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Abstract

Spatiotemporal graph represents a crucial data structure
where the nodes and edges are embedded in a geometric
space and can evolve dynamically over time. Nowadays,
spatiotemporal graph data is becoming increasingly popular
and important, ranging from microscale (e.g. protein fold-
ing), to middle-scale (e.g. dynamic functional connectivity),
to macro-scale (e.g. human mobility network). Although dis-
entangling and understanding the correlations among spatial,
temporal, and graph aspects have been a long-standing key
topic in network science, they typically rely on network pro-
cessing hypothesized by human knowledge. This usually fit
well towards the graph properties which can be predefined,
but cannot do well for the most cases, especially for many key
domains where the human has yet very limited knowledge
such as protein folding and biological neuronal networks. In
this paper, we aim at pushing forward the modeling and un-
derstanding of spatiotemporal graphs via new disentangled
deep generative models. Specifically, a new Bayesian model
is proposed that factorizes spatiotemporal graphs into spatial,
temporal, and graph factors as well as the factors that explain
the interplay among them. A variational objective function
and new mutual information thresholding algorithms driven
by information bottleneck theory have been proposed to max-
imize the disentanglement among the factors with theoretical
guarantees. Qualitative and quantitative experiments on both
synthetic and real-world datasets demonstrate the superior-
ity of the proposed model over the state-of-the-arts by up to
69.2% for graph generation and 41.5% for interpretability.

Introduction
There are two major directions on graph learning research
in machine learning: 1) graph representation learning (Kipf
and Welling 2016a; Veličković et al. 2017; Hamilton, Ying,
and Leskovec 2017), which aims at encoding graph struc-
tural information into (low-dimensional) vector space, and
2) graph generation (You et al. 2018; Simonovsky and
Komodakis 2018), which reversely aims at constructing a
graph-structured data from low-dimensional space contain-
ing the graph generation rules or distribution. In this pa-
per, we focus on the second direction, specifically for spa-
tiotemporal graphs. Spatiotemporal graph represents a vital
data structure where the nodes and edges are embedded and
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evolve in a geometric space, as shown in Fig. 1. Nowadays,
spatiotemporal graph data is becoming increasingly popular
and important, ranging from epidemic, transportation to bi-
ological network modeling (Dye and Gay 2003; Ingraham
et al. 2021; Stopher and Meyburg 1975; Teng 1985; Guo
et al. 2020a; Rahman et al. 2021; Du et al. 2020; Xu et al.
2021a,b; Zhao 2021). For example, the epidemic spreading
network and the protein folding process can both be repre-
sented as spatiotemporal graphs, respectively. Spatiotempo-
ral graphs cannot be modeled using either the spatial, graph,
or temporal information individually, but require the simul-
taneous characterization of both the data and their interac-
tions, which results in various patterns (Barthélemy 2011).
Spatial and graph aspects of information are usually cor-
related. For example, geographically nearby people tend to
befriend in a social network. A pair of atoms that are very
close in space tend to have a bond. Moreover, the above in-
terplay between spatial and graph aspects is a dynamic pro-
cess, thus, the consideration in time aspect is inevitable for a
comprehensive modeling. Recently, although spatiotempo-
ral graph deep learning has stimulated a surge of research
for graph representation learning (Cui et al. 2019; Wu et al.
2019; Yu, Yin, and Zhu 2017; Khodayar et al. 2019; Roy
et al. 2021; Wu et al. 2019; Yu, Yin, and Zhu 2017; Fu et al.
2021), however, deep generative models for spatiotemporal
graph have not been well explored.

Figure 1: Spatiotemporal graphs represent crucial data struc-
tures where the nodes and edges are embedded in a geomet-
ric space and their attribute values can evolve dynamically
over time. Each column represents the formulation of a snap-
shot of a spatiotemporal graph.
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Modeling and understanding the generative process of
spatiotemporal graphs are a long-lasting research topic in
domains such as graph theory and network science. Tradi-
tional methods usually extend and integrate network models
in spatial networks (e.g., protein and molecule structures)
and temporal graphs (e.g., traffic networks and epidemic
spreading networks) into spatiotemporal graphs which cap-
tures some predefined properties of a graph, e.g., degree dis-
tribution, structure of community, clustering patterns. How-
ever, these models heavily rely on the predefined network
process and rich knowledge of the graph properties, while
the network properties and generation principles always re-
main unknown in the real-world applications, such as mod-
els that explain the mechanisms of mental diseases in brain
networks during an activity of human beings and protein
structure folding. Another line of research works is com-
putational simulation models of spatiotemporal graphs cus-
tomized for specific applications such as epidemics, brain
simulator, and transportation simulation (Dye and Gay 2003;
Stopher and Meyburg 1975; Teng 1985). However, they are
domain-specific with enormously detailed prior knowledge
involved. This motivates us to propose the spatiotemporal
graph models which can automatically learn the underlying
spatial, temporal, and graph processes as well as their inter-
play.

Recent advanced deep generative models, such as vari-
ational auto-encoders (GraphVAE) (Kipf and Welling
2016b), have made important progress towards modeling
and understanding each of the three components in spa-
tiotemporal graphs, including graph data (e.g., citation net-
works) (Kipf and Welling 2016a), spatial networks (e.g.,
proteins) (Ingraham et al. 2021) and temporal networks
(e.g., traffic networks) (Zhang et al. 2020; Zhou et al. 2020),
respectively. However, none of the work is designed for
spatiotemporal graphs which cannot be effectively modeled
by simply integrating the existing techniques, due to sev-
eral significant challenges: (1) It is difficult to build a
generic spatiotemporal graph generative framework to
model spatial, graph, and temporal jointly. This frame-
work needs to not only capture the intrinsic generic prop-
erties shared across all types of spatiotemporal graphs, but
also can automatically learn network models that tailor well
for specific applications. (2) It is difficult to effectively dis-
tinguish and capture the correlation among the spatial,
temporal, and graph information. As shown in Figure 1,
in spatiotemporal graphs, some network information are en-
tangled, such as the only spatial-related information (Row
2) and only graph-related information (Row 3), while some
spatial and graph properties are correlated (Row 1). (3) It
is difficult to theoretically ensure the disentanglement
among the independent patterns. In light of model inter-
pretability, disentangling the independent patterns can help
better control the properties of the generated spatialtemporal
network. Current methods are limited in handling the dis-
entanglement of spatial, temporal, and graph independent
properties or factors.

To solve the aforementioned challenges, we propose, to
the best of our knowledge, the first generic deep generative
model framework that models and disentangles spatiotem-

poral graph data. Specifically, we first propose a novel deep
Bayesian network that factorizes spatiotemporal graphs into
the time-variant, time-invariant, spatial-graph joint, and in-
dependent factors based on inductive bias (Liu et al. 2021).
A new objective driven by information-bottleneck theory
has been proposed that can maximize the disentanglement
of different factors as well as latent variables inside each
factor, with theoretical guarantees. To optimize this objec-
tive function, a novel information-iterative-thresholding al-
gorithm has been proposed to jointly optimize the objec-
tive and optimize its hyperparameters on information bottle-
necks with theoretical analysis on optimal conditions. Ex-
tensive quantitative and qualitative experiments on two syn-
thetic and two real-world datasets show the superiority of
our proposed model over the state-of-the-art graph genera-
tive models by up to 69.2% for spatiotemporal graph gener-
ation and 41.5% for interpretability.

Related Work
Spatiotemporal Graph Deep Representation Learning.
This domain benefits a lot from the deep representation
learning techniques for images, sequence, and network data,
such as convLSTM. Currently, the most well-developed field
is spatiotemporal forecasting in traffic networks (Cui et al.
2019; Wu et al. 2019; Yu, Yin, and Zhu 2017; Khodayar
et al. 2019; Roy et al. 2021; Wu et al. 2019; Yu, Yin, and Zhu
2017). Other works (Wang et al. 2019; Zhang et al. 2020) ei-
ther study spatial network data or temporal graph data. For
example, (Wang et al. 2019) considers the spatial locations
of nodes, but not capable of generating temporal features.
(Zhang et al. 2020) models the temporal features explicitly
but do not include spatial features.

Spatiotemporal Graph Generation is to generate di-
verse spatiotemporal graphs, motivated by network de-
sign and interpretation (Barthélemy 2011). Traditional spa-
tiotemporal network generation largely relies on human-
defined heuristics/prior knowledge about the network being
modeled, such as epidemic modeling, transportation model-
ing, protein modeling, etc. (Stopher and Meyburg 1975; Dye
and Gay 2003; Teng 1985), which however almost pose no
generalizability to other domain (Dahiyat and Mayo 1997).
Another line of models are based on prescribed structural
assumptions, such as probabilistic models (Barabási, Al-
bert, and Jeong 1999), configuration models (Bender and
Canfield 1978), and stochastic block models (Xu and Hero
2014). These prescribed models aim to model some pre-
defined graph properties, e.g. community structures, clus-
tering patterns, etc, which, however, are not sufficient for
real-world graph datasets where the prescribed rules are un-
kown (Holme 2015; Rozenshtein and Gionis 2019). Deep
generative models have rarely been used to tackle the spa-
tiotemporal graph generation problem (Zhang 2019).

Deep Generative Models on Graphs. Deep generative
models achieve great success in computer vision, natural
language processing, etc. Recently, increasing attention has
been attracted to model graph-structured data by deep gen-
erative model. Work in (Simonovsky and Komodakis 2018;
You et al. 2018; Wang et al. 2018; Shi et al. 2020; Guo, Du,



Figure 2: Graphical illustration of the proposed models. (a) The Bayesian network of the proposed probabilistic distribution of
spatiotemporal graphs. (b) The approximate inference process of the posterior of latent variables, with conditional independence
assumption across time snapshots. (c) The Bayesian network of the alternative probabilistic distribution of spatiotemporal
graphs, with dependence assumption across time snapshots. (d) The alternative approximate inference model of the posterior
of the proposed model, with dependence assumption across time snapshots.

and Zhao 2020; Du et al. 2021a) transfers popular deep gen-
erative models, such as GANs, VAEs, RNNs, Flow-based
models, etc., into graph-structured data to model proteins,
molecules, etc. and show promising results. For example,
graphRNN utilizes an auto-regressive generative model to
generate a sequence of nodes and edges by an LSTM model
(You et al. 2018). Graphite (Grover, Zweig, and Ermon
2019) and VGAE (Kipf and Welling 2016b) focus on the
node-level embedding and form edges between each pair
of nodes to generate a graph. GraphVAE (Kipf and Welling
2016b) represents each graph by its edge feature (i.e. adja-
cency matrix) and node features, and utilizes an VAE model
to learn the distribution of the graphs conditioned on the la-
tent representation at the graph-level.

Disentangled Representation Learning Disentangle-
ment learning aims to learn a disentangled representation
that keeps latent variables separate and interpretable for the
variations in the data. It has been shown that such disen-
tangled representation improves the robustness against the
adversarial attack and increases the generalizability of the
model (Alemi et al. 2016). This inspires much work in VAE
to study how to disentangle the latent representations which
expose real-world semantic factors and the solutions include
adding, removing, or altering the weight of the objective
term in the generative tasks (Chen et al. 2018; Kim and Mnih
2018; Kumar, Sattigeri, and Balakrishnan 2017; Lopez et al.
2018; Zhao, Song, and Ermon 2017). Recently, the idea to
learn a disentangled representation has also been applied to
graph generative models. (Guo et al. 2020b; Ma et al. 2019)
disentangles the latent variables that expose semantic factors
of the nodes, edges, and the graphs. However, learning a dis-
entangled representation for spatiotemporal graph modeling
remains largely unexplored.

Methodology
Problem Formulation
A spatiotemporal graph is defined as (S1:T , G1:T ), where
T represents number of time frames of the spatiotemporal
graphs, and S1:T = {S1, S2, ...ST }, G1:T = {G1, ...GT }.
St = (Vt, Ct) represents the geometric information of t-th
snapshot of a spatiotemporal graph, where Vt denotes a set
of N nodes and Ct ∈ RN×3 denotes 3D geometric infor-

mation. Gt = (Vt, Et, Xt, Et) represents the graph infor-
mation of t-th snapshot, where Et ⊆ Vt × Vt is the set of
edges. Et ∈ RN×N×K refers to the edge weights or ad-
jacent matrix, and K refers to the edge feature dimension.
Xt ∈ RN×M denotes the node feature and M is the length
of the node feature vector. It is worth noting that the geo-
metric information St can not be simply treated as part of
node features since this type of representation cannot cap-
ture and maintain some properties, such as translation- and
rotation-invariances (Fuchs et al. 2020).

This paper aims at proposing a generic data-driven frame-
work for modeling spatiotemporal graphs, under fundamen-
tal, necessary factors. First, for any spatiotemporal graphs,
there could be patterns that are time-variant and time-
invariant. While time-invariant, spatial and graph informa-
tion could either be correlated or independent, hence it is
important to distinguish and capture these different seman-
tic factors via different latent variables. More concretely,
the goal is to learn a posterior p(S1:T , G1:T |Z,F ) of the
spatiotemporal graphs given four groups of generative la-
tent variables Z = z1:T ∈ RL1 for time-variant features
and F = (fs ∈ RL2 , fg ∈ RL3 , fsg ∈ RL4) for time-
invariant features, where we need to capture and disentan-
gle time-variant factors z1:T , time-invariant geometric fac-
tors fs, graph factors fg and spatial-graph joint factors fsg .
L1,L2,L3, andL4 are the number of variables in each group
of factors, respectively. The encoding and generative pro-
cess of our proposed SpatioTemporal Graph Disentangled
Variational Auto-Encoder (STGD-VAE) model is illustrated
in Fig. 2(a) and Fig. 2(b). Another implementation of the
proposed model following the common time-dependency,
namely, STGD-VAE-Dep is illustrated in Fig. 2(c) and Fig.
2(d), and detailed in Supplementary Material.

The Objective on Spatiotemporal Graph
Generative Modeling
To learn the conditional probability p(S1:T , G1:T |z1:T , F ),
it is equal to maximizing the marginal likelihood of the ob-
served spatiotemporal graph sequence (S1:T , G1:T ) in ex-
pectation over the distribution of the latent representation
as Epθ(z1:T ,F )pθ(S1:T , G1:T |z1:T , F ). The prior distribution
of the latent spaces is described as p(z1:T , F ) with the ob-



servation of a spatiotemporal graph sequence (S1:T , G1:T ),
which, however, is intractable. Therefore, a variational ob-
jective is proposed to tackle this problem, where the pos-
terior distribution is approximated by another distribution
qφ(z1:T , F |S1:T , G1:T ). The objective can be written as
minimizing the Kullback-Leibler Divergence (KLD) be-
tween the true prior distribution and the approximate pos-
terior distribution. In order to encourage this disentangle-
ment property of qφ(z1:T , F |S1:T , G1:T ), we introduce a
constraint by trying to match the inferred posterior config-
urations of the latent factors to the prior p(z1:T , fs, fg, fsg).
This can be achieved if we set each prior to be an isotropic
unit Gaussian, i.e., N (0, 1), leading to a constrained opti-
mization problem as:

max
θ,φ

ES1:T ,G1:T∼D[Eqφ(z1:T ,F |S1:T ,G1:T )

log pθ(S1:T , G1:T |z1:T , F )]
s.t.DKL(qφ(z1:T , F |S1:T , G1:T )||p(z1:T , F )) < I (1)

where D refers to the observed dataset of the spatiotempo-
ral graphs and I specifies the information that flows via the
latent representation.

The above objective can be further decomposed for sim-
ple estimation and implementation of each component based
on different pre-defined dependence and independence as-
sumptions in the problem formulation, as stated in Lemma .

Given the assumption that: (1) S1:T ⊥ G1T |(z1:t, F ); (2)
S1:T ⊥ fg and G1:T ⊥ fs; (3) Gi ⊥ Gj |(zi, zj , fg, fsg) and
Si ⊥ Sj |(zt, zk, fs, fsg); (4) z1:T ⊥ (fs, fg, fsg), and z1 ⊥
z2 · · · ⊥ zT , the objective of spatiotemoral graph generation
can be expressed as

max
θ,φ

ES1:T ,G1:T∼DEqφ(z1:t,F |G1:T ,S1:T )∑T

t=1
[log pθ(Gt|zt, fg, fsg) + log pθ(St|zt, fs, fsg)]

s.t.
∑T

t=1
DKL(qφ(zt|Gt, St)||p(zt)) < It

DKL(qφ(fg|G1:T )||p(fg)) < Ig

DKL(qφ(fs|S1:T )||p(fs)) < Is

DKL(qφ(fsg|S1:T , G1:T )||p(fsg)) < Isg (2)

In Lemma , I is decomposed into four mutual-exclusive in-
formation capacity, Is, Ig , Isg , and It in Eq. 2. The detailed
proof of Lemma can be found in Supplementary Material.

Maximizing the Disentanglement among Spatial,
Temporal and Graph Factors
One of our goals is to maximize the disentanglement of spa-
tial, temporal, and graph factors. So for example if a factor is
merely related to spatial information, we do not want it to be
explained by the spatial-graph joint factor fsg . Analogously,
if a factor is invariant to time, we do not want it to be ex-
plained by the time-variant factor zt. However, this cannot
be guaranteed by Equation 2, whose constraints can only
enforce variable-level disentanglement within each type of
factor instead of a maximized disentanglement across spa-
tial, temporal, and graph factors.

To address the above issue, we first re-interpret the con-
straints by information bottleneck theory (Burgess, Higgins,
and Pal 2018). The posterior distribution qφ(zt|St, Gt),
qφ(fg|G1:T ),qφ(fs|S1:T ), and qφ(fsg|G1:T , S1:T ) are
interpreted as information bottleneck for the reconstruc-
tion task Eqφ(Z|G1:T ,S1:T )logpθ(S1:T |z1:T , fs, fsg) and
Eqφ(Z|G1:T ,S1:T ) log pθ(G1:T |z1:T , fg, fsg). We propose
that, by constraining the information flowing through each
time-variant variable zt to be less than the information
entropy of time-variant information Ct, namely It ≤ Ct, zt
will capture and only capture the time-variant information.
We also propose that, by constraining the information
flowing through the spatial-graph joint variable fsg to be
less than the information entropy of the time-invariant
correlated spatial-graph factor Csg , namely Isg ≤ Csg , fsg
will only capture the time-invariant spatial-graph correlated
factor. The new objective function is as follows:

max
θ,φ

ES1:T ,G1:T∼DEqφ(z1:T ,F |S1:T ,G1:T )∑T

t=1
[log pθ(Gt|zt, fg, fsg) + log pθ(St|zt, fs, fsg)]

s.t.
∑T

t=1
DKL(qφ(zt|St, Gt)||p(zt)) < It

DKL(qφ(fg|G1:T )||p(fg)) < Ig

DKL(qφ(fs|S1:T )||p(fs)) < Is

DKL(qφ(fsg|S1:T , G1:T )||p(fsg)) < Isg

Isg ≤ Csg, It ≤ Ct. (3)

This objective has the properties stated in Theorem 1.

Theorem 1 The objective in Equation 3 guarantees that
zt captures and only captures the time-variant information
while fsg captures and only captures the spatial-graph joint
information.

The above theorem is proved based on the condition that
(1) the sum of Is, Ig , and Isg are large enough to contain the
time-variant information, and Is, Ig are large enough to con-
tain the time-invariant spatial-exclusive and graph-exclusive
information, (2) It ≤ Ct, and Isg ≤ Csg . Due to the space
limit, the detailed proof is provided in Supplementary Mate-
rial.

Spatiotemporal Graph Mutual Information
Thresholding Algorithm
Eq. 3 is a challenging constrained nonconvex problem that
also requires learning its hyperparameters of information
bottleneck threshold Isg and It. This section proposes a
novel algorithm along with its optimal condition analysis
with respect to the information bottleneck threshold.

Given Is and Ig are constants, the second and third con-
strain can be rewritten based on the Lagrangian algorithm
under KKT condition (Mangasarian 1994) as:

R1 = β2(DKL(qφ(fs|S1:T )||p(fs)))
+ β3(DKL(qφ(fg|G1:T )||p(fg))) (4)

where the Lagrangian multipliers β2 and β3 are the regu-
larization coefficients that control the capacity of the latent
space information fs and fg , respectively.



Next, since It and Isg in the first constraint is a trainable
parameter which ensures It ≤ Ct and Isg ≤ Csg , it can be
written as a Lagrangian under the KKT condition as

R2 = β1(
∏T

t=1
DKL(qφ(zt|Gt, St)||p(zt))− It) (5)

R3 = β4(DKL(qφ(fsg|S1:T , G1:T )||p(fsg))− Isg) (6)

Finally, we can optimize the overall objective as:

max
θ,φ

ES1:T ,G1:T∼DEqφ(z1:T ,F |S1:T ,G1:T )∑T

t=1
[log pθ(Gt|zt, fg, fsg) + log pθ(St|zt, fst , fsg)]

−R1 −R2 −R3

s.t. Isg ≤ Csg, It ≤ Ct (7)

It is very hard to directly optimize the above objective
sinceCt andCsg are unknown. To circumvent the challenge,
we propose a novel thresholding strategy consisting of two
stages: the first stage is to optimize Isg , the second stage is to
optimize It, as detailed in Algorithm 1. In short, we increase
Isg by α in everyK until a stopping criteria is satisfied while
keeping It at a very low value (Lines 1-6 in Algorithm 1).
Then, we stop increasing Isg and increase It by γ every J
epoch until a stopping criterion is satisfied (Lines 8-14 in
Algorithm 1).

Algorithm 1: Information-iterative-thresholding algorithm

Require: The initialized parameter set W; the initialized
It = ε and Isg = ε (It /∈ W Isg /∈ W and ε is a
very small number, e.g. 1 × 10−5); the increase step γ,
α for optimizing It and Isg; the number of epochs J,K
of optimization for each updated It and Isg .

Ensure: The optimized parameter setW .
1: whileR3 < 0 do {stopping criterion for Isg}
2: Isg := Isg + α
3: for epoch = 1 : K do {increase Isg every K epoch}
4: Compute the gradient ofW via backpropagation.
5: UpdateW based on gradient with Isg and It fixed.
6: end for
7: end while
8: whileR2 < 0 do {stopping criterion for It}
9: It := It + γ

10: for epoch = 1 : J do {increase It every J epoch}
11: Compute the gradient ofW via backpropagation.
12: UpdateW based on gradient with It and Isg fixed.
13: end for
14: end while

The proposed optimization strategy guarantees that zt
captures and only captures the time-variant information
while fsg captures and only captures the spatial-graph joint
information based on the following theorem.

Theorem 2 The latent variable zt captures and only cap-
tures the time-variant information if R2 < 0 is satisfied.
The latent variable fsg captures and only captures the time-
invariant spatial-graph correlated information if R3 < 0 is
satisfied.

Notably, at initial stage, R3 = 0 and R2 = 0,
we then gradually increase It and Isg , and at each step
while well-trained,

∏T
t=1DKL(qφ(zt|Gt, St)||p(zt)) and

DKL(qφ(fsg|G1:T , S1:T )||p(fsg)) will keep increasing to
catch It and Isg . WhenR3 < 0 andR2 < 0, it indicates that
the information that captured by It and Isg do not increase
anymore, namely It = Ct and Isg = Csg . Thus, the whole
optimization process can be stopped. During the whole pro-
cess, the two constraint It ≤ Ct and Isg ≤ Csg are always
satisfied, namely, zt always captures and only captures the
time-variant information and fsg always captures and only
captures the time-invariant spatial-graph correlated informa-
tion. The detailed proof can be found in Supplementary Ma-
terial. In practice, we set β1, β2, β3, and β4 as 1 and the
model is not sensitive to these parameters.

Our model consists of four encoders which model
qφ(fs|S1:T , G1:T ), qφ(fg|S1:T , G1:T ), qφ(fsg|S1:T , G1:T ),
and qφ(zt|S1:T , G1:T ) respectively. There are also two de-
coders to model pθ(Gt|zt, fg, fsg) and pθ(St|zt, fg, fsg),
respectively. Specifically, we utilize a typical graph con-
volution neural network to encode the graph factors and
a typical convolution neural network for the spatial fac-
tors. For the spatial-graph correlated factors, we utilize
a Spatial-Network Message Passing Neural Network (S-
MPNN) (Guo, Du, and Zhao 2021), which considers both
the spatial and graph information while passing messages.
In terms of the temporal factors, we consider that could in-
volve both spatial and graph variance, thus, we take another
S-MPNN for the temporal factors. For decoders, we utilize
a typical convolution neural network for the spatial factors,
and a similar graph decoder proposed in NED-VAE (Guo,
Wu, and Zhao 2018) for the graph factors. Due to the space
limits, the detailed description of the encoders and decoders,
as well as the time complexity analysis are provided in the
Supplementary Material.

Experiments
Datasets
We validate the effectiveness of our proposed models on two
synthetic datasets and two real-world datasets, (1) Dynamic
Waxman Random Graphs, (2) Dynamic Random Geometry
Graphs, (3) Protein Folding Dataset, and (4) Traffic Dataset
MERT-LA (Du et al. 2021b). The first two are well-known
spatial network datasets (Bradonjić, Hagberg, and Percus
2007; Waxman 1988), which randomly place nodes in a ge-
ometry and the edges are connected by predefined distance
measures, with variances through the time dimension. The
protein folding dataset consists of the folding steps of a
protein with 8 amino acids (Guo et al. 2020b). The traffic
dataset contains sequences of graphs which contains traffic
speeds connected by 207 sensors (Jagadish et al. 2014). The
details of generation process of the datasets can be found in
Supplementary Material.

Comparison Methods
To validate the proposed models in spatiotemporal graph
generation, despite that no previous deep models specially
designed for the spatiotemporal graph generation task, we



Table 1: The evaluation results for the generated spatiotemporal graphs for different datasets (KLD cls refers to KLD of graph
clustering coefficient. KLD ds refers to KLD of graph density, KLD bet refers to KLD of betweenness centrality, and KLD tcorr
refers to KLD of temporal correlation. (Best results are highlighted in bold, The KLD evaluation on the traffic dataset is not
reported because the metrics are on graph topology, while the graph topology for the traffic dataset is unchanged.)

Dataset Method Node Spatial Edge KLD cls KLD ds KLD bet KLD tcorr AvgMI

DWR Graph

DSBM N/A N/A 54.95% 0.90 1.10 0.63 0.73 N/A
GraphVAE 0.57 0.57 57.14% 1.63 1.82 0.91 0.85 N/A
GraphRNN N/A N/A 55.24% 1.97 2.50 1.00 1.35 N/A
beta-VAE 0.0012 0.0011 69.05% 0.43 1.61 1.82 0.36 2.25

beta-TCVAE 0.0013 0.0012 69.04% 0.47 1.37 1.56 0.08 2.33
NEND-IPVAE 0.016 0.0008 65.80% 1.39 1.82 2.78 0.11 2.52

STGD-VAE 0.0003 0.0001 69.99% 0.14 0.74 0.40 0.03 2.03
STGD-VAE-Dep 0.0191 0.0005 66.28% 0.45 0.55 0.54 0.38 2.04

DRG Graph

DSBM N/A N/A 81.88% 1.77 2.87 3.38 0.64 N/A
GraphVAE 0.56 0.74 85.75% 4.46 2.65 1.60 3.08 N/A
GraphRNN N/A N/A 85.32% 0.57 1.24 2.40 0.85 N/A
beta-VAE 0.0013 0.0017 91.75% 0.34 1.24 1.47 2.15 2.29

beta-TCVAE 0.0018 0.0019 91.62% 0.52 1.58 1.46 2.38 2.24
NED-IPVAE 0.0175 0.0018 89.84% 0.37 1.05 1.72 0.23 2.42
STGD-VAE 0.0004 0.0015 91.88% 0.14 0.72 0.28 0.11 2.07

STGD-VAE-Dep 0.0008 0.0017 91.28% 0.14 0.71 0.26 1.67 2.08

Protein

DSBM N/A N/A 70.78% 1.00 0.93 1.15 1.53 N/A
GraphVAE N/A 553.82 62.54% 1.26 1.44 1.48 1.90 N/A
GraphRNN N/A N/A 71.17% 1.05 1.15 1.43 0.83 N/A
beta-VAE N/A 52.74 85.58% 0.16 0.14 0.46 0.61 1.04

beta-TCVAE N/A 35.05 95.80% 0.27 0.58 0.34 0.71 1.09
NED-IPVAE N/A 36.12 92.48% 1.08 0.79 0.44 2.64 1.15
STGD-VAE N/A 28.77 99.79% 0.33 0.21 0.53 0.23 0.70

STGD-VAE-Dep N/A 28.42 96.79% 0.13 0.54 1.55 0.24 0.76

Traffic

DSBM N/A N/A N/A N/A N/A N/A N/A N/A
GraphVAE N/A N/A N/A N/A N/A N/A N/A N/A
GraphRNN N/A N/A N/A N/A N/A N/A N/A N/A
beta-VAE 7.15 N/A N/A N/A N/A N/A N/A 1.37

beta-TCVAE 8.50 N/A N/A N/A N/A N/A N/A 1.18
NED-IPVAE 31.95 N/A N/A N/A N/A N/A N/A 1.18
STGD-VAE 6.78 N/A N/A N/A N/A N/A N/A 0.69

STGD-VAE-Dep 5.13 N/A N/A N/A N/A N/A N/A 1.06

compare with some state-of-the-art graph generation model
for generic graphs, including GraphRNN (You et al. 2018),
a graph generation method that utilizes recurrent neural
network structure to model graphs as sequences of edges
and nodes, GraphVAE (Kipf and Welling 2016b), a vari-
ational auto-encoder based graph generative model focus-
ing on handling small graphs, and a traditional algorithm
DSBM (Xu and Hero 2014) which utilizes stochastic block
model for static graph generation and combines it with
Markov chains to achieve temporal graph generation. For
GraphRNN and GraphVAE, we train individual models for
each time step respectively for generating temporal graph
sequences.

To validate the significance of our proposed disentangle-
ment objective and optimization strategy for spatiotempo-
ral graphs modeling, several SOTA disentanglement tech-
niques are compared including beta-VAE (Higgins, Matthey,
and Pal 2016), beta-TC-VAE (Chen et al. 2018), and NED-
IPVAE (Guo et al. 2020b), where the architecture utilized
is the same as our model, except with different disentangle-
ment objectives.

Evaluation of the Performance in Spatiotemporal
Graph Generation
To validate the power of our proposed models to learn the
representations of spatiotemporal graphs, we evaluate the

reconstruction performance among different elements of a
spatiotemporal graph, e.g. node, edge, and spatial locations
by calculating the difference between the real ones and re-
constructed ones. The mean square errors (MSE) is calcu-
lated for node attribute prediction and spatial prediction.
The accuracy is used for evaluating edge connection predic-
tion. To evaluate the generation performance, we select sev-
eral common evaluation metrics to measure graph-structured
data in multiple aspects, including graph statistics and tem-
poral statistics. Specifically, we calculate a commonly used
measurement for probability distributions, Kullback-Leibler
Divergence (KLD), between the real training data distribu-
tion and the generated data distribution in terms of: (1) graph
density, (2) average clustering coefficient, (3) betweenness
centrality, and (4) temporal correlation in the spatiotempo-
ral graphs.

The quantitative evaluation on the two synthetic datasets
and two real-world datasets are reported in Table 1. First
of all, for dynamic Waxman random graphs, STGD-VAE
achieves the best overall evaluation which it not only recon-
structs the node, spatial, and edge attributes very well, but
also learns the underlying graph, temporal statistical distri-
bution of the training set. To be specific, STGD-VAE out-
performs the two disentangled VAE models, beta-VAE and
beta-TCVAE by 1.3% in reconstructing the graph edge con-
nection. beta-VAE and beta-TCVAE fail to learn the exact
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Figure 3: Qualitative evaluation on two synthetic datasets and two real-world datasets.

underlying property statistical distribution of the graphs. We
consider this as a benefit of the disentanglement of different
types of features, which allows for clearer and better rep-
resentations and results in a roughly 62.5% improvement.
For the dynamic random geometry graph dataset, the results
are very similar to DWR Graph which mainly due to the
similar way of generating the synthetic datasets, but with
difference geometries. Obviously, our proposed STGD-VAE
outperforms the best baseline model, beta-VAE, by at most
69.2% in the reconstruction evaluation and roughly 58.8%
in learning the property distribution.

In the two real-world datasets, the proposed STGD-VAE
and STGD-VAE-Dep outperform other models in recon-
structing the spatial locations of the nodes and predicting the
contacts between residues by a large margin, which results
in up to 19% increase in predicting the spatial locations, and
up to 4% increase in contact prediction. However, in some of
the graph statistics, our proposed models fail to beat all the
baseline models because some of the graph statistics are not
designed for the real-world protein structures. However, our
proposed models still achieve comparable results in those
evaluations. In the last traffic dataset, the graph topology
and geometry stay the same, the only changing part is the
node feature, which represent the traffic speeds. Our models
achieve the best two in the speed prediction task and leave
the third as highest as a 25.9% gap.

Evaluation of the Performance in Disentangled
Representation learning
Quantitative Evaluation. For quantitative evaluation, the
typical avgMI score (Locatello et al. 2019) is utilized here
to evaluate the power of the encoder to learn disentangled
representations towards the predefined semantic factors by
measuring the mutual distance between the latent variables
and the semantic properties. Thus it is calculated based on
the learn latent variables and the input graphs in the test-
ing sets. As shown in Table 1, for all the four datasets,
beta-VAE, beta-TCVAE, and NED-IPVAE achieve similar
results in terms of avgMI score. GraphRNN, GraphVAE,
and DSBM are not capable of disentanglement learning, and
thus, no score is reported on this evaluation metric. Between

the two proposed models, STGD-VAE and STGD-VAE-Dep
achieve comparable results in most of the cases, STGD-VAE
is slightly better and have an up to 41.5% improvement over
the best baselines.

Qualitative Evaluation As in the conventional qualita-
tive evaluation in disentanglement representation learning
(Chen et al. 2018; Higgins, Matthey, and Pal 2016), we
change the value of one latent variable continuously while
fixing the remaining variables to see the variation of the se-
mantic factor it controls. In Fig. 3(a) and 3(b), we visualize
the folding process of the protein structures and the traffic
modeling process. We can observe that the residues on the
right side are slightly folding up and moving towards left.
For the traffic dataset, it is worth noting that the traffic speed
is constantly changing in different time steps which reflects
the real-time traffic situations. In Fig. 3(c) and 3(d), we also
visualize the changes of the generated graphs when the la-
tent factor zs of our STGD-VAE model change from −5 to
5 in the dynamic Waxman random graph and the dynamic
random geometry graph dataset, respectively. Clearly, the
spatial location is changed accordingly, from the left-bottom
corner to nearly the right-top corner, which shows that the
latent variables learn and expose the semantic factors well.

Conclusion
In this paper, we introduce STGD-VAE and STGD-VAE-
Dep, to the best of our knowledge, the first general deep gen-
erative model framework for spatiotemporal graphs. Specif-
ically, we propose a new Bayesian model that factorizes
spatiotemporal graphs into spatial, temporal, and graph fac-
tors as well as the factors that model the interactions among
them. Moreover, a variational objective function and a new
mutual information thresholding algorithm based on infor-
mation bottleneck are proposed to maximize the disentan-
glement among the factors with theoretical guarantees. The
comparison with six state-of-the-art deep generative mod-
els validates the superiority of our proposed models from
multiple tasks, including, graph generation and disentangled
representation learning.
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