1) Proposed GT-GAN Framework: Fig. 1 shows our pro-
posed generic GAN framework for graph translation that
consists of a graph translator T and a CGD D. In this figure,
we assume that the node feature has only one dimension for
simplicity. Since our task is to train a conditional generator
with “one-to-many mapping” instead of a deterministic one,
the noise U is introduced by the dropout function [43] in
each convolution and deconvolution1 layer, as shown (in green
lines) in Fig. 1. Our graph translator T is trained to produce
target graphs that cannot be distinguished from “real” ones by
our CGD D. Specifically, the generated target graph GY � =
T (G X ,U) cannot be distinguished from the real one, GY ,
based on the current source graph G X . T and D undergo an
adversarial training process based on source and target graphs
by solving the following loss function:
L(T ,D) = EG X ,GY [logD(GY |G X)]

+ EG X ,U [log(1 − D(T (G X ,U)|G X))] (1)

where T tries to minimize this objective, while an adversarial
D tries to maximize it, i.e., T ∗ = arg minT maxD L(T ,D).

1“Deconvolution,” here, is actually “transposed convolution” instead of a
mathematical operation that reverses the effect of convolution.

We mix the GAN loss with the L1 loss to enforce sparsity
similarity, which is also found to be useful in the image
translation problem [17]

Ll1(T) = EA,A�,U
[∥∥A� − T (G X ,U)

∥∥
1

]
(2)

where T (G X ,U) refers to the adjacent matrix of the gener-
ated graph. The training process is a tradeoff between Ll1

and L(T ,D), which jointly enforces T (G X ,U) and GY to
follow a similar, but not necessarily identical, topological
pattern. Specifically, Ll1 makes T (G X ,U) share the same
rough outline of sparsity pattern as GY , while L(T ,D) allows
T (G X ,U) to vary to some degree. Thus, the optimal objective
T ∗ of the translator, which generates graphs that are as “real”
as possible, is defined as

T ∗ = arg min
T

max
D

L(T ,D)+ λLl1(T). (3)

The graph translator T is an encoder–decoder architecture,
where we propose a new graph encoder to obtain the node
representations of the source graph and propose the graph
deconvolution with skips to generate the target graph, as shown
in Fig. 1, which we elaborate on in the following sections.

B. Graph Encoder

The graph encoder aims to learn the representations of
nodes based on the node features and graph topology of the
source graph. One of the crucial challenges is to learn both
local and global information in graph embedding. For instance,
when learning translation between two scale-free graphs, one
needs to translate both the local information (i.e., neighbor-
hood patterns) and the scale-free property (i.e., node degree
distributions of the whole graph) from a source graph to a
target graph.

Thus, we first propose “edge convolution” layers to learn
the edge representations for all pairs of nodes. The aim is to
explore a group of hidden relations from the topology of the
source graph, which may include both the n-hop connection
relations and those that can deliver structural similarity among
nodes. Then, the “node convolution” layer is used to embed
each node’s representation by aggregating all the other nodes’
information based on the learned edge representations. In this
way, each node is finally affected by not only its neighboring
nodes (local information) but also all the other nodes in
the graph (global information), by varying degrees. Fig. 2
illustrates the details of these matrix operations involving
graph convolution.

1) Edge Convolution: In each “edge convolution” layer,
each edge’s hidden representations are computed by its adja-
cent edges from the last layer. In the directed graph, each
edge has a source node and a target node. Thus, there is a
pair of learnable parametric vectors φ and ψ as convolution
filters for two directions to convolute the adjacent edges or
edge representations of each edge, as shown in Fig. 2(a). The
edge representation El+1

i, j of the (l + 1)th layer is learned by
all the outgoing edge representations of node vi and all the
incoming edge representations of node v j

El+1
i, j = σ

(
N∑

k1=1

El
i,k1
φl

k1

)
+ σ

(
N∑

k2=1

El
k2, jψ

l
k2

)
(4)

Authorized licensed use limited to: George Mason University. Downloaded on May 31,2022 at 15:51:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 1. GT-GANs consisting of a graph translator and a CGD. Novel graph encoder and decoder are designed for the graph translation problem.

Fig. 2. Matrix operations for graph convolution and graph deconvolution. In convolution operations, we need to utilize row filter to convolute “incoming”
edges and column filter for “outgoing” edges. However, in deconvolution operations, we have to utilize the transposed filters, namely, the column filter to
decode for “incoming” edges and row filter to decode for “outgoing” edges. (a) Edge convolution. (b) Node convolution. (c) Node deconvolution. (d) Edge
deconvolution.

where E0
i, j ≡ Ai, j , φl ∈ R

N×1 refers to the filter vector to be
learned, and φl

k1
refers to the k1th entry in φl that is related to

node vk1 . The edge convolution here does not involve the node
features since it aims to only encode the structure information.

2) Node Convolution: After learning the various edge repre-
sentations through several edge convolution layers, one “node
convolution“ layer is used to learn each node’s representations
by aggregating all the other nodes based on the learn edge
representations and their node features. There are two vectors
of the covolution filter μ and ν for two directions, as shown
by the rectangles in orange in Fig. 2(b). Then, the node
representation H̄ ∈

i R
1×F for node vi is computed as

H̄i = σ

(
N∑

k1=1

El+1
i,k1
μk1 Sk1

)
+ σ

(
N∑

k2=1

El+1
k2,i
νk2 Sk2

)
(5)

where H̄i ∈ R
1×F and μ, ν ∈ R

N×1 refers to the filter
vectors for the two directions to be learned, and μk1 refers
to the element of μ that is related to node vk1 . H̄i is then
flattened and transformed into a node representation vector
Hi ∈ R

1×C by a fully connected layer. C is the length of the
node representation. It is worth noting that node features are
involved in the node convolution since it aims to encode both
node and structure information into node embedding.

C. Graph Decoder

The decoder aims to generate the edges of the target graph
by taking the extracted latent information from the source
graph. To model the complex dependency inside the target
graph and transfer the information of multiple levels that are
learned from multiple layers in the encoder, we propose a
graph U-Net2 consisting of graph skips and dedicated graph
deconvolution layers. The graph deconvolution decodes the
single node (or edge) information to yield its incoming and
outgoing adjacent edges as a mirrored graph convolution
process. In addition, several skips are implemented to map
the learned information of each layer in the encoder to mirror
the corresponding layers in the decoder. The proposed graph
deconvolution technique incorporates both “node deconvolu-
tion” and “edge deconvolution” layers.

1) Node Deconvolution: First, one “node deconvolution”
layer is used to generate the edge representations of the
target graph mentioned above based on the learned latent node
representations. As shown in Fig. 2(c), “node deconvolution”
is a reversed process of “node” convolution. It is assumed
that each node can influence its potential edges to other nodes.

2Gao et al. [44] proposed a graph embedding method with the similar name
“graph U-Net,” while it uses the input graph topology all the way from the
pooling part to the unpooling part without new graph generation.

Authorized licensed use limited to: George Mason University. Downloaded on May 31,2022 at 15:51:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GUO et al.: DEEP GRAPH TRANSLATION 5

Suppose that the node deconvolution is at the (l − 1)th layer;
then, its output, namely, the edge representations El

i, j between
node vi and node v j , can be computed as follows:

El
i, j =

C∑
m=1

(
σ
(
H m

i μ̄ j
) + σ

(
H m

j ν̄i
))

(6)

where σ(H m
i μ̄ j) means the deconvolution contribution of

node vi to its edge representations with node v j , which is made
by the mth entry of its node representations, and μ̄ j represents
one entry of the deconvolution filter vector μ̄ ∈ R

N×1 that is
related to node v j . Here, the node features are not involved
in the node deconvolution because the direct inputs of the
decoder are already node embedding, which contains the node
feature information.

2) Edge Deconvolution: We can now recursively apply our
proposed “edge deconvolution” layer to decode all the latent
edge representations from the upper layer back to those of the
lower layer. As a reversed way of doing “edge” convolution,
the edge representation for each pair of nodes in the lth layer
can make a contribution to generating its adjacent edges’
representations in the (l + 1)th layer, as shown in Fig. 2(d).
Thus, the relation El

i, j between node vi and node v j in the
(l + 1)th layer is computed as follows:

El+1
i, j = σ

(
φ̄l

j

N∑
k1=1

El
i,k1

Sk1

)
+ σ

(
ψ̄ l

i

N∑
k2=1

El
k2, j Sk1

)
(7)

where φ̄l
j

∑N
k1=1 El

i,k1
Sk1 can be interpreted as the decoded con-

tribution of node vi to its edge representations with node v j ,
and φ̄l

j refers to the element of deconvolution filter vector
that is related to node v j . The output of the last “edge”
deconvolution layer denotes the probability of the existence
of an edge in the target graph. All the symbols σ refers to
the activation functions. Node features are used in the edge
convolution since each edge generation in the target graphs
will be influenced by both the adjacent edges and related nodes
of the source graphs.

It is worth noting that both edge and node convolution
layers can easily add more pairs of filter vectors for enhancing
the capacity of the encoder to learn more latent patterns.
They can also be adapted to undirected graphs, where only
one direction’s convolution filters are needed. To enlarge the
power of the convolution and deconvolution filters to capture
more complex patterns, the above-learned filter parameters are
customized to each node and edge and, thus, not invariant to
different node permutations. However, it can be easily adapted
to be invariant to node permutation by making the elements
vectors (e.g., μ, ν, φ, and ψ) the same. It is suggested to select
the appropriate version based on the real-world cases to make
full use of the proposed method.”

3) Skips for Graph Deconvolution: Based on the graph
deconvolution above, it is possible to utilize skips to link
the extracted edge latent representations of each layer in the
graph encoder with those in the graph decoder. Specifically,
the output of the lth “edge deconvolution” layer in the decoder
is concatenated with the output of the lth “edge convolution”
layer in the encoder to form joint two channels of feature

maps, which are then input into the (l + 1)th deconvolution
layer.

It is worth noting that one key factor for effective translation
is the design of a symmetrical encoder–decoder pair, which
allows skip-connections to directly translate different level’s
edge information in the format of edge representation at each
layer. In addition, this edge representation can be utilized
for the following node embedding. The existing edge-related
GNNs cannot meet both requirements. There are two main
categories: 1) one aims to do the node representation learning,
which considers the edge information when aggregating and
updating the node embedding, such as GCN [2] and graph
attention network (GAT) [3]; however, they cannot directly
generate the edge latent embeddings/representation and 2) one
category aims to do the edge representation learning for link
prediction based on two nodes’ hidden representations from
GNNs as input [45]. Thus, they cannot utilize the edge latent
representation for node representation learning.

D. Conditional Graph Discriminator

The graph discriminator must distinguish between the
“translated” target graph and the “real” ones based on the
source graphs, as this helps to train the generator in an
adversarial way. Technically, this requires the discriminator to
accept two graphs simultaneously as inputs (a real target graph
and a source graph or a generated graph and a source graph)
and classify the two graphs as either related or not. Thus,
we propose a CGD that leverages the same graph convolution
layers in the encoder for the graph classification, as shown
in Fig. 1. Specifically, the source and target graphs are both
ingested by the CGD and stacked into an N × N × 2
tensor, which can be considered a two-channel input. After
obtaining the node representations, the graph-level embedding
is computed by summing these node embeddings. Finally,
a softmax layer is implemented to distinguish the input graph
pair from the real graph or generated graph.

E. Computational Complexity Analysis

The graph encoder and decoder share the same time com-
plexity. Without loss of generality, we assume the number of
nodes in the graph as N . The total complexity of GT-GAN
(i.e., the dense graph) is now O(N2) for all the “edge con-
volutions,” “node convolutions,” and fully connected layers in
CGD. Similarly, the total memory consumption for GT-GAN
is also O(N2). In practice, many source graphs are likely to
be sparse; thus, using sparse matrix-vector operations [10] can
further reduce the computational and memory costs of the first
layer to O(N). Compared to the existing works [9], [14] that
can only scale to the small size of graphs (up to |V | = 20)
and often have O(N3) or even O(N4) computational costs, our
GT-GAN is able to provide a scalable [i.e., O(N2)] algorithm
for general graphs.

IV. EXPERIMENTS

This section reports the results of extensive experiments and
the ablation studies that are carried out to test the performance

Authorized licensed use limited to: George Mason University. Downloaded on May 31,2022 at 15:51:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

of GT-GAN on two synthetic and two real-world datasets.
All experiments were conducted on a 64-bit machine with an
NVIDIA GPU (GTX 1070, 1683 MHz, and 8-GB graphics
double data rate (GDDR)5). The code and data utilized are
available at https://github.com/anonymous1025/Deep-Graph-
Translation-.

A. Datasets

1) Synthetic Datasets: Synthetic datasets contain a group of
pairs of scale-free graphs. Each source graph is first generated
as a directed scale-free network, whose degree distribution
follows the power-law property [46]. To generate the target
graph, a node will be selected as the target node with a
probability proportional to its in-degree, which will be linked
to a new source node with the probability of p1. Similarly,
a node will be selected as a source node with probability
proportional to its out-degree, which will be linked to a
new target node with a probability of p2.3 Thus, both the
source and target graphs are scale-free graphs. Each group
has five subsets with different graph sizes (number of nodes):
10, 20, 50, 100, and 150. Each subset consists of 5000 source-
target graph pairs: 2500 pairs were used for training and the
remaining 2500 for testing.

2) User Authentication Dataset: This dataset includes the
authentication activities of 97 users on their accessible com-
puters and servers in an enterprise computer network [47].
Each user account generates a log file recording the com-
puter accessing history, which could be formulated as a
directed weighted graph called an authentication graph, where
nodes represent computers and the directed edges’ weights
represent authentication activities with certain frequencies.
The goal of this application was to synthesize users’ future
malicious authentication graphs given the normal one. There
are 78 pairs of graphs (malicious and normal behavior) of
graph size 50 and 315 pairs of graphs of graph size 300 from
97 users as two training sets.

3) Internet-of-Things (IoT) Dataset: This application
focused on IoT network malware confinement prediction,
namely, predicting optimal network operation given a compro-
mised one [42]. There are three subsets of graph pairs with dif-
ferent sizes (20, 40, and 60), where the nodes represent devices
and node attribute is a binary value referring to whether the
device is compromised or not, and the edges represent the
connections of two devices, the edge attributes are continuous
values reflecting the distances of two devices. The real target
graphs are generated by the classical malware confinement
methods: stochastic controlling with malware detection. There
are 334 pairs of source (compromised IoT) and target graphs
(optimal IoT) in each subset.

4) Real-World HCP Dataset: Brain network prediction,
such as the prediction of functional connectivity (FC) based
on structural connectivity (SC), is a very critical task in neuro-
science. The goal is to learn the mapping from the resting-state
FC into task-specific FC in the human brain. In this dataset,
the source and the target graphs, respectively, reflect the SC
and the FC of the same subject’s brain network. In particular,

3In our experiment, p1 and p2 are chosen as 0.41 and 0.54, which are default
values of scale-free graph generator in a python package named NetworkX.

both types of connectivity are processed from the magnetic
resonance imaging (MRI) data obtained from the healthcare
provider data (HCP) dataset [48]. The node attributes refer
to the index of each node by a one-hot vector. FC data are
collected regarding five different human brain states, namely,
resting, emotion, gambling, language, and motoring. Thus,
there are five subsets for both full normalized and partial
regularized datasets. In total, each subset has 823 pairs of SC
and FC samples.

B. Comparison Methods

We compare our GT-GAN against four state-of-the-art
(SOTA) graph generation methods: GraphRNN [10], Graph-
VAE [9], GraphGMG [13], and RandomVAE [14]. The base-
line model called S-Generator is the part of our full model
GT-GAN that essentially is a graph translator without dis-
criminator. We propose this S-Generator model in order to
evaluate the necessity of building the proposed GT-GAN in a
generative instead of a regression. Due to the deficiency of the
existing graph translation model, all the comparison methods
are for graph generation methods and, thus, were trained on the
target graphs without conditioning on the source graphs due to
the models’ inherent capability limitations. The datasets were
assigned to each comparison model for the experiment based
on their scalability in terms of graph size.

C. Evaluation Results on Synthetic Datasets

1) Statistics-Based Evaluation: To evaluate the similarity
between the generated and real target graphs, we selected four
performance metrics: 1) one metric is the distance between
a generated and real graph in terms of Closeness centrality
(C-dist) [49] and another is similarity score based on the
graph kernels of the Weisfeiler–Lehman kernel (wl-sim) [50]
and 2) two metrics are used to evaluate the node degree
distribution correlation between the generated and real target
graphs by Jensen–Shannon distances (JS) and the Wasserstein
distances (WDs). Ideally, high-quality generated graphs should
be diverse and similar, but not identical. Thus, uniqueness is
utilized to capture the diversity of generated graphs. To calcu-
late the uniqueness of a generated graph, the generated graphs
that are subgraph isomorphic to some other generated graphs
are first removed. The percentage of graphs remaining after
this operation is defined as uniqueness [10], [51]. For example,
if the model generates 100 graphs, all of which are identical,
the uniqueness is 1/100 = 1%.

As shown in Table I (left), our GT-GAN consistently
outperforms all other baselines by a large margin, especially
when the graph size becomes large (i.e., it outperforms the
other methods by 34.6% when the size is 150). Compared to
the typical graph generation models, the proposed GT-GAN is
benefited in conditioning on the source graph, which provides
much more necessary feature information and controllable sig-
nals for the required pattern of the target graphs. S-Generator
is generally the second best method in terms of these six eval-
uation metrics, highlighting the effectiveness of our proposed
graph encoder and decoder. The S-Generator and GT-GAN
have both achieved 100% uniqueness in the scale-free datasets

Authorized licensed use limited to: George Mason University. Downloaded on May 31,2022 at 15:51:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GUO et al.: DEEP GRAPH TRANSLATION 7

TABLE I

STATISTICS-BASED EVALUATION RESULTS FOR THE SCALE-FREE
GRAPHS (Uniq. IS SHORT FOR UNIQUENESS)

with graph size from 10 to 100, while, for typical graph
generation methods, such as GraphGMG and GraphRNN, the
largest uniqueness is around 73% and 75%, respectively. This
advantage comes from the randomness introduced into the
generation process and the fact that GT-GAN generates the
graphs conditioning on the source graphs that are naturally
different from each other.

2) Classifier-Based Evaluation: To further evaluate the gen-
erated graphs, we propose a novel classifier-based evaluation
schema. We assume that the generated target graphs should
share the same underlying properties as the real target graphs,
and thus, the classifiers that are trained with generated graphs
should also succeed in classifying the real target graphs. Based
on this assumption, we train two classifiers: one is trained by
the source and the generated target graphs (Classifier 1), and
another is trained by the source and the real target graphs
(Classifier 2). Then, both two classifiers are tested to distin-
guish the real source and target graphs in the testing set. Here,
Classifier 2 is regarded as the ‘Gold Standard’ that acts as the
“best-possible performer” and is used to judge how “real” the
graphs that GT-GAN generate are. A detailed description of
classifier-based evaluation is provided in the Appendix. In this
experiment, a classifier proposed by Nikolentzo et al. [52]
is used as the base model for training a graph classifier
for both the proposed method, the comparison method, and
the gold standard. Table II shows the average results of
graph classifiers: precision, recall, area under Roc (AUC),
and F1-measure for different methods. The “gold standard”
is a classifier trained on the real source and target graphs,
which is used to compare with those trained on the graphs
generated by different models. For small graphs (e.g., fewer
than 10), the power-law property of scale-free networks is
less obvious compared to larger size graphs, which may
explain why the tasks on smaller scale-free graphs are more
difficult. However, when the size of graphs increases, GT-GAN
becomes closer to the performance of the “gold standard” with
average differences of 10% and 9% on F1 accordingly on two
subdatasets, and it significantly outperforms the other methods
by large margins up to 51% and 19% on F1, respectively.

D. Evaluation Results on User Authentication Datasets

1) Classifier-Based Evaluation: As shown in Table III, clas-
sifiers trained by the graphs generated by GT-GAN can classify

TABLE II

CLASSIFIER-BASED EVALUATION RESULTS FOR THE
SCALE-FREE GRAPHS

TABLE III

CLASSIFIER-BASED RESULTS FOR USER AUTHENTICATION DATASETS

TABLE IV

STATISTICS-BASED EVALUATION FOR USER AUTHENTICATION DATASETS

(UNIQ. IS SHORT FOR UNIQUENESS)

TABLE V

RESULTS FOR THE IoT DATASETS (Uniq. IS SHORT FOR UNIQUENESS)

normal and hacked behaviors effectively with AUC above
0.78, which is well above the 0.5 obtained using a random
model. GT-GAN significantly outperforms other methods by

Authorized licensed use limited to: George Mason University. Downloaded on May 31,2022 at 15:51:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE VI

PEARSON CORRELATION BETWEEN THE PREDICTED GRAPH AND THE EMPIRICAL GRAPH ON HCP DATASETS (RES FOR RESTING,
EMO FOR EMOTION, GAM FOR GAMBLING, AND LANG FOR LANGUAGE)

around 25%, 16%, 24.5%, and 22.1%, respectively, on the four
metrics: precision (P), recall (R), AUC, and F1-score for the
trained classifier. GT-GAN performs consistently better than
other methods when the graph size increases from 50 to 300.

2) Statistics-Based Evaluation: In addition, GT-GAN
clearly outperformed the S-Generator in a statistics-based
evaluation setting. For example, there are three direct
evaluation metrics (i.e., En-dist, C-dist, and wl-sim)
mentioned above, which are also tested, and the results can
be found in Table IV. The proposed GT-GAN has the best
performance in all three aspects both in small scale graphs
and large scale graphs. Specifically, for the graphs with size
50, GT-GAN significantly outperforms S-Generator by around
2.2%, 31.2%, and 3.2%, respectively, on the three metrics. For
the graphs with size 300, GT-GAN significantly outperforms
S-Generator by around 35.2%, 16.7%, and 0.2%, respectively,
on the three metrics. This confirms that using a translator
alone to learn a deterministic output given a source graph is
not sufficient to capture the generic distribution of the target
graphs. In addition, the S-Generator and GT-GAN have both
achieved 100% uniqueness in the user authentication datasets
with graph size 300, while, when the graph becomes smaller
(e.g., graph size of 50), the uniqueness of GT-GAN becomes
0.83 due to the simplicity of the graph structure, which is
still 37% higher than GraphRNN.

E. Evaluation Results on IoT Dataset

Table V compared the performance of GT-GAN and other
comparison methods for the IoT dataset by examining the
edges of the generated and real target graphs for four metrics:
coefficient of determination score (R2) and accuracy (ACC)
for the correct existence of edges among all the pairs of
nodes, as well as two statistic-based metrics mentioned above.
The results show that GT-GAN performed almost the best
for all three subsets. Due to the L1-loss required to maintain
topology pattern similarity, GT-GAN outperformed the com-
parison methods with around 8%, 26%, and 40% superiorities
in ACC for the three subsets with the sizes of 20, 40, and
60, respectively. As the graph size increases, the properties
of the graphs are clearer, and the superiority of the proposed
GT-GAN model is more obvious. For example, the proposed
GT-GAN model outperforms the GraphRNN and GraphVAE
by 67.6% and 21.5%, on average, on the metrics of C-dist
and wl-sim, respectively, when the graph size is 40, and by

75.4% and 12.2% when the graph size is 60. The GT-GAN
has achieved 100% uniqueness in IoT datasets with graph size
from 20 to 60, which outperforms the typical graph generation
methods, such as GraphVAE and GraphRNN, by around
29.8% and 22%, respectively. This shows the superiority of
GT-GAN in generating a diverse range of graphs.

F. Evaluation Results for HCP Datasets

We consider four classic brain network prediction meth-
ods and one graph-based method that uses SC to predict
FC [53], [56] as the comparison methods for this experiment
in the domain of brain network science. Abdelnour et al. [56]
considered the graph spectral transformation kernels by assum-
ing that SC and FC share the identical eigenvectors on their
Laplacians. Another two methods directly consider the graph
translation between SC and FC. The goal is to predict the
FC given the SC when the brain is doing different tasks.
The Pearson coefficient was used as metric by comparing
the predicted graphs with the empirical target graphs, which
is widely used in the domain of brain network [57], [58].
As shown in Table VI, the proposed GT-GAN achieves the
highest Pearson coefficient on all the five subdatasets regarding
both the full correlation and L2 correlation with superiority of
about 52.38% and 32.5% averagely. The great superiority of
the proposed GT-GAN over the typical methods in the domain
of brain networks validates the power of deep learning-based
models in handling complex real-world applications.

G. Model Ablation Study
To further validate the superiority of the proposed graph

convolution and deconvolution layers, an ablation experiment
was conducted. The graph encoder was replaced by GCN [2],
deep convolution neural network (DCNN) [59], and Graph
U-NET [44]. The graph decoder was replaced by the decoder
in variational graph auto-encoder (VGAE) [60]. There were
thus three method combinations for comparison.

Table VII shows parts of the results in the ablation study
of the proposed encoder and decoder on part of the scale-free
graphs with size 50 (Scale-III) and user authentication with
graph size 50 (Auth). The encoder of GT-GAN outperformed
both the GCN- and DCNN-based encoders by a large margin
on these datasets, especially for the real-world datasets, where
the edges of the graphs can have a very complex meaning. For
example, on Auth-I, GT-GAN performed 41% and 38% better,

Authorized licensed use limited to: George Mason University. Downloaded on May 31,2022 at 15:51:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GUO et al.: DEEP GRAPH TRANSLATION 9

TABLE VII

ABLATION STUDY OF GRAPH ENCODER AND DECODER IN GT-GAN
(SCALE-III DENOTES TO THE SCALE FREE DATASETS WITH GRAPH

SIZE OF 50; AUTH-I DENOTES TO THE USER AUTHENTICATION

DATASET WITH GRAPH SIZE OF 50; AND IoT-III DONOTES TO

THE IoT DATASET WITH GRAPH SIZE OF 60)

on average, than other encoders in terms of precision and
F1-scores, respectively. Similar results can also be found for
the proposed decoder, which demonstrates that the proposed
decoder in GT-GAN was both effective and irreplaceable for
the graph generation.

V. CONCLUSION AND FUTURE WORKS

This article focuses on a new problem: DGT. To deal with
it, we propose a novel GT-GAN model that translates a source
graph to a target graph. To learn both global and local map-
pings between graphs, a new graph encoder–decoder model is
proposed while preserving the graph patterns in various scales.
Extensive experiments were conducted on synthetic and real-
world datasets to compare with the SOTA graph generation
models. Experimental results show that our GT-GAN can
discover the ground-truth translation rules and significantly
outperforms other baselines in terms of both effectiveness and
scalability.

This article opens a thread of research for DGT in many
practical applications. As a new topic, some critical problem
regarding the DGT still needs to be explored. We suggest that
researchers in social sciences and machine learning investigate
questions, such as the following.

1) Intepretability of DGT: The interpretability and explain-
ability enhancements of the model could fill the gaps
among data scientists and domain experts, leading to
an additional profound understanding of the underlying
mechanism of the graph transformation.

2) Scalable DGT: Translation for large-scale graphs
(i.e., containing millions of nodes) could expand the
applicability of DGT to a broader class of problems,
such as applications on social networks and traffic
networks.

REFERENCES

[1] Y. Li, R. Zemel, M. Brockschmidt, and D. Tarlow, “Gated graph
sequence neural networks,” in Proc. ICLR, Apr. 2016.

[2] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. Int. Conf. Learn. Represent. (ICLR),
2017, pp. 1–14.

[3] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in Proc. Int. Conf. Learn.
Represent., 2018, pp. 1–12.

[4] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proc. 34th Int.
Conf. Mach. Learn., vol. 70, 2017, pp. 1263–1272.

[5] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 1025–1035.

[6] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural
networks for graphs,” in Proc. Int. Conf. Mach. Learn. (ICML), 2016,
pp. 2014–2023.

[7] J. Atwood, S. Pal, D. Towsley, and A. Swami, “Sparse diffusion-
convolutional neural networks,” in Proc. Adv. Neural Inf. Process. Syst.,
2016.

[8] B. Wu, Y. Liu, B. Lang, and L. Huang, “DGCNN: Disordered graph
convolutional neural network based on the Gaussian mixture model,”
Neurocomputing, vol. 321, pp. 346–356, Dec. 2018.

[9] M. Simonovsky and N. Komodakis, “GraphVAE: Towards generation of
small graphs using variational autoencoders,” in Proc. Int. Conf. Artif.
Neural Netw., Cham, Switzerland: Springer, 2018, pp. 412–422.

[10] J. You, R. Ying, X. Ren, W. Hamilton, and J. Leskovec, “GraphRNN:
Generating realistic graphs with deep auto-regressive models,” in Proc.
Int. Conf. Mach. Learn., 2018, pp. 5694–5703.

[11] M. J. Kusner, B. Paige, and J. M. Hernández-Lobato, “Grammar
variational autoencoder,” in Proc. Int. Conf. Mach. Learn., 2017,
pp. 1945–1954.

[12] H. Dai, Y. Tian, B. Dai, S. Skiena, and L. Song, “Syntax-directed
variational autoencoder for structured data,” in Proc. Int. Conf. Learn.
Represent., Feb. 2018.

[13] Y. Li, O. Vinyals, C. Dyer, R. Pascanu, and P. Battaglia, “Learning deep
generative models of graphs,” 2018, arXiv:1803.03324.

[14] B. Samanta, A. De, G. Jana, P. K. Chattaraj, N. Ganguly, and
M. Gomez-Rodriguez, “NeVAE: A deep generative model for molecular
graphs,” 2018, arXiv:1802.05283.

[15] W. Jin, R. Barzilay, and T. Jaakkola, “Junction tree variational autoen-
coder for molecular graph generation,” in Proc. Int. Conf. Mach. Learn.,
2018, pp. 2323–2332.

[16] X. Guo, S. Wang, and L. Zhao, Graph Neural Networks: Graph Trans-
formation. Singapore: Springer, 2022, pp. 251–275, doi: 10.1007/978-
981-16-6054-2_12.

[17] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 1125–1134.

[18] Z. Yang, W. Chen, F. Wang, and B. Xu, “Improving neural machine
translation with conditional sequence generative adversarial nets,” in
Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics, Hum.
Lang. Technol., (Long Papers), vol. 1, 2018, pp. 1346–1355.

[19] W. Jin, K. Yang, R. Barzilay, and T. Jaakkola, “Learning multimodal
graph-to-graph translation for molecule optimization,” in Proc. Int. Conf.
Learn. Represent., 2018.

[20] K. Do, T. Tran, and S. Venkatesh, “Graph transformation policy network
for chemical reaction prediction,” in Proc. 25th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, Jul. 2019, pp. 750–760.

[21] M. Sun and P. Li, “Graph to graph: A topology aware approach for
graph structures learning and generation,” in Proc. 22nd Int. Conf. Artif.
Intell. Statist., 2019, pp. 2946–2955.

[22] M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning
in graph domains,” in Proc. IEEE Int. Joint Conf. Neural Netw., vol. 2,
Jul. 2005, pp. 729–734.

[23] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Trans. Neural Netw., vol. 20,
no. 1, pp. 61–80, Dec. 2009.

[24] J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun, “Spectral networks
and locally connected networks on graphs,” in Proc. Int. Conf. Learn.
Represent. (ICLR), CBLS, Apr. 2014, pp. 1–14.

[25] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Proc. Adv.
Neural Inf. Process. Syst., 2016, pp. 3844–3852.

[26] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and
R. D. Hjelm, “Deep graph infomax,” in Proc. Int. Conf. Learn. Rep-
resent., 2018, pp. 1–46.

Authorized licensed use limited to: George Mason University. Downloaded on May 31,2022 at 15:51:48 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1007/978-981-16-6054-2_12
http://dx.doi.org/10.1007/978-981-16-6054-2_12

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[27] Y. Bai et al., “Unsupervised inductive graph-level representation learning
via graph-graph proximity,” in Proc. 28th Int. Joint Conf. Artif. Intell.,
Aug. 2019, pp. 1988–1994.

[28] Y. Chen, L. Wu, and M. J. Zaki, “Iterative deep graph learning
for graph neural networks: Better and robust node embeddings,” in
Proc. 34th Annu. Conf. Neural Inf. Process. Syst. (NeurIPS), 2020,
pp. 19314–19326.

[29] A. Bojchevski, O. Shchur, D. Zügner, and S. Günnemann, “NetGAN:
Generating graphs via random walks,” in Proc. Int. Conf. Mach. Learn.,
2018, pp. 610–619.

[30] L. Wu et al., “Graph neural networks for natural language processing:
A survey,” 2021, arXiv:2106.06090.

[31] D. Beck, G. Haffari, and T. Cohn, “Graph-to-sequence learning using
gated graph neural networks,” in Proc. 56th Annu. Meeting Assoc.
Comput. Linguistics (Long Papers), vol. 1, 2018, pp. 273–283.

[32] J. Bastings, I. Titov, W. Aziz, D. Marcheggiani, and K. Simaan,
“Graph convolutional encoders for syntax-aware neural machine trans-
lation,” in Proc. Conf. Empirical Methods Natural Lang. Process., 2017,
pp. 1957–1967.

[33] K. Xu, L. Wu, Z. Wang, Y. Feng, M. Witbrock, and V. Sheinin,
“Graph2Seq: Graph to sequence learning with attention-based neural
networks,” 2018, arXiv:1804.00823.

[34] K. Xu, L. Wu, Z. Wang, M. Yu, L. Chen, and V. Sheinin, “Exploiting
rich syntactic information for semantic parsing with graph-to-sequence
model,” in Proc. Conf. Empirical Methods Natural Lang. Process., 2018,
pp. 918–924.

[35] S. Li, L. Wu, S. Feng, F. Xu, F. Xu, and S. Zhong, “Graph-to-
tree neural networks for learning structured input-output translation
with applications to semantic parsing and math word problem,” 2020,
arXiv:2004.13781.

[36] Y. Chen, L. Wu, and M. J. Zaki, “Reinforcement learning based graph-
to-sequence model for natural question generation,” in Proc. Int. Conf.
Learn. Represent., 2019, pp. 1–17.

[37] Y. Gao, L. Wu, H. Homayoun, and L. Zhao, “DynGraph2Seq: Dynamic-
graph-to-sequence interpretable learning for health stage prediction in
online health forums,” in Proc. IEEE Int. Conf. Data Mining (ICDM),
Nov. 2019, pp. 1042–1047.

[38] L. Zhao, “Event prediction in the big data era: A systematic survey,”
ACM Comput. Surv., vol. 54, no. 5, pp. 1–37, 2021.

[39] X. Peng, D. Gildea, and G. Satta, “AMR parsing with cache transition
systems,” in Proc. 32nd AAAI Conf. Artif. Intell., 2018, pp. 1–8.

[40] D. Gildea, G. Satta, and X. Peng, “Cache transition systems for graph
parsing,” Comput. Linguistics, vol. 44, no. 1, pp. 85–118, Mar. 2018.

[41] Y. Wang, W. Che, J. Guo, and T. Liu, “A neural transition-based
approach for semantic dependency graph parsing,” in Proc. 32nd AAAI
Conf. Artif. Intell., 2018, pp. 5561–5568.

[42] X. Guo, L. Zhao, C. Nowzari, S. Rafatirad, H. Homayoun, and
S. M. P. Dinakarrao, “Deep multi-attributed graph translation with node-
edge co-evolution,” in Proc. IEEE Int. Conf. Data Mining (ICDM),
Nov. 2019, pp. 250–259.

[43] M. L. Seltzer, D. Yu, and Y. Wang, “An investigation of deep neural
networks for noise robust speech recognition,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., May 2013, pp. 7398–7402.

[44] H. Gao and S. Ji, “Graph U-Nets,” in Proc. 36th Int. Conf. Mach. Learn.,
vol. 97, 2019, pp. 2083–2092.

[45] M. Zhang and Y. Chen, “Link prediction based on graph neural net-
works,” in Proc. NIPS, vol. 31, 2018, pp. 5165–5175.

[46] B. Bollobás, C. Borgs, J. Chayes, and O. Riordan, “Directed scale-free
graphs,” in Proc. 40th Annu. ACM-SIAM Symp. Discrete Algorithms,
2003, pp. 132–139.

[47] A. D. Kent, Comprehensive, Multi-Source Cyber-Security Events. Los
Alamos, NM, USA: Los Alamos National Laboratory, 2015.

[48] D. C. Van Essen et al., “The WU-minn human connectome project:
An overview,” NeuroImage, vol. 80, pp. 62–79, Oct. 2013.

[49] L. C. Freeman, “Centrality in social networks conceptual clarification,”
Soc. Netw., vol. 1, no. 3, pp. 215–239, Jan. 1978.

[50] N. Shervashidze, P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn, and
K. M. Borgwardt, “Weisfeiler-lehman graph kernels,” J. Mach. Learn.
Res., vol. 12, pp. 2539–2561, Sep. 2011.

[51] X. Guo and L. Zhao, “A systematic survey on deep generative models
for graph generation,” 2020, arXiv:2007.06686.

[52] G. Nikolentzos, P. Meladianos, A. J.-P. Tixier, K. Skianis, and
M. Vazirgiannis, “Kernel graph convolutional neural networks,” in Proc.
Int. Conf. Artif. Neural Netw., Cham, Switzerland: Springer, 2018,
pp. 22–32.

[53] R. F. Galán, “On how network architecture determines the dominant
patterns of spontaneous neural activity,” PLoS ONE, vol. 3, no. 5,
May 2008, Art. no. e2148.

[54] F. Abdelnour, H. U. Voss, and A. Raj, “Network diffusion accurately
models the relationship between structural and functional brain connec-
tivity networks,” NeuroImage, vol. 90, pp. 335–347, Apr. 2014.

[55] J. Meier et al., “A mapping between structural and functional brain
networks,” Brain Connectivity, vol. 6, no. 4, pp. 298–311, May 2016.

[56] F. Abdelnour, M. Dayan, O. Devinsky, T. Thesen, and A. Raj, “Func-
tional brain connectivity is predictable from anatomic network’s Lapla-
cian Eigen-structure,” NeuroImage, vol. 172, pp. 728–739, 2018.

[57] S. M. Smith et al., “Methods for network modelling from high quality
rfMRI data,” in Proc. OHBM Annu. Meeting, 2014, p. 1718.

[58] SteveSmith. Fslnets. Accessed: May 2018. [Online]. Available:
https://fsl.fmrib.ox.ac.U.K./fsl/fslwiki/FSLNets

[59] J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,”
in Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 1993–2001.

[60] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” 2016,
arXiv:1611.07308.

Xiaojie Guo received the Ph.D. degree in infor-
mation technology from George Mason University,
Fairfax, VA, USA, in 2021.

She is a Research Scientist with the JD.COM
Silicon Valley Research Center, Mountain View, CA,
USA. Her research interests include data mining,
artificial intelligence, and machine learning, with
special interests in deep learning on graphs (DLG),
deep graph transformation, deep graph generation,
and disentangled representation learning. She has
published over 21 articles in top-tier conferences

and journals, such as Conference on Knowledge Discovery and Data Mining
(KDD), IEEE International Conference on Data Mining (ICDM), ICLR,
NeurIPS, Web Conference (WWW), AAAI Conference on Artificial Intel-
ligence (AAAI), the PROCEEDINGS OF THE IEEE, and CIKM.

Dr. Guo received the Best Paper Award from ICDM in 2019.

Lingfei Wu (Member, IEEE) received the Ph.D.
degree in computer science from the College
of William and Mary, Williamsburg, VA, USA,
in 2016.

He is a Principal Scientist with the JD.COM
Silicon Valley Research Center, Mountain View,
CA, USA, leading a team of 30+ machine
learning/natural language processing (NLP)
scientists and software engineers to build intelligent
e-commerce personalization systems. Previously,
he was a Research Staff Member with the IBM

Thomas J. Watson Research Center and has published more than 90
top-ranked conference and journal papers and is a Co-Inventor of more than
40 filed US patents.

Dr. Wu was a recipient of the Best Paper Award and the Best Student Paper
Award of several conferences such as IEEE ICC’19, AAAI Conference on
Artificial Intelligence (AAAI) workshop on DLGMA’20, and Conference on
Knowledge Discovery and Data Mining (KDD) workshop on deep learning
on graphs (DLG)’19. In addition, he has served as an Associate Editor
for the IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING

SYSTEMS, ACM Transactions on Knowledge Discovery from Data, and the
International Journal of Intelligent Systems.

Liang Zhao (Senior Member, IEEE) is an Assistant
Professor with the Department of Computer Science,
Emory University, Atlanta, GA, USA. His research
interests include data mining, artificial intelligence,
and machine learning, with special interests in spa-
tiotemporal and network data mining, and deep
learning on graphs (DLG). He has published over
articles in top-tier conferences and journals, such
as Conference on Knowledge Discovery and Data
Mining (KDD), IEEE International Conference on
Data Mining (ICDM), IEEE TRANSACTIONS ON

KNOWLEDGE AND DATA ENGINEERING (TKDE), PROCEEDINGS OF THE

IEEE, ACM Transactions on Knowledge Discovery from Data (TKDD), ACM
Transactions on Spatial Algorithms and Systems (TSAS), International Joint
Conference on Artificial Intelligence (IJCAI), AAAI Conference on Artificial
Intelligence (AAAI), Web Conference (WWW), CIKM, SIGSPATIAL, and
SDM.

Dr. Zhao received the NSF CAREER Award, the Amazon Research Award,
the Jeffress Trust Award in 2019, and the Outstanding Doctoral Student in
the Department of Computer Science at Virginia Tech in 2017.

Authorized licensed use limited to: George Mason University. Downloaded on May 31,2022 at 15:51:48 UTC from IEEE Xplore. Restrictions apply.

