
Fast Algorithms for Time Series with applications to
Finance, Physics, Music, Biology, and other Suspects ∗

Alberto Lerner† Dennis Shasha Zhihua Wang Xiaojian Zhao Yunyue Zhu
Courant Institute of Mathematical Sciences

New York University
New York, NY 10012

{lerner,shasha,zhihua,xiaojian,yunyue}@cs.nyu.edu

ABSTRACT
Financial time series streams are watched closely by millions
of traders. What exactly do they look for and how can we
help them do it faster? Physicists study the time series
emerging from their sensors. The same question holds for
them. Musicians produce time series. Consumers may want
to compare them. This tutorial presents techniques and case
studies for four problems:

1. Finding sliding window correlations in financial, phys-
ical, and other applications.

2. Discovering bursts in large sensor data of gamma rays.
3. Matching hums to recorded music, even when people

don’t hum well.
4. Maintaining and manipulating time-ordered data in a

database setting.

This tutorial draws mostly from the book High Perfor-
mance Discovery in Time Series: techniques and case stud-
ies, Springer-Verlag 2004. You can find the power point
slides for this tutorial at
http://cs.nyu.edu/cs/faculty/shasha/papers/sigmod04.ppt.

The tutorial is aimed at researchers in streams, data min-
ing, and scientific computing. Its applications should inter-
est anyone who works with scientists or financial “quants.”
The emphasis will be on recent results and open problems.
This is a ripe area for further advance.

1. SLIDING CORRELATION DISCOVERY

1.1 Motivation from Finance
Millions of people watch the price time series of the stock

market every day. Some believe in trends and momentum:

∗Work supported in part by U.S. NSF grants IIS-9988636
and N2010-0115586.
†This author’s current address is IBM TJ Watson Reseach
Center, alerner@us.ibm.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2004, June 13-18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 ...$5.00.

if the market is going up, it will keep going up. History has
not been kind to such people – every burst bubble leaves
many of them bankrupt. The basic problem is that the
price movement of day d is a poor predictor of the price
movement on day d + 1.

One problem the traders face is that stocks may go up
or down in synchrony with external factors such as oil price
rises, elections, interest rate changes and so on. So many
traders look for a way to make money by “hedging.” For
example, if s1 and s2 are closely related stocks and you buy
s1 and sell the s2 for the same Euro amount, external factors
will have little influence left. The question then is which to
buy and which to sell and when.

Correlation traders use the following reasoning. The day
return of a stock s from day d to d+1 is

(
s(d+1)−s(d)

)
/(s(d)).

This corresponds to the percentage gain or loss on s from
day d to d + 1. Now, if the returns of s1 and s2 have been
correlated very closely, but suddenly the return of s1 is much
lower than the return of s2, then a correlation trader will
buy s1 and sell s2 in the belief that the two stocks will re-
turn to correlation. As opposed to the momentum strategy,
this is a convergence strategy. Traders made a large profits
based on this idea in the 1980s. But like all stock market
ideas, once several people jump on it, profits disappear. So,
now the frontier is intra-day correlations, where both the
quantity of data and the response requirements are greatly
accelerated.

1.2 Algorithmic Techniques for Sliding Cor-
relation

A line is the shortest route between two points but the
easiest path wanders – Kentucky Pete, rock climber.

Computationally therefore the problem is to find pairs
of stocks whose returns are highly correlated for a certain
window of time and then flag them when they fall out of cor-
relation. The first part is the algorithmic challenge. When
there are thousands of time series (as in finance) or mil-
lions (as in satellite data), finding all pairwise correlations
takes O(w n2) time where n is the number of time series
and w is the length of the windows of interest. Worse still,
the sliding window requirement implies that one must com-
pute these correlations at every time point. This becomes
prohibitively expensive very quickly.

Fortunately, a synergy of three techniques accelerates the
solution greatly:

1. data reduction techniques to create low dimensional
synopses via Fourier transforms, Wavelet transforms,

Syn(s2) in indexSyn(s1) in index

to close points in the index.
if their synopses map
are probably close
s1 and s2

Store in

index structure.

multidimensional

Synopsis of s2Synopsis of s1

Time Series s2Time Series s1

Figure 1: GEMINI framework: map each time series
to a lower dimension and then find similar ones by
looking them up in a multidimensional index struc-
ture

singular value decomposition, and random projection.
2. multidimensional indexing techniques on the low di-

mensional synopses to find highly correlated pairs.
3. fast updates to the synopses for moving correlation.

Professor Christos Faloutsos will discuss the first two in
depth in his tutorial, which is entirely just since he helped in-
vent many of those techniques in the GEMINI framework[1]
(figure 1). What is remarkable is that these two steps make
the distance computation on entire time series much faster.
Here is why: if we can reduce the dimensionality of a window
computation from w to k, then each individual correlation
requires only O(k) time and the entire calculation then re-
quires only O(k n2) time. But the benefits don’t end there.
If k is small enough or, as we show in the tutorial, if it can
be split into smaller groups, then we can use a multidimen-
sional index. This could in principle reduce the time to find
the highest correlated pairs to O(kn log n).

The easiest path wanders...
Different data structures give different tradeoffs among

speed, type of time series and accuracy. For example, price
time series are well handled by Fourier transform-based re-
ductions whereas return time series are best handled using
sketches [5].

The next problem is to perform these computations at
every timepoint, or nearly so. To achieve this, we distinguish
among three time periods:

• timepoint – the smallest unit of time over which the
system collects data, e.g. second.

• basic window – a consecutive subsequence of time-
points over which we maintain a synopsis incremen-
tally.

• sliding window – a user-defined consecutive subsequence
of basic windows over which the user wants statistics,
e.g. an hour. The user might ask, “which pairs of
stocks were correlated with a value of over 0.9 for the
last hour?”

Our basic strategy then is to maintain a synopsis (e.g.
Fourier coefficients, sketches) for each basic window of each
time series and then when a basic window completes, incre-
mentally update the synopsis for the sliding window ending
at that time. This is the basis for our system StatStream
(whose architecture is shown in figure 2).

For many applications, lagged correlations are useful, i.e.
the correlation between a window of from time t1 to t1 + w
in stream s1 with a window from time t2 to t2+w for stream
s2. These can be done with roughly the same efficiency [5].

Many problems in this area are open. Here is just one ex-
ample: find the maximum window size w for which the above
(lagged or unlagged) correlations are maximized. Other
open problems will be mentioned later.

2. ELASTIC BURST DETECTION
Consider the following burst detection application. Scien-

tists use an astronomical telescope to observe high energy
photons from the universe continuously. When many pho-
tons are observed, they assert the existence of a Gamma Ray
burst. The scientists hope to discover primordial black holes
or completely new phenomena by the detection of Gamma
Ray bursts. The durations of Gamma Ray bursts are highly
variable, flaring on timescales of milliseconds to days. Once
such a burst happens, it should be reported immediately.
Other telescopes could then point to that portion of sky to
confirm the new astrophysical event. The data rate of the
observation is extremely high.

Burst detection is the activity of finding abnormal aggre-
gates in data streams. Such aggregates are based on sliding
windows over data streams. In some applications, we want
to monitor many sliding window sizes simultaneously and
to report those windows significantly greater than those of
other periods. If the problem were to detect bursts over a
fixed sized window, then there is a simple linear time al-
gorithm: keep a running sum of the aggregates over that
window size and raises an alarm every time the threshold is
exceeded.

However, if we want to to detect bursts over many window
sizes each with its own threshold (where those thresholds are
monotonically increasing with the window size), the problem
becomes much more difficult.

Fortunately, we can get a time reduction if the thresholds
are large enough so it is uncommon for them to be exceeded.
That case is common in applications involving people, be-
cause people ignore alarms if they occur too frequently –
“The Boy Who Cried Wolf” phenomenon – so alarms are
designed to occur very infrequently.

The basic idea is to use a data structure called a Shifted
Binary Tree. This data structure (figure 3) helps to detect
bursts for many window sizes at once all by looking at just
a logarithmic number of window sizes. The half-overlapping
nature of the structure gives us the following lemma:

Lemma 1. Given a time series of length n and its shifted
binary tree, any subsequence of length w, w ≤ 1 + 2i is in-
cluded in one of the windows at level i + 1 of the shifted
binary tree.

The assumption about hard-to-exceed thresholds is im-
portant because a window of size w may be handled by a
window of size nearly 2w. If the threshold for w is hard to
exceed then bursts that exceed the threshold in a window of
size 2w will be rare as well. (We can reduce 2 to a smaller
factor as well.)

Finding bursts over k windows on a stream of size n re-
quires O(kn) time if done naively. When thresholds are high,
the Shifted Binary Tree approach can do this in O(n) time.
In a real high energy physics application whose goal is to

Raw Data Stream Regularized Data Stream Time Series Digests

Buffer Data

Preprocess

Interpolate

Compute

Data Digests

 Grid Structure

Report
Highly
Correlated
Time
Series

Figure 2: The software architecture of StatStream

Level 4

Level 1

Level 2

Level 5

Level 3

Level 0

Figure 3: Shifted Binary Tree

detect bursts of gamma rays on 14 windows, our technique
was able to improve the time by a factor of 7. (This is less
than the theoretical improvement because of the overhead
common to both the new and old implementations.)

Some open problems in this area concern finding bursts for
many different kinds of events as well as finding correlations
among bursts in different data streams.

3. QUERY BY HUMMING
What would you think if I sang out of tune? Would you

stand up and walk out on me? Lend me your ears and I’ll
sing you a song, And I’ll try not to sing out of key. – The
Beatles.

The goal of a Query by Humming system is to allow an
untrained user to find a song by humming part of the tune.
This is difficult because most people have poor relative pitch
and hum at inconsistent tempos.

There are two basic techniques used so far for this un-
solved problem:

1. Segment the hum query into notes and query using
string matching.

2. Use Dynamic Time Warping(DTW) on the time series
of the frequency. DTW distance is tolerant to varia-
tions in tempo [2].

In our work we combine both approaches, trying to achieve
better speed and accuracy. We build on the work of several
other research groups, notably Keogh [2]. Computing the

0 10 20 30 40 50 60 70
−8

−6

−4

−2

0

2

4

6

Time Series y
Upper Envelope of y
Lower Envelope of y
Time series x

Figure 4: The Envelope Filter to speed up query
processing

DTW distance on each time series would be very slow. One
key concept to speed up the query processing is to use the
notion of envelope to filter out bad candidates quickly. By
designing the envelope properly, two time series may be close
under DTW distance only if one is close to the other’s enve-
lope (figure 4). Figure 5 shows the interface of our system.
Preliminary testing of the system on real people, including
many researchers attending SIGMOD 2003, gave good per-
formance and high satisfaction.

Scaling up the system to millions of songs while achiev-
ing high retrieval precision is still open. We are working on
expanding our melody database and adapting the system
to different hummers. Our current efforts involve adapting
various statistical filters to quickly filter out bad candidates
and introducing better normalization to tolerate more situ-
ations of inaccurate relative pitch. Our current system with
more than one thousand songs again gives good speed and
high accuracy.

4. AQUERY: QUERY LANGUAGE FOR OR-
DERED DATA

Good order is the foundation of all things. – Edmund
Burke.

Time series data is ordered and many of the queries one
would like to ask about them depend on order. An order-
dependent query is one whose result (interpreted as a multi-
set) changes if the order of the input records is changed. In
a stock-quotes database, for instance, retrieving all quotes

Figure 5: The User Interface of HumFinder

concerning a given stock for a given day does not depend on
order, because the collection of quotes does not depend on
order. By contrast, finding the five price moving average in
a trade table gives a result that depends on the order of the
table. Query languages based on the relational data model
can handle order-dependent queries only through add-ons.
SQL:1999 [3], for example, permits the use of a data or-
dering mechanism called a “window” in limited parts of a
query. As a result, order-dependent queries become difficult
to write in those languages and optimization techniques for
these features, applied as pre- or post-enumerating phases,
are generally crude. The goal of AQuery is to offer users
a natural extension to SQL that can be well optimized. In
this it is inspired by other similar efforts [4]

To give you a flavor for the language, consider the schema
Trades(ID, date, timeofday, volume, price), where ID is the
ticker symbol of a traded security.

Consider the following query: for a given stock (MSFT)
and a given date, find the best profit one could obtain by
buying it and then selling it later that day (short selling – in
which an item is sold before it is bought – is disallowed). Al-
gorithmically, the solution is straightforward: compute the
profit resulting from selling at each trade t by subtracting
the price at t by the minimum price seen up until t. The
answer to the query is the maximum of these profits. We
can render this directly in AQuery:

SELECT max(price - mins(price))
FROM Trades

ASSUMING ORDER timeofday
WHERE ID = ’MSFT’ AND date = ’06/06/04’

This notion of ASSUMING says that the cross-product of
the tables in the FROM clause are to be ordered semanti-
cally in ascending order by ‘timeofday’ for the purposes of
the rest of the query. The variables ‘price’, ‘ID’, and ‘date’ in
the query are bound to entire ordered columns at once rather
than ranging over each scalar values of these columns at a
time. (AQuery is column-oriented like its direct predecessor
KDB [6]). Functions and expressions in AQuery follow this
column-oriented approach and take entire columns as argu-
ments. The mins function computes the running minimum
of the price column. The expression price - mins(price) per-
forms a vector to vector subtraction and then max takes the
maximum of that.

When we say “ordered semantically” we mean that the
query’s outcome is as if the ASSUMING clause had sorted

the cross-product of tables in the FROM clause. A smart
optimizer delays this sorting step when convenient. In this
example, the reordering occurs only on the price column and
only after the selection of trades for MSFT has taken place.
What makes AQuery particularly amenable to optimization
is that it can express order-dependent queries in a simple
(e.g. often in a non-nested) way. Simple query structures
are easier for an optimizer to handle.

The tutorial discusses the design and implementation of
AQuery as well as preliminary uses. We will present other
optimization techniques that go beyond choosing when to
sort and can actually reduce the amount of work involved
in enforcing the ASSUMING clause.

The main open problem we face here is how to incorporate
in the language the somewhat complex operations over time-
series we described before.

5. CONCLUSION
Data arriving in time order (a data stream) arises in fields

ranging from physics to finance to medicine to music, just to
name a few. Often the data comes from sensors (in physics
and medicine for example) whose data rates continue to im-
prove dramatically as sensor technology improves. Further,
the number of sensors is increasing, so correlating data be-
tween sensors becomes ever more critical in order to distill
knowledge from the data. On-line response is desirable in
many applications (e.g., to aim a telescope at a burst of ac-
tivity in a galaxy or to perform magnetic resonance-based
real-time surgery). These factors – data size, bursts, corre-
lation, and fast response – present a host of challenges. We
have only scratched the surface.

6. REFERENCES
[1] Christos Faloutsos, M. Ranganathan, and Yannis

Manolopoulos. Fast subsequence matching in
time-series databases. In Proc. ACM SIGMOD
International Conf. on Management of Data, pages
419–429, 1994.

[2] Eamonn Keogh. Exact indexing of dynamic time
warping. In VLDB 2002,Proceedings of 28th
International Conference on Very Large Data Bases,
August 20-23, 2002, Hong Kong, China, pages 406–417,
2002.

[3] Jim Melton. Advanced SQL:1999 – Understanding
Object-Relational and Other Advanced Features.
Morgan Kaufmann Publishers, 2002.

[4] Praveen Seshadri, Miron Livny, and Raghu
Ramakrishnan. The Design and Implementation of a
Sequence Database System. In Proceedings of the
International Conference on Very Large Data Bases
(VLDB), pages 99–110, 1996.

[5] Dennis Shasha and Yunyue Zhu. High Performance
Discovery in Time Series: Techniques and Case
Studies. Springer-Verlag, 2004.

[6] Arthur Whitney and Dennis Shasha. Lots o’ Ticks:
Real-Time High Performance Time Series Queries on
Billions of Trades and Quotes. In Proceedings of the
2001 ACM SIGMOD International Conference on
Management of Data (SIGMOD), 2001.

