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ABSTRACT
The meteoric rise of cross-silo Federated Learning (FL) is due to its
ability to mitigate data breaches during collaborative training. To
further provide rigorous privacy protection with consideration of
the varying privacy requirements across different clients, a privacy-
enhanced line of work on personalized differentially private feder-
ated learning (PDP-FL) has been proposed. However, the existing
solution for PDP-FL [21] assumes the raw privacy budgets of all
clients should be collected by the server. These values are then
directly utilized to improve the model utility via facilitating the
privacy preferences partitioning (i.e., partitioning all clients into
multiple privacy groups). It is however non-realistic because the
raw privacy budgets can be quite informative and sensitive.

In this work, our goal is to achieve PDP-FL without exposing
clients’ raw privacy budgets by indirectly partitioning the privacy
preferences solely based on clients’ noisy model updates. The crux
lies in the fact that the noisy updates could be influenced by two
entangled factors of DP noises and non-IID clients’ data, leaving it
unknown whether it is possible to uncover privacy preferences by
disentangling the two affecting factors. To overcome the hurdle, we
systematically investigate the unexplored question of under what
conditions can the model updates of clients be primarily influenced
by noise levels rather than data distribution. Then, we propose a
simple yet effective strategy based on clustering the 𝐿2 norm of the
noisy updates, which can be integrated into the vanilla PDP-FL to
maintain the same performance. Experimental results demonstrate
the effectiveness and feasibility of our privacy-budget-agnostic
PDP-FL method.

CCS CONCEPTS
• Security and privacy→ Privacy protections.
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1 INTRODUCTION
Cross-silo Federated Learning (FL) [12, 25], which allows multiple
clients to collaboratively train a global model without requiring ac-
cess to clients’ raw data, has been widely adopted both in academia
and industry. Differential Privacy [5, 6] has been further integrated
into FL, which gives rise to the DP-FL studies [2, 3, 7, 20, 22–
24, 28, 29] that seek to provide mathematically rigorous privacy
protection at the desired level quantified by the privacy budget
(denoted by 𝜀). DP-FL bears much resemblance to non-DP FL in
training (e.g., by building on top of FedAvg [25]) but additionally
incorporates local updates clipping and Gaussian noise injection
[1, 4, 26, 32], whereby clients’ local updates will be more strictly
protected.

A more challenging yet practical problem is personalized dif-
ferentially private federated learning1(PDP-FL, see Definition 1),
which takes the wide-ranging differences in individuals’ privacy
preferences [11, 27, 30] into consideration and enables clients to pre-
define their own privacy budgets (as opposed to shared an identical
value specified by the server) [21]. One common way to achieve
PDP in FL is to add different amounts of Gaussian noise to clients’
submitted local updates, while directly aggregating the noisy and
discordant local updates would inevitably lead to suboptimal model
performance due to the biased estimation of the global parameters.
To address these issues, Liu et al. [21] present the first promising at-
tempt by developing a projection-based approach named projected
federated averaging (PFA) for noise reduction [8, 34]. However, a
major downside of PFA is that they treat clients’ privacy budgets
as publicly available knowledge and allow the server to utilize this
information directly to identify the conservative/liberal clients at
the initialization stage (see Line 5, Algorithm 1 in Section 2).

Definition 1 (Personalized Differential Privacy in Federated Learn-
ing [21]). Let the set of clients be C = {𝐶1, . . . ,𝐶𝑀 }, where each
client 𝐶𝑚 ∈ C holds a local dataset D𝑚 . The federated learning
1Within the cross-silo FL we are considering, each client’s local dataset consists of
multiple records gathered from different users. Each user contributes only one indi-
vidual record to their respective client’s dataset. The term “personalized” is used to
characterize customized DP guarantees for each client.

4140

https://doi.org/10.1145/3583780.3615247
https://doi.org/10.1145/3583780.3615247
https://doi.org/10.1145/3583780.3615247
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583780.3615247&domain=pdf&date_stamp=2023-10-21


CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom. Junxu Liu, Jian Lou, Li Xiong, and Xiaofeng Meng

[𝜀!] Client 𝑪𝟏

Server
⋯⋯

[𝜀#] Client 𝑪𝟐 Client 𝑪𝑴 [𝜀!]

Client 𝑪𝟑 [𝜀"]

① Upload noisy local model updates ② Broadcast global model

①

② 𝒟'

𝒟(𝒟!

𝒟#

Figure 1: An illustration of the PDP-FL framework in which hetero-
geneous clients with non-IID data and personalized privacy budgets
are collaboratively training a global model.

satisfies {(𝜀𝑚, 𝛿𝑚)}𝑚∈[𝑀 ] -PDP, if each client𝐶𝑚 satisfies (𝜀𝑚, 𝛿𝑚)-
DP with respect to its local dataset.

We argue that obtaining access to clients’ privacy budgets can be
problematic, especially in scenarios involving a server that is hon-
est but curious. The raw value of clients’ privacy budget is highly
informative and sensitive, making it potentially a trigger for pri-
vacy attacks. In light of this, the primary objective is to discern the
implicit privacy preferences of clients while keeping their privacy
budgets undisclosed. More precisely, we focus on addressing this
issue solely by utilizing the exchanged noisy local model updates
between the server and the clients. In PFA, differences in privacy
budgets among clients indicate that the amount of noise added to
the gradients during training varies. Besides, the heterogeneous
(non-IID) data also introduces a drift in the local updates of each
client [13, 16, 19]. Thus, the crucial first step of indirectly estimat-
ing privacy preferences is to answer the following fundamental
question: under what conditions can the model updates of clients be
primarily influenced by noise levels rather than data distribution? To
the best of our knowledge, there is currently no existing research
that delves into this problem.

In summary, the contributions of this paper are twofold.
• We conduct a systematic evaluation using FedAvg and observe
that the 𝐿2-norms of local updates can effectively serve as an
indicator for distinguishing between clients with diverse privacy
budgets and non-IID data. This novel insight propels the advance-
ment of the study on indirect privacy preferences partitioning.
• We introduce a simple yet effective approach for clustering clients,
leveraging the off-the-shelf methods (e.g., Gaussian Mixture Mod-
els algorithm) without requiring any auxiliary knowledge about
the real privacy budgets. Furthermore, we integrate the approach
into PFA and validate its effectiveness through a series of com-
prehensive replicated experiments.

2 PRELIMINARIES

Federated Averaging (FedAvg). FedAvg [25] is the most widely
used algorithm for solving the federated optimization problem. In
each communication round, a randomly sampled subset of clients
runs a certain number of Stochastic Gradient Descent (SGD) steps
locally and independently, then the server averages the local up-
dates and broadcasts a single global model to all clients. One of
the limitations of FedAvg is its lack of special adjustments when

Algorithm 1: Projected Federated Averaging with Indirect
Privacy Preferences Partition
input :Number of clients𝑀 , clients’ privacy budgets (𝜀1, . . . , 𝜀𝑀 ) , DP parameter 𝛿 ,

number of communication rounds𝑇 , number of local steps 𝜏
output :global model x𝑇

1 Framework PDP-FL((𝜀1, . . . , 𝜀𝑀 ), 𝛿,𝑇 , 𝜏):
// Partition clients into “public” and “private”

2 𝑆𝑝𝑢𝑏 , 𝑆𝑝𝑟𝑖 ←
3 (Before) Direct partitioning based on exposed privacy budgets (𝜀1, . . . , 𝜀𝑀 )
4 (After) Indirect partitioning based on clustering with 𝐿2-norms of the noisy local

updates (Δx1, . . . ,Δx𝑀 ) (the warm-start round)
5 for round 𝑡 = 2, . . . ,𝑇 do
6 𝑆𝑡 ← (sample a random subset of 𝐾 < 𝑀 clients)
7 𝑆𝑡

𝑝𝑢𝑏
, 𝑆𝑡

𝑝𝑟𝑖
← (partition the subset into “public” and “private”)

8 foreach𝑚 ∈ 𝑆𝑡 do in parallel
9 Δx𝑡𝑚 ← DPSGD(𝑡, x𝑡 , 𝜏 )

10 (Before) Δx̄𝑡 ← PFA({ (𝜀𝑚 ,Δx𝑡𝑚 ) }𝑚∈𝑆𝑡 , S
𝑡
𝑝𝑢𝑏

, S𝑡
𝑝𝑟𝑖
)

11 (After) Δx̄𝑡 ← PFA({Δx𝑡𝑚 }𝑚∈𝑆𝑡 , S
𝑡
𝑝𝑢𝑏

, S𝑡
𝑝𝑟𝑖
)

12 x𝑡+1 ← x𝑡 − Δx̄𝑡

13 return x𝑇

14 Function PFA({Δx𝑚 }𝑚∈𝑆 , S𝑝𝑢𝑏 , S𝑝𝑟𝑖 ):
// Compute the subspace from “public” updates

15 V𝑘 ← (The top-𝑘 eigenvectors of the second moment matrix computed from all
Δx𝑚 and𝑚 ∈ S𝑝𝑢𝑏 )

// Project “private” updates onto the subspace

16 Δx̂𝑝𝑟𝑖 ← V𝑘V⊤𝑘
1

|S𝑝𝑟𝑖 |
∑
𝑚∈S𝑝𝑟𝑖 Δx

𝑚

// Projected federated averaging

17 S ← S𝑝𝑢𝑏 + S𝑝𝑟𝑖

18 Δx̄←
|S𝑝𝑢𝑏 |
|S| · Δx̄𝑝𝑢𝑏 +

|S𝑝𝑟𝑖 |
|S| · Δx̂𝑝𝑟𝑖

19 return Δx̄

encountering non-IID client data, resulting in suboptimal perfor-
mance under such conditions [9, 17, 18].

Differentially Private Federated Learning. While FL is effec-
tive at mitigating systemic privacy risks, it could disclose sensitive
information through exchanged model updates derived from lo-
cal data. To counter the potential privacy inference attacks from
both the honest-but-curious server and malicious third parties, the
integration of user-level Differential Privacy (DP) has become a
common practice in the development of FL algorithms. A widely
adopted technique involves introducing controlled Gaussian noise
to clipped gradients during each local SGD iteration (i.e., DP-SGD
[1]), resulting in a private version of FedAvg known as DP-FedAvg.

Projected Federated Averaging (PFA). In PFA [21], all clients
are divided into two types according to their privacy budgets (i.e.,
“private” clients with stricter privacy budgets and “public” clients
with more relaxed privacy budgets) exposed to the server at the
initialization stage; then the server extracts a reduced-dimensional
subspace from the “public” model updates and projects the “private”
model updates onto it. In this way, the heavy private perturbation
of the “private” updates can be discarded, and the most useful
information from all clients can be aggregated to improve the joint
model utility. Pseudocode is given in Algorithm 1.

3 STUDY ON THE IMPLICATIONS OF NOISE
LEVEL AND DATA DISTRIBUTION

To answer the fundamental question posed in Section 1, in this
section, we will empirically analyze the characteristics of the local
model updates using the representative FedAvg algorithm under
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(a) Experimental results evaluated on MNIST-LogR
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(b) Experimental results evaluated on CIFAR10-CNN

Figure 2: The changes in the average and standard deviation of the 𝐿2-norms of local updates (y-axis) across different communication rounds
(x-axis) under various combinations of noise levels and data distributions.

various combinations of noise levels and data distributions. We
consider two classic image classification tasks in the cross-silo FL
setting: the MNIST [15] digit recognition with a simple logistic
regression model (MNIST-LogR) and the CIFAR10 [14] image classi-
fication with the same CNN architecture as in [25] (CIFAR10-CNN).

3.1 Experimental Setup

Data distributions. To examine the effects of data heterogeneity,
we first establish the baseline using IID data and consider two
partitioning strategies to simulate potential non-IID scenarios.
• NIID(2): a.k.a. the quantity-based label distribution skew where
each client possesses data records associated with a fixed number
(e.g., two) of distinct labels [25].
• NIID-Dir(0.5): a.k.a. the distribution-based label imbalancewhere
a 𝑝𝑘,𝑚 ∼ 𝐷𝑖𝑟 (𝛽) proportion of records of class 𝑘 are allocated to
client𝑚. Here 𝐷𝑖𝑟 (𝛽) denotes a Dirichlet distribution [10] and
the smaller the 𝛽 is, the resulting partition is more unbalanced.
We choose the same 𝛽 = 0.5 as done in [33].

Varying privacy budgets. We explore a diverse range of cumu-
lative privacy budgets 𝜀 to observe the differences in local up-
dates among clients with different privacy preferences (e.g., 𝜀 ≈
0.4, 3.0, 202 for the MNIST-LogR experiments).

Evaluation metrics. In this section, we always report the average
and standard deviation of the 𝐿2-norms of local updates across all
clients (abbreviated to avg./std. 𝐿2-norms for the sake of readability).

Hyperparameters. Unless otherwise stated, we fix the number
of clients 𝑀 = 10, the total number of rounds 𝑇 = 20, the local
minibatch size 𝐵 = 64, the local steps 𝜏 = ⌊|D𝑚 |/𝐵⌋ and the step
size 𝜂 = 0.01. The full participation paradigm ensures all clients get
continuous observations throughout the training process.

3.2 Evaluation Results
For each plot in Fig. 2, we depict the changes in avg./std. 𝐿2-norms
across different communication rounds within the IID, NIID(2) and
NIID-dir(0.5) settings, respectively. Additionally, we conduct a se-
ries of comparative experiments regarding varying levels of additive

2It’s worth mentioning that within current research on DP-ML, it’s a common practice
to conduct experiments with 𝜀 > 1 for better privacy-utility trade-offs. For example,
[1] considers 𝜀 values of 2, 4 and 8, and [2] examines 𝜀 ranging from 1 to 20.

Gaussian noise. Note that in all experiments involving DP, we as-
sume all clients share identical privacy budgets. This condition is
referred to as homogeneous DP (HomoDP).

The isolated influence of data distribution.Two common trends
can be observed from all plots of Fig. 2: (1) Difference between IID
and NIID: both the avg. and the std. 𝐿2-norms in IID cases consis-
tently exhibit lower values compared to all non-IID cases along the
training process; (2) NIID-Dir(0.5) vs. NIID(2): in the majority of
cases, NIID-Dir(0.5) tends to produce avg./std. 𝐿2-norms that are
either smaller or comparable to those obtained with NIID(2).

The isolated influence of noise level. From Fig. 2 (a), we can
observe a clear negative correlation between the value of 𝜀 and
the avg./std. 𝐿2-norms in the two non-IID cases. Despite not being
readily apparent, the observation remains consistent in the IID case.
It makes sense since the discrepancies in privacy budgets imply
different amounts of additive noise being introduced to the model
updates during the local training procedure. Of particular interest
is the resemblance in results between the cases with 𝜀 = 3.0 and
𝜀 = 20, indicating that both cases result in a comparable degree of
perturbation on the magnitude of clients’ local updates, despite the
substantial gap in privacy budgets. In other words, when the value
of 𝜀 gets smaller, the resulting enhancement in privacy becomes
more noticeable. Given that similar trends have been observed in
the CIFAR10-CNN experiments, we present only a partial set of
results here due to the strict space limitations.

4 PDP-FL WITHOUT EXPOSING RAW
PRIVACY BUDGETS

Now our focus shifts back to the PDP-FL setting where the additive
Gaussian noises of the clients are drawn from different distributions
determined by their privacy budgets. We propose a privacy-budget-
agnostic adaptation of PFA and evaluate its effectiveness through
experiments conducted under the identical setup as outlined in the
prior PFA study.

4.1 Indirect Privacy Preferences Partitioning

Key Insight. In the previous section, we delved into how non-IID
data and varying privacy budgets affect the local model updates of
clients. Our experimental findings suggest the feasibility of indi-
rectly partitioning the privacy preferences of clients into distinct
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Table 1: Distribution of clients’ privacy budgets
Distribution Parameters Setting

MixGauss1 Mixture of N1 (0.1, 0.01) and N2 (10.0, 0.1)
with mixture weights 0.9 and 0.1

MixGauss2 Mixture of N1 (1.0, 0.1) and N2 (10.0, 0.1)
with mixture weights 0.9 and 0.1

MixGauss3 Mixture of N1 (0.1, 0.01) , N2 (1.0, 0.1) and N3 (10.0, 1.0)
with mixture weights 0.5, 0.4 and 0.1

Figure 3: The consistency between the results of GMMs clustering
based on 𝐿2-norm (left y-axis) and the ground truths based on the
real privacy budgets (right y-axis) across 10 clients (x-axis) evaluated
on MNIST-LogR in NIID(2) setting.

groups by analyzing solely the 𝐿2-norms of their local noisy up-
dates, as long as the “private” clients choose privacy budgets that
are sufficiently small (e.g., 𝜀 < 1) to ensure effective differentiation
from the “public” ones.
Proposed Approach. In practical scenarios, it is reasonable to
assume that conservative clients would prefer choosing stricter pri-
vacy budgets, while liberal ones might adopt more relaxed values.
Besides, clients who have comparable privacy budgets are expected
to introduce Gaussian noises drawn from a similar random distribu-
tion. This distinction in values of 𝜀 among different groups aligns
with the condition emphasized in the aforementioned key insight,
which inspires us to devise a clustering-based approach based on
the 𝐿2-norms. More specifically, in the initial phase, referred to as
the warm-start round, all clients are required to participate in the
local training and the server collects their noisy updates for indirect
client partitioning (without updating the global model). Then a sim-
ple yet powerful clustering method utilizing the Gaussian Mixture
Models (GMMs) algorithm is employed, replacing the original direct
partitioning based on exposed privacy budgets (see Alg. 1).
Privacy Analysis. According to the post-processing immunity
property of DP [6], which states that arbitrary data-independent
transformations to differentially private outputs will not affect their
privacy guarantees, the clustering procedure will not introduce
additional privacy costs for each client. Then Algorithm 1 satisfies
personalized DP (as stated in Definition 1) [21].

4.2 Experimental Results
We assess the effectiveness of the clustering-based PFA algorithm
by evaluating the clustering accuracy after the warm-start round
and the test accuracy of the global model achieved at the end of
training. We consider three potential multimodal privacy budget
distributions (a mixture of two or three different Gaussian distribu-
tions, see Table 1)3. Due to the space limitation, please refer to [21]
for the detailed experimental setup.
3This assumption is supported by previous observations which have shown that a
bimodal distribution is quite universal in a wide range of complex social systems [31].

Figure 4: The test accuracy versus communication rounds evaluated
on MNIST-LogR in non-IID data setting with privacy budget distri-
bution of MixGauss1.

Effects of the privacy budget distribution. Fig. 3 shows the
results of clustering obtained after the warm-start phase in MNIST-
LogR experiments, which were conducted with NIID(2) data and
varying privacy budget distributions. In all plots, we utilize various
markers to represent the predicted cluster index and the real pri-
vacy preference of each client. Additionally, we use three different
colors to indicate the resulting partitions. Experiment results show
an obvious consistency between the 𝐿2-norms clustering and the
ground truths (based on clients’ real privacy budgets).

Evaluation of the end-to-end PFA framework. In Fig. 4, we
report the test accuracy versus communication rounds evaluated
on MNIST-LogR in non-IID data setting with privacy budget dis-
tribution of MixGauss1. Unlike the results reported by Liu et al.
[21], we do not compare the weighted average (WeiAvg) and the
communication-efficient version of PFA (i.e., PFA+) here since these
two methods are dependent on the values of clients’ privacy bud-
gets, which is no longer available in our considered scenario. Just as
we expected, the distinct utility advantages of PFA over the baseline
methods FedAvg and Minimum remain due to the correct cluster-
ing results. Although it has worse accuracy than the non-private
baseline (NP-FedAvg), PFA still reaches a reasonable level of model
utility, while the FedAvg with PDP becomes ineffective.

5 CONCLUSION AND FUTUREWORK
We propose an effective method for indirect privacy preferences es-
timation based on 𝐿2-norm clustering in the PDP-FL setting. Then
we integrate this approach into the vanilla PFA framework to ad-
dress potential privacy leakage issues arising from exposed privacy
budgets. Our future work will focus on (1) generalizing the cluster-
ing strategy to the more challenging cases where clients’ privacy
budgets are relatively uniform or more difficult to differentiate;
(2) conducting extensive empirical evaluations on larger and more
diverse datasets for deeper explorations into the effectiveness and
scalability of our proposed approach.
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