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Abstract

We consider conjunctive queries with arithmetic comparisons over multiple continuous data streams.
We specify an algorithm for determining whether or not a query can be evaluated using a bounded
amount of memory for all possible instances of the data streams. When a query can be evaluated using
bounded memory, our algorithm produces an evaluation plan based on constant-sized synopses of the
data streams.

1 Introduction

In many recent applications, data takes the form of contindaits streamsrather than finite stored data

sets [BWO01]. Examples include stock ticks in financial applications, performance measurements in network
monitoring and traffic management, log records or click-streams in Web tracking and personalization, data
feeds from sensor applications, network packets and messages in firewall-based security, call detail records
in telecommunications, and so on. These applications have a need for queries over data streams that go
well beyond simple element-at-a-time processing, they have multiple rapid and time-varying streams, and
they require timely online answers. In network traffic management, for example, queries over streams of
network packets and/or performance measurements can be used to monitor network behavior online in order
to detect anomalies (e.g., link congestion) and their cause (e.g., hardware failure, intrusion, denial-of-service
attack) [DGOO]. In financial applications, queries over stock tick data, news feeds, and historical company
data can be used to monitor trends and detect fleeting opportunities [Tra].

In the STREAM STanford stREam datA Managemgmbject [STR], we are developingata Stream
Management Syste(®@SMS that allows some or all of the data being managed to come in the form of
continuous, possibly very rapid and time-varying, data streams [BWO01]. Developing the query processing
component of a DSMS involves many novel and challenging problems, since queries tencotatiba-
ous(long-running) rather thaane-time stream data distributions and arrival characteristics may be unpre-
dictable, and system conditions (e.g., available memory) will fluctuate over time. As one initial step, our
work in this paper addresses the problem of characterizing memory requirements for queries over continuous
streams of relational tuples. We motivate the problem through a series of examples.

1.1 Examples

Our set of example queries is shown in Table 1. We use standard relational algebra, intraddoing
duplicate-preserving projection. Two unbounded relational data stresds,B,C') andT' (D, E), are
used in the example queries. The answer to a query at any pointin time is the answer using standard algebra

*This work was supported by the National Science Foundation under grants 11S-9817799 and 11S-0118173 and by an Okawa
Foundation Research Grant.



Computable with bounded memory?

For 7 Form
Ql T A (O’A>10 (S)) Yes No
Q2 T A (UA:D (SXT)) No No
Q3 | Ta (04=D A A>10 A D<20 (SXT)) Yes Yes
Qi | Ta(0B<D A A>10 A a<20 (SXT)) No Yes
Qs | Ta (UB<D A B<120 A D>20 (SXT)) Yes Yes

ANA>I0 AN A<20
Q6 | A (0B>D A B>E A A=10 (SXT)) No Yes
Q7 | TaA(0a<D A B<E A As10 A A<20 (SXT)) No Yes
Qg | TA(0B<D A O<E A 4510 A A<20 (SXT)) No No
Qo | TA(TB<n n <k A a0 acay (SXT)) No Yes
ANB<EANCI00 AD>50

Table 1: Example queries over data stregind, B, C') andT (D, E).

semantics over the bag of data stream tuples seen so far. The examples are craftedltsiathspecific
points.

Consider query);, a selection and projection over one data streBm{o 4>10(.S)). When the projec-
tion is duplicate-preservin@; is a simple filter onS and can be evaluated by tuple-at-a-time processing of
the stream. Thus, it can always be evaluated without using any extra memory for storage of stream tuples or
intermediate staté.If the projection inQ; is duplicate-eliminating, we need to keep track of each distinct
value of A greater tharl0 in .S so far, in order to eliminate duplicates in the answer. In this case, there is
no finite bound on the amount of memory required for evaluating this query over all possible instances of
streams.

On first inspection, most queries over data streams, particularly join queries, seem to require unbounded
memory. For example, consider quepy, an equijoin of stream§ andT: T4(oca=p(SXT)). Q2 re-
guires each tuple in S (respectivelyT’) to be saved, sincecould potentially join with tuples iff" (re-
spectivelyS) that arrive in the future. However, as soon as we consider attributes with discrete ordered
domains and queries with inequalities, many more queries over data streams become computable with
bounded memory. For the remaining example queries, suppose all attributes are of type integer. Like
guery@Qq, query@)s is an equijoin of stream$§ and T, but ()3 adds selection predicates ghand D:
Ta(0a=D A a>10 A D<20(SXT)). Q3 can be evaluated with bounded memory by maintaining, for each
integerv in the interval[11, 19], the current number of occurrences of tuples witk= v in S andD = v
in T. (We assume that counts can be saved in bounded memory.) Quésyan inequality join ofS and
T: Ta(0B<D A A>10 A A<20(SXT)). Q4 can be evaluated with bounded memory for duplicate-eliminating
projection by maintaining, for each integein the interval11, 19], the current minimum value d among
all tuples inS with A = v, and maintaining the current maximum valueldfamong all tuples irf". With
this information, each time we see a ndvor T tuple, we can decide whether to generate a Hevalue in
the answer(), cannot be evaluated with bounded memory for duplicate-preserving projection because, to
preserve duplicates correctly in the answer, we must savd d@ll)(combinations i where the value oft
liesin the intervalll, 19].

Our goal was to develop an algorithm that accurately determines whether or not a given query over data
streams can be evaluated with bounded memory over all possible instances of the streams. As the more
complex example queriggs—(Q)q in Table 1 indicate, this problem turned out to be nontrivial. We will
revisit some of these example queries in later sections.

!Note two assumptions. First, data stream tuples can be processed at least as fast as the rate at which they arrive. Second, we
are not concerned with storage of the query answer. For the monotonic queries we consider, answers can also be data streams.



1.2 Contributions

We make the following contributions in this paper:

e We consider conjunctive queries with arithmetic comparisons over multiple data streams, and we
specify an algorithm that determines whether or not a query can be evaluated using a bounded amount
of memory for all possible instances of the data streams.

e When a query can be evaluated using bounded memory, our algorithm produces an evaluation plan
based on constant-sized synopses of the data streams, characterizing the memory requirements of the
guery for all possible instances of the streams.

e When a query cannot be evaluated using bounded memory, for any query evaluation plan, our algo-
rithm identifies specific instances of input streams for which the plan requires memory at least linear
in the length of the input streams.

1.3 Related Work

Past and ongoing work on processicantinuous queriefCDTW00, NACP0O1, SPAM91, TGNO92], and

on querying remote data sets across networks B IFF99, UFA98], strongly relates to the problem of
processing queries over data streams, which forms the context for our work. To the best of our knowledge,
no past work in this area has considered the problem of characterizing memory requirements for queries
statically, leaving memory management entirely to the query execution phase. Memory management strate-
gies used during query execution in these environments include the use of disk to buffer data for memory
overflows [IFF-99, UFA98] and grouping queries with common subexpressions to minimize memory us-
age [CDTWOO].

Clearly there is a relationship between queries over data streams and the well-knownraetearii-
ized viewdGM95], since materialized views are effectively queries that need to be reevaluated or updated
incrementally whenever the base data changes. Particularly relevanGsithieicle data modelJMS95],
which defined a restricted view definition language and algebra that operates over append-only ordered se-
guences of tuplegfironicleg. The view definition restrictions, along with restrictions on the sequence order
within and across chronicles, guarantees that the views can be maintained with bounded memory. Work on
self-maintenanciBCL89, GIJM96, QGMW96] andlata expirationGMLY 98] considered the related but
distinct problem of identifying the minimum amount of base and/or auxiliary data required for maintaining
a materialized view.

Query processing over data streams usipgroximatesynopses (summaries) of the streams has been
the subject of some recent work. Reference [GKS01la] develops histogram-based techniques to provide
approximate answers faorrelated aggregate queries/er data streams. Reference [GKMSO01] presents
a wavelet-based approach for building small-space summaries over data streams to provide approximate
answers for many classes of aggregate queries. Our work differs from work in this area in that we are
considering memory requirements for producing exact, not approximate, answers.

In more theoretical work on data streams, [HRR98] studies basic tradeoffs in processing finite data
streams, specifically among storage requirements, number of passes required, and result approximations.
References [AMS96, FKSV99, Ind0Q] consider the problem of approximating frequency moments and
computingL, differences over data streams. Reference [GKSO01b] considers the problem of maintaining
optimal time-based histograms over data streams, [DGIM02] considers maintaining statistiidifmy
windowsover data streams, and [BDMO02] considers sampling for the same scenario.



2 Query Language, Execution Model, and Problem Statement

We formally define our model for data streams, our query language, and the semantics used for queries over
streams. We then formalize our query execution model and state the problem of determining whether or not
a query can be evaluated with bounded memory.

2.1 Continuous Data Streams

A continuous data strearthereafter simply a&trean) is a potentially infinite stream of relational tuples.

Each stream has a fixed schema, i.e., a known finite set of attributes. For most of this paper we assume that
the domain of each attribute is discrete and totally ordered (e.g., the domain of integers). In Section 6 we
extend our results to attributes with more general domains. We assume stredagsaire., the same tuple

can appear any humber of times in a stream.

We assume that streams are generated by an independent source, meaning that a query evaluation plan
has no control over the streams. This assumption has two important implications. First, a stream can be read
only once from its source, and is read in the order generated by the source. A query evaluation algorithm
can, of course, store a part of the stream in its local memory and access it subsequently. Second, if a query
involves multiple streams, an evaluation plan cannot make any assumptions about the relative order in which
the tuples of different streams are read. Tistanceof a stream at any point in time is the bag of tuples of
the stream seen until that point. We use the tpresentatiorto denote the exact interleaved sequence in
which tuples are generated in the input data streams.

2.2 Queries over Continuous Data Streams

A query in a traditional database is specified over finite data sets and the query answer is a function of the
entire input data. Since data streams are potentially infinite, we considénuous querieswhere the

answer to a query over data streams at any point in time is a function of the input streams seen so far. The
semantics of queries over continuous relational data streams is therefore a simple extension of the semantics
for the traditional relational case.

In this paper, we consider a class of Select-Project-Join (SPJ) queries, which also could be termed
as conjunctive queries with arithmetic comparisons. In addition to the conventional duplicate-eliminating
semantics of SPJ queries, we also consider duplicate-preserving semantics as in SQL. We use the standard
relational symbolsgr and x to denote selection and Cartesian product operators, respectively. We use
and 7 to denote duplicate-eliminating and duplicate-preserving projection operators, respectively. Thus, a
duplicate-preserving SPJ query is of the general farpiop(S; x Sy X ... x S,)), whereL is the list
of projected attributes? is the selection predicate, asd, So, . . ., S, denote the input data streams. We
restrict ourselves to SPJ queries where the selection predcata conjunction of atomic predicates. An
atomic predicate is of the forfi;. A Op S;.B (i = j ori # j) or of the formS;.A Op k, whereOp is
one of the comparison operators{ir, =, >} andk is some constant. Our results can be extended in a
straightforward way to include the operatdrs, >}. We assume that there are no self-joins in the query,
i.e.,S; # .5, fori # j. Appendix C explains how to extend our results to include self-joins.

Note that the SPJ queries we considerramotoniqUII89]. Monotonicity implies that any tuple that
appears in the answer at any point continues to do so forever. The query answer can, therefore, also be
treated as a data stream, although we do not use this closure property explicitly.

2.3 Execution Model and Problem Specification

We assume that the query evaluation environment has access to some local memory which can be used, for
example, to store some information about the input streams seen so far. We sayriliatfahe memory
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can store one attribute value or a codinle are not concerned with memory for storage of the query answer
since the answer also can be a data stream. (It turns out that in many, but not all, cases, when a query can
be evaluated in bounded memory its answer can be stored in bounded memory.) The goal of this paper is to
characterize the worst case memory requirements of SPJ queries over all possible input stream instances and
their presentation (Section 2.1). For many SPJ queries, the worst case memory requirement is linear in the
length of the input streams and therefore unbounded. However, we identify an interesting class of queries
that can always be evaluated with a bounded amount of memory.

Definition 2.1 (Bounded-Memory Computaklity of a Query) An SPJ query i€omputable in bounded
memornyif there exists a constaii and an algorithm that evaluates the query using fewer fifamits of
memory for all possible instances and presentations of the input streams of the query. O

We focus primarily on the problem of identifying exactly the above class of queries. It follows from the
proof in Appendix A that any query that does not fall into this class requires memory linear in the length of
the input streams to evaluate.

3 Preliminaries and Definitions

This section introduces notation and terminology, and reviews some basic concepts from discrete mathe-
matics that are used in our results.

As described in Section 2, we consider two kinds of SPJ queries, both of thetfg(mp (51 x S2 x
.-~ x S,)) but using either duplicate-eliminating§ or duplicate-preserving) projection. When the
streams and the list of projected attributes are not important to the discussion, we may write @ @sery
Q(P), whereP is the selection predicate. For convenience, we represent the selection predicate as a set
instead of a conjunction of atomic predicates. The tetemenis used to refer to either a constant or an
attribute of a stream.

For a given SPJ quely:

C(Q) denotes the set of constants that appe#}.in
S§(Q) denotes the set of streams that apped?.in

A(Q) denotes all the attributes of all the streamgini.e., A(Q) = U geg(g)A4A(S), Where A(S)
denotes the set of attributes in stredm

£(Q) = A(Q) UC(Q) is the set of all elements relevant@o
E(S) = A(S)uC(Q) is the set of all elements i} potentially relevant to streass.

A set of atomic predicateB is satisfiabldf there exists some assignment of values to the attribut&s in
that makes every predicate in the geévaluate to true. Observe that any qu@f’) with an unsatisfiable
selection predicat® has an empty output stream, and therefore is trivially computable in bounded memory.
Inthe rest of the paper we assume that the selection predicates of the queries considered are satisfiable unless
mentioned otherwise.

Let P be a set of predicates. Thensitive closureof P, denotedP™, is the set of atomic predicates
logically implied by the predicates iR. Note that any quer) (P) can be rewritten as an equivalent query
Q(P')if P = (P)". For a given set of predicaté the set of predicatéaducedby a set of elements,
denotedND(P, E), is the set of predicates iR that involve only elements i.

2We assume that a count only takes up one unit of memory although the number of bits necessary to represent a count grows
logarithmically with the number of items being counted. In practice, no count is likely to require more than one or two words of
memory on any modern computer architecture.



Definition 3.1 (Redundant Predicatg An inequality predicaté¢e; < e3) € P is said to beedundantin
P if there exists an elemenrtsuch thate; < ¢) € PT and(e < e3) € PT. Note that removing all the
redundant predicates from ay/leaves its transitive closure unchanged. O

A set of elementd is totally orderedby a set of predicate® if for any two elements; andes in
E, exactly one ofe; < e; 0re; = e3 ore; > e isin PT. Consider a set of predicatd? involving
only elements in a sét. P is order-inducingf E is totally ordered byP. There are exponentially many
different order-inducing sets of predicates for a given set of elements. DB ) as the set of all order-
inducing sets of predicates fd&. For example, consider the set of elemehts= {4, B,5}. Two of the
order-inducing sets of predicates farare{A < B,5 < A} and{A = B, B < 5}. Note that if a set of
elementst is totally ordered by a set of predicatBsthenIND(P, E') € TO(E).

For a given set of predicatdd the equality predicates in the set partition the elemenf3iinto equiv-
alence classeswo elements; ande; belong to the same equivalence classift= ¢; € PT.

Definition 3.2 (Boundedness of Attributeg One of the most important properties we use is thdtoafind-
ednes®f attributes. An attributel is lower-boundedby a given set of predicate?if there exists an atomic
predicated > k£ € Pt for some constanit. Similarly, an attributed is upper-boundedly P if there exists
an atomic predicatd < k¥ € PT. An attribute isboundedf it is both upper-bounded and lower-bounded.
An attribute isunboundedf it is not bounded. O

Finally, afilter is an atomic predicate whose operands are either an attribute and a constant or two

attributes of the same stream, i.6;,A Op k or S;.A Op S;.B. Filters form an important class of atomic

predicates since they can be evaluated using no extra memory. An atomic predicate that is not a filter requires

“joining” two streams and thus potentially requires unbounded memory.

4 Queries with Duplicate-Preserving Projection

Inthis section we consider SPJ queries with a duplicate-preserving projection operator. Duplicate-eliminating

gueries are covered in the next section. To determine whether a ueag be evaluated using a bounded

amount of memory, we first rewrit@ as a union of queries, each of which belongs to a special class that

we callLocally Totally Orderedjueries, oL TO queries for short. LTO queries have a special structure that

makes it easier to determine the maximum amount of memory required to evaluate them, and every SPJ
query can be decomposed into a union of LTO queries. Queries that involve only one stream can always be
computed in bounded memory, since without joins every predicate is a filter and can be computed one tuple

at a time.

Definition 4.1 (Locally Totally Ordered (LTO) ) A queryQ(P) is Locally Totally Orderedif for every
S € 8(Q), £(S) is totally ordered byP. 0

Theorem 4.1 LetQ = #L(ap(sl X Sy x -+ x .S,)). Q can be rewrittena®; UQ2 U - - - U Q,, Where
eachq); is an LTO query and the unions are duplicate-preserving.

Proof: For eachS;, let TO(E(S;)) = {T}, T?,...,T}. That is, eacl? is alocal total ordering—one
possible total ordering of the attributesgftogether with the query constants. We consider an exhaustive
union ofm; x mg X --- X m, queries that combines local total orderings of all streams in the query in all
possible ways:



QPUTIUTIU ---UTH U QPUTEUT}U ---UTH U --- U
QPPUTIUTU ---UTH U QPUTEUTIU ---UTH U --- U

1)
U QPUT™MUT™U - UTm)

Each branch of the union is an LTO query. Furthermore, it can be shown that there is a one-to-one corre-
spondence between the tuples in the answé) ahd the tuples in the answer of the union of LTO queries
in Query (1). O

Definition 4.2 (MaxRef and MinRef) Consider a query)(P) and a strean¥; € S(Q). MaxzRef(S;) is
the set of all unbounded attributdsof S; (Definition 3.2) that participate in an inequality join of the form
S;.B < S;.A,i# j,whereS;.B < S;.Ais notredundant (Definition 3.1)dinRef (.S;) is similarly defined
as the set of all unbounded attributé®f S; that participate in an inequality join of the forf). A < S;.B,

i # j, that is not redundant. O

Theorem 4.2 Let@ = #L(ap(sl x Sy x ---x S,)) be an LTO query wher is satisfiable ane > 1.
@) is bounded memory computable (Definition 2.1) iff:

C1: Every attribute in the project lidt is bounded.
C2: For every equality join predicatg.A = S;.B wherei # j, S;.A andS;.B are both bounded.
C3: |MazRef(S;)| = [MinRef(S;)] =0fori=1,...,n.

Proof: First consider the “if” portion of the proof: If conditions C1, C2, and C3 are satisfieddhean be
evaluated with bounded memory. We cresyaopsesf then data streams as follows. For each stregm

partition the tuples of; that satisfy the total order condition ¢ into distinct buckets based on the values

of the bounded attributes. Tuples that agree on the values of all bounded attributes are placed in the same
bucket; tuples that differ on at least one bounded attribute are placed in different buckets. For each bucket,
store the values for the bounded attributes (which are common across all tuples in the bucket) and a count of
the total number of tuples falling into that bucket. By the definition of bounded attributes and our discrete
domain assumption, the total size of these synopses is bounded by a constant.

These synopses are sufficient to evaldafer all input streams and presentations. Attributesthat do not
occur in the project list or join conditions can be ignored. (All local selection conditions must be implied
by the total order, sinc® is satisfiable, so any tuple satisfying the total order necessarily satisfies all filters
that are part of the selection predicate.) Conditions C1 and C2 guarantee that all attributes involved in the
projection or equijoins are bounded, and each synopsis maintains full information about the values of all
bounded attributes for every tuple, so projections and equijoins can be handled properly. By Definition 4.2
of MaxRefandMinRef condition C3 amounts to an assertion thatdach atomic inequigy join predicate
S;.A < §;.B, i # j, either both attributes appearing in the predicate are bounded, or else the total orders
onS; andS; imply S;.A < ¢ < S;.B wherec is some constant appearing in the query. (If no such constant
exists, then it can be shown thdlin Ref (S;) cannot be zero.) In the former case, the synopses maintain full
information about the attribute values, and in the latter case, the actual attribute values are not needed, since
all tuples fromsS; that satisfy the total order of;; join with all tuples fromS; that satisfy the total order
on.S; (at least as far as this particular join predicate is concerned). Thus no relevant information is lost by
consolidating tuples into buckets.



Now consider the “only if” portion of the proof: If one of the conditions C1, C2, or C3 does not hold,
then@ cannot always be evaluated in bounded memory. For eaclitmonde show that if the condition is
violated, then for any query evaluation algoritbtvand any memory bount/, one can construct instances
and a presentation of the input streams for whictequires more thaid memory to correctly evaluatg.

The following example illustrates the technique. The complete “only if” proof is provided in Appendix A.

Consider query): Ta(0B<D A 4>10 A A<20 A B>20 A (<10 A D>20 A E<10(SXT)). Q is one of the
LTO queries for example quefys with duplicate-preserving projectiom 4 (0s<«p a a>10 A A<20(SXT)).

S.B € MinRef(S), so condition C3 is violated iy and we assert th& cannot be computed in bounded
memory. For the sake of a contradiction suppose there exists an algarithan can always evaluatgwith
fewer than a constard units of memory. Define two sets of tuples,s = {(15,21,5),(15,22,5),...,
(15,20+ N, 5)} andt = {(22,5), (23,5),...,(21+ N, 5)}. Consider a class of inputs where the instance
of stream$ consists of a set of4, B, C) tuples chosen from and the instance of streafconsists of a
single(D, E) tuple chosen front, and suppose that all tifetuples are presented to algorittdrbefore the
T tuple is presented. (The order in which thi¢éuples are presented does not matter.) After receivingthe
tuples but before receiving tfe tuple, algorithm4 will be in some state. Sincé has fewer thad/ units

of memory, the number of distinct states thatan be in is limited. However, since there aré subsets of
s, for some sufficiently largév there must be two distinct subsetssahat leaved in the same state. Lat
ands” be two such subsets, and (&b, &, 5) be the tuple with the smallest value/othat is present in one
of s' or s” but not in the other. Assume without loss of generality {iat &, 5) € s’. WhenT' consists of
the tuple(k + 1, 5), the correct answer # depends on whethef consists ofs’ or s”: the count of tuple
(15) in the answer fok’ is one more than that fa’. Since algorithm¥ is unable to distinguish betwesh
ands”, it will give the same answer in both cases and one answer will be incorrect. O

Lemma 4.1 Ifa query@(P) is computable in bounded memory aFids a filter predicate, the@ (P U {F'})
also is computable in bounded memory.

Proof: Straightforward. a

Theorem 4.3 Let () = #L(ap(Sl X S X ...x S,)). From Theorem 4.1() is equivalent to the union
of LTO queries in (1).Q) is computable in bounded memory iff every LTO query in (1) is computable in
bounded memory.

Proof: Let ) be computable in bounded memory. Observe that é"é(:ﬁln Equation (1) is a filter. Using
Lemma 4.1, each LTO que(P U Tl’“1 U --- UTk)in (1) is computable in bounded memory. Now let
n > 1 and suppose each LTO quepy(P U lel U -+~ UTk) in (1) is computable in bounded memory.
Since the size of the answer to each LTO query is bounded (byittum1 of Theorem 4.2), we can
compute their union, and hen€g in bounded memory. Finally, if = 1 thenP is a filter and both) and
the LTO queries in (1) are computable in bounded memory. O

As an illustration of Theorem 4.3, consider example qu@gyfor duplicate-preserving projection:
7'TA(UB<D A B<120 A D>20 A A>10 A A<20(SxT)). LikeQ4, query@s is an inequality join of stream$ and
T, but@s adds selection predicates 8nand D makingB upper-bounded and lower-bounded. The pres-
ence of these additional predicates reduéés Ref (S)|, |MaxzRef (S)|, |MinRef (T')|, and|MaxzRef (T')| to
zero for each LTO query fap;. All LTO queries for@Q5 satisfy conditions C1-C3 in Theorem 4.2, therefore
Q5 is computable in bounded memory for duplicate-preserving projection. We leave it to the reader to verify
that applying Theorem 4.3 to all of the example queries in Table 1 produces the results in the colamn for



5 Queries with Duplicate-Eliminating Projection

Our results for SPJ queries with duplicate-eliminating projection follow a similar path to the results for
duplicate-preserving projection.

Theorem 5.1 Let@Q = Ty (op(S1 x S22 x ---x S,)). @ can be rewritten a®; U Q2 U --- U Q,,, Where
each@; is an LTO query and the unions are duplicate-eliminating.

Proof: Same as the proof of Theorem 4.1. O

Theorem 5.2 LetQ = 7w (op(S1 x S2 x---x S,)) be an LTO query wher® is satisfiable( is bounded
memory computable iff:

C1: Every attribute in the project lidt is bounded.
C2: For every equality join predicatg.A = S;.B, i # j, S;.A andS;.B are both bounded.
C3: |Ma$Ref(S,')|€q + |MinRef(S,')|€q

In condition C3 |E|_, denotes the number @t-induced equivalence classes in the elementset

<lfori=1,....,n.

Proof: The proof is similar to the duplicate-preserving case. Here we explain how the “if” argument differs
from the one for the duplicate-preserving case. We also give an example to provide some intuition for the
“only if” part of the proof; the complete “only if” proof is provided in Appendix A.

As in Theorem 4.2, we keep a synopsis for each stream with tuples assigned to buckets based on the
values of their bounded attributes. For duplicate-preserving projection, the synopsis stored the values of the
bounded attributes for each bucket and also the count of tuples in the bucket. For queries with duplicate-
eliminating projection, it is not necessary to remember the count of tuples in the bucket—it suffices to know
only whether the bucket is empty or whether there has been at least one tuple assigned to the bucket. There
is, however, one additional piece of information that we must store for each bucket in $tysasgnopsis
when MinRef(S;) or MazRef(S;) is nonempty. [f{MinRef(S;) is nonempty, we store the the minimum
value for any attribute in/inRef(S;) among tuples that have been assigned to that bucket. Similarly, if
MazRef (S;) is nonempty, we store the maximum value for any attribut&/ircRef (S;) among tuples that
have been assigned to that bucket. Note that by condition C3 at most dfexdkef (S;) and MinRef (S;)
can be nonempty, and all attributes in the nonempty set must be from the same equivalence class.

With duplicate-eliminating projection, the number of tuples from other streams that join to a particular
tuple of a strean®; is not important; only the existence of at least one combination of joining tuples from
the other streams is important. Therefore, if there are two tuptésc S; that agree on all attributes in
the projection listL and the set of tuples from other streams that will join witis a subset of those that
will join with ¢, thent’ can be ignored assuming thais remembered. This property makes it possible to
determine whether predicates suchSasd < S;.B, i # j, ever hold for any pair of tuple§ € S; and
ty € S; by remembering the current minimum value ftA and the current maximum value f6t;. B at
any pointin time.

We use an example to illustrate the technique of the “only if” proof. Consider qpery
TA(TB<D A O<E A A>10 A A<20 A B>20 A 0<10 A D>20 A E<10(SxT)). Q is one of the LTO queries for
example querg)s with duplicate-eliminating projectionm 4(0p«p A c<E A A>10 A A<20(SXT)). S.B €
MinRef(S) and S.C' € MinRef(S), so condition C3 is violated if) and we assert tha cannot be
computed in bounded memory. Consider an input presentation that begins with a large number of tuples
from S that have( B, C') values of(c, —c) wherec € {21,23,25,...}. For each sucls tuple with (B, C)
equalto(c’, — ), there exists & tuple with(D, E) equal to(¢'+1, 1 —¢') that joins only with(¢’, —¢), and
not with any othesS tuple. Therefore any algorithm that fails to remember all of$hiples will produce
incorrect results for some inputs. O



Theorem 5.3 LetQ = T (op(S1 X S2 X ...x S,)). From Theorem 5.1() is equivalent to the union
of LTO queries in (1).Q) is computable in bounded memory iff every LTO query in (1) is computable in
bounded memory.

Proof: Similar to the proof of Theorem 4.3. a

We leave it to the reader to verify that applying Theorem 5.3 to all of the example queries in Table 1
produces the results in the column for

6 Discussion and Future Work

To determine whether a quefyis computable in bounded memory, we can rew@tmto the union of LTO
gueriesin (1) and then use Theorem 4.2 or 5.2 to determine whether each of the LTO queries is computable
in bounded memory. This technique would obviously be very inefficient since the number of LTO queries
for Qis[[;_, m;, wherem; =|TO(£(S)))|, S; € S$(Q), andn =|S(Q)|. In Appendix B we give an efficient
algorithm for determining bounded memory computabilitybthat is polynomial in€(Q)|, where recall

£(Q) is the set of all elements relevantdo

Now let us consider the sizes of our synopses. Recall that our approach is to identify, for each LTO
guery for queny), constant-sized synopses of the data streams that are sufficient to evaluate the LTO query.
This approach might turn out to be overly conservative in estimating memory requirements, as illustrated by
example query)s with duplicate-eliminating projectior 4(0B>p A B>E A a=10(SXT)). In terms of the
notation defined in Section 8TO(£(S))|= 3 and|TO(£(T))|= 13. The query evaluation algorithm that
follows from Theorem 5.2 uses one memory unit for each elemeBtdf (S)) andTO(E(T)), for a total
of 16 memory units. However)s also can be evaluated by maintaining the maximum valu ofer all
tuples in strean$ with A = 10, and maintaining the minimum value ofaz(t.D, t.E) over all tupleg in
streaml’. This scheme needs oritynemory units.

The above example shows that our algorithm for building synopses does not build the smallest possible
synopses for each query. In fact, our memory characterization is quite conservative, in part because it
dramatically simplified the proofs of Theorems 4.3 and 5.3. We have designed an alternate algorithm that
builds smaller synopses, including the 2-memory-unit synopses for dieryFurthermore, a practical
implementation can build synopses dynamically during query execution that may not approach the size of
the worst-case bound. However, an algorithm for statically determining the minimum-size synopses for a
guery@ in all cases is a topic of future work.

Our results in Sections 4 and 5 were based on the assumption that all attributes have discrete, ordered
domains. We can relax this assumption as follows. DefirieA, P) for an attributed and a set of predicates
P as the set of all possible values that can be assignddhat makeP true for some assignment of values
to the rest of the attributes iR. Boundedness of an attribute(Definition 3.2) can now be generalized:
is bounded by the set of predicatBsff |sat(A, P)| is a constant. This definition of boundedness extends
Theorems 4.2 and 5.2 to attributes with arbitrary domains. (We assume that an atomic predicate of the form
A > Bor A < Bisused only if the domain of attributes and B is ordered.) In addition to allowing
attributes from arbitrary domains, it is useful to handle a richer set of predicates (e.g., atomic predicates
using domain-specific operators, disjunctions of atomic predicates). Expanding the class of predicates is an
important avenue of future work. We also plan to extend the expressiveness of the query language, e.g., by
including grouping, aggregation, and subqueries.

Our results in Sections 4 and 5 also assume that the data inputs to a query consist solely of continuous
data streams. In the case of queries over streams, the query evaluation algorithm has no control over the
instances and presentation (including interleaving) of the input streams. For queries over relations stored
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in conventional databases, the instances of the relations are finite and may be partially known to the query
processor (e.g., in the form of statistics on the attributes). Also, in a conventional database system, the query
evaluation algorithm usually has some control over the presentation of the relations. Nevertheless, there are
cases in “traditional” settings where it is desirable to perform query processing using only one pass over
each relation. In such cases, our results can be used to generate evaluation plans that use a constant amount
of additional memory regardless of relation sizes.
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A Proof of Theorems 4.2 and 5.2

In this section we prove Theorems 4.2 and 5.2, which identify the duplicate-preserving and duplicate-
eliminating LTO queries, respectively, that can be computed in bounded memory. The “if” proofs of the
theorems are given in Sections 4 and 5. We formalize the only-if proofs here. The general technique is as
follows: For any LTO query that does not satisfy one (or more) of the conditiér€%; produce a class of
input instances such that any evaluation plan using bounded memory provably fails to produce the correct
answer on at least one instance of the class. In the rest of this section, a query refers to an LTO query.
Note that only condition C3 and the special caseiof 1 (queries involving only a single stream)
differ between Theorems 4.2 and 5.2. Thus, we combine the only-if proofs for the two theorems, distin-
guishing the different conditions C3, the> 1 in Theorem 4.2, and the different projection operators, only
as necessary. Lemma A.2 proves that any query that violates condition C1, whether duplicate-preserving
or duplicate-eliminating, is not computable in bounded memory. Lemma A.4 proves the same for condi-
tion C2. Lemma A.5 proves that any duplicate-preserving query that violates condition C3 in Theorem 4.2
is not computable in bounded memory. Lemma A.6 proves the same for duplicate-eliminating queries and
Theorem 5.2. Lemmas A.1 and A.3 are used in the proofs of other lemmas.
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We uset® , whereX is a set of attributes, to denote a tupleith schemaX . ThustA(%) denotes a tuple
of streamS. We use[Y'] to denote the projection of tupteonto the attributes of . For a strean$, we use
% andt[S] as shorthand for4(9) andt[A(S)] respectively. IfX andY are disjoint sets of attributes and
t; andt) are tuples(t{,t)) denotes the tuple ové¥ U Y that uses the mapping of for attributes inX
and that oft; for attributes inY". In order to construct input instances for a quér/’) in our proof, we
often need tuples of the streams that occupithat join with each other, i.e., that satisfy all the citimhs
of the selection predicatB. For convenience, we do this by constructing a tugfé€) that assigns a value
to every attribute that is relevant to the query. We call a taf&) valid if it satisfies the predicat®.

Fora quen@(P), let EQQR) = {&1,€&q, ..., Em} denote the equivalence classes of the elements of
induced byP (recall the defiition of element equivalence classes from Section 3). The inequality predicates
induce a partial ordering on the equivalence classgs<-¢; if there exist elements; € £; ande; € &;
such that,; < ¢; isin P*. Without loss of generality assume that the equivalence classes are numbered
in topological sortorder, i.e., if§; < &, theni < j. A valid tuplet4(?) assigns the same value to all
the attributes of an equivalence class. Thus, when discussing valid tuples, we may use “attribute” and
“equivalence class” interchangeably.

We assumeéC(Q))| > 0 for any query@ considered in this section. The proofs can be extended in a
straightforward way foiC (Q)| = 0.

LemmaA.1 Letm = |EQ(Q)| be the number of equivalence classes of the elements of an LTO Query
Let X C EQ(Q) be some set of unbounded equivalence class€s aktt* be a tuple that assigns values
to the classes iX'. Then we can form a valid tuple that assigns a value to all the equivalence clagggs EQ

of the form(¢X, ¢/ EQQ)=X)y g
1. Forany&;,&; (i > j) € X, (t[€;] — t[E;]) > m.
2. For any lower-boundeg; € X (Definition 3.2) and: € C(Q), (t[E;:] — k) > m.

3. For any upper-boundet] € X andk € C(Q), (k — t[E;]) > m.

(Note thatt[€,;] andt[€ ;] are individual numeric values.)

Proof Intuitively the lemma asserts that if values of some unbounded equivalence classes, tkiosedn

fixed by tuplet, then we can always generate values for the other equivalence claggemias to satisfy

the selection predicate, provided the values assigned to classeX iare sufficiently “far apart” from each
other and from the constants in the query. The lemma is proved formally by constructing a miagping
all the equivalence classes in HQ) — X.

1. Since the set of predicatéyis satisfiable, there exists some valid tupleLet the tuplet’ use the
mapping ofy for all the bounded equivalence classes, i.€€, iis boundedt'[£;] = u[&;].

2. For any lower-bounded equivalence cléss (EQ(Q) — X), letj,,; = max{j | j < iand &; €
(XUC(Q))}. If aconstant: isin &, ., then define/’[£;] = k + (i — jm,;). Otherwise, define
t'E&] =€ ]+ (0 = Jm,)-

3. For any upper-bounded equivalence cléss (EQ(Q) — X), letj,,; = min{j | j > iand &; €
(XUC(Q))}. If aconstant: is in &, ., then define’[£;] = k — (i — jm,;). Otherwise, define
e =€) — (i = Jm,)

Itis straightforward to prove that the tuple ¢') is valid. O

Lemma A.2 Let@ be an LTO query and its list of projected attributes. Let attributee L be unbounded.
Then@ is not computable in bounded memory if:
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1. S(Q)>1,or

2. () has a duplicate-eliminating projection.

Proof Let A belong to strean%,. Let &, be the equivalence class df SinceA is unbounded, for any
integerN we can construct valid tuplés, . . ., ¢ defined on4(Q) such that each; has a different value
for attribute 4, i.e., t,[A] # t;[A] if i # j. We construce™ presentationsPy, ..., P,~, where each
presentation consists (in any order) of a different subset of the set of {ip[&s], . . ., tx[S.]} of stream
S.. We claim that any correct evaluation algorithm for quérynust be in a different memory state after
seeing each of the above presentations. Consider our two cases.

Case 1(/S(Q)| > 1). In this case the query involves more than one stream. Since none of the presentations
P, contain tuples from streams other th&y) the answer at the end of each presentation is empty. Consider
any two presentatiori8; andP; (i # j). Without loss of generality, assume there exists a ttygle, ] that

occurs inP; but not inP;. Consider the set of tupleSP = {#x[S,] : (z # a, S, € S(Q))}. If the set of
tuplesAP appears in the input afté?;, the tuplefx[L] is in the answer. The tuptg[L] is not in the answer

if AP occurs afterP;. Thus any evaluation algorithm for quefy that has the same memory state after
seeing eitheP; or P; will produce the wrong answer for at least one of two inp@sfollowed by AP, or

P; followed by AP.

Case 2(Q) has duplicate-eliminating projectionAssumgsS(Q)| = 1; otherwise Case 1 holds. The answer
after seeingP; is the projection of the tuples d?; onto the attributes ir.. Consider any two distinct
presentation®,; andP; and (without loss of generality) a tupte that occurs irP; but notP;. If tuple

tr appears (again) afté?;, there are no new tuples produced in the answer bedausea duplicate. If,
however,t; appears afteP ;, the tuplet;[L] must be produced in the answer whigrappears. Thus any
evaluation algorithm fory that has the same memory state after seeing efh@r P; will produce the
wrong answer for at least one of the two input scenarios above.

Any correct evaluation algorithm fap needs at least theg 2V = ©(V) bits of memory that are required
to encode different states for each®f, . . ., P,~. Therefore) is not computable in bounded memorsi

Lemma A.3 Let@Q be an LTO query withS(Q)| > 1. @ is not computable in bounded memory if for any
value of N there exists a strea € S(Q) and valid tuples,, t,, . . ., tx defined on4(Q) such that:

1. The projections of the tuples ¢hare all distinct, i.e.t;[S] # ¢,[S] if i # 7, and
2. {t;[S],t;]A(Q) — A(S)]) is not valid ifi # j.

Proof Consider any value aV. We construc” presentationsPy, ..., P,~, Where each presentation
consists (in any order) of a different subset of the set of tupdels], . .., tx[S]} of streamS. We claim

that any correct evaluation algorithm f@rmust be in a different memory state after seeing each of the above
presentations. Since none of the presentat®nsontains tuples from streams other thfarthe answer at

the end of each presentation is empty. Consider any two present@jarsd P; (i # j). Without loss

of generality, assume there exists a tuples] that occurs irP; but not in?,;. Consider the set of tuples
AP = {tx[S'] | (S' # 5,5 € §(Q))}. If the set of tuples\P appears in the input afté?;, a new answer
tupleti[L] is generated. INP appears in the input afté?;, no new answer tuples are generated because
of the second condition in the lemma. Thus any evaluation algorithif) filvat has the same memory state
after seeing?; andP; will produce the wrong answer for at least one of two inp@sfollowed by AP,

or P; followed by AP. Thus any correct evaluation algorithm f@rneeds at leasbg 2V = ©(N) bits of
memory, sdy is not computable in bounded memory. O
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Lemma A.4 LetQ)(P) be an LTO query. Let there be an equality join condition of the féfmd = S;.B
in P such that both attribute$ and B are unbounded. Thep(P) is not computable in bounded memory.

Proof Let £ denote the (common) unbounded equivalence classarid B. For any N we can construct
valid tuplesty, ...,y defined on4(Q) such that each tuple assigns a different value to the equivalence
classé, i.e.,t;[E] # #;[€] if k # [. Observe that these tuples satisfy the conditions of Lemma A.3 by using
S; of this lemma as thé in Lemma A.3. The projectiong[S;] of the tuples ontd; are all distinct since
they differ at least on the attributé (equivalence clas§). The tuple(t;[S:], t:[A(Q) — A(S:)]) (k # 1)

is not valid sinceS;. A = S;.B is not satisfied. Thus, by Lemma A.g), is not computable in bounded
memory. 0

Lemma A.5 LetQ(P) be a duplicate-preservingLTO query such fddtzRef (S)| # 0 or |[MinRef (S)| #
0 for someS € §(Q). ThenQ(P) is not computable in bounded memory.

Proof We prove the caseMaxzRef (S,,)| # 0 for someS,, € S(Q). The proof for| MinRef (S,,)| # 0 is
symmetric. By Definition 4.2 oflazRef there exists a nonredundant inequality jSinB < S,,,.A (n #

m). Let&, and&;, denote the equivalence classes inducedtfgr A and B respectively. Note that these

two equivalence classes are distinct sifites satisfiable. Assume that neith&y nor £, is upper-bounded.
(There is no loss of generalityebause the case when neither is lower-bounded is symmetric and the case
where one is lower-bounded and the other upper-bounded is disallowed by the definitian Bff.) For
notational convenience, let,, denote “less than by at least’. Let k... represent the maximum constant
occurring inQ, let m =|EQ(Q)], and letX = {&,, &, }. Given any integeN define tuplesy, ..., +X with

th having€, = kmax + 2im and&y = kpmar + (2 + 1)m. From these tuples defined dh we can use
Lemma A.1 to construct valid tuplés, . . ., t,, defined on4(Q) such that:

kmax <m tl[gb] <m tl[ga] <m tZ[Sb] <m tZ[ga] <m <m tN[gb] <m tN[ga]

We construce’ presentationsPy, . .., P,~, where each presentation consists (in any order) of a different
subset of the set of tuplg$;[S,,], - - ., tn[Sm]} of streamS,,,. We claim that any evaluation algorithm for

the queny has to be in a different memory state after seeing each of the above presentations. Since none of
the presentationB; contain tuples from streams other th&p, the answer at the end of each presentation

is empty. Consider any two presentatiddsandP; (i # j). Lett;[S,] be the tuple with largest value

of £ among all tuples appearing in oneBf, P;, but not in the other. Without loss of generality, assume
tx[Sm] appears irP; but not inP ;. Note that all the tupleg[S,,,] (I > k) occur either in botlP; andP;

or in neither. Now consider the set of tupl&$® = {¢;[S.] : Si # Sm,S: € S(Q)}. Consider two input

cases — the occurrence AfP after P; and the occurrence afP afterP;. The answer in the former case

is equal to the answer in the latter case with an additional tipld. By definition tuples ilPAP join with

t1[Sm] to producet,[L] in the answer. Also, tuples iAP do not join with any tuplé;[S,,] (I < k) since

this would cause the predicaie < A to be violated. It is possible that the tuples&AP join with some
tuplest;[Sy,] (I > k), but by our choice of;, any such tuplé;[S,,] that occurs in eitheP; or P, also

occurs in the other and thus will lead to the same answer in both the cases. Consequently any evaluation
algorithm for@ that has the same memory state after se@ingnd?; will produce the wrong answer for

at least one of the two inputs described above. Therefore any correct evaluation algorithmdeds at
leastiog 2V = ©(N) bits of memory, s@) is not computable in bounded memory. O

Lemma A.6 LetQ(P) be aduplicate-eliminating LTO query such th&uzRef (S)|,,, +|MinRef(S)|., >
1 for someS € S§(Q). ThenQ(P) is not computable in bounded memory.

Proof We assume that there are no equality joins between unbounded attributes of different streams, or else
Lemma A.4 applies. The proof is split into three cases. In each case we show that given any Nunwder
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can generate tuples, . . ., ¢y that satisfy the conditions of Lemma A.3, proving tidais not computable
in bounded memory. We only generate values for some of the attributes for each tuple and use Lemma A.1
to “fill in” the values of the other tuples. Asin Lemma A.5, ket, denote “less by at least”.

Case 1(|MinRef(Sm)|, > 1 for some Sp, € S(Q)). Inthis case there exist nonredundant atomic predi-
catesp; = (Sp-A < S,.C) andpy = (S,,.B < S,.D), m # n,m # oin P. By Definition 4.2 ofMinRef
attributesA and B are unbounded and belong to different equivalence classes. Since the attributes of any
stream in an LTO query are totally ordered we can assume without loss of generalityth& ¢ P+.

We claim that all four attributed, B, C', D are unbounded and belong to different equivalence classes.
As noted aboved and B are unbounded and belong to different equivalence classes. Attributes
D must be unbounded since otherwijseandp, would be redundant, which contradicts the definition of
MinRef Moreover, since we assume that there are no equality joins between unbounded attributes belonging
to different streams, all the attributes in an unbounded equivalence class belong to the same stream. Thus
neitherC' nor D can be in the same equivalence class as either B. Finally,C' and D cannot be in the
same equivalence class as each other since otherwise the predicatésand B < D would imply that
p1 is redundant. This proves the above claim.

Let &4, &, &, £4 be the equivalence classes 4f B, C, D respectively. Recall that we use the con-
vention that the subscripisof equivalence classeg are in topological sort order, meaning that j if
Ei < &;. The predicatest < C, A < B,B < D € Pt imply thate < canda < b < d. It cannot be the
case that;, < &, since that would imply thatt < C'is redundant. Therefore eith€r < & or £. and&,
are unrelated according te”. In either case, we can construct a valid topological sort ordering satisfying
¢ < b. Thus without loss of generality we can assume ¢ < b < d.

We consider three subcases of Case 1 depending on whether the att4ibBt&s, D are lower-bounded
or upper-bounded. Lét,,;,, andk,,.. denote the smallest and largest constants occurrig respectively.

Case 1aNone ofd, B, C', D are lower-bounded)Given anyN, select values fot; [ £,], t;[£3), ti[€.], and
ti[€q4), fori=1,..., N, such that:
t1[€a] <m t1[€e] < to[€a] <m t2[€c] < o <EN[Ea] <m tN[EC]
<im tN[gb] <im tN[gd] <. .. < tl[gb] <im tl[gd]

Using Lemma A.1, we can construct tuplgs. . ., ¢y defined on4(Q) based on the above assignment
of values to equivalence classes in the et {&,, &, &, £q4}. The projections;[S,,] onto the stream
Sy, are all distinct since;[A] # t;[A], if i # j. The tuple(t;[S,]. t;[A(Q) — A(S)]) is not valid since
til€a] < tj[Ep] If @ < j (violating the predicatd < D) andt;[€,] > ¢;[& ] if i > j (violating the predicate
A < (). Thus it follows from Lemma A.3 that query is not computable in bounded memory.

Case 1b(Allof A, B, C, D are lower-bounded)in this case, the tuplées, . . ., ¢y are constructed such that:
Fmaz <m t1[€a] <m t1[€c] < ta[€a] <m t2[€c] < ... <tN[Ea] <m tN[EC]
<m IN[Eb) <niN[Ed] < ... < t1[Eb] < t1[E4]
The remainder of the argument proceeds similarly to Case 1a.
Case 1d A4, C are upper-bounded ang, D are lower-bounded)For this caset;, . . ., tx satisfy:
t1[€a] <m t1[€e] < to[€a] <m t2[€c] < o <EN[Ea] <m tN[EC]
<m Fmin
<m Fmaz
<im tN[gb] <im tN[gd] <. .. < tl[gb] <im tl[gd]
The remainder of the argument again parallels Case 1a. This completes the proof of Case 1.
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Case 2(|MazRef (Sy)|., > 1). Symmetric to the proof of Case 1.

Case 3(|MazRef (Sm)l., = |IMaxRef (Sm)|., = 1). In this case there exist nonredundant atomic predicates

p1 = (Sm.4 > S,.C)andpy = (Sy,,.B < S,.D), m # n,m # o in P. We consider two subcases. In each
subcase we specify only the relationships that need to hold between the values chosen for the projections of
tuplesty, ..., t, onto the setX = {&,,&, &, Eq}. The remaining details are analogous to the proof for
Casela. Note that” and D can be the same attribute.

Case 3aEithernone ofd, B, C, Dislower-bounded or none is upper-bounileissumed, B, C, D are all
lower-bounded. The same proof applies when some attributes are neither upper-bounded nor lower-bounded,
and the proof when all the attributes are upper-bounded is symmetric. We generate tuplesy with

the following property: for any,,t; (i < j), the values assigned liy to attributes4, B, C, D are all

smaller than the values assignedtbyo A, B, C, D, i.e.,t;[X] < t,;[Y], for X, Y € {4, B, C, D}. Further,

eacht; assigns values to attributds B, C, D such that the predicates andp, are satisfied. For example,

if A, B,C, D belong to distinct equivalence classés &£;,&.,£4 anda > ¢ > b > d, then the tuples
generated satisfy:

Fmaz <m t1[€a]l <m t1[Eb] <m t1[€c] <m t1[E4]
< tol€a] <m t2[€b] <m t2[€c] <m t2[E€4]
<
< tn[€a] <m tN[Eb] <m tN[Ec] <m tN[E4]

Case 3b(Some amond, B, (', D are lower-bounded and some upper-bourjdé&dther A andC' (respec-

tively B and D) are both lower-bounded or are both upper-bounded, otherwise the prediegepectively

p2) is redundant. Let us assume thigtC' are upper-bounded a8, D lower-bounded. Lef,, £y, &, £

be the equivalence classes4fB, C, D respectively. None of these equivalence classes can be the same or
P would be unsatisfiable. For this case the tuples. ., ¢y satisfy:

ti[€c] <m t1[€a] < ta[Ec] <m tal€a] < ... <EN[E] <m tn[Ed]
<m Fmin
< Fmax
<im tl[gb] <im tl[gd] < tQ[gb] <im tQ[gd] <. .. < tN[gb] <im tN[gd]

The case when, C' are lower-bounded anB, D upper-bounded is symmetric. O

B Efficient Algorithm for Checking Bounded-Memory Computability

A naive algorithm for determining whether a quépy P) is computable in bounded memory enumerates
all the LTO queries of) and checks if each one is computable in bounded memory. This approach can be
very expensive since there are an exponential number of LTO queries. We propose a simple polynomial
algorithm that checks if a quety is computable in bounded memory without explicitly checka#agh LTO
query ofQ.

The outline of the algorithm is shown below. The algorithm handles both duplicate-preserving and
duplicate-eliminating SPJ queries.

Algorithm B.1 (Check Bounded-Memory Computability of an SPJ Query)

Input: SPJquery) = Tr(op(S1 x S X ---x Sy))
Output: Yes, if Q) is computable in bounded memoryo, otherwise.
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1. If Pis not satisfiable, or if. = 1 and() is a duplicate-preserving query, retuYfs.
2. If some attributed € L is unbounded, returivo.

3. Ifthere exists a predicatg. A = S;.B € P(i # j), and at least one attribute or B is unbounded,
return No.

4. ForeachX C A(Q) with | X| < 4, form a queny’ with an empty projection lisIND(X U {kuazy Kmin }> P)
as the selection predicate, and joining the (at ystreams that have at least one of their attributes
in X. If any such@’ is not computable in bounded memory (using Theorems 4.3 and 5.3,) rféturn

5. ReturnYes.
&

Step 1 checks i€y is trivially computable in bounded memory. Steps 2 and 3 check if condition C1
or C2 of Theorem 4.2 or 5.2 is violated. Step 4 checks condition C3 in Theorem 4 igiduplicate-
preserving) or Theorem 5.2 (@ is duplicate-eliminating). If none of the conditions C1-C3 are violatkd,
is computable in bounded memory alds is returned in Step 5.

The correctness of steps 3 and 4 follows from the observation that an unbounded attribute in any LTO
guery of@ is unbounded i) as well, and any unbounded attributeijris unbounded in some LTO query
of (). Suppose some LTO que€y;, of a duplicate-eliminating quer§ violates condition C3. Then there
exist two non-filter, nonredundant predicatgesandp. in ()1, that cause violation of condition C3. L&t be
the set of (at most) attributes that occur in eithei or p,. It can be shown that quety’ constructed from
X in Step 4 is not computable in bounded memory. Thus our algorithm correctly réfarrSonversely, if
there is somé€)’ that is not computable in bounded memory, it can be shown that there exists an LTO query
of () that violates condition C3 of Theorem 5.2. A similar argument holds for the duplicate-preserving case.

Clearly, steps 1-3 can be executed in polynomial time in the size of the input query. Eacli)qirery
Step 4 is oD (1) size, so we can check its LTO queries in constant time. Since the@y p4¢Q)|!) subsets
of A(Q), Step 4 takes polynomial time. Thus Algorithm B.1 is polynomial in the size of the input query.

C Queries with Self-Joins

We extend our main results to queries containing self-joins.

In a self-join query, at least one stream appears more than once in the join list. We use the notation
s, 52 . to denote different occurrences of the same streSimin a query. For instance, query

T 4050 a—g@ 4(S1) x S?)) is a (natural) self-join of strearfi with itself on attributed. Note

that unlike two different streams, there is an implicit constraint on self-joined streams: at any point of time,
the instances o /) andS*) are the same for any k.

For duplicate-preserving queries, all of our results in Section 4 (most importantly Theorems 4.2 and 5.2)
carry over to queries with self-joins. Some modifications to the “only if” part of the proof of Theorem 4.2 are
needed to accommodate self-joins; all other reasoning and proofs carry over directly. The efficient algorithm
in Appendix B also applies, so it can be used to test whether a duplicate-preserving query with self-joins is
computable in bounded memory.

Hereafter we consider duplicate-eliminating SPJ queries. Theorem 5.3 remains valid in the presence
of self-joins. However, Theorem 5.2 does not hold for self-join LTO queries, as the following example
illustrates.
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Example C.1 Consider the following LTO quer§:

1 2
Q = Ts1) A(T50) 4=10 A 51) A=52) A A SO) B=5S(®) B A S<1>.B>1o(5( Ix St )))

AttributesS(). B andS(?). B are unbounded, which violates condition C2 of Theorem 5.2. However, query
@ is equivalentto the quel)’ = T4 (0 4=10 A B>10(S5)), Which is clearly computable in bounded memory.
O

Conditions C1-C3 in Theorem 5.2 are still sufficient to ensure that an LTO query is computable in
bounded memory, but they are not necessary, i.e., there exist LTO queries (e.g.QopidExample C.1)
that violate one or more of conditions C1-C3, but are computable in bounded memory. In our example,
query@ with two occurrences of streafis equivalent to the reduced quepy with only one occurrence
of S. Intuitively, one of the occurrences 8fin ) was redundant. We generalize this observation to obtain
a characterization of bounded-memory computability for duplicate-eliminating self-join queries.

Definition C.1 (Redundant Stream) Consider a duplicate-eliminating LTO quep(P). A streamSi(j) in
() is said to beedundanif there exists a strealﬁi(k) (j # k) such that:

1. The total ordering of elemenfssl(j)) of Sl(j) is the same as the ordering of elemefh(tsfk)) of Si(k).
2. If Si(").A € L, wherelL is the list of projected attributes, then prediceféj).A = Si(k).A) € Pt.

3. 11(SY.4 Op 5,.B) € P, then(S"™.4 Op S,.B) € P+

We say thatS (k)

7

coversSfj Jing. |

Let @ be a self-join LTO query such théﬁ’) € §(Q) is redundant. Leka) be a stream that covers
Sl(j). The queryQ’ obtained fron) by eIiminatingSl(j) and replacing every occurrence of attribﬁ]l(é).A
by Sl»(k).A is equivalent ta).

Theorem 5.2 holds for LTO queries with self-joins provided they do not contain any redundant occur-
rences of a stream. Thus, to check bounded-memory computability of a duplicate-eliminatin@oigny
self-joins, we first eliminate all redundant occurrences of streams (e.g., using a greedy algorithm) to obtain
an equivalent querg)’. We can then check the conditions of Theorem 5.2JGror use the more efficient
algorithm in Appendix B.
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