
Neurocomputing 487 (2022) 130–143
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
Accelerated Gradient-free Neural Network Training by Multi-convex
Alternating Optimization
https://doi.org/10.1016/j.neucom.2022.02.039
0925-2312/� 2022 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: jwan936@emory.edu (J. Wang), lihongyi@stu.xidian.edu.cn (H.

Li), lzhao41@emory.edu (L. Zhao).
Junxiang Wang a, Hongyi Li b, Liang Zhao a,⇑
a Emory University, 201 Dowman Dr, Atlanta, GA 30322, USA
b The State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an, Shannxi 710071, China

a r t i c l e i n f o
Article history:
Received 26 September 2021
Revised 20 December 2021
Accepted 11 February 2022
Available online 25 February 2022

Keywords:
Deep learning
Alternating minimization
Nesterov acceleration
Linear convergence
a b s t r a c t

In recent years, even though Stochastic Gradient Descent (SGD) and its variants are well-known for train-
ing neural networks, it suffers from limitations such as the lack of theoretical guarantees, vanishing gra-
dients, and excessive sensitivity to input. To overcome these drawbacks, alternating minimization
methods have attracted fast-increasing attention recently. As an emerging and open domain, however,
several new challenges need to be addressed, including 1) Convergence properties are sensitive to pen-
alty parameters, and 2) Slow theoretical convergence rate. We, therefore, propose a novel monotonous
Deep Learning Alternating Minimization (mDLAM) algorithm to deal with these two challenges. Our
innovative inequality-constrained formulation infinitely approximates the original problem with non-
convex equality constraints, enabling our convergence proof of the proposed mDLAM algorithm regard-
less of the choice of hyperparameters. Our mDLAM algorithm is shown to achieve a fast linear conver-
gence by the Nesterov acceleration technique. Extensive experiments on multiple benchmark datasets
demonstrate the convergence, effectiveness, and efficiency of the proposed mDLAM algorithm.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

Stochastic Gradient Descent (SGD) and its variants have become
popular optimization methods for training deep neural networks.
Many variants of SGD methods have been presented, including
SGD momentum [25], AdaGrad [8], RMSProp [28], Adam [12] and
AMSGrad [19].While many researchers have provided solid theo-
retical guarantees on the convergence of SGD [12,19,25], the
assumptions of their proofs cannot be applied to problems involv-
ing deep neural networks, which are highly nonsmooth and non-
convex. Aside from the lack of theoretical guarantees, several
additional drawbacks restrict the applications of SGD. It suffers
from the gradient vanishing problem, meaning that the error signal
diminishes as the gradient is backpropagated, which prevents the
neural networks from utilizing further training [27], and the gradi-
ent of the activation function is highly sensitive to the input (i.e.
poor conditioning), so a small change in the input can lead to a dra-
matic change in the gradient.

To tackle these intrinsic drawbacks of gradient descent opti-
mization methods, alternating minimization methods have started
to attract attention as a potential way to solve deep learning prob-
lems. A neural network problem is reformulated as a nested func-
tion associated with multiple linear and nonlinear transformations
across multi-layers. This nested structure is then decomposed into
a series of linear and nonlinear equality constraints by introducing
auxiliary variables and penalty hyperparameters. The linear and
nonlinear equality constraints generate multiple subproblems,
which can be minimized alternately. Many recent alternating min-
imization methods have focused on applying the Alternating Direc-
tion Method of Multipliers (ADMM) [27,31], Block Coordinate
Descent (BCD) [37] and Method of Auxiliary Coordinates (MAC)
[4] to replace a nested neural network with a constrained problem
without nesting, with empirical evaluations demonstrating good
scalability in terms of the number of layers and high accuracy on
the test sets. These methods also avoid gradient vanishing prob-
lems and allow for non-differentiable activation functions such
as binarized neural networks [7], as well as allowing for complex
non-smooth regularization and the constraints that are increas-
ingly important for deep neural architectures that are required to
satisfy practical requirements such as interpretability, energy-
efficiency, and cost awareness [4]. The ADMM, as a representative
of alternating minimization methods, has been explored extensively
for different neural network architectures. It was first used to
solve the Multi-Layer Perceptron (MLP) problem with convergence

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2022.02.039&domain=pdf
https://doi.org/10.1016/j.neucom.2022.02.039
mailto:jwan936@emory.edu
mailto:lihongyi@stu.xidian.edu.cn
mailto:lzhao41@emory.edu
https://doi.org/10.1016/j.neucom.2022.02.039
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom

J. Wang, H. Li and L. Zhao Neurocomputing 487 (2022) 130–143
guarantees [27,31], and then was extended to other architectures
such as Recurrent Neural Network (RNN) [26]. Recently, it was
utilized to achieve parallel neural network training [29,30].

However, as an emerging domain, alternating minimization for
deep model optimization suffers from several unsolved challenges
including 1. Convergence properties are sensitive to penalty
parameters. One recent work byWang et al. firstly proved the con-
vergence guarantee of ADMM in the MLP problem [31]. However,
such convergence guarantee is dependent on the choice of penalty
hyperparameters: the convergence cannot be guaranteed anymore
when penalty hyperparameters are small; 2. Slow convergence
rate. To the best of our knowledge, almost all existing alternating
minimization methods can only achieve a sublinear convergence
rate. For example, The convergence rate of the ADMM and the
BCD is proven to be O 1=kð Þ, where k is the number of iterations
[31,37]. Therefore, there is still a lack of a theoretical framework
that can achieve a faster convergence rate.

To simultaneously address these technical problems, we pro-
pose a new formulation of the neural network problem, along with
a novel monotonous Deep Learning Alternating Minimization
(mDLAM) algorithm. Specifically, we, for the first time, transform
the original neural network optimization problem into an
inequality-constrained problem that can infinitely approximate
the original one. Applying this innovation to an inequality-
constraint-based transformation not only ensures the convexity
and hence easily ensures global minima of all subproblems, but
also prevents the output of a nonlinear function from changing
much and reduces sensitivity to the input. Moreover, our proposed
mDLAM algorithm can achieve a linear convergence rate theoreti-
cally, and the choice of hyperparameters does not affect the con-
vergence of our mDLAM algorithm theoretically. Extensive
experiments on four benchmark datasets show the convergence,
effectiveness, and efficiency of the proposed mDLAM algorithm.
Our contributions in this paper include:

� We propose a novel formulation for neural network optimiza-
tion. The deeply nested activation functions are disentangled
into separate functions innovatively coordinated by inherently
convex inequality constraints.
� We present an efficient optimization algorithm. A quadratic
approximation technique is utilized to avoid matrix inversion.
Every subproblem has a closed-form solution. The Nesterov
acceleration technique is applied to further boost convergence.
� We investigate the convergence of the proposed mDLAM algo-
rithm under mild conditions. The new mDLAM algorithm is
guaranteed to converge to a stationary point no matter what
hyperparameters we choose. Furthermore, the proposed
mDLAM algorithm is shown to achieve a linear convergence
rate, which is faster than existing methods.
� Extensive experiments have been conducted to demonstrate the
effectiveness of the proposed mDLAM algorithm. We test our
proposed mDLAM algorithm on four benchmark datasets.
Experimental results illustrate that our proposed mDLAM algo-
rithm is linearly convergent on four datasets, and outperforms
consistently state-of-the-art optimizers. Sensitivity analysis on
the running time shows that it increases linearly with the
increase of hidden units and hyperparameters.

The rest of this paper is organized as follows: In Section 2, we
summarize recent related research work to this paper. In Section 3,
we formulate the MLP training problem and present the proposed
mDLAM algorithm to train the MLP model. Section 4 details the
convergence properties of the proposed mDLAM algorithm. Exten-
sive experiments on benchmark datasets are shown in Section 5,
and Section 6 concludes this work.
131
2. Related work

All existing works on deep learning optimization methods fall
into two major categories: SGD methods and alternating mini-
mization methods, which are shown as follows:

SGD methods: The renaissance of SGD can be traced back to
1951 when Robbins and Monro published the first paper [20].
The famous back-propagation algorithmwas introduced by Rumel-
hart et al. [22]. Many variants of SGDmethods have since been pre-
sented, including the use of Polyak momentum, which accelerates
the convergence of iterative methods [17], and research by Sutsk-
ever et al., who highlighted the importance of Nesterov momen-
tum and initialization [25]. During the last decade, many well-
known SGD methods which are incorporated with adaptive learn-
ing rates have been proposed by the deep learning community,
which include but are not limited to AdaGrad [8], RMSProp [28],
Adam [12], AMSGrad [19], Adabelief [41] and Adabound [15].

Applications of alternating minimization methods for deep
learning: Many recent works have applied alternating minimiza-
tion algorithms to specific deep learning applications. For example,
Taylor et al. and Wang et al. presented the ADMM to solve an MLP
training problem via transforming it into an equality-constrained
problem, where many subproblems split by ADMM can be solved
efficiently [27,31], Wang et al. proposed a parallel ADMM algo-
rithm to train deep MLP models [29], and a similar algorithm
was extended to Graph Augmented-MLP (GA-MLP) models with
the introduction of the quantization technique [30]. Zhang et al.
handled Very Deep Supervised Hashing (VDSH) problems by utiliz-
ing an ADMM algorithm to overcome issues related to vanishing
gradients and poor computational efficiency [40]. Zhang and Basti-
aan trained a deep neural network by utilizing ADMMwith a graph
[38] and Askari et al. introduced a new framework for MLP models
and optimize the objective using BCD methods [1]. Li et al. pro-
posed an ADMM algorithm to achieve distributed learning of
Graph Convolutional Network (GCN) via community detection
[14]. Qiao et al. proposed an inertial proximal alternating mini-
mization to train MLP models [18].

Convergence of alternating minimization methods for deep
learning: Aside from applications, the other branch of works math-
ematically proves the convergence of the proposed alternating
minimization approaches. For instance, Carreira and Wang pro-
posed a method involving the use of auxiliary coordinates to
replace a nested neural network with a constrained problem with-
out nesting [4]. Lau et al. proposed a BCD optimization framework
and proved the convergence via the Kurdyka-Lojasiewicz (KL)
property [13], while Choromanska et al. proposed a BCD algorithm
for training deep MLPmodels based on the concept of co-activation
memory [6], and a BCD algorithm with R-linear convergence was
proposed by Zhang and Brand to train Tikhonov regularized deep
neural networks [39]. Jagatap and Hegde introduced a new family
of alternating minimization methods and prove their convergence
to a global minimum [11]. Yu et al. proved the convergence of the
proposed ADMM for RNN models [26]. However, to the best of our
knowledge, there is a lack of a flexible framework which allows for
different activation functions and guarantees a linear convergence
rate.
3. Model and algorithms

3.1. Inequality approximation for deep learning

Important notations used in this paper are shown in Table 1. A
typical MLP model consists of L layers, each of which are defined by
a linear mapping and a nonlinear activation function. A linear map-

Table 1
Notations used in this paper.

Notations Descriptions

L Number of layers.
Wl The weight vector in the l-th layer.
zl The output of the linear mapping in the l-th layer.

hl zlð Þ The nonlinear activation function in the l-th layer.
al The output of the l-th layer.
x The input matrix of the neural network.
y The predefined label vector.

R zL; yð Þ The loss function in the L-th layer.
Xl Wlð Þ The regularization term in the l-th layer.

e The tolerance of the nonlinear mapping.

J. Wang, H. Li and L. Zhao Neurocomputing 487 (2022) 130–143
ping is composed of a weight vector Wl 2 Rnl�nl�1 , where nl is the
number of neurons on the l-th layer; a nonlinear mapping is
defined by a continuous activation function hl �ð Þ. Given an input
al�1 2 Rnl�1 from the l� 1ð Þ-th layer, the l-th layer outputs
al ¼ hl Wlal�1ð Þ. By introducing an auxiliary variable zl as the output
of the linear mapping, the neural network problem is formulated
mathematically as follows:

Problem 1.

min
al ;Wl ;zl

R zL; yð Þ þPL
l¼1

Xl Wlð Þ;

s:t: zl ¼Wlal�1 l ¼ 1; � � � ; Lð Þ; al ¼ hl zlð Þ l ¼ 1; � � � ; L� 1ð Þ;
where a0 ¼ x 2 Rd is the input of the neural network, d is the num-
ber of feature dimensions, and y is a predefined label vector.
R zL; yð ÞP 0 is a continuous loss function for the L-th layer, which
is convex and proper, and Xl Wlð ÞP 0 is a regularization term on
the l-th layer, which is also continuous, convex and proper.

The equality constraint al ¼ hl zlð Þ is the most challenging one to
handle here because common activation functions such as sigmoid
are nonlinear. This makes them nonconvex constraints and hence
it is difficult to obtain the optimal solution when solving the zl-
subproblem [27]. Moreover, there is no guarantee for alternating
minimization methods to solve the nonlinear equality constrained
Problem 1 [32]. To deal with these two challenges, the following
assumption is required for problem transformation:

Assumption 1. hl zlð Þ l ¼ 1; . . . ;nð Þ are quasilinear.

The quasilinearity is defined in the appendix. Assumption 1 is
so mild that most of the widely used nonlinear activation functions
satisfy it, including tanh [35], smooth sigmoid [10], and the Recti-
fied Linear Unit (ReLU) [16]. Then we innovatively transform the
original nonconvex constraints into inequality constraints, which
can be an infinite approximation of Problem 1. To do this, we intro-
duce a tolerance e > 0 and reformulate Problem 1 to the following:

min
Wl ;zl ;al

R zL; yð Þ þPL
l¼1

Xl Wlð Þ

s:t: zl ¼Wlal�1 l ¼ 1; � � � ; Lð Þ; hl zlð Þ � e 6 al
6 hl zlð Þ þ e l ¼ 1; � � � ; L� 1ð Þ:

For the linear constraint zl ¼Wlal�1, this can be transformed into a
penalty term in the objective function to minimize the difference
between zl and Wlal�1. The formulation is shown as follows:

Problem 2.

min
Wl ;zl ;al

F W; z;að Þ ¼ R zL; yð Þ þPL
l¼1

Xl Wlð Þ þPL
l¼1

/ al�1;Wl; zlð Þ

s:t: hl zlð Þ � e 6 al 6 hl zlð Þ þ e l ¼ 1; � � � ; L� 1ð Þ:

132
The penalty term is defined as / al�1;Wl; zlð Þ ¼ q
2 kzl �Wlal�1k22,

where q > 0 a penalty parameter. W ¼ Wlf gLl¼1; z ¼ zlf gLl¼1;
a ¼ alf gL�1l¼1 . As q!1 and e! 0, Problem 2 approaches Problem 1.

The introduction of e is to project the nonconvex constraints
to e-balls, thus transforming the nonconvex Problem 1 into Prob-
lem 2. Even though Problem 2 is still nonconvex because hl zlð Þ
can be nonconvex (e.g. tanh and smooth sigmoid), it is convex
with regard to one variable when others are fixed (i.e. multi-
convex), which is much easier to solve by alternating minimiza-
tion [34]. For example, Problem 2 is convex with regard to z
when W, and a are fixed.

Algorithm1: the proposed mDLAM algorithm

Input: y; a0 ¼ x. Output: al;Wl; zl l ¼ 1; � � � ; Lð Þ.
1: Initialize q; k ¼ 0. s0 ¼ 0. 2: repeat

3: skþ1
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4 skð Þ2

q
2

4: xk sk�1
skþ1

5: forl ¼ 1 to Ldo

6: Wkþ1
l Wk

l þ Wk
l �Wk�1

l

� �
xk and update Wkþ1

l in Eq.

(3).

7: if F Wkþ1
6l ; zkþ16l�1; a

kþ1
6l�1

� �
P F Wkþ1

6l�1; z
kþ1
6l�1; a

kþ1
6l�1

� �
#Wkþ1

l increases the objective F then

8: Wkþ1
l Wk

l and update Wkþ1
l in Eq. (3).

9: end if
10: zkþ1l zkl þ zkl � zk�1l

� �
xk

11: if l ¼ L then
12: Update zkþ1L in Eq. (5).

13: if F Wkþ1
6L ; zkþ16L ; akþ16L�1

� �
P F Wkþ1

6L ; zkþ16L�1; a
kþ1
6L�1

� �
#zkþ1L increases the objective F then

14: zkþ1L zkL and update zkþ1L in Eq. (5).
15: end if
16: else
17: Update zkþ1l in Eq. (4).

18: if F Wkþ1
6l ; zkþ16l ; akþ16l�1

� �
P F Wkþ1

6l ; zkþ16l�1; a
kþ1
6l�1

� �
#zkþ1l increases the objective F then

19: zkþ1l zkl and update zkþ1l in Eq. (4).
20: end if
21: akþ1l akl þ akl � ak�1l

� �
xk and update akþ1l in Eq.

(6).

22: if F Wkþ1
6l ; zkþ16l ; akþ16l

� �
P F Wkþ1

6l ; zkþ16l ; akþ16l�1
� �

#akþ1l increases the objective F then

23: akþ1l akl and update akþ1l in Eq. (6).
24: end if
25: end if
26: end for
27: k kþ 1.
28: until convergence.
29: Output al;Wl; zl.
3.2. Alternating optimization

We present the mDLAM algorithm to solve Problem 2 in this
section. A potential challenge to solve Problem 2 is a slow theoret-
ical convergence rate. For example, the convergence rate of the

J. Wang, H. Li and L. Zhao Neurocomputing 487 (2022) 130–143
dlADMM algorithm to solve Problem 2 is sublinear o 1=kð Þ, where k
is the number of iterations [31]. In order to address this challenge,
we apply the famous Nesterov acceleration technique to boost the
convergence of our proposed mDLAM algorithm, and we prove its
linear convergence theoretically in the next section.

Algorithm1 shows our proposed mDLAM algorithm. To simplify

the notation, Wkþ1
6l ¼ Wkþ1

i

n ol

i¼1
; Wk

i

n oL

i¼lþ1

� �
; zkþ16l ¼ zkþ1i

	
l
i¼1;

n
zki
	
L

i¼lþ1g and akþ1
6l ¼ akþ1

i

	
l
i¼1; ak

i

	
L�1
i¼lþ1

n o
. In Algorithm1, Lines

6, 10, and 21 apply the Nestrov acceleration technique and update
Wl; zl and al, respectively. the proposed mDLAM algorithm guaran-

tees the decrease of objective F: for example, if the updatedWkþ1
l in

Line 7 of Algorithm1 increases the value of F, i.e.

F Wkþ1
6l ; zkþ16l�1; a

kþ1
6l�1

� �
P F Wkþ1

6l�1; z
kþ1
6l�1; a

kþ1
6l�1

� �
, then Wkþ1

l is updated

again by setting Wkþ1
l ¼Wk

l in Line 8 of Algorithm1, which ensures
the decline of F. The same procedure is applied in Lines 13–15,
Lines 18–20, and Lines 22–24 in Algorithm1, respectively.

Next, all subproblems are shown as follows:
1. Update Wl

The variables Wl l ¼ 1; � � � ; Lð Þ are updated as follows:

Wkþ1
l argmin

Wl

/ akþ1l�1 ;Wl; zkl
� �þXl Wlð Þ: ð1Þ

Because Wl and al�1 are coupled in / �ð Þ, solving Wl requires an
inversion operation of akþ1

l�1 , which is computationally expensive.
Motivated by the dlADMM algorithm [31], we define

Pkþ1
l Wl; h

kþ1
l

� �
as a quadratic approximation of / at Wk

l as follows:

Pkþ1
l Wl; h

kþ1
l

� �
¼/ akþ1

l�1 ;W
kþ1
l ; zkl

� �
þ r

W
kþ1
l

/
� �T

Wl �W
kþ1
l

� �
þ hkþ1l

2
kWl �W

kþ1
l k22;

where hkþ1l > 0 is a scalar parameter, which can be chosen by the
backtracking algorithm [31] to meet the following condition

Pkþ1
l Wkþ1

l ; hkþ1l

� �
P / akþ1l�1 ;W

kþ1
l ; zkl

� �
: ð2Þ

Rather than minimizing Eq. (1), we instead minimize the following:

Wkþ1
l argmin

Wl

Pkþ1
l Wl; h

kþ1
l

� �
þXl Wlð Þ: ð3Þ

For Xl Wlð Þ, common regularization terms like ‘1 or ‘2 regulariza-
tions lead to closed-form solutions.

2. Update zl
The variables zl l ¼ 1; � � � ; Lð Þ are updated as follows:

zkþ1l argmin
zl

/ akþ1l�1 ;W
kþ1
l ; zl

� �
;

s:t: hl zlð Þ � e 6 al 6 hl zlð Þ þ e l < Lð Þ;
zkþ1L argmin

zL
/ akþ1L�1 ;W

kþ1
L ; zL

� �
þ R zL; yð Þ:

Similar to updating Wl, we define Vkþ1
l zlð Þ as follows:

Vkþ1
l zlð Þ ¼/ akþ1l�1 ;W

kþ1
l ;�zkþ1l

� �
þ r�zkþ1

l
/

� �T
zl � �zkþ1l

� �
þ q

2
kzl � �zkþ1l k22:

Hence, we solve the following problems:

zkþ1l argmin
zl

Vkþ1
l zlð Þ; s:t: hl zlð Þ � e 6 al 6 hl zlð Þ þ e l < Lð Þ: ð4Þ

zkþ1L argmin
zL

Vkþ1
L zLð Þ þ R zL; yð Þ: ð5Þ
133
As for zl l ¼ 1; � � � ; l� 1ð Þ, the solution is

zkþ1l min max Bkþ1
1 ;�zkþ1l �r/�zkþ1

l
=q

� �
;Bkþ1

2

� �
;

where Bkþ1
1 and Bkþ1

2 represent the lower bound and the upper
bound of the set zljhl zlð Þ � e 6 ak

l 6 hl zlð Þ þ e
	

. Eq. (5) is easy to
solve using the Fast Iterative Soft Thresholding Algorithm (FISTA)
[2].

3. Update al
The variables al l ¼ 1; � � � ; L� 1ð Þ are updated as follows:

akþ1l argmin
al

/ al;W
k
lþ1;z

k
lþ1

� �
; s:t: hl zkþ1l

� ��e6 al 6hl zkþ1l

� �þe:
Similar to updating Wkþ1

l ;Qkþ1
l al; skþ1l

� �
is defined as

Qkþ1
l al; skþ1l

� � ¼/ �akþ1
l ;Wk

lþ1; z
k
lþ1

� �
þ r

a
�kþ1
l

/

� �T

al � �akþ1
l

� �

þ s
kþ1
l

2
kal � a

� kþ1
l k22;

and this allows us to solve the following problem instead:

akþ1
l argmin

al
Qkþ1

l al;skþ1l

� �
; s:t: hl zkþ1l

� ��e6 al 6 hl zkþ1l

� �þe; ð6Þ
where skþ1l > 0 is a scalar parameter, which can be chosen by the
backtracking algorithm [31] to meet the following condition:

Qkþ1
l akþ1l ; skþ1l

� �
P / akþ1l ;Wk

lþ1; z
k
lþ1

� �
:

The solution can be obtained by

akþ1l min max hl zkþ1l

� ��e;a� kþ1l �r
a
�kþ1
l

/=skþ1l

� �
; hl zkþ1l

� �þe� �
:

4. Convergence analysis

In this section, the convergence of the proposed algorithm is
analyzed. Due to space limit, all proofs are detailed in the appen-
dix. The following mild assumption is required for the convergence
analysis of the proposed mDLAM algorithm:

Assumption 2. F W; z; að Þ is coercive over the domain
W; z; að Þjhl zlð Þ � e 6 al 6 hl zlð Þ þ e l ¼ 1; � � � ; L� 1ð Þf g.
The coercivity is defined in the Appendix. Assumption 2 is also

mild such that common loss functions such as the least square loss
and the cross-entropy loss satisfy it [31].

4.1. Convergence properties

Firstly, the following preliminary lemma is useful to prove the
convergence properties of the proposed mDLAM algorithm.

Lemma 1. In Algorithm1, there exist ak
l ; c

k
l ; d

k
l > 0 such that for

8k 2 N;Wk
l ; z

k
l l ¼ 1;2; � � � ; Lð Þ, and akl l ¼ 1;2; � � � ; L� 1ð Þ, it holds

that

F Wkþ1
6l�1; z

kþ1
6l�1; a

kþ1
6l�1

� �
� F Wkþ1

6l ; zkþ16l�1;a
kþ1
6l�1

� �
P

akþ1
l
2 kWkþ1

l �Wk
l k22:
ð7Þ

F Wkþ1
6l ; zkþ16l�1; a

kþ1
6l�1

� �
� F Wkþ1

6l ; zkþ16l ;akþ1
6l�1

� �
P

ckþ1
l
2 kzkþ1l � zkl k22:

ð8Þ
F Wkþ1

6l ; zkþ16l ;akþ1
6l�1

� �
� F Wkþ1

6l ; zkþ16l ;akþ1
6l

� �
P dkþ1

2 kakþ1l � akl k22:
ð9Þ

J. Wang, H. Li and L. Zhao Neurocomputing 487 (2022) 130–143
It shows that the objective decreases when all variables are
updated. Based on Assumption 2 and Lemma 1, three convergence
properties hold, which are shown in the following:
Lemma 2 (Objective Decrease). In Algorithm1, it holds that for any

k 2 N; F Wk; zk; ak
� �

P F Wkþ1; zkþ1; akþ1
� �

. Moreover, F is conver-

gent. That is, F Wk; zk; ak
� �

! F� as k!1, where F� is the

convergent value of F.

This lemma guarantees the decrease and hence convergence of
the objective.

Lemma 3. [Bounded Objective and Variables] In Algorithm1, it
holds that for any k 2 N

(a). F Wk; zk; ak
� �

is upper bounded. Moreover, limk!1W
kþ1

�Wk ¼ 0; limk!1zkþ1 � zk ¼ 0, and limk!1akþ1 � ak ¼ 0.

(b). Wk; zk; ak
� �

is bounded. That is, there exist scalars MW;Mz

and Ma such that kWkk 6 MW; kzkk 6 Mz and kakk 6 Ma.

This lemma ensures that the objective and all variables are
bounded in the proposed mDLAM algorithm. Moreover, the gap
between the same variables in the neighboring iterations (e.g.

Wkþ1 and Wk) is convergent to 0.

Lemma 4. [Subgradient Bound] In Algorithm1, there exist

C2 ¼max qMa;qM2
a þ hkþ11 ;qM2

a þ hkþ12 ; � � � ;qM2
a þ hkþ1L

� �
, and

gkþ11 2 @Wkþ1F such that for any k 2 N

kgkþ1
1 k 6 C2 kWkþ1 �Wkk þ kzkþ1 � zkk þ kWk �Wk�1k

� �
:

The above lemma states that the subgradient of the objective is
bounded by its variables. This suggests that the subgradient is con-
vergent to 0, and thus proves its convergence to a stationary point.
4.2. Convergence of the proposed mDLAM algorithm

Next we discuss the convergence of the proposed mDLAM algo-
rithm. The first theorem guarantees that the proposed mDLAM
algorithm converges to a stationary point.

Theorem 1. [Convergence to a Stationary Point] In Algorithm1, for

W in Problem 2, for any q > 0 and e > 0, starting from anyW0 , any
limit point W� is a stationary point of Problem 2. That is, 0 2 @W�F.

As stated in Theorem 1, the convergence always holds no mat-
ter how W is initialized, and whatever q and e are chosen. It is bet-
ter than the dlADMM algorithm [31], which requires the
hyperparameter to be sufficiently large.

Theorem 2. [Linear Convergence Rate] In Algorithm1, if F is locally
strongly convex, then for any q, there exist e > 0; k1 2 N and
0 < C1 < 1 such that it holds for k > k1 that

F Wkþ1; zkþ1;akþ1
� �

� F� 6 C1 F Wk�1; zk�1;ak�1
� �

� F�
� �

:

Theorem 2 shows that the proposed mDLAM algorithm con-
verges linearly for sufficiently large iterations. Common loss func-
tions like the square loss or the cross-entropy loss are locally
strongly convex [34], which make F locally strongly convex. There-
fore, Theorem 2 covers a wide range of loss functions. Compared
134
with existing alternating minimization methods (e.g. dlADMM
[31]) with a sublinear o 1=kð Þ convergence rate, the proposed
mDLAM algorithm achieves a theoretically better linear conver-
gence rate.
4.3. Discussion

We discuss convergence conditions of the proposed mDLAM
algorithm compared with SGD-type methods and the dlADMM
method. The comparison demonstrates that our convergence con-
ditions are more general than others.

1. mDLAM versus SGD
One influential work by Ghadimi et al. [9] guaranteed that the

SGD converges to a critical point, which is similar to our conver-
gence results. While the SGD requires the objective function to
be Lipschitz differentiable, bounded from below [9], our mDLAM
allows for non-smooth functions such as ReLU. Therefore, our con-
vergence conditions are milder than SGD.

2. mDLAM versus dlADMM
Wang et al. [31] proposed an improved version of ADMM for

deep learning models called dlADMM. They showed that the
dlADMM is convergent to a critical point. However, assumptions
of our mDLAM are milder than those of the dlADMM: the mDLAM
requires activation functions to be quasilinear, which includes sig-
moid, tanh, ReLU, and leaky ReLU, while the dlADMM assumes that
activation functions make subproblems solvable, which only
includes ReLU and leaky ReLU. Such difference originates from dif-
ferent ways of addressing nonlinear activations: the dlADMM
treats them as L2 penalties. For tanh and sigmoid, subproblems
are difficult to solve and may refer to lookup tables [31]. However,
the mDLAM relaxes them via inequality constraints, and subprob-
lems have closed-form solutions.
5. Experiments

In this section, we evaluate the proposed mDLAM algorithm on
four benchmark datasets. Convergence and efficiency are demon-
strated. The performance of the proposed mDLAM algorithm is
compared with several state-of-the-art optimizers. All experiments
were conducted on a 64-bit machine with Intel(R) Xeon(R) Silver
4110 CPU and 64 GB RAM.

5.1. Datasets and parameter settings

An important application of the MLP model is node classifica-
tion on a graph based on augmented node features [5]. Specifically,
given an adjacency matrix A and a node feature matrix H of a
graph, we let the k-th augmented feature

Xk ¼ HAk k ¼ 0;1; � � � ;4ð Þ, which encodes information of graph

topology via Ak, and then concatenate them into the input
X ¼ X0; � � � ;X4½ � [5]. The MLP model is used to predict the node class
based on the input X. We set up an architecture of three layers,
each of which has 100 hidden units. The activation function was
set to ReLU. The number of epoch was set to 200. We test our
model on four benchmark datasets: Cora [23], Pubmed [23],
Citeseer [23] and Coauthor CS [24], whose statistics are shown in
Table 2.

Gradient Descent (GD) [3], Adaptive learning rate method (Ada-
delta) [36], Adaptive gradient algorithm (Adagrad) [8], Adaptive
momentum estimation (Adam) [12], and deep learning Alternating
Direction Method of Multipliers (dlADMM) [31] are state-of-the-
art methods and hence were served as comparison methods. The
full batch dataset was used for training models. All parameters

J. Wang, H. Li and L. Zhao Neurocomputing 487 (2022) 130–143
were chosen by maximizing the accuracy of training datasets.
Table 3 shows hyperparameters of all methods: for the proposed
mDLAM algorithm, q controls quadratic terms in Problem 2; a is
a learning rate in the comparison methods except for dlADMM. q
controls a linear constraint in the dlADMM algorithm. The other
hyperparameter e is chosen adaptively as follows:
ekþ1 ¼max ek=2;0:001

� �
with e0 ¼ 100. This makes inequality con-

straints relaxed at the early stage (i.e. ek is large and hence con-
straints are easy to satisfy) and then tightens them as the
mDLAM iterates.

5.2. Convergence

Firstly, we investigate the convergence of the proposed mDLAM
algorithm on four benchmark datasets using the hyperparameters
summarized in Table 3. The relationship between the objective and
the number of epochs is shown in Fig. 1. Overall, the objectives on
the four datasets all decrease monotonically, which demonstrates
the convergence of the proposed mDLAM algorithm. Nevertheless,
objective curves vary in tendency: the curves on the Cora and
Pubmed datasets drop drastically at the beginning and then reach
the plateau when the epoch is around 75, while the curves on the
other two datasets keep a downward tendency in the entire 200
epochs. Moreover, the objective on the Pubmed dataset is the low-
est at the end of the training, while the objective on the Citeseer
dataset is in the vicinity of 80, at least 60% higher than objectives
on the remaining datasets. It is easy to observe that all curves
decline linearly when the epoch is higher than 100. This validates
the linear convergence rate of our proposed mDLAM algorithm (i.e.
Theorem 2).

5.3. Performance

Next, the performance of the proposed mDLAM algorithm is
compared against five state-of-the-art methods, as is illustrated
in Fig. 2. X-axis and Y-axis represent epoch and test accuracy,
respectively. Overall, the proposed mDLAM algorithm is superior
to all other algorithms on four datasets, which has not only the
highest test accuracy but also the fastest convergence speed. For
example, the proposed mDLAM achieves 70% test accuracy on
the Cora dataset when the epoch is 100, while GD only attains
60%, and the Adadelta reaches the plateau of around 40%; As
another example, the test accuracy of the proposed mDLAM on
the Coauthor CS dataset is over 80% at the 25-th epoch, whereas
most comparison methods such as Adam and GD reach half of
Table 2
Statistics of four benchmark datasets.

Dataset Node# Edg

Cora 2708 542
Pubmed 19717 443
Citeseer 3327 473

Coauthor CS 18333 818

Table 3
Hyperparameter settings on four datasets: they were chosen based on training performan

Method Hyper- parameters Cora

mDLAM q 1� 10�3

GD a 0.01

Adadelta a 0.01
Adagrad a 5� 10�3

Adam a 1� 10�3

dlADMM q 1� 10�6

135
its accuracy (i.e. 40%). The Adadelta algorithm performs the
worst among all comparison methods: it converges to a low test
accuracy at the early stage, which is usually half of the accuracy
accomplished by the proposed mDLAM algorithm. The other four
comparison methods except Adagrad are on par with mDLAM in
some cases: for example, the curves of dlADMM and GD are
marginally behind that of mDLAM on the Coauthor CS dataset,
and the performance of Adam almost reaches that of mDLAM
on the Cora dataset. It is interesting to observe that curves of
some methods decline at the end of 200 epochs such as the Ada-
grad on the Pubmed dataset and the Adam on the Coauthor CS
dataset.

5.4. Sensitivity analysis

We explore concerning factors of the running time and the test
accuracy in this section.

5.4.1. Running time
Moreover, it is important to explore the running time of the

proposed mDLAM concerning two factors: the number of hidden
units and the value of q. The running time was averaged by 200
epochs. Fig. 3(a) depicts the relationship between the running time
and the number of hidden units on four datasets, where the num-
ber of hidden units ranges from 100 to 1;000. The running times on
all datasets are below 1 s per epoch when the number of hidden
units is 100, and increase linearly with the number of hidden units
in general. However, the rates of increase vary on different data-
sets: the curve on the Coauthor CS dataset has the sharpest slope,
which reaches seven seconds per epoch when 1000 hidden units
are applied, while the curve on the Pubmed dataset climbs slowly,
which never surpasses 1 s. The curves on the Cora and the Citeseer
datasets demonstrate a steady increase.

To investigate the relationship between the running time per
epoch and the value of q, we change q from 10�6 to 1 while fixing
others. Similar to Fig. 3(a), the running time per epoch demon-
strates a linear increase concerning the value of q in general, as
shown in Fig. 3(b). Specifically, the curve on the Coauthor CS data-
set is still the highest in slope, whereas the slope on the Pubmed
dataset is the lowest. Moreover, the effect of the value of q is less
obvious than the number of hidden units. For example, in Fig. 3(b)
when q is enlarged from 10�6 to 10�2, the running time on the
Coauthor CS dataset merely ascends from around 0.65 to 1.6, while
the increment of the running time on other datasets is less than
0.2. Moreover, a larger q may reduce the running time. For
e# Class# Feature#

9 7 1433
38 3 500
2 6 3703
94 15 6805

ce.

Pubmed Citeseer Coauthor CS

0.01 5� 10�3 1� 10�4

0.01 0.01 5� 10�3

0.1 0.01 0.05

5� 10�3 0.01 5� 10�3

5� 10�4 1� 10�3 1� 10�3

1� 10�6 1� 10�6 1� 10�6

Fig. 1. Convergence curves on four datasets: they all converge linearly when the
epoch is larger than 100.

J. Wang, H. Li and L. Zhao Neurocomputing 487 (2022) 130–143
instance, when q increases from 10�2 to 1, the running time on the
Coauthor CS dataset drops slightly from 1.6 s to 1.5 s per epoch.
The running times on the Cora and the Citeseer datasets climb
steadily.
Fig. 2. Test accuracy of all methods: the proposed mDLAM algorith

136
5.4.2. Test accuracy
Finally, we investigate the effects of hyperparameters on test

accuracy, namely, the value of q and e. Because e is dynamically
set, we test its initial value e0. Table 4 demonstrates the relation-
ship between test accuracy and q on four datasets. q was chosen

from 1� 10�4;1� 10�3;1� 10�2
n o

. Overall, the choice of q has a

significant effect on the test accuracy. For example, when q is
changed from 1� 10�4 to 1� 10�3 on the Pubmed dataset, the per-
formance has improved by approximately 60%, and the gain of per-
formance is even roughly 90% if it is modified to 1� 10�2. On other
datasets, the change of q affects test accuracy by around 20%. For
instance, the test accuracy on the Cora dataset and the Coauthor CS
dataset can be improved to 0.74 and 0.89 if we set q ¼ 1� 10�3

and q ¼ 1� 10�4, respectively. The test accuracy on the Citeseer
dataset is relatively robust to the change of q. As q varies from
1� 10�3 to 1� 10�2, the test accuracy remains stable. Obviously,
the test accuracy generally increases as the proposed mDLAM algo-
rithm iterates. However, there are some exceptions: for example,
the test accuracy has dropped slightly from 0:66 to 0:65 when
q ¼ 1� 10�3 on the Pubmed dataset.

Table 5 shows the relationship between test accuracy and the
initial value of e (i.e. e0) on four datasets. e0 was chosen from
1;10;100f g. It is obvious that test accuracy is resistant to the
m outperforms all other comparison methods in four datasets.

Fig. 3. The relationship between the running time and: (a) the number of hidden units; (b) the value of q: the running time increases linearly with them in general.

Table 4
The effect of q on test accuracy on four datasets: it affects performance significantly.

Cora

Epoch 40 80 120 160 200

q ¼ 1� 10�4 0.677 0.695 0.695 0.693 0.692

q ¼ 1� 10�3 0.664 0.701 0.721 0.737 0.742

q ¼ 1� 10�2 0.562 0.581 0.604 0.623 0.638

Pubmed
Epoch 40 80 120 160 200

q ¼ 1� 10�4 0.471 0.407 0.407 0.407 0.407

q ¼ 1� 10�3 0.663 0.645 0.640 0.650 0.649

q ¼ 1� 10�2 0.743 0.758 0.762 0.768 0.773

Citeseer
Epoch 40 80 120 160 200

q ¼ 1� 10�4 0.528 0.529 0.530 0.531 0.535

q ¼ 1� 10�3 0.651 0.665 0.664 0.664 0.666

q ¼ 1� 10�2 0.631 0.638 0.642 0.648 0.653

Coauthor CS
Epoch 40 80 120 160 200

q ¼ 1� 10�4 0.843 0.881 0.888 0.896 0.894

q ¼ 1� 10�3 0.780 0.807 0.825 0.839 0.835

q ¼ 1� 10�2 0.688 0.719 0.724 0.737 0.738

Table 5
The effect of the initial value of e (i.e. e0) on test accuracy on four datasets: it only affects the convergence speed, but have little effect on final performance.

Cora

Epoch 40 80 120 160 200
e0 ¼ 1 0.620 0.679 0.712 0.735 0.743

e0 ¼ 10 0.646 0.689 0.718 0.741 0.741

e0 ¼ 100 0.664 0.701 0.721 0.737 0.742

Pubmed
Epoch 40 80 120 160 200
e0 ¼ 1 0.717 0.744 0.756 0.759 0.763

e0 ¼ 10 0.731 0.753 0.759 0.762 0.765

e0 ¼ 100 0.743 0.758 0.762 0.768 0.773

Citeseer
Epoch 40 80 120 160 200
e0 ¼ 1 0.564 0.615 0.638 0.653 0.663

e0 ¼ 10 0.584 0.626 0.643 0.657 0.662

e0 ¼ 100 0.640 0.656 0.664 0.663 0.668

Coauthor CS
Epoch 40 80 120 160 200
e0 ¼ 1 0.834 0.875 0.887 0.893 0.894

e0 ¼ 10 0.852 0.866 0.892 0.893 0.893

e0 ¼ 100 0.843 0.881 0.888 0.896 0.894

J. Wang, H. Li and L. Zhao Neurocomputing 487 (2022) 130–143

137

J. Wang, H. Li and L. Zhao Neurocomputing 487 (2022) 130–143
change of e0. For example, the test accuracy on the Coauthor CS
dataset is in the vicinity of 0:89 no matter what e is chosen. More-
over, the larger a e0 is, the faster convergence speed the proposed
mDLAM algorithm gains. For instance, when e ¼ 100, the test accu-
racy is 0.08 better than that in the case where e ¼ 1 on the Citeseer
dataset. Compared with Tables 4 and 5, the effect of q is more sig-
nifcant than that of e0.

6. Conclusion

In this paper, we propose a novel formulation of the original
neural network problem and a novel monotonous Deep Learning
Alternating Minimization (mDLAM) algorithm. Specifically, the
nonlinear constraint is projected into a convex set so that all sub-
problems are solvable. The Nesterov acceleration technique is
applied to boost the convergence of the proposed mDLAM algo-
rithm. Furthermore, a mild assumption is established to prove
the convergence of our mDLAM algorithm. Our mDLAM algorithm
can achieve a linear convergence rate, which is theoretically better
than existing alternating minimization methods. The effectiveness
of the proposed mDLAM algorithm is demonstrated via the out-
standing performance on four benchmark datasets compared with
state-of-the-art optimizers.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgement

This work was supported by the National Science Foundation
(NSF) Grant No. 1755850, No. 1841520, No. 2007716, No.
2007976, No. 1942594, No. 1907805, a Jeffress Memorial Trust
Award, Amazon Research Award, NVIDIA GPU Grant, and Design
Knowledge Company (subcontract No: 10827.002.120.04).

Appendix A. Definition

Several definitions are shown here for the sake of convergence
analysis.

Definition 1 (Coercivity). Any arbitrary function G2 xð Þ is coercive
over a nonempty set dom G2ð Þ if as kxk ! 1 and x 2 dom G2ð Þ, we
have G2 xð Þ ! 1, where dom G2ð Þ is a domain set of G2.
Definition 2 (Multi-convexity). A function f x1; x2; � � � ; xmð Þ is a
multi-convex function if f is convex with regard to xi i ¼ 1; � � � ;mð Þ
while fixing other variables.
Definition 3 (Lipschitz Differentiability). A function f xð Þ is Lipschitz
differentiable with Lipschitz coefficient L > 0 if for any x1; x2 2 R,
the following inequality holds:

krf x1ð Þ � rf x2ð Þk 6 Lkx1 � x2k:
For Lipschitz differentiability, we have the following lemma

(Lemma 2.1 in [2]):
Lemma 5. If f xð Þ is Lipschitz differentiable with L > 0, then for any
x1; x2 2 R

f x1ð Þ 6 f x2ð Þ þ rf T x2ð Þ x1 � x2ð Þ þ L
2
kx1 � x2k2:
138
Definition 4 (Fréchet Subdifferential). For each x1 2 dom u1ð Þ, the
Fréchet subdifferential of u1 at x1, which is denoted as @̂u1 x1ð Þ, is
the set of vectors v, which satisfy

lim
x2–x1

inf
x2!x1

u1 x2ð Þ � u1 x1ð Þ � vT x2 � x1ð Þ� �
=kx2 � x1kP 0:

The vector v 2 @̂u1 x1ð Þ is a Fréchet subgradient.

Then the definition of the limiting subdifferential, which is
based on Fréchet subdifferential, is given in the following [21]:

Definition 5 (Limiting Subdifferential). For each x 2 dom u2ð Þ, the
limiting subdifferential (or subdifferential) of u2 at x is

@u2 xð Þ ¼ v1j9 xk ! x; s:t: u2 xk
� �! u2 xð Þ; vk 2 @̂u2 xk

� �
; vk ! v

n o
;

where xk is a sequence whose limit is x and the limit of u2 xk
� �

is
u2 xð Þ;vk is a sequence, which is a Fréchet subgradient of u2 at xk

and whose limit is v. The vector v 2 @u2 xð Þ is a limiting subgradient.

Specifically, when u2 is convex, its limiting subdifferential is
reduced to regular subdifferential [21], which is defined as follows:

Definition 6 (Regular Subdifferential). For each x1 2 dom fð Þ, the
regular subdifferential of a convex function f at x1, which is
denoted as @f x1ð Þ, is the set of vectors v, which satisfy

f x2ð ÞP f x1ð Þ þ vT x2 � x1ð Þ:
The vector v 2 @f x1ð Þ is a regular subgradient.
Definition 7 (Quasilinearity). A function f xð Þ is quasiconvex if for
any sublevel set Sm fð Þ ¼ xjf xð Þ 6 mf g is a convex set. Likewise, A
function f xð Þ is quasiconcave if for any superlevel set
Sm fð Þ ¼ xjf xð ÞP mf g is a convex set. A function f xð Þ is quasilinear
if it is both quasiconvex and quasiconcave.
Definition 8 (Locally Strong Convexity). A function f xð Þ is locally
strongly convex within a bound set D with a constant l if

f yð ÞP f xð Þ þ gT y� xð Þ þ l
2
kx� yk22 8 g 2 @f xð Þand x; y 2 D:

Simply speaking, a locally strongly convex function lies above a
quadratic function within a bounded set.
Definition 9 (Kurdyka-Lojasiewicz (KL) Property). A function f xð Þ
has the KL Property at x 2 dom @f ¼ x 2 R : @f xð Þ –£f g if there
exists g 2 0;þ1ð �, a neighborhood X of x and a function w 2 Wg,
such that for all

x 2 X \ x 2 R : f xð Þ < f xð Þ < f xð Þ þ gf g;

the following inequality holds

w0 f xð Þ � f xð Þð Þdist 0; @f xð Þð ÞP 1;

where Wg stands for a class of function w : 0;g½ � ! Rþ satisfying:
(1). / is concave and w0 xð Þ continuous on 0;gð Þ; (2). w is continuous
at 0, w 0ð Þ ¼ 0; and (3). w0 xð Þ > 0;8x 2 0;gð Þ.

The following lemma shows that a locally strongly convex func-
tion satisfies the KL Property:

Lemma 6 [34]. A locally strongly convex function f xð Þ with a
constant l satisfies the KL Property at any x 2 D with w xð Þ ¼ 2

l
ffiffiffi
x
p

and X ¼ D \ y : f yð ÞP f xð Þf g.

J. Wang, H. Li and L. Zhao Neurocomputing 487 (2022) 130–143
Appendix B. Preliminary results

In this section, we present preliminary lemmas of the proposed
mDLAM algorithm. The limiting subdifferential is used to prove the
convergence of the proposed mDLAM algorithm in the following
convergence analysis. Without loss of generality, @R and
@Xl l ¼ 1; � � � ;nð Þ are assumed to be nonempty, and the limiting
subdifferential of F defined in Problem 2 is [34]:

@F W; z;að Þ ¼ @WF � @zF � @aF;

where � means the Cartesian product.

Lemma 7. holds, then there exists p 2 @Xl Wkþ1
l

� �
, the subgradient

of Xl Wkþ1
l

� �
such that

rWkþ1
l

/þ hkþ1l Wkþ1
l �Wkþ1

l

� �
þ p ¼ 0:

Likewise, if Eq. (4) holds, then there exists q such that

r�zkþ1
l

/þ q zkþ1l � z�kþ1l

� �
þ q ¼ 0;

where q is a subgradient with regard to zkþ1l to satisfy the constraint

hl zkþ1l

� �� e 6 akl 6 hl zkþ1l

� �þ e. If Eq. (5) holds, then there exists

u 2 @R zkþ1L ; y
� �

such that

rzkþ1L
/þ q zkþ1L � zkþ1L

� �þ u ¼ 0:

If Eq. (6) holds, then there exists v such that

r
a
�kþ1
l

/þ skþ1l akþ1l � a�kþ1l

� �
þ v ¼ 0;

where v is a subgradient with regard to akþ1l to satisfy the constraint
hl zkþ1l

� �� e 6 akþ1l 6 hl zkþ1l

� �þ e.

Proof. These can be obtained by directly applying the optimality
conditions of Eq. (3), Eq. (4), Eq. (5) and Eq. (6), respectively.
Lemma 8. For Eq. (4) and Eq. (5), the following inequalities hold:

Vkþ1
l zkþ1l

� �
P / akþ1l�1 ;W

kþ1
l ; zkþ1l

� �
: ð10Þ
Proof. Because / al�1;Wl; zlð Þ is Lipschitz differentiable with
respect to zl with Lipschitz coefficient q, we directly apply Lemma
5 to / to obtain Eq. (10).
Appendix C. Main proofs

Proof of Lemma 1

Proof. In Algorithm1, we only show Eq. (7) because Eq. (8) and Eq.
(9) follow the same routine of Eq. (7).

In Line 7 of Algorithm1, if F Wkþ1
6l ; zkþ16l�1; a

kþ1
6l�1

� �
<

F Wkþ1
6l�1; z

kþ1
6l�1; a

kþ1
6l�1

� �
, then obviously there exists akþ1

l > 0 such

that Eq. (7) holds. Otherwise, according to Line 8 of Algorithm1,
because XWl

Wlð Þ and / al�1;Wl; zlð Þ are convex with regard to Wl,
according to the definition of regular subgradient, we have

Xl Wk
l

� �
P Xl Wkþ1

l

� �
þ pT Wk

l �Wkþ1
l

� �
; ð11Þ

/ akþ1l�1 ;W
k
l ; z

k
l

� �
P / akþ1l�1 ;W

kþ1
l ; zkl

� �þrWkþ1
l

/T Wk
l �Wkþ1

l

� �
; ð12Þ
139
where p is defined in the premise of Lemma 7. Therefore, we
have

F Wkþ1
6l�1; z

kþ1
6l�1; a

kþ1
6l�1

� �
� F Wkþ1

6l ; zkþ16l�1;a
kþ1
6l�1

� �
¼ / akþ1l�1 ;W

k
l ; z

k
l

� �
þXl Wk

l

� �
� / akþ1

l�1 ;W
kþ1
l ; zkl

� �
�Xl Wkþ1

l

� �
Definition of F in Problem2ð Þ

P Xl Wk
l

� �
�Xl Wkþ1

l

� �
� r

W
kþ1
l

/
� �T

Wkþ1
l �W

kþ1
l

� �
� hkþ1

l
2 kWkþ1

l �W
kþ1
l k22 � / akþ1

l�1 ;W
kþ1
l ; zkl

� �
þ/ akþ1

l�1 ;W
k
l ; z

k
l

� �
Eq: 2ð Þð Þ

P pT Wk
l �Wkþ1

l

� �
� r

W
kþ1
l

/
� �T

Wkþ1
l �Wk

l

� �
� hkþ1

l
2 kWkþ1

l �W
kþ1
l k22 Eq: 11ð Þ and Eq: 12ð Þð Þ

¼ � r
W

kþ1
l

/þ hkþ1l Wkþ1
l �W

kþ1
l

� �� �T
Wk

l �Wkþ1
l

� �
� r

W
kþ1
l

/
� �T

Wkþ1
l �Wk

l

� �
� hkþ1

l
2 kWkþ1

l �W
kþ1
l k22 Lemma7ð Þ

¼ hkþ1
l
2 kWkþ1

l �W
kþ1
l k22 þ hkþ1l Wkþ1

l �W
kþ1
l

� �T
W

kþ1
l �Wk

l

� �
¼ hkþ1

l
2 kWkþ1

l �Wk
l k22 � kW

kþ1
l �Wk

l k22
� �

¼ hkþ1
l
2 kWkþ1

l �Wk
l k22 W

kþ1
l ¼Wk

l

� �
:

Let akþ1
l ¼ hkþ1l , then Eq. (7) still holds.

Proof of Lemma 3

Proof. In Algorithm1:(a). We sum Eq. (7), Eq. (8) and Eq. (9) from
l ¼ 1 to L and from k ¼ 0 to K to obtain

F W0; z0;a0
� �

� F WK ; zK ;aK
� �

P
XK
k¼0

XL
l¼1

akþ1
l

2
kWkþ1

l �Wk
l k22 þ

ckþ1l

2
kzkþ1l � zkl k22

 !

þ
XL�1
l¼1

dkþ1l

2
kakþ1l � akl k22

�
: ð13Þ

So F WK ; zK ; aK
� �

6 F W0;
�

z0;a0Þ. This proves the upper boundness

of F. Let K !1 in Eq. (13), since F > 0 is lower bounded, we have

XK
k¼0

XL
l¼1

akþ1
l

2
kWkþ1

l �Wk
l k22 þ

ckþ1l

2
kzkþ1l � zkl k22

 !

þ
XL�1
l¼1

dkþ1l

2
kakþ1

l � akl k22Þ <1: ð14Þ

Since the sum of this infinite series is finite, every term converges to

0. This means that limk!1W
kþ1
l �Wk

l ¼ 0; limk!1zkþ1l � zkl ¼ 0 and

limk!1akþ1l � ak
l ¼ 0. In other words, limk!1W

kþ1 �Wk ¼ 0;
limk!1 zkþ1 � zk ¼ 0, and limk!1akþ1 � ak ¼ 0.(b). Because

F Wk; zk;ak
� �

is bounded, by the definition of coercivity and

Assumption 2, Wk; zk;ak
� �

is bounded.

Proof of Lemma 4

Proof. As shown in Remark 2.2 in [34],

@Wkþ1F ¼ @Wkþ1
1

F
n o

� @Wkþ1
2

F
n o

� � � � � @Wkþ1
L

F
n o

;

where � denotes Cartesian Product.

J. Wang, H. Li and L. Zhao Neurocomputing 487 (2022) 130–143
In Algorithm1, for Wkþ1
l , according to Line 6 of Algorithm1, if.

F Wkþ1
6l ; zkþ16l�1; a

kþ1
6l�1

� �
< F Wkþ1

6l�1; z
kþ1
6l�1; a

kþ1
6l�1

� �
, then

@Wkþ1
l

F ¼ @Xl Wkþ1
l

� �
þrWkþ1

l
/ akþ1l�1 ;W

kþ1
l ; zkþ1l

� �
Definition of F in Problem 2ð Þ
¼ rWkþ1

l
/ akþ1l�1 ;W

kþ1
l ; zkþ1l

� �
�r

W
kþ1
l

/ akþ1l�1 ;W
kþ1
l ; zkl

� �
�hkþ1l Wkþ1

l �W
kþ1
l

� �
þ @Xl Wkþ1

l

� �
þr

W
kþ1
l

/ akþ1
l�1 ;W

kþ1
l ; zkl

� �
þ hkþ1l Wkþ1

l �W
kþ1
l

� �
¼ q Wkþ1

l �W
kþ1
l

� �
akþ1l�1 akþ1l�1

� �T � q zkþ1l � zkl
� �

akþ1l�1
� �T

�hkþ1l Wkþ1
l �W

kþ1
l

� �
þ @Xl Wkþ1

l

� �
þr

W
kþ1
l

/ akþ1l�1 ;W
kþ1
l ; zkl

� �
þ hkþ1l Wkþ1

l �W
kþ1
l

� �
:

ð15Þ

On one hand, we have

kq Wkþ1
l �W

kþ1
l

� �
akþ1l�1 akþ1l�1

� �T � q zkþ1l � zkl
� �

akþ1
l�1

� �T
�hkþ1l Wkþ1

l �W
kþ1
l

� �
k

6 qk Wkþ1
l �W

kþ1
l

� �
akþ1l�1 akþ1l�1

� �Tk þ qk zkþ1l � zkl
� �

akþ1l�1
� �Tk

þhkþ1l kWkþ1
l �W

kþ1
l k Triangle Inequalityð Þ

6 qkWkþ1
l �W

kþ1
l kkakþ1l�1 kkakþ1l�1 k þ qkzkþ1l � zkl kkakþ1l�1 k þ hkþ1l kWkþ1

l

�Wkþ1
l k Cauchy� Schwarz Inequalityð Þ

6 qMakzkþ1l � zkl k þ qM2
a þ hkþ1l

� �
kWkþ1

l �W
kþ1
l k Lemma3ð Þ

ð16Þ
6qMakzkþ1l �zkl kþ qM2

aþhkþ1l

� �
kWkþ1

l � Wk
l þxk Wk

l �Wk�1
l

� �� �
k NesterovAccelerationð Þ

6qMakzkþ1l �zkl kþ qM2
aþhkþ1l

� �
kWkþ1

l �Wk
l k

þ qM2
aþhkþ1l

� �
kWk

l �Wk�1
l k Triangle Inequality andxk <1

� �
:

On the other hand, the optimality condition of Eq. (3) yields

0 2 @Xl Wkþ1
l

� �
þrWkþ1

l
/ akþ1l�1 ;W

kþ1
l ; zkl

� �þ hkþ1l Wkþ1
l �Wkþ1

l

� �
:

Therefore, there exists gkþ1
1;l 2 @Wkþ1

l
F such that

kgkþ1
1;l k 6 qMakzkþ1l � zkl k þ qM2

a þ hkþ1l

� �
kWkþ1

l �Wk
l k

þ qM2
a þ hkþ1l

� �
kWk

l �Wk�1
l k:

This shows that there exists gkþ1
1 ¼ gkþ1

1;1 � gkþ1
1;2 � � � � � gkþ1

1;L 2 @Wkþ1F

and C2 ¼max qMa;qM2
aþhkþ11 ;qM2

aþhkþ12 ; � � � ;qM2
aþhkþ1L

� �
such that

kgkþ1
l k 6 C2 kWkþ1 �Wkk þ kzkþ1 � zkk þ kWk �Wk�1k

� �
: ð17Þ

Otherwise, we have

kq Wkþ1
l �Wkþ1

l

� �
akþ1l�1 akþ1l�1

� �T � q zkþ1l � zkl
� �

akþ1
l�1

� �T
�hkþ1l Wkþ1

l �Wkþ1
l

� �
k

6 qMakzkþ1l � zkl k þ qM2
a þ hkþ1l

� �
kWkþ1

l �Wkþ1
l k Eq: 16ð Þð Þ

¼ qMakzkþ1l � zkl k þ qM2
a þ hkþ1l

� �
kWkþ1

l �Wk
l k Wkþ1

l ¼Wk
l

� �
:

140
The optimality condition of Eq. (3) yields

0 2 @Xl Wkþ1
l

� �
þrWkþ1

l
/ akþ1l�1 ;W

kþ1
l ; zkl

� �þ hkþ1l Wkþ1
l �Wkþ1

l

� �
:

By Eq. (15), we know that there exists gkþ1
1;l 2 @Wkþ1

l
F such that

kgkþ1
1;l k 6 qMakzkþ1l � zkl k þ qM2

a þ hkþ1l

� �
kWkþ1

l �Wk
l k: ð18Þ

Combining Eq. (17) with Eq. (18), we show that there exists

gkþ1
1 ¼ gkþ1

1;1 � gkþ1
1;2 � � � � � gkþ1

1;L 2 @Wkþ1F and C2 ¼max qMa;qM2
aþ

�
hkþ11 ;qM2

a þ hkþ12 ; � � � ;qM2
a þ hkþ1L Þ such that

kgkþ1
l k 6 C2 kWkþ1 �Wkk þ kzkþ1 � zkk þ kWk �Wk�1k

� �
:

Proof of Lemma 2
Proof. We add Eq. (7), Eq. (8), and Eq. (9) from l ¼ 1 to L to obtain

F Wk; zk;ak
� �

� F Wkþ1; zkþ1;akþ1
� �

P
XL
l¼1

akþ1
l
2 kWkþ1

l �Wk
l k22 þ

ckþ1
l
2 kzkþ1l � zkl k22

� �
þ
XL�1
l¼1

dkþ1
l
2 kakþ1l � akl k22:

Let C5 ¼ min
akþ1
l
2 ;

ckþ1
l
2 ;

dkþ1
l
2

� �
> 0, we have

F Wk; zk;ak
� �

� F Wkþ1; zkþ1;akþ1
� �

P C5

XL
l¼1

kWkþ1
l �Wk

l k22 þ kzkþ1l � zkl k22
� �

þ
XL�1
l¼1
kakþ1l � akl k22

 !

¼ C5 kWkþ1 �Wkk22 þ kzkþ1 � zkk22 þ kakþ1 � akk22
� �

ð19Þ
P 0:

By Lemma 3 and a monotone sequence is convergent if it is

bounded, then F Wk; zk; ak
� �

is convergent.

Proof of Theorem 1

Proof. By Lemma 3 (a), limk!1W
kþ1 �Wk ¼ 0. By Lemma 3 (b),

there exists a subsequence Ws such that Ws !W�, where W� is a
limit point. From Lemma 4, there exist gs1 2 @Ws F such that
kgs1k ! 0 as s!1. According to the definition of limiting subd-
ifferential, we have 0 2 @W�F. In other words, W� is a stationary
point of F in Problem 2.

Proof of Theorem 2

Proof. In Algorithm1, we prove this by the KL Property.

Firstly, we consider Eq. (4) and Eq. (6), by Lemma 3,

hl zkþ1l �r/zkþ1
l

=q
� �

� akl and hl zkþ1
� �� akþ1l þrakþ1

l
/=skþ1l are

bounded, i.e. there exist constants D1 and D2 such that

jhl zkþ1l �rzkþ1
l

/=q
� �

� akl j < D1:

jhl zkþ1
� �� akþ1l þrakþ1

l
/=skþ1l j < D2:

Let e ¼ max D1;D2ð Þ, then the solutions to Eq. (4) and Eq. (6) are sim-
plified as follows:

zkþ1l zkþ1l �rzkþ1
l

/=q: ð20Þ
akþ1l akþ1l �rakþ1

l
/=skþ1l : ð21Þ

This is because hl zkþ1l

� �� e 6 ak
l 6 hl zkþ1l

� �þ e and hl zkþ1l

� �� e 6
akþ1l 6 hl zkþ1l

� �þ e hold in Eq. (4) and Eq. (6), respectively.

J. Wang, H. Li and L. Zhao Neurocomputing 487 (2022) 130–143
Next, we prove that given e ¼max D1;D2ð Þ, there exists

C3 ¼max qM2
W þ skþ11 ;qM2

W þ skþ12 ;qM2
W þ skþ13 ; � � � ;qM2

W þ skþ1L�1 ;
�

2qMWMa þ qMzÞ, some gkþ13 2 @zkþ1F and gkþ14 2 @akþ1F such that

kgkþ1
3 k¼0;

kgkþ1
4 k6C3 kakþ1�akkþkak�ak�1kþkWkþ1�Wkkþkzkþ1�zkk

� �
:

As shown in [33,34],

@zkþ1F ¼ @zkþ11
F � @zkþ12

F � � � � � @zkþ1L
F;

rakþ1F ¼ rakþ1
1

F �rakþ1
2

F � � � � � rakþ1
L�1

F;

where � denotes Cartesian Product.
For zkþ1l l < Lð Þ, according to Line 18 of Algorithm1, no matter.

F Wkþ1
6l ; zkþ16l ; akþ16l�1

� �
P F Wkþ1

6l ; zkþ16l�1; a
kþ1
6l�1

� �
or not, we have

@zkþ1
l

F ¼ rzkþ1
l

/ akþ1
l�1 ;W

kþ1
l ; zkþ1l

� �

¼ rzkþ1
l

/ akþ1l�1 ;W
kþ1
l ; zkþ1l

� �
�rzkþ1

l
/ akþ1l�1 ;W

kþ1
l ; zkþ1l

� �
�q zkþ1l � zkþ1l

� �
Eq: 20ð Þð Þ ¼ 0:

For zkþ1L , according to Line 12 of Algorithm1, no matter

F Wkþ1
6L ; zkþ16L ; akþ16L�1

� �
P F Wkþ1

6L ; zkþ16L�1; a
kþ1
6L�1

� �
or not, we have

@zkþ1
L

F ¼ rzkþ1
L

/ akþ1L�1 ;W
kþ1
L ; zkþ1L

� �
þ @R zkþ1L ; y

� �

¼ rzkþ1L
/ akþ1L�1 ;W

kþ1
L ; zkþ1L

� �
þ @R zkþ1L ; y

� �

þr�zkþ1L
/ akþ1

L�1 ;W
kþ1
L ;�zkþ1L

� �

þ q zL � �zkþ1L

� �
�r�zkþ1L

/ akþ1L�1 ;W
kþ1
L ;�zkþ1L

� �
� q zkþ1L � �zkþ1L

� �
¼ rzkþ1

L
/ akþ1L�1 ;W

kþ1
L ; zkþ1L

� �
�r�zkþ1L

/ akþ1L�1 ;W
kþ1
L ;�zkþ1L

� �
� q zkþ1L � �zkþ1L

� �
0 2 @R zkþ1L ; y

� �þr�zkþ1L
/ akþ1L�1 ;W

kþ1
L ;�zkþ1L

� ��
þq zkþ1L � �zkþ1L

� �
by the optimality condition of Eq: 5ð Þ

�
¼ 0:

Therefore, there exists gkþ1
3;l ¼ rzkþ1

l
F such that kgkþ1

3;l k ¼ 0. This

shows that there exists gkþ1
3 ¼ gkþ1

3;1 � gkþ1
3;2 � � � � � gkþ1

3;L ¼ rzkþ1F such
that

kgkþ1
3 k ¼ 0: ð22Þ

For akþ1l , we have

@akþ1
l

F ¼ rakþ1
l

/ akþ1
l ;Wk

lþ1; z
kþ1
lþ1

� �

¼ rakþ1
l

/ akþ1l ;Wkþ1
lþ1 ; z

kþ1
lþ1

� �
�rakþ1

l
/ akþ1

l ;Wk
lþ1; z

k
lþ1

� �
�skþ1l akþ1l � akþ1

l

� �
Eq: 21ð Þð Þ

¼ q Wkþ1
lþ1

� �T
Wkþ1

lþ1 a
kþ1
l � zkþ1lþ1

� �
� q Wk

lþ1
� �T

Wk
lþ1a

kþ1
l � zklþ1

� �

�skþ1l akþ1l � akþ1
l

� � ¼ q Wkþ1
lþ1

� �T
Wkþ1

lþ1 akþ1
l � akþ1l

� �þ q Wkþ1
lþ1

� �T

Wkþ1
lþ1 �Wk

lþ1
� �

akþ1l þ q Wkþ1
lþ1 �Wk

lþ1
� �T

Wk
lþ1a

kþ1
l � q Wkþ1

lþ1
� �T

zkþ1lþ1 � zklþ1
� �� q Wkþ1

lþ1 �Wk
lþ1

� �T
zklþ1 � skþ1l akþ1l � akþ1

l

� �
:

141
Therefore

k@akþ1
l

Fk 6 qkWkþ1
lþ1 kkWkþ1

lþ1 kkakþ1l � �akþ1
l k þ qkWkþ1

lþ1 kkWkþ1
lþ1

�Wk
lþ1kka

� kþ1
l k þ qkWkþ1

lþ1 �Wk
lþ1kkWk

lþ1kk�akþ1
l k þ qkWkþ1

lþ1 kkzkþ1lþ1

�zklþ1k þ qkWkþ1
lþ1 �Wk

lþ1kkzklþ1k þ skþ1l kakþ1l � �akþ1
l k

Triangle Inequality and Cauthy� Schwarz Inequalityð Þ
6 qM2

Wkakþ1l � �akþ1
l k þ qMWkWkþ1

lþ1 �Wk
lþ1kMa þ qkWkþ1

lþ1

�Wk
lþ1kMWMa þ qMWkzkþ1lþ1 � zklþ1k þ qkWkþ1

lþ1 �Wk
lþ1kMz

þskþ1l kakþ1l � �akþ1
l k Lemma 3ð Þ ¼ qM2

W þ skþ1l

� �
kakþ1l � a

� kþ1
l k

þ 2qMWMa þ qMzð ÞkWkþ1
lþ1 �Wk

lþ1k þ qMWkzkþ1lþ1 � zklþ1k:
According to Line 22 of Algorithm1, if

F Wkþ1
6l ; zkþ16l ; akþ16l

� �
< F Wkþ1

6l ; zkþ16l ; akþ16l�1
� �

, then we have

k@akþ1
l

Fk 6 qM2
W þ skþ1l

� �
kakþ1l � akl � akl � ak�1l

� �
xkk

þ 2qMWMa þ qMzð ÞkWkþ1
lþ1 �Wk

lþ1k þ qMWkzkþ1lþ1 � zklþ1k
Nestrov Accelerationð Þ;6 qM2

W þ skþ1l

� �
kakþ1l � akl k

þ qM2
W þ skþ1l

� �
kakl � ak�1l k þ 2qMWMa þ qMzð ÞkWkþ1

lþ1 �Wk
lþ1k

þqMWkzkþ1lþ1 � zklþ1k Triangle Inequality and xk < 1
� �

:

Therefore, there exists gkþ1
4;l 2 @akþ1

l
F such that

kgkþ1
4;l k6 qM2

W þ skþ1l

� �
kakþ1l � akl kþ qM2

W þ skþ1l

� �
kakl � ak�1l k

þ 2qMWMa þqMzð ÞkWkþ1
lþ1 �Wk

lþ1kþqMWkzkþ1lþ1 � zklþ1k:
ð23Þ

Otherwise,

k@akþ1
l

Fk 6 qM2
W þ skþ1l

� �
kakþ1l � akl k þ 2qMWMa þ qMzð ÞkWkþ1

lþ1

�Wk
lþ1k þ qMWkzkþ1lþ1 � zklþ1k akþ1l ¼ akl

� �
:

Therefore, there exists gkþ1
4;l 2 @akþ1

l
F such that

kgkþ1
4;l k 6 qM2

W þ skþ1l

� �
kakþ1l � akl k

þ 2qMWMa þ qMzð ÞkWkþ1
lþ1 �Wk

lþ1k þ qMWkzkþ1lþ1

� zklþ1k: ð24Þ
Combining Eq. (23) and Eq. (24), we show that there exists

gkþ1
4 ¼ gkþ1

4;1 � gkþ1
4;2 � � � � � gkþ1

4;L 2 @akþ1F and C3 ¼ max qM2
W þ skþ11 ;

�
qM2

W þ skþ12 ;qM2
W þ skþ13 ; � � � ;qM2

Wþ skþ1L�1 ;2qMWMa þ qMzÞ such
that

kgkþ1
4 k6C3 kakþ1�akkþkak�ak�1kþkWkþ1�Wkkþkzkþ1�zkk

� �
:

ð25Þ
Combining Lemma 4, Eq. (22) and Eq. (25), we prove that there

exists gkþ1 2 @F Wkþ1; zkþ1;akþ1
� �

¼ @Wkþ1F; @zkþ1F; @akþ1F
	

and

C4 ¼max C2; C3;qð Þ such that

kgkþ1k 6 C4 kakþ1 � akk þ kak � ak�1k þ kWkþ1 �Wkk
�

þ kWk �Wk�1k þ kzkþ1 � zkk
�
: ð26Þ

Finally, we prove the linear convergence rate by the KL Property
given Eq. (26) and Eq. (19). Because F is locally strongly convex with
a constant l; F satisfies the KL Property by Lemma 6. Let
F� ¼ F W�; z�; a�ð Þ be the convergent value of F, by Lemma 2,

J. Wang, H. Li and L. Zhao Neurocomputing 487 (2022) 130–143
F Wk; zk;ak
� �

! F�, then for any g1 > 0 there exists k2 2 N such that

it holds for k > k2 that F� < F Wk; zk;ak
� �

< F� þ g1. Also by Lemma

3a) and Eq. (26), gkþ1 ! 0 as k!1, then for any g2 > 0 there exists
k3 2 N, such that it holds for k > k3 that kgkþ1k < g2. Therefore, for

any k > k1 ¼max k2; k3ð Þ; Wk; zk; ak
� �

2 W; z;að Þ : jF� < F W;ðf
z;aÞ < F� þ g1 \ 9g 2 F W; z;að Þ s:t: kgk < g2g. By the KL Property
and Lemma 6, it holds that

16 kgkþ1k= l
ffi
F Wkþ1;zkþ1;akþ1
� �

� F�
r� �

6 C4 kakþ1�akkþkak�ak�1kþkWkþ1�WkkþkWk�Wk�1k
�

þkzkþ1�zkkÞ= l
ffi
F Wkþ1;zkþ1;akþ1
� �

� F�
r� �

Eq: 26ð Þð Þ

6 C2
4 kakþ1�akkþkak�ak�1kþkWkþ1�Wkk
�

þkWk�Wk�1kþkzkþ1�zkk
�2

= l2 F Wkþ1;zkþ1;akþ1
� �

� F�
� �� �

6 5C2
4 kakþ1�akk22þkak�ak�1k22þkWkþ1�Wkk22
��

þkWk�Wk�1k22þkzkþ1�zkk22ÞÞ= l2 F Wkþ1;zkþ1;akþ1
� �

� F�
� �� �

Mean Inequalityð Þ
6 5C2

4 F Wk�1;zk�1;ak�1
� ���

�F Wkþ1;zkþ1;akþ1
� ��

Þ= C5l2 F Wkþ1;zkþ1;akþ1
� �

� F�
� �� �

Eq: 19ð Þð Þ:

This indicates that

C5l2 þ 5C2
4

� �
F Wkþ1; zkþ1;akþ1
� �

� F�
� �

6 5C2
4 F Wk�1; zk�1; ak�1

� �
� F�

� �
:

Let 0 < C1 ¼ 5C2
4

C5l2þ5C2
4
< 1, we have

F Wkþ1; zkþ1;akþ1
� �

� F� 6 C1 F Wk�1; zk�1;ak�1
� �

� F�
� �

:

So in summary, for any q, there exist

e ¼ max D1;D2ð Þ; k1 ¼max k2; k3ð Þ, and 0 < C1 ¼ 5C2
4

C5l2þ5C2
4
< 1 such

that

F Wkþ1; zkþ1;akþ1
� �

� F� 6 C1 F Wk�1; zk�1;ak�1
� �

� F�
� �

:

for k > k1. In other words, the linear convergence rate is proven.
References

[1] Armin Askari, Geoffrey Negiar, Rajiv Sambharya, and Laurent El Ghaoui. Lifted
neural networks. NIPS Workshop on Optimization, 2017.

[2] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding
algorithm for linear inverse problems. In SIAM journal on imaging sciences,
volume 2, pages 183–202. SIAM, 2009.

[3] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In
Yves Lechevallier and Gilbert Saporta, editors, Proceedings of COMPSTAT’2010,
pages 177–186. Physica-Verlag HD, 2010.

[4] Miguel Carreira-Perpinan and Weiran Wang. Distributed optimization of
deeply nested systems. In Artificial Intelligence and Statistics, pages 10–19,
2014.

[5] Lei Chen, Zhengdao Chen, Joan Bruna, On graph neural networks versus graph-
augmented mlps, in: Ninth International Conference on Learning
Representations, 2021.

[6] Anna Choromanska, Benjamin Cowen, Sadhana Kumaravel, Ronny Luss, Mattia
Rigotti, Irina Rish, Paolo Diachille, Viatcheslav Gurev, Brian Kingsbury, Ravi
Tejwani, et al. Beyond backprop: Online alternating minimization with
auxiliary variables. In International Conference on Machine Learning, pages
1193–1202. PMLR, 2019.

[7] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David.
Binaryconnect: Training deep neural networks with binary weights
during propagations. In Advances in neural information processing
systems, pages 3123–3131, 2015.
142
[8] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for
online learning and stochastic optimization. Journal of Machine Learning
Research, 12(Jul):2121–2159, 2011.

[9] Saeed Ghadimi, Guanghui Lan, Accelerated gradient methods for nonconvex
nonlinear and stochastic programming, Math. Programm. 156 (1–2) (2016)
59–99.

[10] Xavier Glorot, Yoshua Bengio, Understanding the difficulty of training deep
feedforward neural networks, in: Proceedings of the thirteenth international
conference on artificial intelligence and statistics, 2010, pp. 249–256.

[11] Gauri Jagatap and Chinmay Hegde. Learning relu networks via alternating
minimization. arXiv preprint arXiv:1806.07863, 2018.

[12] Diederick P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In International Conference on Learning Representations (ICLR)
Poster, 2015.

[13] Tim Tsz-Kit Lau, Jinshan Zeng, Baoyuan Wu, and Yuan Yao. A proximal block
coordinate descent algorithm for deep neural network training. International
Conference on Learning Representations Workshop, 2018.

[14] Hongyi Li, Junxiang Wang, Yongchao Wang, Yue Cheng, Liang Zhao,
Community-based layerwise distributed training of graph convolutional
networks, in: NeurIPS 2021 Workshop on Optimization for Machine
Learning (OPT 2021), 2021.

[15] Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient
methods with dynamic bound of learning rate. In International Conference on
Learning Representations, 2018.

[16] Andrew L. Maas, Awni Y. Hannun, Andrew Y. Ng, Rectifier nonlinearities
improve neural network acoustic models. In ICMLWorkshop on Deep Learning
for Audio, Speech and Language Processing. Citeseer (2013).

[17] Boris T Polyak, Some methods of speeding up the convergence of iteration
methods, USSR Computational Mathematics and Mathematical Physics 4 (5)
(1964) 1–17.

[18] Linbo Qiao, Tao Sun, Hengyue Pan, Dongsheng Li, Inertial proximal deep
learning alternating minimization for efficient neutral network training, in:
ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP) IEEE, 2021, pp. 3895–3899.

[19] Sashank J. Reddi, Satyen Kale, Sanjiv Kumar, On the convergence of adam and
beyond, in: International Conference on Learning Representations, 2018.

[20] Herbert Robbins, S. Monro, A stochastic approximation method, annals math,
Statistics 22 (1951) 400–407.

[21] R. Tyrrell Rockafellar, Roger J-B Wets, Variational analysis, vol. 317, Springer
Science & Business Media, 2009.

[22] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
representations by back-propagating errors. In Nature, volume 323, page 533.
Nature Publishing Group, 1986.

[23] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher,
Tina Eliassi-Rad, Collective classification in network data, AI Magazine 29
(2008) 93–106.

[24] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann. Pitfalls of graph neural network evaluation. Relational
Representation Learning Workshop (R2L 2018), NeurIPS, 2018.

[25] Ilya Sutskever, James Martens, George Dahl, Geoffrey Hinton, On
the importance of initialization and momentum in deep learning,
in: International conference on machine learning, 2013, pp. 1139–
1147.

[26] Yu Tang, Zhigang Kan, Dequan Sun, Linbo Qiao, Jingjing Xiao, Zhiquan Lai, and
Dongsheng Li. Admmirnn: Training rnn with stable convergence via an
efficient admm approach. In Frank Hutter, Kristian Kersting, Jefrey Lijffijt, and
Isabel Valera, editors, Machine Learning and Knowledge Discovery in
Databases, pages 3–18, Cham, 2021. Springer International Publishing.

[27] Gavin Taylor, Ryan Burmeister, Zheng Xu, Bharat Singh, Ankit Patel, and Tom
Goldstein. Training neural networks without gradients: A scalable admm
approach. In International Conference on Machine Learning, pages 2722–2731,
2016.

[28] T. Tieleman, G. Hinton, Divide the gradient by a running average of its recent
magnitude coursera: Neural networks for machine learning, in: Technical
report, University of Toronto, 2017.

[29] Junxiang Wang, Zheng Chai, Yue Cheng, Liang Zhao, Toward model parallelism
for deep neural network based on gradient-free admm framework, in: 2020
IEEE International Conference on Data Mining (ICDM) IEEE, 2020, pp. 591–600.

[30] Junxiang Wang, Hongyi Li, Zheng Chai, Yongchao Wang, Yue Cheng, and Liang
Zhao. Towards quantized model parallelism for graph-augmented mlps based
on gradient-free admm framework, 2021.

[31] Junxiang Wang, Yu. Fuxun, Xiang Chen, Liang Zhao, Admm for efficient deep
learning with global convergence, in: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2019, pp.
111–119.

[32] Junxiang Wang and Liang Zhao. Nonconvex generalization of alternating
direction method of multipliers for nonlinear equality constrained problems.
Results in Control and Optimization, page 100009, 2021.

[33] Yu. Wang, Wotao Yin, Jinshan Zeng, Global convergence of admm in
nonconvex nonsmooth optimization, J. Sci. Comput. (2015) 1–35.

[34] Xu. Yangyang, Wotao Yin, A block coordinate descent method for
regularized multiconvex optimization with applications to nonnegative
tensor factorization and completion, SIAM J. Imaging Sci. 6 (3) (2013)
1758–1789.

http://refhub.elsevier.com/S0925-2312(22)00195-3/h0025
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0025
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0025
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0025
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0045
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0045
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0045
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0050
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0050
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0050
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0050
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0070
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0070
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0070
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0070
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0070
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0080
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0080
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0080
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0085
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0085
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0085
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0090
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0090
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0090
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0090
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0090
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0095
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0095
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0095
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0100
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0100
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0105
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0105
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0105
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0115
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0115
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0115
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0125
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0125
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0125
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0125
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0125
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0140
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0140
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0140
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0140
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0145
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0145
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0145
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0145
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0155
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0155
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0155
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0155
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0155
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0165
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0165
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0170
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0170
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0170
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0170

J. Wang, H. Li and L. Zhao Neurocomputing 487 (2022) 130–143
[35] Babak Zamanlooy, Mitra Mirhassani, Efficient vlsi implementation of neural
networks with hyperbolic tangent activation function, IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 22 (1) (2014) 39–48.

[36] Matthew D Zeiler. Adadelta: an adaptive learning rate method. preprint,
2012.

[37] Jinshan Zeng, Tim Tsz-Kit Lau, Shaobo Lin, Yuan Yao, Global convergence
of block coordinate descent in deep learning, in: Proceedings of the 36th
International Conference on Machine Learning PMLR, 2019, pp. 7313–
7323.

[38] G. Zhang and W.B. Kleijn. Training deep neural networks via optimization over
graphs. In 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 4119–4123, April 2018.

[39] Ziming Zhang and Matthew Brand. Convergent block coordinate descent for
training tikhonov regularized deep neural networks. In Advances in Neural
Information Processing Systems, pages 1721–1730, 2017.

[40] Ziming Zhang, Yuting Chen, Venkatesh Saligrama, Efficient training of very
deep neural networks for supervised hashing, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp. 1487–
1495.

[41] Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek,
Xenophon Papademetris, and James Duncan. Adabelief optimizer: Adapting
stepsizes by the belief in observed gradients. Advances in Neural Information
Processing Systems, 33, 2020.

Junxiang Wang received the B.S degree and the Master
degree from East China Normal University, Shanghai,
China in 2012, and George Mason University, Virginia,
United States in 2020, respectively. He is a Ph.D. can-
didate in the Department of Computer Science at Emory
University supervised by Professor Liang Zhao. His
research focuses on data mining in social media and
nonconvex optimization in deep learning.
143
Hongyi Li received the B.E. degree in Telecommunica-
tion Engineering from Xidian University, Xi’an, China, in
2019. She is a Ph.D. student at the State Key Laboratory
of ISN in Xidian University, China. Her research interests
include graph learning, optimization algorithms, and
their applications in wireless communication systems.
Liang Zhao is an assistant professor at the Department
of Computer Science at Emory University. He obtained
his Ph.D. degree in 2016 from Computer Science
Department at Virginia Tech in the United States. His
research interests include data mining, artificial intelli-
gence, and machine learning, with special interests in
spatiotemporal and network data mining, deep learning
on graphs, nonconvex optimization, and interpretable
machine learning.

http://refhub.elsevier.com/S0925-2312(22)00195-3/h0175
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0175
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0175
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0185
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0185
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0185
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0185
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0185
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0200
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0200
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0200
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0200
http://refhub.elsevier.com/S0925-2312(22)00195-3/h0200

	Accelerated Gradient-free Neural Network Training by Multi-convex Alternating Optimization
	1 Introduction
	2 Related work
	3 Model and algorithms
	3.1 Inequality approximation for deep learning
	3.2 Alternating optimization

	4 Convergence analysis
	4.1 Convergence properties
	4.2 Convergence of the proposed mDLAM algorithm
	4.3 Discussion

	5 Experiments
	5.1 Datasets and parameter settings
	5.2 Convergence
	5.3 Performance
	5.4 Sensitivity analysis
	5.4.1 Running time
	5.4.2 Test accuracy

	6 Conclusion
	Declaration of Competing Interest
	Acknowledgement
	Appendix A Definition
	Appendix B Preliminary results
	Appendix C Main proofs
	References

