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Abstract 

We present a new family of join algorithms, called ripple joins, 
for online processing of multi-table aggregation queries in a rela- 
tional database management system (DBMS). Such queries arise 
naturally in interactive exploratory decision-support applications. 

Traditional offline join algorithms are designed to minimize 
the time to completion of the query. In contrast, ripple joins are 
designed to minimize the time until an acceptably precise esti- 
mate of the query result is available, as measured by the length 
of a confidence interval. Ripple joins are adaptive, adjusting 
their behavior during processing in accordance with the statis- 
tical properties of the data. Ripple joins also permit the user 
to dynamically trade off the two key performance factors of on- 
line aggregation: the time between successive updates of the run- 
ning aggregate, and the amount by which the confidence-interval 
length decreases at each update. We show how ripple joins can be 
implemented in an existing DBMS using iterators, and we give an 
overview of the methods used to compute confidence intervals and 
to adaptively optimize the ripple join “aspect-ratio” parameters. 
In experiments with an initial implementation of our algorithms 
in the POSTGRES DBMS, the time required to produce reasonably 
precise online estimates was up to two orders of magnitude smaller 
than the time required for the best offline join algorithms to pro- 
duce exact answers. 

1 Introduction 

Current relational database management systems do not 
handle ad hoc decision-support queries well, even though 
such queries are important in applications. Many decision- 
support queries consist of a complex sequence of joins and 
selections over extremely large tables, followed by grouping 
of the result and computation of aggregates over the groups. 
Current systems process ad hoc queries in what amounts to 
batch mode: users are forced to wait for a long time without 
any feedback until a precise answer is returned. 

Since large-scale aggregation queries typically are used to 
get a “big picture” of a data set, a more attractive approach 
is to perform online aggregation, in which progressively- 
refined running estimates of the final aggregate values are 
continuously displayed to the user. The estimated proxim- 
ity of a running estimate to the final result is indicated by 
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means of an associated confidence interval. An online aggre- 
gation system must be optimized to provide useful informa- 
tion quickly, rather than to minimize the time to query com- 
pletion. This new performance goal requires fundamental 
changes to many traditional algorithms for query process- 
ing. In prior work [HHW97] we provided initial motivation, 
statistical techniques and algorithms for supporting online 
aggregation queries in a relational DBMS. In this paper we 
extend those results with a new family of join algorithms 
called ripple joins, which are designed to meet the perfor- 
mance needs of an online query processing system. 

Ripple joins generalize traditional block nested-loops and 
hash joins and are non-blocking, thereby permitting the run- 
ning estimates to be updated in a smooth and continuous 
fashion. The user can control the rate at which the updates 
occur; for a given updating rate the ripple join adaptively 
modifies its behavior based on the data in order to maximize 
the amount by which the confidence interval shrinks at each 
update. 

Ripple joins appear to be among the first database al- 
gorithms to use statistical information about the data not 
just to estimate selectivities and processing costs, but to es- 
timate the quality of the result currently being displayed 
to the user and to dynamically adjust algorithm behavior 
accordingly. We believe that such a synthesis of statistical 
estimation methods and query processing algorithms will be 
integral to the online decision support systems of the future. 

2 Background 

2.1 Online Aggregation 

We illustrate online aggregation by means of an example. 
Consider the following query for determining the grade-point 
average of various types of honors students (honors-code 
NOT NULL) and non-honors students (honors-code IS NULL): 

SELECT ONLINE student.honors-code,AVG(enroll.grade) 
FROM enroll,student 
WHERE enroll.sid = student.sid 
GROUP BY student.honorszode; 

A prototype of an online aggregation interface for this query 
is displayed in Figure 1. There is a row corresponding 
to each student group, that is, to each distinct value of 
honors-code that appears in the table. The user does not 
need to specify the groups in advance-they are automati- 
cally detected by the system. For each group, the running 
estimate of the final query result is simply the average of 
all of the grades for the group found so far. These running 
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Figure 1: An online aggregation interface. 

SUM, AVG, VARIANCE, or STDEV, expression is an arithmetic ex- 
pression involving the attributes of the base relations RI, R2, 

... 7 RK, and predicate is a conjunction of join and selection 
predicates involving these attributes. 

estimates (after less than 1% of the records in the Cartesian 
product have been scanned) are displayed in the column en- 
titled avg. The “stop-sign” buttons can be used to pause 
the query processing for one or more groups, while allowing 
query processing to continue for the remaining groups. The 
arrow buttons in the column entitled Speed permit control 
of the relative rates a.t which the running averages for the 
different groups are updated. Implementation of the Speed 
control is described fu.rther in [HHW97, RRH99]. 

In general, there is a tradeoff between the rate at which 
the running confidence intervals are updated and the degree 
to which the interval length decreases at each update; this 
tradeoff gives rise to a spectrum of possible join algorithms. 
Classical offline join algorithms can be viewed as lying at 
one end of this spectrum: after processing all of the diata, 
the ‘<running” confidence interval is updated exactly once, 
at which time the length of the interval decreases to zero. 
Algorithms that block during processing, such as hash join 
and sort-merge join, fall into this category. The performance 
of the classical algorithms often is unacceptable in the online 
setting, since the time until the “update” occurs can be very 
long. 

The rows in the table are processed in random order. 
Such processing is the same as simply scanning the table 
when it is clustered in random order on disk. Such ran- 
dom clustering (with respect to the attributes involved in 
the aggregation query) can be verified a priori by statisti- 
cal testing; if the initial clustering is unsatisfactory then the 
rows can be randomly permuted prior to query processing. 
Of course, one cannot always cluster a table in random or- 
der, e.g., if one desires it to be clustered on a particular 
column. In such cases, a secondary random index (an index 
on the random0 function) can be constructed to support 
a random ordering; see [HAR99] for a further discussion of 
issues in physical dat,abase design for online aggregation. 
Alternatively, it may be desirable to either sample during 
query processing using techniques as in [Olk93] or to mate- 
rialize/cache a small :random sample of each base relation 
during an initialization step and then subsequently scan the 
sample base relations during online processing. In this pa- 
per we assume that any one of these random-order access 
methods is available. 

Prior to the current work, the only classical algorithm 
lying elsewhere along the spectrum was the nested-lo,ops 
join as proposed for use in the setting of online aggrega- 
tion in [HHW97]. This algorithm (in its simplest form) 
works roughly as follows for a two-table aggregation query 
over relations R and S with (RI < ISI. At each sampling 
step, a random tuple s is retrieved from S’. Then 12 is 
scanned; for each tuple T that joins with s, an argument of 
the aggregation function is produced from r and s. At the 
end of the sampling step the running estimate and confi- 
dence interval are updated according to formulas as give:n in 
[HHW97, Haa97]. 

2.2 Join Algorithms for Online Processing 

Our goal is to provide join algorithms that will support on- 
line processing for multi-table queries of the form 

SELECT op(ezpmssion) FROM RI, Rz, , RK 
WHERE predicate 
GROUP BY coZumns; 
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Since tuples are processed in random order, we can bring 
to bear the tools of statistical estimation theory. In partic- 
ular, we can indicate the proximity of a running estimate to 
the final query result by means of an associated running con- 
fidence interval. For example, the running average of about 
2.95 for the first group in Figure 1 is within f0.15 of the 
final average with pro’bability 95%. Using the running con- 
fidence intervals as a guide, the user can abort the current 
query as soon as the displayed answer is sufficiently precise. 
The user can then proceed to the next query and continue 
the process of data exploration [OJ93]. In general, online 
algorithms are designed to support this mode of interaction 
between the user and the DBMS. 

Using nested-loops join in an online fashion is certainly 
more attractive than waiting until the nested-loops join has 
completed before returning an answer to the user. The ab- 
solute performance of the online nested-loops join is fre- 
quently unacceptable, however, for two reasons. First, a 
complete scan of R is required at each sampling step; if R 
is of nontrivial size (as is often the case for decision-support 
queries), then the amount of time between successive up- 
dates to the running estimate and confidence interval can 
be excessive. Second, depending upon the statistical prop- 
erties of the data, the length of the confidence interval may 
not decrease sufficiently at each sampling step. As an ex- 
treme example of this latter phenomenon, suppose that the 
join of R and S is in fact the Cartesian product R x S, and 
the input to the aggregation function is relatively inse:nsi- 
tive to the values in the columns of R, e.g., as in the qu.ery 
SELECT AVG(S.a + R.b/iOOOOOOO> FROM R, S. Also sup- 
pose that we have retrieved a random tuple s E S, retrieved 
the first tuple r E R, and produced an argument of the ag- 
gregation function from r and s. Then the rest of the scan 
of R yields essentially no new information about the value 
of the aggregation query, statistically speaking, even though 
a large I/O cost is incurred by performing the scan. W:hile 
this is an artificial and extreme example, in Section 6 we 
will see quite reasonable scenarios where nested-loops join 
does a poor job at shrinking confidence intervals. 

Ripple joins are designed to avoid complete relation scans 
and maximize the flow of statistical information during join 
processing. The user can explicitly trade off the time be- 
tween successive updates of the running estimate with the 
amount by which the confidence-interval length decreases at 
each update. This tradeoff is effected using the animation 
speed slider shown in Figure 1 and discussed in detail. in 

where K 2 2, op is an aggregation operator such as COUNT, 

‘For traditional batch processing of this nested-loop join, R would 
be chosen as the outer relation since it is smaller. For online pro- 
cessing the opposite choice is preferable, since the running estinlate 
is updated after each scan of the inner relation. 
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Figure 2: The elements of R x S that have been seen after 
n sampling steps of a “square” ripple join. 
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Figure 3: The elements of R x S that have been seen after 
n sampling steps of a “rectangular” ripple join (pr = 3, 
P2 = 2.) 

Section 5.3. By adjusting the animation setting, we obtain 
a family of join algorithms that covers the entire spectrum 
of possibilities. 

2.3 Related Work 

The idea of sampling from base relations in order to quickly 
estimate the answer to a COUNT query goes back to the work 
of Hou, et al. [HOT88, HOT89]; see [HHW97] for further 
references. Techniques that are applicable to other types 
of aggregation queries follow from results in [Olk93] and 
[ODT+91]; the “acceptance/rejection” sampling techniques 
described in these references do not appear directly applica- 
ble to online aggregation. 

Algorithmically, ripple join generalizes and extends prior 
work on pipelining join algorithms. The simplest mem- 
bers of this class are the classical naive-, block-, and index- 
nested loops joins. Ripple join also bears a resemblance 
to the semi-naive evaluation technique used for recursive 
query processing (see, e.g., [RSS94]): both algorithms han- 
dle newly-arrived tuples in one operand by joining them with 
all previously-seen tuples of the other operand. Another 
similar idea is used in the more recent pipelining hash join 
of [WAgll, which was proposed for use in online aggregation 
previously [HHW97]. None of the prior work considers ei- 
ther the relative rates of the two operands, or the connection 
to confidence-interval estimation-these issues are critical in 
the setting of online aggregation. 

3 Overview of Ripple Join 

In the simplest version of the two-table ripple join, one 
previously-unseen random tuple is retrieved from each of 
R and S at each sampling step; these new tuples are joined 
with the previously-seen tuples and with each other. Thus, 
the Cartesian product R x S is swept out as depicted in the 
“animation” of Figure 2. In each matrix in the figure, the 
R axis represents tuples of R, the S axis represents tuples 
of S, each position (r, s) in each matrix represents a cor- 
responding tuple in R x S, and each LLx” inside the matrix 
corresponds to an element of Rx S that has been seen so far. 
In the figure, the tuples in each of R and S are displayed in 
retrieval order; this order is assumed to be random. 

n=1 n-2 

(a) 0)) 

n=3 

6) Cd) 

Figure 4: The elements of R x S that have been seen after 
n sampling steps of an online nested-loops join (n = 1,2,3) 
and a worst-case scenario for online nested-loops join. 

The “square” version of the ripple join described above 
draws samples from R and S at the same rate. As discussed 
in Section 5.3 below, it is often necessary to sample one rela- 
tion (the “more variable” one) at a higher rate than another 
in order to provide the shortest possible confidence intervals 
for a given animation speed. This requirement leads to the 
general “rectangular” version of the ripple join2 depicted in 
Figure 3. The general algorithm with K (2 2) base relations 
RI, R2, . . , RK retrieves & previously-unseen random tu- 
pies from Ri at each sampling-step for I 5 k 5 K. (Figure 3 
corresnonds to the soecial case in which K = 2. A = 3, and 
pz = 2.) Note the tradeoff between the sampling rate and 
the confidence-interval length. For example, when /3i = 1 
and /3z = 2, more I/O’s are required per sampling step than 
when /Ii = 1 and ps = 1, so that the time between up- 
dates is longer; on the other hand, after each sampling step 
the confidence interval typically is shorter when pr = 1 and 
p2 =2. 

The ripple join reduces to an online nested-loops join 
when the aspect ratio is defined by OK = 1 and ,SK--1 = 
IRK-II,. . . ,,?I1 = [RI\; see Figures 4(a)-4(c) for K = 2. In 
Figure 4(d), each point (T, s) E R x S is represented by the 
argument of the aggregation function produced from T and 
s; the values displayed in this figure correspond to the most 
extreme form of the problematical case discussed in the Sec- 
tion 2.2-here the input to the aggregation function is com- 
pletely insensitive to the attribute values in R. In choosing 
an online nested-loops join, a query optimizer would take S 
to be the outer relation in this case, since IS] > IRI in Fig- 
ure 4(d). If R is at all large, this decision is incorrect for the 
purposes of online aggregation; the optimizer’s mistake is 
in not explicitly taking the statistical characteristics of the 
data into consideration. We will see how ripple join avoids 
this error by adapting dynamically to the data’s statistical 
properties. 

4 Ripple Join Algorithms 

Ripple join can be viewed as a generalization of nested-loops 
join in which the traditional roles of “inner” and “outer” 
relation are continually interchanged during processing. In 
the simple pseudocode for a square two-table ripple join dis- 
played in Figure 5, each full outermost loop corresponds to a 
sampling step. Within the nth sampling step, the cursor into 
S is first fixed at the value max = n while the cursor into R 
loops from 1 to n - 1. Then, when the cursor into R reaches 
the value n, the cursor into S loops from 1 to n. Unlike 

‘The name “ripple join” has two sources. One is shown in the 
pictures in Figures 2 and 3-the algorithm sweeps out the plane like 
ripples in a pond. The other source is the rectangular version of 
the algorithm, which produces “Rectangles of Increasing Perimeter 
Length”. 
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for (max = 1 to infinity) { 
for (i = 1 to max-1) 

if (predicate(RCil,SCmaxl)) 
output(RCi1 ,SCmaxl) ; 

for (i = 1 to max) 
if (predicate(RCmaxl,SCil)) 

output(R[maxl,SCil); 
1 

Figure 5: A simple square ripple join. The tuples within 
each relation are referred to in array notation. 

Figure 6: Three phases of a sampling step, square ripple 
join. 

nested-loops join, square ripple join is essentially symmet- 
ric: during a sampling step, each input relation participates 
in a tight “innermost” loop from position 1 to either posi- 
tion n or position n - 1. The manner in which a sampling 
step sweeps out R x S is depicted graphically in Figure 6. 

In this simple form, ripple join is quite easy to express. 
We have, however, iguored a number of issues, which we pro- 
ceed to address in the remainder of this section. First, since 
most DBMS'S use a “pull” or iterator model for relational 
operators [Gra93], we show how to represent ripple joins in 
iterator form, starting with the simplest binary square ripple 
join. Then we show how to augment this simple iterator to 
handle non-unitary aspect ratios and permit incorporation 
into a pipeline of multiple ripple joins. Finally, we describe 
variants of the basic algorithm that exploit blocking, index- 
ing, and hashing techniques to enhance performance. 

4.1 A Square Binary Ripple Join lterator 

An iterator-based DBMS invokes an iterator’s next 0 method 
each time an output tuple is needed. A ripple join itera- 
tor must maintain enough internal state variables to allow 
production of tuples in the same sequence as would be pro- 
duced by the algorithm of Figure 5. A simplified ripple 
join iterator “object class” is shown in Figure 7, in a C++ 
or Java-style pseudocode. The iterator needs to store the 
next position to be fetched from each of its inputs R and S 
(R.pos, S .pos), alon,g with the current sampling step being 
produced (curstep), and the relation currently acting as the 
“inner” (currel). The code in Figure 7 does not handle the 
case in which the last tuple of R or S has been retrieved, 
and it assumes that th.e query plan consists of a single square 
ripple join; these assumptions will be relaxed below. 

A slight asymmetry arises in this iterator: only the cur- 
sor into S loops all .the way to curstep, and curstep is 
advanced after completing a loop through S but not after 
completing a loop through R. This asymmetry corresponds 
to the asymmetry in Figure 5, in which only the cursor into 
S loops to max, and max is advanced only after completing 
a loop through S. The same asymmetry also appears in 
the way that the tup1.e “layers” are mitred together in the 
lower right, corner in Figure 6. When the situation is as 
depicted in Figure 6, we call S the “starter” relation since 

class simpleJlIPL { 
int curstep; // sampling step 
relation R, S; // operands 
relation cusrel: // the current inner 
boo1 ilooping; // in midst of inner loop? 
hit0 I 

R.pos = 1; // cursor positions in R and S 
s.pos = 0; 
curstep = 1; 
currel = s; 
ilooping = true; 

> 
next0 t 

do i // loop until return0 is called 
if (ilooping) I // scanning side of a rectangle 

while(currel.pos < curstep) I 
if (currel.pos C curstep-l II currel==S) I 

curre1.pos++; 
if (predicate(RCR.posl,SCS.posl)) 

return(RCR.posl. SCS.posl) 
1) 

ilooping = false; // finished a side 
) 
else ( // done with one side of a rectangle 

if (currel == S) 
curstep++; // finished a step 

currel.pos++; // sets currel to new curstep 
toggle(curre1); 
curral.pos = 0; 
ilooping = true; 

)I>> 

Figure 7: A simple iterator for square ripple join. 

each sampling step starts with the retrieval of a new tuple 
from S. 

4.2 An Enhanced Ripple Join lterator 

For clarity of exposition, the previous section ignored com- 
plications arising from non-unitary aspect ratios and inte.. 
gration of a ripple join iterator into a query plan tree. In 
this section we address these remaining issues. Full pseu- 
docode for the resulting ripple join iterator is presented in 
[HH98, Appendix A]. 

4.2.1 Non-Unitary Aspect Ratios 

As mentioned previously, it is often beneficial to retrieve tu- 
ples from the two inputs of a ripple join at uneven rates, 
resulting in “ripples” of non-unit aspect ratio. This requires 
three details to be handled by the iterator. First, the aspect 
ratio must be stored as a local variable beta for each rela- 
tion. Second, the iterator loops through R until it reaches 
a limit of curstep*R.beta-I, and loops through S until it 
reaches a limit of curstep*S . beta. 

The third detail requires some care: R. beta and S. beta 
may not equal 1, and may not be equal to each other, so :sim- 
ply “wrapping” the entire old rectangle with a fixed number 
of new layers will not expand the sides of the next ripple 
by R.beta and S.beta respectively. In a single sampling 
step we must join S. beta “new” (previously-unseen) S tu- 
ples with all “old” (previously-seen) R tuples, join R.beta 
new R tuples with all old S tuples, and join all new R and 
S tuples. To do this, we enhance the iterator so that the 
first time it sees a tuple from a given relation, it considers 
it to be a “new” tuple, and combines it with all tuples seen 
so far from the previous relation. The resulting traversal of 
R x S is illustrated in Figure 8. 
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Figure 8: Four phases of a sampling step for a rectangular 
ripple join with /3r = 3 and ps = 2. 
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Figure 9: Three phases of a sampling step for a rectangular 
block ripple join with ,& = 2, ,& = 1, and block size = 3 
tuples. 

4.2.2 Pipelining Multiple Ripple Joins 

The ripple join algorithm requires each of its input iterators 
to be restartable, and to deliver the same set of tuples each 
time it is restarted; beyond that it has no special prerequi- 
sites. Multiple binary ripple joins can therefore be pipelined 
in a join tree, or even intermingled with other query process- 
ing operators, including special online iterators like index 
stride [HHW97] and online reordering [RRH99]. 

Although in principle one could combine ripple joins with 
other join techniques, the typical K-table query plan in an 
online scenario will consist of a left-deep tree of binary ripple 
joins, which in combination are supposed to correctly sweep 
out a sequence of K-dimensional hyper-rectangles with the 
appropriate aspect ratios. To accomplish this, the operating 
parameters for each iterator in the tree must take into ac- 
count the position of the iterator in the tree. A three-table 
cubic ripple join, for example, cannot simply be treated as a 
pipeline of two (binary) square ripple joins, each operating 
in isolation. In order to get a full n-dimensional “wrapper” 
of the hyper-rectangle from the previous step, the following 
modifications must be made: 

l Aspect ratios must be set and maintained cor- 
rectly. For an iterator with two query subtrees, where 
subtree R contains relations RI,. . . , Rj and subtree S 
contains relations Sr , . . . , Sk, the aspect-ratio parame- 
ters must be set to the values R.beta = PnlPsz . ..Snj 
and S.beta = Ss,/3sz .++&,. 

l The appropriate number of retrievals must be 
made from each operanc& In particular, an iterator 
should retrieve R.beta x n3 tuples from R in step n, 
where j is the number of leaves in subtree R. 

l Only one relation in the plan can be the starter. 
At the beginning of processing, the right (i.e., the base) 
relation of the highest join node in the plan tree is 
designated as the starter relation. When the cursor 
of a non-starter relation R exceeds n/In for the nth 
sampling step, it returns a signal as if it had reached 
end-of-file. When the cursor of the starter relation, 
say S, exceeds n/3s, it increments the sampling step to 
n+ 1. 

These three modifications ensure that ever-larger hyper-rec- 
tangles are swept out correctly. 

4.3 Ripple Join Variants 

It is well known that nested-loops join can be improved by 
blocking I/OS from the outer relation. The idea is to read 
this relation not merely a tuple at a time or even a disk 
page at a time, but rather in large “blocks” of pages. A block 
ripple join can be derived along the same lines. When a new 
block of one relation (say R) is read from disk, each tuple 
in that block is compared with all old tuples of the other 
relation, S. Then the block of R is evicted from memory 
and a new block of pages from S is read in, followed by a 
scan of the old tuples of R. The graphical representation of 
the way in which block ripple join sweeps out RX S is similar 
to that of standard ripple join in Figure 8, but with “thick” 
arrows consisting of multiple tuples at once; see Figure 9. 
Blocking amortizes the cost of rescanning one relation (e.g. 
S) across multiple tuples of the other (R), resulting in an 
I/O savings factor proportional to the block size. 

The performance of ripple join also can be improved by 
the use of indexes. When there are two input relations R and 
S and there is an index on the join attributes of R, the index 
ripple join uses the index to identify the tuples in R that join 
with a given random tuple s E S selected during a sampling 
step. The relevant tuples from R can then be retrieved using 
fewer I/O’s than would be required by a full scan of R as in 
nested-loops join. Note that the roles of outer and inner do 
not alternate in an index ripple join, and there is no choice of 
aspect ratio-each sampling step corresponds to a complete 
probe of the index on R, which sweeps out an entire row 
of S x R. Thus while naive and block ripple join generalize 
their nested-loops counterparts, the index-enhanced ripple 
join is identical to an index-enhanced nested-loops join. 

Finally, it is natural to consider a hash ripple join variant 
that can be used for equijoin queries. For such queries, use 
of hashing can drastically reduce I/O costs by avoiding the 
inefficient reading and re-reading of each tuple many times 
from disk that occurs during a simple ripple join. (This re- 
reading problem is worse even than for nested-loops join!) 
The basic idea is as follows. When a new tuple is fetched 
from one relation (say, R) in a ripple join, it must be com- 
bined with all old tuples from the other relation (S). Only 
some of these combinations will satisfy the join predicates. 
If the old tuples of S are kept in memory, and hashed on 
the join column, it is then possible to find the old matches 
for the new tuple very efficiently. Since ripple join is sym- 
metric, an analogous situation arises with new tuples from 
S and old tuples from R. Thus, it is beneficial to materialize 
two hash tables in memory-one for R and one for S. Each 
contains the tuples seen so far. When a new tuple of R (S) 
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is fetched from disk, it is joined with all matches in the hash 
table for S (R), then inserted into the hash table for R (5’). 
In the case of a squalre aspect ratio, this scheme reduces 
to the pipelining hash join of [WAgll. The hashing scheme 
breaks down, of course, when the hash tables no longer fit in 
memory. A.t that point, the hash ripple algorithm can grace- 
fully fall back to bloclk ripple join3. This memory-overflow 
scenario should not cause much concern in practice-very 
tight confidence intervals often can be achieved long before 
memory is filled (see, e.g., Section 6). 

5 Statistical Considerations for Algorithm Performance 

The performance goal of ripple join is to provide efficient, ac- 
curate, interactive estimation. It should deliver join results 
in such a way that estimates of the aggregates are updated 
regularly and the corresponding confidence intervals shrink 
rapidly. Performance in this online regime depends critically 
on the statistical meth,ods used to compute confidence inter- 
vals and on the way in which these methods interact with 
retrieval of tuples from the join’s input relations. 

To highlight the key issues, we give a brief overview of es- 
timators for some common multi-table aggregation queries. 
We then present confidence-interval formulas that charac- 
terize the precision of these estimators. To keep the presen- 
tation simple, we focus on the simplest types of aggregation 
queries. Complete detarils of currently available formulas and 
their derivations are given in [HH98]. We conclude the sec- 
tion by discussing our approach to the dynamic optimization 
of aspect-ratio parameters. 

5.1 Estimators for SUM, COUNT and AVG 

Our running estimators for standard SQL aggregates SUM, 
COUNT and AVG are little more than running sums, counts 
and averages, scaled as appropriate. Specifically, consider a 
simple two-table query of the form 

SELECT op(ezpressiorr) FROM R, S 
WHERE predicate; 

where op is one of SUM, COUNT or AVG. (All of our formulas 
extend naturally to the case of multiple tables. When op 
is equal to COUNT, we assume that expression reduces to the 
SQL %” identifier.) The predicate in the query can in gen- 
eral consist of conjunctions and/or disjunctions of boolean 
expressions involving multiple attributes from both R and 
S; we make no simplifying assumptions about the joint dis- 
tributions of the attributes in either of these relations. At 
the end of the nth sampling step, a natural estimator for 
SUM( expcpression) is 

14. ISI 
ILl.lSnI c 

expression,(r, s), (5.1) 
(r,n)~Rn xS, 

where R, and S,, are the sets of tuples that have been read 
from R and S by the end of the nth sampling step, and 
expression,(r, s) equals expression(r, s) if (T, s) satisfies the 
WHERE clause, and 0 otherwise. This estimator is simply the 
running sum scaled up by a ratio of the total input size to 

31t is temoting in this context to utilize the ideas of hvbrid hash 
join [DK0+8h] & extended in [HN96] and spool tuples to” disk after 
memory fills. Unfortunately, the resulting statistical properties of the 
running estimator are unsuitable for confidence-interval estimation; 
see [HH98]. Such a “symmetric hybrid hash” join algorithm could, 
however, be used for traditi.onal query processing. 

the current input size. The estimator is unbiased: if the sam- 
pling and estimation process were repeated over and over, 
then the estimator would be equal on average to the t.rue 
query result. The estimator is also consistent in that it con- 
verges to the correct result as the number of sampling steps 
increases. Similarly, an unbiased and consistent estimaltor 
for COUNT(*) is given by (5.1), but with ezpressionp(r,s) 
replaced by one,,(r, s), where one,(r, s) equals 1 if (r, s) sat- 
isfies the WHERE clause, and equals 0 otherwise. Finally, 
an estimator for AVG(ezpcpression) is found by dividing the 
sum estimator by the count estimator. This ratio-after 
factoring-is simply the running average. Like all ratio es- 
timators, the estimator for AVG(expcpression) is biased, lbut 
the bias converges to 0 as the number of sampling steps in- 
creases. Moreover, the estimator is consistent. Although 
each of the SUM, COUNT, and AVG estimators is a running ag- 
gregate (suitably scaled), running estimators of more com- 
plicated aggregates need not be exactly of this form; see, for 
example, the discussion of the VARIANCE and STDEV aggre- 
gates in [Haa97], in which the running aggregate is multi- 
plied by a correction factor to remove bias. 

5.2 Confidence Intervals 

We need to develop tight confidence intervals in order to 
characterize the accuracy of the estimators in Section 5.1; 
this is a nontrivial task. In this section we give an overview 
of our methodology for obtaining “large-sample” confidence 
intervals based on central limit theorems (CLT’S)‘. 

5.2.1 The CLT and Confidence Intervals 

To motivate our approach, we briefly review the classical 
CLT for averages of independent and identically distributed 
(iid) random variables and the way in which this CLT is used 
to develop confidence intervals for estimators of the popula- 
tion average. Consider an arbitrary but fixed set of distinct 
numbersA={vl,vz,... ,vIAI }. (The assumption that the 
numbers are distinct is convenient but not essential.) Let p 
and a2 be the average and variance of these values: 

and u2 = k &vi - p)“. (5.2) 
t-l 

Suppose that we wish to estimate the average /.J, and that 
a sample B = {Xl,Xz,... ,X, } of size n > 1 is drawn 
randomly and uniformly (with replacement) from A. Under 
this sampling scheme, each X; is equal to 211 with proba- 
bility l/(Al, to v2 with probability l/IAl, and so forth, and 
knowledge of the value of Xi yields no information abo,ut 
the value of Xj for j # i. Thus the random observations 
x1,x2,... ,X,, are iid. 

The natural estimator of p is the average of the n values 
in the sample, denoted by j&. Of course, j.&, is a random 
quantity since the sample is random. The CLT for iid ran- 
dom variables asserts that for large n the random variable 
&, has approximately a normal distribution with mean ,a 
and variance a2/n. “Large” can mean as few as 20 to 40 
samples when cr2 is small relative to /.L. The normal approxi- 
mation is accurate even when samples are obtained without 
replacement, as long as n < IAl. 

To obtain a confidence interval for JL, we consider a “stan- 
dardized” random variable Z that is obtained by shifting 

‘See [Haa97, HHW97] for a discussion of other possible types of 
confidence intervals, as well as methods for dealing with CROUP BY and 
DISTINCT clauses. 
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and scaling &: 2 = (cn - ~)/(a/+). It follows from an 
elementary property of the normal distribution that 2 has 
approximately a standard (mean 0 and variance 1) normal 
distribution. For p E (0, l), denote by zP the unique number 
such that the area under the standard normal curve between 
-2, and .z, is equal to p; see [AS72, Sec. 261 for a discussion 
of methods for computing z,. It follows from the foregoing 
discussion that P { -2, 5 2 5 .z, } z p, and straightforward 
calculations then show that P { ii,, - en 5 ~1 5 j&, + E,, } z 
p, where en = zPu/fi. Thus the true value ~1 lies within 
fe, of the estimator Pn with probability approximately p. 
Equivalently, the random interval In = [j& -E,, , P,& +en] con- 
tains p with probability M p and hence is an approximate 
loop% confidence interval for 1-1. Since (T, like p, is unknown, 
we replace g with an estimator Z, in the final formula for 
E,,. A natural choice for 2, is the standard deviation of the 
n numbers in the sample; ii, is close to (T when n is large, 
and the confidence interval remains valid. 

5.2.2 Confidence Intervals for the Aggregates 

In this section we derive confidence intervals for the SUM, 
COUNT, and AVG estimators of Section 5.1. One might hope 
to do this by directly applying the results in Section 5.2.1. 
Indeed, each of the SUM and COUNT aggregates is actually an 
average like ~1 in (5.2), but in disguise: SUM is the average 
value of ]R] * JSJ . expression,(r,s) over (T,s) E R x S and 
COUNT is the average value of IRJ . ISI . one,(r,s). 

Unfortunately, several complicating factors preclude ap- 
plication of the classical CLT for averages of iid random vari- 
ables. One obvious difficulty is that the AVG aggregate is 
not a simple average but rather a ratio of two averages. 
A perhaps more subtle but even more serious complica- 
tion faces all three estimators: the random observations 
{ expressionP(r,s): (r, s) E R, x S,, } are identically dis- 
tributed but not independent, and similarly for the random 
observations ( one,(r, s) : (T, s) E R,, x S, }. For example, 
suppose that r E R, and s,s’ E S,,. Then expression,(r,s) 
and expression,(r, s’) are in general dependent, because both 
observations involve the same tuple P. Thus we need an 
extension of the classical CLT to the case of “cross-product 
averages” and (in order to handle AVG queries) ratios of such 
averages. 

The desired extensions of the CLT can be derived us- 
ing arguments very similar to those in [HNSS96, Haa97]. 
The basic idea for an individual cross-product average is 
to use induction on the number of input relations together 
with results from the theory of “convergence in distribution” 
[Bi186]; ratios of cross-product averages are handled using a 
“delta-method” argument as in [Bil86]. The new CLT’s as- 

sert that after a sufficiently large number of sampling steps, 
the SUM, COUNT, and AVG aggregate estimators of Section 5.1 
are each approximately distributed according to a normal 
distribution with mean ~1 equal to the final query result and 
variance u’/n, where the formula for the variance constant 
a2 depends on the type of aggregate. Given such results, 
we can then proceed exactly as in Section 5.2.1 and obtain 
a loop% confidence interval for the running estimate after 
n sampling steps as 1, = [& - e,,,p,, + E,,]. Here &, is the 
running estimate and 

(5.3) 

where 32 is a consistent estimator of 02. This final half- 
width E,, of the confidence interval is precisely the quantity 

displayed in the interval column of the interface in Fig- 
ure 1. 

In the remainder of this section we describe the specific 
form of the variance constant cr2 and its estimator a^’ in the 
context of SUM, COUNT, and AVG queries. For simplgity we 
focus primarily on two-way joins; see [HH98] for a detailed 
discussion of K-way joins. 

SUM and COUNT Queries 

First consider a SUM query. For r E R, let p(r; R) be the 
average of [RI . ISI . expression,(r, s) over all s E S. It is not 
hard to see that the average of p(r; R) over r E R is simply 
the final query result CL. Let u2(R) be the variance of the 
numbers { p(r; R): r E R): u’(R) = (l/(R() CrER(p(r; R) 

- p) 2. Similarly define u2 (S) for relation S. Suppose that at 
each sampling step of the ripple join we retrieve SR blocks of 
tuples from R and /3s blocks of tuples from S, where there 
are cy tuples per block. Then the variance constant u2 is 
given by u2 = u2(R)/(aP~) + u2(S)/(c&). 

As in the classical iid case, the parameter u2 is unknown 
and must be estimated from the tuples seen so far. A 
natural estimator i?:(R) of u2(R) after n sampling steps 
is the variance of the numbers { ,&,(r; R): r E R, }, where 
each ER(r; R) estimates p(r; R) and is simply the average of 
IRI. 15’1. expression,(r, s) over all s E S, (that is, over all tu- 
pies from S seen so far). We can similarly define an estima- 
tor Z:(S) of u2(S) and estimate u2 by $, = ~~(R)/(c@R) + 
si(S /(cyps). In the case of a COUNT query, the formulas 
for u a and 2: are almost identical to those for a SUM query, 
except that one,(r, s) plays the role of expressionp(r, s). 

AVG Queries 

Because confidence intervals for an AVG query are based 
on a CLT for ratios of cross-product averages, the formulas 
for cr2 and 2: are correspondingly more complicated than for 
a SUM or COUNT query. Recall that the AVG estimator can be 
expressed as a SUM estimator divided by a COUNT estimator. 
Denote by u,” and u,” the variance constants for these two 
estimators, defined as above. Also let pc and pe be the value 
of the COUNT and SUM aggregates based on all of the tuples 
in R and S. For r E R, define p(rp; R) as in the case of a SUM 
query and define ,u’(r; R) as the average of jRI.IS].one,(r,s~ 
over all s E S. Next define p(R) to be the covariance 
of the pairs { (p(r; R),p’(r; R)) : r E R}. Similarly define 

d(s;S) and P(S), and set P = P(R)/(QPR) +dS)l(@s). 
Then the variance constant rr2 is given by u2 = (092 - 2,3p + 
P”d)lP:, where p = ps/pc is the final AVG query result. 
Each of the parameters p, ~1, ai, u,“, and pc in the formula 
for u2 is computed from all of the tuples in R and S. If 
instead we compute each parameter from the tuples in R, 
and S,, we obtain natural estimators p^n, ii,,, 3,” ,,, Z&,, and 
j&l 0 f the parameters. Substituting these estimators into 
the formula for u2 leads to a consistent estimator $,. 

General Aggregation Queries 

For aggregation queries with K 1 2 input relations RI, 
R2, . . . . RK and corresponding aspect ratios pi, 02,. . . , SK, 
the computations are almost the same as the case of two in- 
put relations. Quantities such as p(r; Rk), for example, are 
computed by fixing tuple r E Rk and averaging expression, 
over the cross-product of the remaining input relations; see 

5Recall that for pairs (zl,yr),(z2,~2),... ,(zk,yk), the covari- 
ante is defined as (l/k) Cbl(zi - ?F)(yi -v), where Z and v are the 
averages of the q’s and yi”s.) 
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[HH98] for details. With respect to choosing the aspect ra- 
tios (as discussed in the next section), the most important 
overall observation is that, for SUM, COUNT, AVC, VARIANCE, 
and STDEV queries, the variance constant cr2 can be written 
in the form 

In the above representation, each d(k) is a constant that is 
computed from all of the tuples in the input relations accord- 
ing to a formula that depends upon the type of aggregate. 
Moreover, there alwa,ys exists a consistent estimator &(k) 
of each d(k), which is obtained by applying the formula for 
d(k) to the samples from the input relations rather than to 
the relations themselves. 

5.3 Ripple Optimization: Choosing Aspect Ratios 

For any aggregation query, the two key goals of ripple join 
are (1) to maximize thLe rate of updates to the estimates, and 
(2) to maximize the shrinkage of the confidence intervals at 
each update. These goals typically conflict: increasing the 
updating speed decreases the shrinkage rate for the confi- 
dence intervals, since rapid updates allow for only a few 
samples per update. To handle this tradeoff, we allow the 
user to set a lower bound on the updating speed; this lower 
bound is inversely proportional to the maximum time that 
a user is willing to look at a frozen display. In our exam- 
ple interface of Figure 1, the bound is controlled via the 
animation speed slider. Given a specified animation-speed 
setting, we try to minimize the length of the running confi- 
dence intervals. This is done by carefully selecting values of 
the aspect-ratio parameterse and, in the case of block ripple 
join, the blocking factor. In the following we consider the 
case of K-way block ripple and hash ripple joins with a sin- 
gle aggregate, and then briefly discuss the case of multiple 
aggregates. 

5.3.1 Block Ripple Joins 

Consider a block ripple join with blocking factor a and 
aspect-ratio parameters Pr, ,&, . . . , PK. It can be shown 
[HH98] that the cumulative I/O cost for n sampling steps of 
a block ripple join is proportional to’ ,@?z.. .pKcuK-‘nK + 
o(nK). Roughly speaking, the quantity && . . . fiKoK-’ de- 
termines the rate at which the confidence-interval length 
is updated; the smaller the &‘s, the faster the updating 
rate. At one extreme, the animation speed is maximized 
when /3r = pz = + ‘. = @K = cx = 1; that is, when we 
have a non-blocked square ripple join. Conversely, it fol- 
lows from (5.4) that tlhe larger the ,&‘s and Q, the smaller 
the confidence-interval length after each update. So at the 
other extreme, the confidence-interval length is minimized 
when a,& is equal to t,he cardinality of the kth relation for 
1 5 k < K; that is, when the entire join is completed in one 
“sampling step.” 

Suppose for simplicity that the blocking factor a is pre- 
specified, so that we need only optimize the aspect-ratio pa- 
rameters. This is often the case in practice; see iGG97] for 

‘It might be tempting to try and select an aspect ratio such that 
the confidence-interval length is minimized at each time point. Un- 
fortunately, swh an aspect ratio does not exist in general. 

‘For simplicity, we assume that a constant I/O cost is incurred per 
tuple scanned; our basic approach can be extended to more compli- 
cated I/O models. 

if (PI < 1) { 
j := 0; 
repeat { 

j := j + 1; 
a := min((pjpj+l.. .pK,K-l/,)ll(K-j+l),~j) 
for k=j,j+l,... ,K { 

Bk := A/a; 

Figure 10: Algorithm for modification of pr,pz, . . . ,/31y in 
block ripple join. 

rules of thumb when choosing a blocking factor. Our goal 
is to minimize the confidence interval subject to an upper 
bound on the product of the @k’s that corresponds to the 
animation-speed setting. More precisely, we wish to choose 
Pl,P2,.-. , OK to solve the optimization problem 

minimize g 2 

such that 

/h/32 ’ ’ -@Ka K-1 5 c, 

1 < @k 5 mk/O for 1 < k 5 K, 

Pl,P2,... , ,BK integer, 

(5.5) 

where mk is the cardinality of the kth input relation and the 
value of the constant c is determined by the position of the 
animation speed slider. (The constant c is permitted to 
lie anywhere between oK-’ and mrms . ..rnK/a.) An ex- 
act solution method for the nonlinear integer-programming 
problem in (5.5) is expensive and complicated to code. For 
our prototype we use a simple approximate solution algo- 
rithm: first solve a relaxed version of (5.5) in which all the 
constraints but the first are dropped, and then adjust the 
solution so that the remaining constraints are satisfied. For 
simplicity, suppose that each d(k) is positive. Then it can 
be shown [HH98] that the solution ,&, fig,. . . ,fl;C to the 
relaxed minimization problem is given by 

” = (d(l)d(Z;. . .d(K) > 

l/K 
&K)/Kd(k) 

for 1 < k 5 K. To adjust this solution, set flk = & for 
1 5 k 5 K and then execute the algorithm in Figure 10. 
For ease of exposition, we present the algorithm for the spe- 
cial case in which, initially, fir < /?z 5 . . . 5 OK; in general, 
we sort pr,&,... ,/3K in ascending order and then execute 
the algorithm. The first step of the algorithm is to deter- 
mine whether at least one /& is less than 1. If so, then during 
the first time through the repeat loop the algorithm scales 
UPPl,P2,... , PK proportionately so that each & iS grea,ter 
than or equal to 1, as required by the second constraint in 
(5.5). Observe, however, that this scaleup will cause the first 
constraint in (5.5) to be violated. To handle this problem, 
the algorithm then executes one or more scaling-down steps 
(the remaining iterations of the repeat loop): at each such 
step, those ok’s that exceed 1 are scaled down proportion- 
ately until either the first constraint in (5.5) is satisfied (in 
which case the scaling-down phase terminates) or the small- 
est of these ,&‘s is scaled down to 1. This procedure is re- 
peated until the first constraint in (5.5) is satisfied. Finally, 
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each pk is decreased further if necessary to ensure that the 
remaining constraints in (5.5) are satisfied. If pi, 02,. . . ,@K 
have a greatest common divisor (GCD) that is greater than 
I, we can divide each /& by this GCD-this modification in- 
creases interactivity without affecting statistical efficiency. 

5.3.2 Hash Ripple Joins 

For hash ripple join, the approach to choosing the aspect- 
ratio parameters is similar; see [HH98] for details. The main 
difference from block ripple join is that the cumulative I/O 
cost for n sampling steps of a hash ripple join is proportional 
to (Pl + p2 + ... + PK)n, since each input tuple is read 
from disk exactly once. Thus the appropriate optimization 
problem is of the form (5.5) with the first constraint changed 
to: /31+/%-t . . . + @K 5 c. It can be shown that the solution 
KY&‘,-.. , p;C to the corresponding relaxed problem is given 
by ,L$ = cm/ Cj”=, m for 1 5 k 5 K. This solution 
can then be adjusted to satisfy the remaining constraints 
using an algorithm almost identical to that in Figure 10; see 
[HH98]. 

5.3.3 Multiple Aggregates 

Many aggregation queries encountered in practice, such as 
queries with a GROUP BY clause, require computation of sev- 
eral aggregates simultaneously. One approach to setting the 
aspect-ratio parameters when there are multiple aggregates 
is to minimize a weighted average of the squared confidence 
interval lengths, that is, to minimize wlei,, + w&a +. . . + 
~u,,,E&,, where m is the number of aggregates, e,,,j (1 5 j 5 
m) is the length of the confidence interval for the jt.h run- 
ning estimate after n sampling steps, and WI, wz, . . . , w,,, 
are weights chosen by the user. Since, by our previous dis- 
cussion, each & can be written in the form 

Et,j = $!@i.$, 

it follows that the appropriate minimization problem is of 
the form (5.5) with d(k) = Cy=, wjd(k;j). This approach is 
easy to implement; more sophisticated approaches are pos- 
sible, but they require solution of a more complex minimiza- 
tion problem than the one in (5.5). 

5.4 Implementation Issues 

Given the foregoing framework, ripple join can be designed 
to adaptively set its aspect ratio by estimating the optimal 
pk’s at the end of each sampling step. The idea is to replace 
each d(k) with its estimator &(k) before solving the opti- 
mization problem in (5.5). Lacking any initial information 
about the optimal values of the ,&‘s, we start the join with 
each @k equal to 1 in order. to get a high initial tuple de- 
livery rate. The @k estimates can fluctuate significantly at 
first, but typically stabilize quickly. A large, poorly chosen 
aspect ratio can result in a long period of ineffective process- 
ing. Thus it is best to postpone updating the initial aspect 
ratio until at least 20 to 30 tuples have passed the WHERE 
clause, and then use a stepwise approach for adjustment: 
when the estimated optimal ,& is far from its current value, 
the new value can be set to a fractional point (e.g. halfway) 
between the current value and its newly estimated optimum. 

When the aspect ratio is changed at the end of a sam- 
pling step, the new sampling step must “wrap” the current 
hyper-rectangle as described in Section 4 so that the length 

of the kth side (1 5 k 5 K) becomes an appropriate mul- 
tiple of the updated value of pk. For example, consider our 
two-table query at the end of step n = 2, with blocking fac- 
tor Q = 1 and aspect ratio specified by /3r = 2 and /Iz = 3. 
At this point, the ripple join has swept out a 4 x 6 rectan- 
gle. Suppose that it is beneficial to change the aspect-ratio 
parameters to /3i = pz = 1. Then at the end of the next 
sampling step the ripple join should have swept out a 7 x 7 
rectangle. Note that at the end of the step we have jumped 
from n = 2 to n = 7; such jumps do not present difficulties 
to our estimation methods. 

In the remainder of this section we outline algorithms 
for computing the variance-constant estimator $2 that de- 
termines the half-width E,, of the confidence intervals as 
in (5.3). Consider, for example, a SUM query as in Sec- 
tion 5.2.2. In order to update si at the end of a sam- 
pling step, we first need to update the quantities Z:(R) and 
Z?:(S). In the following we focus on updating methods for 
C?:(R); these methods apply to Z:(S) virtually unchanged. 
Recall that S:(R) is the variance of the numbers in the 
set Z = { Fn (r; R) : T E R, }, and that each j&, (T; R) is the 
average of ] RI . ISI . ezpcpression,(r, 3) over all s E S,. Ob- 
serve that, at each sampling step, we add new elements to Z 
(which correspond to new tuples from R) and also possibly 
modify some of the existing elements of Z (which correspond 
to old tuples from R that join with new tuples from S). Our 
goal when updating 3: (R) is to minimize the amount of re- 
computation required at each sampling step. To this end, 
we use the fact [CGL83] that if we augment a set of n num- 
bers with average A1 and variance VI by adjoining a set of m 
numbers with average A2 and variance V2, then the variance 
V of the augmented set of n + m numbers is 

v= J-vl + ---&vi + 
m+n 

(mm+nn,2 (Al - ~42)~. (5.6) 

Using this composition formula, we proceed as follows. At 
the beginning of each sampling step, we update 3:(R) un- 
der the “optimistic” assumption that all new observations 
ezpression,(r, s) obtained during the sampling step will be 
identically zero. The reason for this approach is that in prac- 
tice many observations ezpcpression (r, s) are in fact equal to 
0 because r doesn’t join with s. ?he initial update is easy 
to apply: it can be shown that the effect of changes in the 
existing entries can be incorporated into S,?,(R) simply by 
multiplying6 the old value of E?:(R) by ((n - l)/n)3, and 
then all of the new (zero) entries can be incorporated via a 
single computation based on (5.6). Each nonzero observa- 
tion actually encountered during the sampling step results in 
changes to one or more elements of 1. For each changed ele- 
ment, we run the composition formula in (5.6) “backwards” 
to remove the element from the 3:(R) computation, update 
the element, and then run the formula forwards to incorpo- 
rate the modified element back into the Zi (R) computation, 

The above updating approach works for any SUM or COUNT 
query; see [HH98] for the complete algorithm. For AVG 
queries we also need to update the covariance statistic j& 
introduced in Section 5.2.2. The updating method is al- 
most identical to that for $,; see [HH98]. In practice, the 
computation cost for the updating algorithms is minimal. 
Memory consumption, however, is proportional to the num- 
ber of tuples that have passed the WHERE clause so far. This 
increasing storage requirement can become burdensome af- 
ter a significant period of processing. Typically, we expect 

‘For the general case of K > 2 input relations, the multiplicative 
factor is ((n - l)/n)2K-‘. 
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the user to abort the query before the storage problem be- 
comes severe-tight estimates are usually obtained quickly 
when the output relation is of non-trivial size. If the user 
does not abort the query, then several approaches are avail- 
able for handling the later stages of query processing. One 
approach is to switch to a “conservative” or “determinis- 
tic” confidence interval as described in [HHW97]; such in- 
tervals typically are longer than large-sample intervals but 
have no additional storage requirements. Another approach 
is to also process the query using standard “batch” tech- 
niques; this batch processing can be performed in parallel 
with the online execution, and the user can switch over to 
batch mode as desired. Alternatively, all of the statistics 
except the current running estimate and confidence-interval 
length can be discarded and a new running aggregation com- 
putation initiated; the new running estimate and confidence- 
interval length can be combined with the previous running 
estimate(s) and confildence-interval length(s) to yield final 
running results. We hope to explore this last approach in 
future work. 

6 Performance 

In this section, we present results from an implementation of 
the ripple join algorithm in POSTGRES'; these results illus- 
trate the functionality of the algorithm and expose tradeoffs 
in online performance. We used data from the University 
of Wisconsin that comprise the course history of students 
enrolled over a three-year period. Our experiments focus 
on two tables: stude:nt, which contains information about 
students at the university, and enroll, which records infor- 
mation about students’ enrollment in particular classes. The 
student table has 60,300 rows, and in POSTGRES occupies 
about 22.3 Mb on disk; the enroll table has 1,547,606 rows, 
and occupies about 32:7.0 Mb on disk. Records are clustered 
in random order on disk, so a scan yields a random sample. 
Our version of POSTGIRES does not ‘support histograms, and 
hence makes radically incorrect selectivity estimates. We 
augmented POSTGRES by providing the equivalent of a 20- 
bucket equi-width histogram per column from the command 
line as needed; a standard DBMS would typically provide 
at least this much accuracy [IBM97, Inf97, Ora97]. 

The two relevant performance metrics for online aggre- 
gation are the rate at which the length of the confidence in- 
terval decreases (i.e., the precision of the display over time) 
and the rate at which the user receives new updates (i.e., 
the animation speed). 

In our first experiment we ran the following query: 

SELECT ONLINE AVGhroll.grade) FROM enroll,student 
WHERE enroll.sid = student.sid 

AND student. honors-code IS NULL; 

We ran the query for 60 seconds, using block-, hash-, and 
index-ripple join (i.e., index nested-loops join), along with 
classical block nested-loops join. In order to avoid exagger- 
ating the effectiveness of ripple join, we attempted to make 
nested-loops as competitive as possible. We therefore built 
an index over the far bigger enroll table, which is used by 

- 
‘Our implementation is based on the publicly available Post- 

greSQL distribution [Pos98], Version 6.3. Our measurements were 
performed on a PC with an Intel Pentium Pro 200 Mhz processor 
and 256 Kb cache, 128 Mb RAM, running the RedHat Linux 5.1 
distribution (kernel version 2.0.34). One 6.4 Gb Quantum Fireball 
ST6.4A EIDE disk was used to hold the database, and another 2.1 
Gb Seagate ST32151N SCSI disk held the operating system and core 
applications, home directories, swap space, and POSTGRES binaries. 
POSTGRES was configured with 10,000 8-Kb buffers in its buffer pool. 
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- + nested loops 

Figure 11: Confidence-interval half-width (E) over time. 
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Figure 12: Number of sampling steps completed over time. 

the indexed join. We also forced the POSTGRES optimizer 
to choose the smaller student relation as the “inner” of the 
block nested-loops join, since this is more effective for online 
aggregation. Finally, we set the animation speed to lOlO%, 
which makes block- and hash-ripple join very interactive, 
but hampers their ability to shrink confidence intervals as 
discussed in Section 5.3.1. 

Figure 11 shows how the confidence interval half-width E 
shrinks over time for the query. Despite the maximal anima- 
tion speed, hash ripple join gives extremely tight confidence 
intervals within seconds, performing comparably to index 
ripple join (but without requiring an index). By contrast, 
block ripple join shrinks much more slowly. Note the initial 
instability in the block ripple join estimator, before the num- 
ber of sampling steps is sufficiently large for the CLT-based 
estimator; cf. Figure 12. This effect could have been maslked 
by using a (much wider) conservative confidence interval ‘un- 
til a small number of tuples had been fetched. Index ripple 
join also demonstrates some instability during its startup 
phase. 

To compare the ripple joins with traditional algorithms, 
note that nested loops join takes over 10 seconds to even 
begin giving estimates-this is because each sampling step 
requires a full scan of the student table. The best batch 
join algorithm is hybrid hash join, which is the choice of 
the POSTGRES optimizer for this query. Hybrid hash runs 
for 208 seconds before completing the join, at which point 
it produces a precise result. Even if we replaced POSTGRES 
with the world’s fastest database software, our system’s disk 
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transfer rate” of 8.2Mb/sec would still require about 42 sec- 
onds simply to read the two relations into memory. Note 
that online aggregation in POSTGRES produces very tight 
bounds a full two orders of magnitude faster than batch 
mode in the same system, and one order of magnitude faster 
than an ideal system. Presumably an ideal system would 
also do online aggregation considerably faster than POST- 
GRES as well. The performance advantage of ripple join 
would increase if the size of the relations being joined were 
increased-calculations similar to [HNS94] show that for a 
key/foreign-key join as in our example, the I/O cost ratio 
of hybrid hash to ripple join increases roughly as the square 
root of the table cardinality due to the beneficial effects of 
sampling. 

While block ripple join looks quite unattractive in this 
example, it is important to note that this key/foreign-key 
equijoin discards most tuples, with only 1 in every 63,446 tu- 
ples of the cross-product satisfying the WHERE clause. Block 
ripple join is more appropriate for joins with large result 
sizes. For such joins a large fraction of the cross-product 
space contributes to the output, so that E shrinks at an sc- 
ceptable rate despite the high I/O cost. Moreover, whenever 
the result size is large because the join is a non-equijoin, then 
block ripple is applicable but hash ripple is not. 

In the previous example, the high animation speed forced 
a square aspect ratio. To demonstrate the advantages of 
adaptive aspect-ratio tuning at lower animation speeds, we 
consider a query that returns the average ratio of Education 
student to Agriculture student grades, normalized by year”: 

SELECT ONLINE AVG(d.grade/a.grade) 
FROM enroll d, enroll I 
WHERE d.college = ‘Education’ 

AND a.collage = ‘Agriculture’ 
AND a.year = d.year; 

We ran this query using block ripple joins of differing aspect 
ratios; POSTGRES chose block ripple in this case because the 
result size of the join is quite large. The resulting perfor- 
mance is shown in Figure 13. In all the joins, the Education 
relation instance was the left operand, and the Agriculture 
relation instance was the right; the curves are labeled with 
the leftxright aspect ratio. As can be seen from Figure 13, 
it is best to sample the Agriculture relation instance at a 
much higher rate than Education. The adaptive block rip- 
ple join’s aspect ratio starts at the initial default value of 
1 x 1 and then, after some fluctuation, settles to a ratio 
of around 1 x 6 in favor of Education. Note the relatively 
smooth shape of the curve for the square aspect ratio, which 
produces a result as often as possible (animation speed set to 
the maximum.) By contrast, the other curves-particularly 
the adaptive curve, which had animation speed set to 90%- 
have a “staircase” shape, reflecting long sampling steps dur- 
ing which running estimates remain fixed. This clearly illus- 
trates the tradeoff between estimation quality and animation 
speed that was described in Section 5. 

To once more compare online to batch performance, we 
tried this query in POSTGRES. The POSTGRES optimizer 

loWe measured disk transfer rate using raw I/OS on the Quantum 
Fireball holding the data. The rate of 8.2Mb/sec is the best-case 
behavior at the outer tracks; the inner tracks provide only about 5.1 
Mb/set. 

llAlthough this query is actually a self-join, we process it as a 
binary join. We can do this because the rows for Agriculture students 
and Education students form two disjoint subtables of the enroll 
table. The idea is independently sample a row (or set of rows) from 
each subtable at every sampling step. Moreover, for this query we 
can use catalog statistics to obtain the precise cardinalities of the 
two subtables. See Section 7 for further discussion of self-joins. 

0.0 16 I I 1 
0 20 ‘lo 60 
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Figure 13: Confidence-interval half-width (E) over time for 
block ripple joins of differing aspect ratios. 

chose a naive nested loops join, and the query took so long to 
complete that it had to be aborted. The most sensible batch 
algorithm for this low-selectivity query is block nested-loops 
join. An idealized implementation would make one pass of 
enroll for the outer loop, and r]enroll]/]buffer pool]] = 
[327/80] = 5 passes of enroll for the inner relation. Assum- 
ing buffer pool hits on memory-resident portion of enroll, 
each inner pass would require 327-80=247Mb of I/O, for a 
total of 327 + 5 * 247 = 1562 I/OS. At the peak transfer 
rate of 8.2 Mb/s, this would require about 190 seconds to 
complete-between one and two orders of magnitude longer 
than required for ripple join to produce good estimates in 
POSTGRES. 

7 Conclusions and Future Work 

A complete implementation of online aggregation must be 
able to handle multi-table queries. This paper introduces 
ripple joins, a family of join algorithms designed to meet the 
performance needs of an online aggregation system. Ripple 
joins generalize block nested-loops and hash join, and au- 
tomatically adjust their behavior to provide precise confi- 
dence intervals while updating the estimates at a rapid rate. 
Users can trade off precision and updating rate on the Ay 
by changing an “animation speed” parameter that controls 
the aspect ratio of the rectangles swept out by the join. In 
our experiments, the time required to produce reasonably 
precise online estimates was up to two orders of magnitude 
smaller than the time required for the best offline join al- 
gorithms to produce exact answers. A key observation is 
that the time required to achieve a confidence interval of a 
specified “acceptable” length is a sub-linear (and sometimes 
constant!) function of the cardinality of the input relations; 
cf [HNS94]. It follows that, as the size of databases increases, 
online join algorithms should appear more and more attrac- 
tive relative to their offline counterparts for a wide variety 
of queries. 

This paper opens up a number of areas for future work. 
Although the ripple join is symmetric, it is still not clear how 
a query optimizer should choose among ripple join variants, 
nor how it should order a sequence of ripple joins. As we 
have seen in this paper, the optimization goals for an online 
aggregation system are different than for a traditional DBMS: 
even for a simple binary nested-loops join, the traditional 
choice of outer and inner is often inappropriate in an online 
scenario. 
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Another challenge is the development of efficient tech- 
niques for processing self-joins that avoid the need for two 
separate running samples from the input table; such self- 
joins arise naturally in a variety of queries. When the input 
expression,(r,s) to a SUM or AVG aggregation function is a 
symmetric function of r and s, it appears that results for “U- 
statistics” [Hoe481 can be used to obtain confidence-interval 
formulas based on a single running sample. This approach 
needs to be developed and extended to deal with arbitrary 
self-join queries. 

Although the POSTGRES DBMS was useful for rapid proto- 
typing, there are a number of performance issues that need 
to be studied in an industrial-strength system. One impor- 
tant area is the paraillelization of ripple joins. If base re- 
lations are horizontal1.y partitioned across processing nodes, 
random retrieval of tuples from different nodes can be viewed 
as a stratified sampling scheme, and the confidence-interval 
formulas presented here can be adjusted accordingly. The 
“stratified” estimates generated at the nodes must be com- 
bined in an efficient manner to yield an overall running es- 
timate and a corresponding confidence interval. To study 
these and other issues, we are currently implementing rip- 
ple join and hash ripple join in high-performance, parallel 
commercial DBMS%. 

In this paper we present ripple joins in the context of 
a statistical estimation problem. We believe, however, that 
ripple joins will be useful for other, non-statistical modes 
of data exploration, particularly data visualization. We are 
currently exploring online visualization [HARSS], and plan 
to test the effectiveness of ripple join at producing quick, 
meaningful visualizations of very large data sets. 
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