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ABSTRACT
Localizing the source of graph diffusion phenomena, such as misin-

formation propagation, is an important yet extremely challenging

task in the real world. Existing source localization models typi-

cally are heavily dependent on the hand-crafted rules and only

tailored for certain domain-specific applications. Unfortunately, a

large portion of the graph diffusion process for many applications

is still unknown to human beings so it is important to have ex-

pressive models for learning such underlying rules automatically.

Recently, there is a surge of research body on expressive models

such as Graph Neural Networks (GNNs) for automatically learn-

ing the underlying graph diffusion. However, source localization

is instead the inverse of graph diffusion, which is a typical inverse

problem in graphs that is well-known to be ill-posed because there

can be multiple solutions and hence different from the traditional

(semi-)supervised learning settings. This paper aims to establish a

generic framework of invertible graph diffusion models for source

localization on graphs, namely Invertible Validity-aware Graph

Diffusion (IVGD), to handle major challenges including 1) Difficulty

to leverage knowledge in graph diffusion models for modeling their

inverse processes in an end-to-end fashion, 2) Difficulty to ensure

the validity of the inferred sources, and 3) Efficiency and scalability

in source inference. Specifically, first, to inversely infer sources of

graph diffusion, we propose a graph residual scenario to make exist-

ing graph diffusion models invertible with theoretical guarantees;

second, we develop a novel error compensation mechanism that

learns to offset the errors of the inferred sources. Finally, to ensure

the validity of the inferred sources, a new set of validity-aware

layers have been devised to project inferred sources to feasible

regions by flexibly encoding constraints with unrolled optimization

techniques. A linearization technique is proposed to strengthen

the efficiency of our proposed layers. The convergence of the pro-

posed IVGD is proven theoretically. Extensive experiments on nine

real-world datasets demonstrate that our proposed IVGD outper-

forms state-of-the-art comparison methods significantly. We have

released our code at https://github.com/xianggebenben/IVGD.
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1 INTRODUCTION
Graphs are prevalent data structures where nodes are connected by

their relations. They have been widely applied in various domains

such as social networks [44], biological networks [28], and informa-

tion networks [21]. As a fundamental task in graph mining, graph

diffusion aims to predict future graph cascade patterns given source

nodes. However, its inverse problem, graph source localization, is

rarely explored and yet is an extremely important topic. It aims to

detect source nodes given their future graph cascade patterns. As an

example shown in Figure 1, the goal of graph diffusion is to predict

the cascade pattern {b, c,d, e} given a source node b; while the goal
of graph source localization is to detect source nodes b or c given
the cascade pattern {b, c,d, e}. Graph source localization covers a

wide range of promising research and real-world applications. For

example, misinformation such as “drinking bleach or alcohol can

prevent or kill the virus" [24] in social networks is required to detect

as early as possible, in order to prevent it from spreading; Email is

a primary vehicle to transmit computer viruses, and thus tracking

the source Emails carrying viruses in the Email networks is integral

to computer security [39]; malware detection aims to position the

source of malware in the Internet of Things (IoT) network [26].

Therefore, the graph source localization problem entails attention

and extensive investigations from machine learning researchers.

The forward process in Figure 1, namely, graph diffusion, has

been studied for a long time, by traditional prescribed methods

based on hand-crafted rules and heuristics such as SEHP [3], OSLOR

[14], and DSHP [15]. Following similar styles of traditional graph

diffusion methods, classical methods for its inverse process, namely

source localization of graph diffusion, have also been dominated

by prescribed approaches. Specifically, a majority of methods are

based on predefined rules, by utilizing either heuristics or metrics

to select sources such as distance errors. Some other prescribed

methods partition nodes into different clusters based on network

topologies, and select source nodes in each cluster. These prescribed
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Figure 1: An example of information diffusion: different
source nodes generate the same cascade pattern.

methods rely heavily on human predefined heuristics and rules and

usually are specialized for specific applications. Therefore, they

may not be suitable for applications where prior knowledge on dif-

fusion mechanisms is unavailable. Recently, with the development

of GNNs [55], Dong et al. utilized state-of-the-art architectures such

as Graph Convolutional Network (GCN) to localize the source of

misinformation [16]. However, their method requires results from

prescribed methods as its input, and hence still suffers from the

drawback of prescribed methods mentioned above.

In recent years, the advancement of GNNs leads to state-of-the-

art performance in many graph mining tasks such as node classifi-

cation and link prediction. They can incorporate node attributes

into models and learn node representations effectively by capturing

network topology and neighboring information [32]. They have

recently expanded their success into graph diffusion problems [8],

by tackling the drawbacks of traditional prescribed methods in

graph diffusion. specifically, instead of requiring prior knowledge

and rules of diffusion, GNNs based methods can "learn" rules from

the data in an end-to-end fashion. Although GNNs have been well

applied for performing graph diffusion tasks, however, it is difficult

to devise their inverse counterparts (i.e. graph source localization

models) because such an inverse problem is much more difficult and

involves three key challenges: 1). Difficulty to leverage knowl-
edge in graph diffusion models for modeling their inverse
processes in an end-to-end fashion. The learned knowledge

from graph diffusion models facilitates source localization. For ex-

ample, as shown in Figure 1, while nodes b and c generate the same

cascade pattern {b, c,d, e}, the learned knowledge from graph dif-

fusion models is useful to predict which node is likely to be the

source. However, it is extremely challenging to incorporate such

a notion into the inverse problem in an end-to-end manner, and

it is prohibitively difficult to define hand-crafted ways to achieve

it with graph diffusion models directly since they are opposite

processes. 2). Difficulty to ensure the validity of the inferred
sources. Graph sources usually follow validate graph patterns. For

example, in the application of misinformation detection, sources

of misinformation should be connected in the social networks. As

another example, sources of malware are dense in some restricted

regions of the IoT networks. Such validity constraints are imposed

both in the training and test phases, which should be achieved by

delicately-designed activation layers. Traditional activation layers

such as softmax are exerted on individual nodes. However, validity

constraints require the projection of multiple sources by consider-

ing their topological connections. 3). Efficiency and scalability
in source inference. Inferring sources constrained by validity pat-
terns is a combinatorial problem and hence is time-consuming. To

multiply the difficulty, the inverse process of graph diffusion models

should also be inferred. Therefore, devising a scalable and efficient

algorithm is important yet challenging.

In this paper, we propose a novel Invertible Validity-aware Graph

Diffusion (IVGD) to simultaneously tackle all these challenges.

Specifically, given a graph diffusion model, we make it invertible

by restricting its Lipschitz constant for the residual GNNs, and thus

an approximate estimation of source localization can be obtained

by its inversion, and then a compensation module is presented to

reduce the introduced errors with skip connection. Moreover, we

leverage the unrolled optimization technique to integrate validity

constraints into the model, where each layer is encoded by a con-

strained optimization problem. To combat efficiency and scalability

problems, a linearization technique is used to transform problems

into solvable ones, which can be efficiently solved by closed-form

solutions. Finally, the convergence of the proposed IVGD to a feasi-

ble solution is proven theoretically. Our contributions in this work

can be summarized as follows:

• Design a generic end-to-end framework for source lo-
cation. We develop a framework for the inverse of graph

diffusion models, and learn rules of graph diffusion models

automatically. It does not require hand-crafted rules and can

be used for source localization. Our framework is generic to

any graph diffusion model, and the code has been released

publicly.

• Develop an invertible graph diffusion model with an
error compensation mechanism. We propose a new

graph residual net with Lipschitz regularization to ensure the

invertibility of graph diffusion models. Furthermore, we pro-

pose an error compensation mechanism to offset the errors

inferred from the graph residual net.

• Propose an efficient validity-aware layer to maintain
the validity of inferred sources. Our model can ensure

the validity of inferred sources by automatically learning

validity-aware layers. We further accelerate the optimiza-

tion of the proposed layers by leveraging a linearization

technique. It transforms nonconvex problems into convex

problems, which have closed-form solutions. Moreover, we

provide the convergence guarantees of the proposed IVGD

to a feasible solution.

• Conduct extensive experiments on nine datasets. Ex-
tensive experiments on nine datasets have been conducted

to demonstrate the effectiveness and robustness of our pro-

posed IVGD. Our proposed IVGD outperforms all compari-

son methods significantly on five metrics, especially 20% on

F1-Score.

2 RELATEDWORK
In this work, we summarize existing works related to this paper,

which are shown as follows:
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Notations Descriptions

V Node set

E Edge set

Yt Diffusion vector at time t
x The vector of source nodes

fW The function of feature construction

д The function of label propagation

Φ(x ) = 0 The equality constraint of a validity pattern

T The length of diffusion

Table 1: Important notations and descriptions

Graph Diffusion: Graph diffusion is the task of predicting the

diffusion of information dissemination in networks. It has a wide

range of real-world applications such as societal event prediction

[47, 63, 64], and adverse event detection in social media [48, 49]. A

large number of research works have been conducted to improve

the quality of predictions. Most existing works usually assume

the topologies of networks and apply the classical probabilistic

graphical models. For example, Ahmed et al. identified patterns

of temporal evolution that are generalizable to distinct types of

data [1]; Bandari et al. constructed a multi-dimensional feature

space derived from properties of an article and evaluate the effi-

cacy of these features to serve as predictors of online diffusion [3].

More traditional methods can be found in various survey papers

[18, 37, 66]. However, they are applicable to a specific type of neural

network and are poorly generalizable. A recent line of research

works use Recurrent Neural Networks (RNN) to predict the diffu-

sion, and usually include multimodality such as text content and

time series [6, 11, 13, 57, 62]. Various techniques have been applied

including self-attention mechanism [6, 10, 52], knowledge base

[65], multi-task learning [12], and stochastic processes [7, 17, 34] .

However, they cannot utilize network topology to enhance predic-

tions. To handle this challenge, GNNs have been applied to predict

either macro-level (i.e. global level) tasks [8] or micro-level (i.e.

node level) tasks [22, 41, 50, 56] combined with RNN, and a handful

of works attempted to utilize other neural network architectures

[29, 43, 51, 58].

Graph Source Localization: The goal of the graph source local-
ization is to identify the source of a network based on observations

such as the states of the nodes and a subset of timestamps at which

the diffusion process reached the corresponding nodes [61]. Graph

source localization has a wide range of applications such as disease

localization, virus localization, and rumor detection. Several recent

surveys on this topic are available [27, 45, 46]. Similar to graph

diffusion models, existing graph source localization papers usually

require the assumptions of the diffusion, network topology, and

observations. With the development of GNNs, Dong et al. proposed

a Graph Convolutional Networks based Source Identification (GC-

NSI) model for multiple source localization [16]. However, its model

relies heavily on hand-crafted rules. Moreover, its performance suf-

fers from the class imbalance problem, as shown in experiments.

3 PROBLEM SETUP
In this section, the problem addressed by this research is formulated

mathematically in the form of an inverse problem.

3.1 Problem Formulation
Important notations are outlined in Table 1. Consider a graph

G = (V ,E), whereV = {v1, · · · ,vn } and E are the node set and the

edge set respectively, |V | = n is the number of nodes. Yt ∈ {0, 1}
n

is a diffusion vector at time t . Yt,i = 1means that node i is diffused,
while Yt,i = 0 means that node i is not diffused. S is a set of source

nodes. x ∈ {0, 1}n is a vector of source nodes, xi = 1 if vi ∈ S and

xi = 0 otherwise. The diffusion process begins at timestamp 0 and

terminates at timestamp T . While there are many existing GNN-

based graph diffusion models, a general GNN framework consists

of two stages: feature construction and label propagation. In the

feature construction, a neural network fW is learned to estimate

the initial node diffusion vector ζ = fW (x) based on input x , where
W is a set of learnable weights in fW . In the label propagation, a

propagation function д is designed to diffuse information to neigh-

boring nodes: YT = д(ζ ). Therefore, the graph diffusion model is

θ = д(fW (x)), and its inverse problem, graph source localization,

is to infer x from YT . Moreover, a validity pattern can be imposed

on sources in the form of the constraint Φ(x) = 0 such as the num-

ber of source nodes, and the connectivity among multiple sources.

Then the graph source localization problem can be mathematically

formulated as follows:

θ−1 : YT → x s .t . Φ(x) = 0. (1)

3.2 Challenges
It is extremely challenging to automatically learn the source local-

ization model θ−1 and solve the problem in Equation (1) given an

arbitrarily complex forward model such as deep neural networks

due to several key challenges: 1). The difficulty to integrate infor-
mation from θ into θ−1. The complex graph diffusion model θ is

typically not invertible directly, so it is challenging to transfer the

knowledge from θ into its graph inverse problem. 2). The difficulty
to incorporate Φ(x) = 0 into θ−1. Φ(x) = 0 considers topological

connections of all nodes instead of an individual node, and it can

express complex validity patterns because of its nonlinearity. So it

is difficult to encode such validity information from all nodes to

activation layers. 3). Efficiency and scalability to solve Equation (1).

Solving Equation (1) is a combinatorial problem because Yt and x
are discrete. So it is imperative to develop an algorithm to solve

it efficiently, and to scale well on large-scale graphs (i.e. n is very

large).

4 PROPOSED IVGD FRAMEWORK
In this section, we propose a generic framework for graph source

localization, namely Invertible Validity-aware Graph Diffusion

(IVGD) to address these challenges simultaneously. The high-level

overview of the proposed IVGD framework is highlighted in Figure

2. Specifically, our proposed IVGD consists of two components: in

Figure 2(a), we propose an invertible graph residual net to address

Challenge 1, where the approximate estimation of graph source

localization can be obtained by inverting the graph residual net

with the integration of the proposed error compensation module

(Section 4.1); in Figure 2(b), a series of validity-aware layers are

introduced to resolve Challenges 2 and 3, which encode validity

constraints into problems with unrolled optimization techniques.

With the introduction of the linearization technique, they can be

solved efficiently with closed-form solutions (Section 4.2). We pro-

vide the convergence guarantees of our proposed IVGD to a feasible

solution (Section 4.3).
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Figure 2: Framework overview: the proposed IVGD frame-
work consists of an invertible graph diffusion model and a
series of validity-aware layers.

4.1 The Invertible Graph Residual Net
Our goal in this subsection is to obtain an approximate estimation

of the source vector x based on the learned knowledge from the

graph diffusion model θ . One intuitive idea is to invert the process

of the forward model θ . The key challenge here is that θ is not

necessarily invertible, so the task is that how to devise an invertible

architecture based on θ . To address this, we propose a novel invert-

ible graph residual net and provide theoretical guarantees to ensure

invertibility. After an approximate estimation of the source vector

z is obtained by the proposed invertible graph residual net, a simple

compensation module is introduced to reduce estimation errors,

which is denoted as x = C(z). Because z is close to x , we utilize
an MLP module Q to measure the deviation of z from x : z

′

= Q(z).
A skip connection concatenates z and z

′

to form the compensated

prediction z
′′

= z+z
′

= z+Q(z). However, z
′′

may be beyond range

(i.e. smaller than 0 or larger than 1). In order to remove such bias,

a piecewise-linear function is utilized to truncate bias as follows:

x = min(max(0, z
′′

), 1).

Now we aim to devise an invertible GNN-based architecture.

While there are many classic invertible architectures such as i-

Revnet and Glow [9, 25, 31], their forms are quite complex and

require extra components to ensure one-to-one mapping. i-ResNet,

However, stands out among others because of its simplicity and

outstanding performance, and it allows for the form-free design

of layers [4]. We extend the idea of the i-Resnet to the GNN by

regularizing its Lipschitz coefficient. To achieve this, we first for-

mulate the graph residual net of the general GNN framework.

ζ = FW (x) = (fW (x) + x)/2 and YT = G(ζ ) = (д(ζ ) + ζ )/2 are

graph residual blocks of feature construction and label propaga-

tion, respectively. P(x) = G(FW (x)) denotes the graph residual net

for graph diffusion, and P−1 denotes its inverse for graph source

localization. Next, P can be inversed to P−1 by simply fixed point

iterations. Algorithm 1 demonstrates the inverse process of the

graph residual net for source localization. Specifically, Line 1 and

Line 5 are initializations of label propagation and feature construc-

tion, respectively. Lines 2-4 and Lines 6-8 are fixed-point iterations

of label propagation and feature construction, respectively.

Next, we provide theoretical guarantees on the invertibility of

the graph residual net. Specifically, we prove a sufficient condition

to ensure invertibility and discuss practical issues to satisfy such

conditions. The following theorem provides a sufficient condition

for the invertibility of the graph residual net.

Theorem 4.1 (Sufficient Condition for the invertibility

of the graph residual net). The graph residual net P is invertible

Algorithm 1 Inverse of the Graph Residual Net for Graph Source

Localization

Require: fW , д, YT ,m {the number of iterations}.

Ensure: z {an estimation of the source vector x }.
1: ζ 0 = YT {Initialization of label propagation}

2: for i=1 to m do
3: ζ i = 2YT − д(ζ i−1) {Fix point iteration of label propagation}

4: end for
5: z0 = ζm {Initialization of feature construction}

6: for i=1 to m do
7: zi = 2ζm − fW (zi−1) {Fix point iteration of feature construction}

8: end for
9: Output z .

if Lf < 1 and Lд < 1, where Lf and Lд are Lipschitz constants of
fW (x) and д(ζ ), respectively.

Proof. Because P = G(FW ), P is invertible if FW and G are

invertible. We have x = 2ζ − fW (x) and ζ = 2YT − д(ζ ) by the

definitions of FW and G, and rewrite them as iterations as follows:

x0 = ζ and xk+1 = 2ζ − fW (x
k )

ζ 0 = YT and ζ k+1 = 2YT − д(ζ
k )

where limk→∞ xk = x and limk→∞ ζ k = ζ are fixed points if xk

and ζ k converge. Because fW and д are operators on a Banach

space, Lf < 1 and Lд < 1 guarantee convergence by the Banach

fixed point theorem [4]. □

Then the following lemma provides the upper bound of the

Lipschitz constants of the graph residual net.

Lemma 4.2 (The Lipschitz constants of the graph residual

net). Let LP and LP−1 be Lipschitz constants of P and P−1, respec-

tively, then LP ≤
(1+Lf )(1+Lд )

4
, and LP−1 ≤

4

(1−Lf )(1−Lд )
.

Sketch of Proof. To prove this lemma, we need to show that

for any x
′

,x
′′

, ∥P(x
′′

)−P(x
′

)∥ ≤
(Lf +1)(Lд+1)

4
∥x
′′

−x
′

∥, and for any

y
′

,y
′′

, ∥P−1(y
′′

) − P−1(y
′

)∥ ≤ 4

(1−Lf )(1−Lд )
∥y
′′

−y
′

∥. The complete

proof is shown in Section A in the appendix. □

Based on Theorem 4.1 and Lemma 4.2, we conclude that the

Lipschitz constant of P is less than 1 and therefore P is invertible.

Now we briefly discuss how to guarantee the Lipschitz constraints

in practice. For FW , which contains a set of learnable weightsW ,

the power iteration method can be applied to normalizeW so that

its norm is smaller than 1 [20]. ForG, many classical propagation

functions such as the Independent Cascade (IC) function satisfies

this condition [56].

4.2 Validity-aware Layers
The invertible graph residual net provides an estimation of source lo-

calization, However, the validity constraint Φ(x) = 0 is still required

to satisfy. Specifically, we aim to resolve the following optimization

problem:

minx R(x) s .t . x = C(z), Φ(x) = 0. (2)

where R(x) is a loss function, and z is the output of the graph

residual net in Algorithm 1. However, Equation (2) is unsolvable
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due to the potential constraint conflict x = C(z) and Φ(x) = 0. To

address this, Equation (2) is reduced to the following optimization

problem:

minx R(x) +
τ

2

∥x −C(z)∥2
2
s .t . Φ(x) = 0. (3)

where τ > 0 is a tuning parameter to balance the loss and the error

compensation module. Then the task here is to design activation

layers, in order to solve Equation (3). While traditional activation

layers focus on individual nodes, and cannot handle difficult con-

straints, unrolled optimization techniques are potential ways to

incorporate complex validity patterns into the model. Motivated

by the recent development of ADMM-Net [60] and OptNet [2], a

potential solution to Equation (3) can be achieved by unrolling the

problem into a neural net, where each layer is designed for the

following optimization problem:

xk+1 ← argminx Jk (x) s .t . Φ(x) = 0, (4)

where Jk (x) = R(x) + τ k
2
∥x −Ck (xk )∥2

2
and x0 = z. xk and xk+1

are the input and the output of the k-th layer, respectively. To solve

Equation (4), the augmented Lagrangian function is formulated

mathematically as follows [5]:

Hk (x , λ) = Jk (x) + Ψk (x , λ),

where Ψk (x , λ) = 1

2ρk
((λ + ρkΦ(x))2 − λ2), ρ > 0 is a hyperpa-

rameter, and λ is a dual variable to address Φ(x) = 0. To optimize

Hk (x , λ), the OptNet updates variables via the implicit gradients

of the Karush–Kuhn–Tucker (KKT) conditions [2]. However, its

computational efficiency is limited due to the nonconvexity and

nonlinearity of Φ(x), and scales poorly on the large-scale networks

(i.e. Challenge 3 in Section 3.2). To address this, we utilize a lin-

earization technique to transform the nonconvex Hk (x , λ) to the

convex hk (x) as follows [59]:

hk (x) = Jk (x) +∂x (Ψ
k )T (xk , λk )(x − xk ) +

αk

2

∥x − xk ∥2
2
,

where αk > 0 is a hyperparameter to control the quadratic term.

We formulate the validity-aware layer as follows:

xk+1 ← argminx h
k (x),

λk+1 ← λk + ρkΦ(xk+1).

Specifically, Ck , ρk ,τk ,αk can be considered as learnable parame-

ters of the k-th layer. Notice that if R(x) is a mean square error, then

hk (x) is quadratic and has a closed-form solution. Validity-aware

layers can be trained by state-of-the-art optimizers such as SGD

and Adam [30].

4.3 Convergence of the Proposed IVGD
Like other unrolled optimization models which solve objective func-

tions effectively, our proposed IVGD can address Equation (3) by

closed-form solutions. However, there lacks an understanding of

the convergence of unrolled optimization models. This is because

they usually involve many learnable parameters, which complicate

the investigation of convergence. In this section, we provide the

convergence guarantees of the proposed IVGD for the linear con-

straint Φ(x) = Ax − b where A and b are a given matrix and vector,

respectively. Specifically, we propose a novel condition based on

learnable parameters to ensure xk and λk are closer to a solution

as layers go deeper. Due to the space limit, we show the sketches

of all proofs, and the complete proofs are available in the appendix.

The optimality conditions of Equation (4) are shown as follows:

Axk∗ − b = 0, ∇Jk (xk∗ ) +A
T λk∗ = 0,

where (xk∗ , λ
k
∗ ) is an optimal solution (not necessarily unique) to

Equation (4), which depends on τk and Ck . The following lemma

provides the relationship between (xk∗ , λ
k
∗ ) and (x

k+1, λk+1).

Lemma 4.3. For any k ∈ N, it satisfies

1

ρk
(λk − λk+1)T (λk+1 − λk∗ ) + α

k (xk − xk+1)T (xk+1 − xk∗ )

≥ (xk+1 − xk )TAT (λk − λk+1).

Sketch of Proof. It can be obtained by the optimality condi-

tions of xk+1 and xk∗ . The complete proof is shown in Section B in

the appendix. □

Motivated by Lemma 4.3, we let u1 = (x1, λ1) and u2 = (x2, λ2),
and define an inner product by

⟨u1,u2⟩Mk =
1

ρk
λT
1
λ2 + α

kxT
1
x2. (5)

and the induced norm ∥u∥2
Mk = ⟨u,u⟩Mk . Denote uk∗ = (x

k
∗ , λ

k
∗ )

and uk = (xk , λk ). The following theorem states that uk+1 is a

feasible solution to Equation (4).

Theorem 4.4 (Asymptotic Convergence). Assume 0 < D1 ≤

αk ≤ D2 < ∞, 0 < D3 ≤ ρk ≤ D4 < ∞ and αk − ρkr (ATA) > 0

where D1, D2, D3 and D4 are constant, and r (ATA) denotes the
spectral radius of ATA. If there exists (Ck , ρk ,τk ,αk ) such that
∥uk+1 − uk+1∗ ∥2

Mk+1 ≤ ∥u
k+1 − uk∗ ∥

2

Mk , then we have

(a). ∥uk − uk+1∥2
Mk → 0.

(b). ∥uk − uk∗ ∥
2

Mk is nonincreasing and hence converges.

(c). uk+1 is a feasible solution to Equation (4) . That is,
limk→∞Axk+1−b = 0, limk→∞ ∇J

k (xk+1)+AT λk+1=0.

Sketch of Proof. To prove this theorem, we need to show that

∥uk − uk∗ ∥
2

Mk ≥ ∥u
k+1 − uk+1∗ ∥2

Mk+1 + µk ∥uk+1 − uk ∥2
Mk where

µk > 0, which can be obtained by Lemma 4.3. The complete proof

is in Section C in the appendix. □

The condition ∥uk+1 −uk+1∗ ∥2
Mk+1 ≤ ∥u

k+1 −uk∗ ∥
2

Mk guarantees

there exist learnable parameters to make uk+1 contractive with

respect to the norm induced by Mk
. Theorem 4.4 ensures that

the gap between uk+1 and uk converges to 0, and uk+1 converges
to a feasible solution to Equation (4) with constraint satisfaction

limk→∞Axk+1 − b = 0.
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Name #Nodes #Edges Average Degree Diameter

Karate 34 78 2.294 5

Dolphins 62 159 5.129 8

Jazz 198 2,742 13.848 9

Network Science 1,589 2,742 3.451 17

Cora-ML 2,810 7,981 5.68 17

Power Grid 4,941 6,594 2.669 46

Memetracker 1,653 4,267 5.432 4

Digg 11,240 47,885 8.52 4

Deezer 47,538 222,887 9.377 -

Table 2: Statistics of nine real-world datasets.

5 EXPERIMENT VERIFICATION
In this section, nine real-world datasets were utilized to test our pro-

posed IVGD compared with state-of-the-art methods. Performance

evaluation, ablation studies, sensitivity analysis, and scalability

analysis have demonstrated the effectiveness, robustness, and effi-

ciency of the proposed IVGD. All experiments were conducted on a

64-bit machine with Intel(R) Xeon(R) quad-core processor (W-2123

CPU@ 3.60 GHZ) and 32.0 GB memory.

5.1 Experimental Protocols
5.1.1 Data Description. We compare our proposed IVGD with the

state-of-the-art methods on nine real-world datasets in the exper-

iments, whose statistics are shown in Table 2. Due to space limit,

their descriptions are outlined in Section D in the Appendix. The

Deezer dataset was only used to evaluate the scalability.

For all datasets except the Memetracker and the Digg, we gener-

ated diffusion cascades based on the following strategy: 10% nodes

were chosen as source nodes randomly, and then the diffusion was

repeated 60 times for each source vector. For each cascade, we have

a source vector x and a diffusion vector YT . For the Memetracker

and Digg, they provided true source vectors and diffusion vectors.

The ratio of the sizes of the training set and the test set was 8:2.

5.1.2 Comparison Methods. For comparison methods, three state-

of-the-art approaches LPSI [53], NetSleuth [40] and GCNSI [16] are

compared with our proposed IVGD, all of which are outlined as

follows:

1. LPSI [53]. LPSI is short for Label Propagation based Source

Identification. It is inspired by the label propagation algorithm in

semi-supervised learning.

2. NetSleuth [40]. The goal of NetSleuth is to employ the Mini-

mum Description Length principle to identify the best set of source

nodes and virus propagation ripple [40].

3. GCNSI [16]. GCNSI is a Graph Convolutional Network (GCN)

based source identification algorithm. It used the LPSI to augment

input, and then applied the GCN for source identification.

5.1.3 Metrics. Five metrics were applied to evaluate the perfor-

mance: the Accuracy (ACC) is the ratio of accurately labeled nodes

to all nodes; the Precision (PR) is the ratio of accurately labeled as

source nodes to all nodes labeled as source; the Recall (RE) defines

the ratio of accurately labeled as source nodes to all true source

nodes; the F-Score (FS) is the harmonic mean of Precision and Re-

call, which is the most important metric for performance evaluation.

This is because the proportion of source nodes is far smaller than

that of other nodes (i.e. label imbalance). Besides, the Area Under

the Receiver operating characteristic curve (AUC) is an important

metric to evaluate a classifier given different thresholds.

(a). Memetracker (b). Digg

Figure 3: ROC curves on two real-world datasets: all compar-
ison methods are surrounded by the proposed IVGD.

5.1.4 Parameter Settings. For the proposed IVGD, the fW (x) was
chosen to be a 2-layer MLP model, where the number of hidden

units was set to 6 for all datasets except Memetracker and Digg [56].

It was set to 100 and 50 for Memetracker and Digg, respectively.

д(ζ )was chosen to be the IC function, the number of validity-aware

layers was set to 10. The error compensation module was a three-

layer MLP model, where the number of neurons was 1,000. α , τ
and ρ were set to 1, 10 and 10

−3
, respectively based on the optimal

training performance. The learning rate of the SGD was set to 10
−3
.

The number of the epoch was set to 100. The equality constraint

we used was ∥x ∥0 = |S |, which means that the number of source

nodes was known in advance. However, it is non-differentiable and

nonconvex. To address this, we relaxed the constraint to a linear

constraint as follows:

∑n
i=1 xi = |S |. This constraint was only used

in the training phase.

For all comparison methods, the α in LPSI and GCNSI was set

to 0.01 and 0.49, respectively, based on the optimal training per-

formance. The GCN in GCNSI was a two-layer architecture, where

the number of hidden neurons was 128. The learning rate in SGD

was set to 10
−3
.

5.2 Performance Evaluation
The test performance of all methods on six datasets is demonstrated

in Table 3. The best performance is highlighted in bold. Overall,

our proposed IVGD outperforms all comparison methods signifi-

cantly on all datasets. Specifically, the ACCs of the proposed IVGD

on six datasets are all above 0.98, and the PRs are also above 0.9.

Most importantly, the FS metric of the proposed IVGD is in the

vicinity of 0.96 on average. This substantiates that our proposed

IVGD algorithm can accurately predict source nodes despite their

scarcity. For comparison methods, the LPSI performs the best fol-

lowed by NetSleuth: the ACCs of the LPSI are 2% higher than those

of NetSleuth, and the PRs are around 10% better. For example, our

proposed IVGD attains 0.99 and 0.95 in the ACC and the PR on the

Power Grid dataset, respectively, while the counterparts of the LPSI

are 0.97 and 0.86, respectively, and the NetSleuth achieves 0.62 and

0.65, respectively. The GCNSI performs poorly on all datasets: its

PRs and FSes are surprisingly low, which are below 0.3. For instance,

the PR and the FS on the Network Science dataset are 0.08 and 0.03,

respectively. This is because it cannot differentiate source nodes

from others, and its predictions are in the vicinity of the threshold.

This demonstrates that the GCNSI cannot draw a clear decision

boundary.

Aside from simulations, we also evaluate our proposed IVGD on
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Karate Dolphins

Method ACC PR RE FS ACC PR RE FS

LPSI 0.9559 0.6800 1.0000 0.7970 0.9677 0.7790 1.0000 0.8717

NetSleuth 0.9147 0.5371 0.6833 0.5965 0.9306 0.6454 0.7425 0.6904

GCNSI 0.7088 0.1150 0.2667 0.1581 0.6177 0.1015 0.2548 0.1372

IVGD(ours) 0.9853 0.8717 1.0000 0.9213 0.9935 0.9444 1.0000 0.9701
Network Science Cora-ML

Method ACC PR RE FS ACC PR RE FS

LPSI 0.9831 0.8525 1.0000 0.9202 0.9011 0.5067 0.9993 0.6724

NetSleuth 0.9595 0.7642 0.8429 0.8016 0.8229 0.1627 0.1793 0.1706

GCNSI 0.8840 0.0582 0.0135 0.0218 0.8580 0.0970 0.0478 0.0637

IVGD(ours) 0.9946 0.9476 1.0000 0.9730 0.9973 0.9744 1.0000 0.9870
Jazz Power Grid

Method ACC PR RE FS ACC PR RE FS

LPSI 0.9035 0.6074 0.9944 0.7371 0.9673 0.7584 1.0000 0.8624

NetSleuth 0.9222 0.5904 0.6629 0.6245 0.9276 0.6347 0.6986 0.6651

GCNSI 0.7525 0.0685 0.1280 0.0849 0.7125 0.1022 0.2285 0.1410

IVGD(ours) 0.9980 0.9802 1.0000 0.9899 0.9902 0.9133 1.0000 0.9546

Table 3: Test performance of simulations on six datasets: the proposed IVGD dominates in all methods on six datasets.

Karate Dolphins

Method ACC PR RE FS ACC PR RE FS

IVGD(1) 0.9618 0.7167 1.0000 0.8248 0.9694 0.7873 1.0000 0.8774

IVGD(2) 0.9882 0.8967 1.0000 0.9356 0.9726 0.8070 1.0000 0.8904

IVGD(3) 0.9500 0.6583 1.0000 0.7824 0.9613 0.7519 1.0000 0.8517

IVGD 0.9853 0.8717 1.0000 0.9213 0.9935 0.9444 1.0000 0.9701
Network Science Cora-ML

Method ACC PR RE FS ACC PR RE FS

IVGD(1) 0.9859 0.8736 1.0000 0.9324 0.8712 0.4411 1.0000 0.6121

IVGD(2) 0.9867 0.8799 1.0000 0.9360 0.9959 0.9617 1.0000 0.9805

IVGD(3) 0.9812 0.8383 1.0000 0.9119 0.9850 0.8717 1.0000 0.9314

IVGD 0.9946 0.9476 1.0000 0.9730 0.9973 0.9744 1.0000 0.9870
Jazz Power Grid

Method ACC PR RE FS ACC PR RE FS

IVGD(1) 0.9586 0.7092 1.0000 0.8266 0.9729 0.7916 1.0000 0.8835

IVGD(2) 0.9904 0.9123 1.0000 0.9528 0.9881 0.8967 1.0000 0.9455

IVGD(3) 0.9646 0.7394 1.0000 0.8473 0.9631 0.7358 1.0000 0.8475

IVGD 0.9980 0.9802 1.0000 0.9899 0.9902 0.9133 1.0000 0.9546

Table 4: Ablation studies on simulations of six test datasets:
all components in our model contribute to the outstanding
performance.
two real-world datasets, as shown in Figure 3. X-axis and Y-axis

represent the true positive rate and the false positive rate, respec-

tively. Similarly as Table 3, our proposed IVGD also outperforms

others significantly on the ROC curves: all comparison methods are

surrounded by our proposed IVGD. Specifically, the AUCs of our

proposed IVGD are above 0.6 on the Memetracker and the Digg

datasets, whereas these of all other methods are either around 0.5

or below 0.5. The LPSI outperforms the GCNSI by about 20% on

the Memetracker, while it performs worse on the Digg by 10%.

5.3 Ablation Studies
One important question to our proposed IVGD is whether all com-

ponents in our model are necessary. To investigate this, we test our

performance on six datasets, when some components are removed.

For the sake of simplicity, IVGD(1) means that the invertible graph

residual net was removed, IVGD(2) means that the error compensa-

tion module was removed, and IVGD(3) means that validity-aware

layers were removed. The results on six datasets are demonstrated

in Table 4. Overall, the performance will degrade if any component

of our proposed IVGD is removed. Without the invertible graph

residual net, the performance on the Cora-ML dataset drops signifi-

cantly from 99.7% to 87% in the ACC, and the PR has declined by

more than 50%. The FS on the Power Grid has demonstrated a 7%

drop due to the same reason. Validity-aware layers provide a giant

leap on FS when we compare IVGD(3) with IVGD. The performance

(a). Hidden units VS FS. (b). Layers VS FS. (c). Hidden units VS ACC.

(d). Layers VS ACC.(e). Hidden units VS PR. (f). Layers VS PR.

Figure 4: The impacts of two factors on the FS, ACC and PR:
more hidden units and layers lead to better performance.

of the FS has been enhanced by 5% − 14%. For example, the FS on

the Power Grid dataset soars from 0.848 to 0.955. The same pattern

is applied to the Karate and the Dolphins datasets. This suggests

that integrating validity patterns into the model significantly im-

proves model performance. The error compensation module plays

a less important role than the invertible graph residual net and

validity-aware layers. Specifically, the performance drop without

it is slim compared with other components. For example, the drop

of the ACC on the Jazz dataset is less than 1%. Moreover, the ACC

on the Karate dataset even increases slightly. But the effect of the

error compensation module is still positive overall.

5.4 Sensitivity Analysis
Next, it is crucial to investigate how parameter settings affect perfor-

mance. In this section, we explore two factors: the number of hidden

units in the compensationmodule and the number of validity-aware

layers. The number of epochs was set to 10. For the hidden units, we

changed the number from 100 to 1, 000; for the layers, the number

ranged from 1 to 10. The impacts on FS, ACC, and PR are shown

in Figure 4. Overall, the performance increases smoothly with the

increase of hidden units and layers. For example, the FS on the

Network Science dataset increases by 2% when hidden units are

changed from 100 to 1, 000; it climbs by 4% when the layers ranged

from 1 to 10. However, there is an exception: the FS fluctuates on

the Cora-ML dataset. The amplitudes are about 10% and 30% for

hidden units and layers, respectively. Despite the fluctuation, the
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(a) LPSI (b) NetSleuth (c) GCNSI (d) IVGD (e) True Sources

(f) LPSI (g) NetSleuth (h) GCNSI (i) IVGD (j) True Sources

Figure 5: Visualizations of two datasets for all methods and true source patterns. Figures 5a - 5e are visualizations of Karate,
and Figures 5f - 5j are visualizations of Dolphins. Sources nodes and other nodes are marked with red and green, respectively.

Method Karate Dolphins Jazz Network Cora-ML Power Deezer

Science Grid

LPSI 0.26 0.27 0.76 52.83 240.88 899.45 94541.13

NetSleuth 0.33 0.48 1.95 32.96 645.04 1260.68 114425.32

GCNSI 1.55 34.62 125.59 283.62 776.70 2324.53 174923.31

IVGD(ours) 5.37 6.45 9.78 23.95 92.68 177.32 46832

Table 5: The running time (seconds) on simulations of seven
datasets: our proposed IVGD runs themost efficiently on the
large-scale networks.

lowest FSes achieved by 800 hidden units and seven layers are still

better than all comparison methods, as shown in Table 3.

5.5 Scalability Analysis
To test the efficiency and scalability of our proposed IVGD, we

compared the running time of IVGD with all comparison methods

on seven datasets, which is shown in Table 5. The best running time

is highlighted in bold. In general, we proposed IVGD runs the most

efficiently on large-scale networks such as Deezer, which consists

of about 5, 0000 nodes. Specifically, it consumes about half a day

to finish training, while all comparison methods at least double.

The same trend holds in other large networks such as Cora-ML and

Power Grid. The LPSI takes the least time on small networks such

as Karate and Dolphins. The GCNSI is the slowest method on most

datasets. For example, it consumes around 2 minutes on the small

Jazz dataset, while all other methods take less than 10 seconds. It

takes 2 days on the Deezer dataset, whereas the LPSI only requires

half of that time.

5.6 Invertibility Analysis
For the invertibility, one may raise a concern on whether it impairs

the performance of graph diffusion models. To investigate this ques-

tion, we compare the performance of the GNN model θ and the

proposed Invertible Graph Residual Net (IGRN) P on eight datasets.

The DeepIS [56] was chosen as the GNN model, and the IGRN was

implemented based on the DeepIS. The Mean Square Error (MSE)

and the Mean Absolute Error (MAE) were used to assess the perfor-

mance. Table 6 illustrates the performance of two graph diffusion

models. In summary, they perform similarly on two metrics across

Karate Dolphins Jazz Network Science

MSE MAE MSE MAE MSE MAE MSE MAE

GNN 0.0287 0.0773 0.0270 0.1063 0.0575 0.1731 0.0199 0.0743

IGRN 0.0311 0.1010 0.0258 0.0794 0.0514 0.1867 0.0156 0.0643
Cora-ML Power Grid Memetracker Digg

MSE MAE MSE MAE MSE MAE MSE MAE

GNN 0.0017 0.0282 0.0221 0.0633 0.0273 0.0322 0.0198 0.0265

IGRN 0.0041 0.0488 0.0247 0.0758 0.0236 0.0311 0.0165 0.0203

Table 6: The effect of invertibility on graph diffusionmodels:
it plays a negligible role.

different datasets. Specifically, the GNN achieves a better perfor-

mance on the Karate, Dolphins, Cora-ML, and Power Grid datasets,

whereas the IGRN stands out on the Dolphins, Network Science,

Memetracker, and Digg datasets. The largest gap comes from the

MAE on the Karate dataset, where the GNN outperforms IGRN by

0.02.

5.7 Visualization
Finally, we demonstrate the effectiveness of our proposed IVGD

by visualizing two small datasets Karate and Dolphin in Figure

5. Red nodes and green nodes represent source nodes and other

nodes, respectively. Specifically, our proposed IVGD perfectly pre-

dicts all sources on two datasets, and the LPSI and the NetSleuth

also achieve similar source patterns as the ground truth: they only

misclassify several source nodes. The GCNSI, however, misses most

of the source nodes. This is because it suffers from class imbalance

problems, and tends to classify none of all nodes as a source node.

This is consistent with test performance shown in Table 3.

6 CONCLUSION
Graph source localization is an important yet challenging prob-

lem in graph mining. In this paper, we propose a novel Invertible

Validity-aware Graph Diffusion (IVGD) to address this problem

from the perspective of the inverse problem. Firstly, we propose an

invertible graph residual net by restricting its Lipschitz constant

with guarantees. Moreover, we present an error compensation mod-

ule to reduce the introduced errors with skip connection. Finally,

we utilize the unrolled optimization technique to impose validity

constraints on the model. A linearization technique is used to trans-

form problems into solvable forms. We provide the convergence of

1065



An Invertible Graph Diffusion Neural Network for Source Localization WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

the proposed IVGD to a feasible solution. Extensive experiments

on nine real-world datasets have demonstrated the effectiveness,

robustness, and efficiency of our proposed IVGD.
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Appendix

A THE PROOF OF LEMMA 4.2
Proof. On one hand, for any x

′
, x
′′
, we have

∥P (x
′′
) − P (x

′
) ∥ = ∥G(FW (x

′′
)) −G(FW (x

′
)) ∥ = ∥

д(FW (x
′′
)) + FW (x

′′
)

2

−
д(FW (x

′
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′
)

2

∥

≤
1
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′′
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′
)) ∥ +
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2

∥FW (x
′′
) − FW (x

′
) ∥ (triangle inequality)

≤
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2
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′′
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′
) ∥ (Lipschitz constant of д)
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Lд + 1
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′′
) + x

′′
− fW (x

′
) − x

′
∥

≤
Lд + 1

4
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′′
) − fW (x

′
) ∥ + ∥x

′′
− x

′
∥) (triangle inequality)

≤
(Lf + 1)(Lд + 1)

4

∥x
′′
− x

′
∥ (Lipschitz constant of fw ).

This suggests that LP ≤
(Lf +1)(Lд+1)
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Let y
′
= P (x

′
), y

′′
= P (x

′′
), so x

′
= P−1(y

′
), x

′′
= P−1(y

′′
). This leads to ∥P−1(y

′′
) − P−1(y

′
) ∥ ≤ 4

(1−Lf )(1−Lд )
∥y
′′
− y

′
∥ . This suggests that LP−1 ≤

4

(1−Lf )(1−Lд )
, and it concludes the proof. □

B THE PROOF OF LEMMA 4.3
Proof. The optimality condition of xk+1 leads to ∇J k (xk+1)+AT λk + ρkAT (Axk −b)+ αk (xk+1 − xk ) = 0. We plug in λk+1 = λk + ρk (Axk+1 −b)

and arrange to obtain

∇J k (xk+1) + AT λk+1 − ρkATA(xk+1 − xk ) + αk (xk+1 − xk ) = 0. (6)

That is ∇J k (xk+1) = −AT λk+1 + ρkATA(xk+1 − xk ) − αk (xk+1 − xk ). Also the optimality condition of xk∗ results in ∇J k (xk∗ ) + A
T λk∗ = 0, due to the

convexity of J k (x ), we have

J k (xk+1) ≥ J k (xk∗ ) + (−A
T λk∗ )

T (xk+1 − xk∗ ). (7)

J k (xk∗ ) ≥ J k (xk+1) + (−AT λk+1 + ρkATA(xk+1 − xk ) − αk (xk+1 − xk ))T (xk∗ − x
k+1). (8)

We sum Inequalities (7) and (8) to obtain (AT λk+1 − AT λk∗ − ρ
kATA(xk+1 − xk ) + αk (xk+1 − xk ))T (xk∗ − x

k+1) ≥ 0. After rearranging terms, we have

(λk+1 − λk∗ )
TA(xk∗ − x

k+1) + αk (xk − xk+1)T (xk+1 − xk∗ ) ≥ ρk (xk+1 − xk )TATA(xk∗ − x
k+1).

Using the facts that Axk+1 − Axk∗ = (Ax
k+1 − b) − (Axk∗ − b) = Ax

k+1 − b = 1

ρk
(λk+1 − λk ), and aT b = abT (a and b are two vectors), we have

1

ρk
(λk − λk+1)T (λk+1 − λk∗ ) + α

k (xk − xk+1)T (xk+1 − xk∗ ) ≥ (x
k+1 − xk )TAT (λk − λk+1).

□

C PROOF OF THEOREM 4.4
Proof. We denote uk = (λk , xk ), uk+1 = (λk+1, xk+1), and uk∗ = (λ

k
∗ , x

k
∗ ). Using the notation defined in Equation (5), we have

⟨uk − uk+1, uk+1 − uk∗ ⟩Mk ≥ (xk+1 − xk )TAT (λk − λk+1).

Because uk+1 − uk∗ = u
k+1 − uk + uk − uk∗ , it follows that

⟨uk − uk+1, uk − uk∗ ⟩Mk ≥ ∥uk+1 − uk ∥2Mk + (x
k+1 − xk )TAT (λk − λk+1). (9)
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It holds that

∥uk − uk∗ ∥
2
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2
− 2(A(xk+1 − xk ))T (λk+1 − λk )

≥
1

ρk
∥xk+1 − xk ∥2

2
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2
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where r (ATA) is the spectral radius of ATA)
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δk r (ATA)

αk
∥xk+1 − xk ∥2

2
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2

≥ µk ∥uk+1 − uk ∥2
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where µk = min(
ρk δk r (AT A)

αk
, δk

1+δk
) Because (Ck , ρk , τ k , αk ) guarantees that ∥uk+1 − uk+1∗ ∥2

Mk+1 ≤ ∥u
k+1 − uk∗ ∥

2

Mk , then we have

∥uk − uk∗ ∥
2

Mk ≥ ∥u
k+1 − uk∗ ∥

2

Mk + µ
k ∥uk+1 − uk ∥2

Mk ≥ ∥u
k+1 − uk+1∗ ∥2

Mk+1 + µ
k ∥uk+1 − uk ∥2

Mk . (10)

(a). We sum Inequality (10) from k = 0 to k = K to obtain∑K

k=0
µk ∥uk+1 − uk ∥2

Mk ≤ ∥u
0 − u0

∗ ∥
2

M0
.

Let K →∞, we have limk→∞ µk ∥uk+1 − uk ∥2
Mk = 0. Because µk > 0, we have limk→∞ ∥uk+1 − uk ∥2Mk = 0.

(b). From Inequality (10), ∥uk − uk∗ ∥
2

Mk is nonincreasing, and ∥uk − uk∗ ∥
2

Mk > 0 has a lower bound. Therefore, ∥uk − uk∗ ∥
2

Mk is convergent.

(c). From (a) we know that limk→∞ ∥uk+1−uk ∥2Mk = 0. That is limk→∞
1

ρk
∥xk+1−xk ∥2

2
+αk ∥λk+1−λk ∥2

2
= 0. Because αk ≥ D1 > 0 and ρk ≤ D4 < ∞,

we have limk→∞ xk+1 − xk = 0 and limk→∞ λk+1 − λk = 0. Because λk+1 = λk + ρk (Axk+1 − b) and ρk ≥ D3 > 0, then limk→∞ Axk+1 − b = 0.

We take the limit on both sides of Equation (6) to obtain

limk→∞ ∇J
k (xk+1) + AT λk+1 − ρkATA(xk+1 − xk ) + αk (xk+1 − xk ) = 0.

Because ρk and αk are bounded, and limk→∞ xk+1 − xk = 0, we have limk→∞ ∇J k (xk+1) + AT λk+1 = 0. In summary, we prove that uk+1 is a feasible
solution to Equation (4). □

D DESCRIPTIONS OF ALL DATASETS
All datasets are outlined below:

1. Karate [35]. Karate contains the social ties among the members of a university karate club.

2. Dolphins [35]. Dolphins is a social network of bottlenose dolphins, where edges represent frequent associations between dolphins.

3. Jazz [19]. Jazz is a collaboration network between Jazz musicians. Each edge represents that two musicians have played together in a band.

4. Network Science [38]. Network Science is a coauthorship network of scientists working on network theory and experiment. Each edge represents two

scientists who have co-authored a paper.

5. Cora-ML [36]. Cora-ML is a portal network of computer science research papers crawled by machine learning techniques.

6. Power Grid [54]. Power Grid is a topology network of the Western States Power Grid of the United States.

7. Memetracker [33]. The Memetracker keeps track of frequently used phrases on news social media.

8. Digg [23]. Digg is a reply network of the social news.

9. Deezer [42]. Deezer is an online music streaming service. We used all nodes from Hungary.
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