http://www.mathcs.emory.edu/~cheung/Courses/554/Projects/hw4/hw4.html

CS554, Homework 4

e Question 1 (20 pts)

o Exercise 14.1.1 (a)

= Suppose blocks hold either three records, or ten key-pointer pairs.

As a function of n (= the number of records), how many blocks do we need to store a data file using a dense index

Answer:

o Exercise 14.1.1 (b):

= Suppose blocks hold either three records, or ten key-pointer pairs.

As a function of n (= the number of records), how many blocks do we need to store a data file using a sparce index

Answer:

1of8 10/13/2018, 8:34 PM

2 of 8

¢ Question 2 (15 pts - each subquestion 5 points)

http://www.mathcs.emory.edu/~cheung/Courses/554/Projects/hw4/hw4.html

The nodes B-tree in following questions have a maximum of 3 keys and 4 pointers.

1. Show the pointers followed by the operation to lookup the record with key 41: (don't forget to include the data record pointers
-- i.e., the bottom arrows)

I

13
EEN

13

31{43

2 (3
|

] 3

13)17) 19 |23

[-

Ll
XR

|
'

f
'

29

31 37|41

43 47

Figure 14.13: A B-tree

L

2. Show the pointers followed by the operation to lookup all records in the range 20 to 30: (don't forget to include the data record
pointers -- i.e., the bottom arrows)

I

13
EEN

13

31{43

13)17) 19 |23

[-

29

31 37|41

43 47

Figure 14.13: A B-tree

L

10/13/2018, 8:34 PM

http://www.mathcs.emory.edu/~cheung/Courses/554/Projects/hw4/hw4.html

3. Starting with the following B-tree:

: 3000 I!I 5000 + 7000 <
/ II \\
I’ e

| 1000 1500 2000 - 3000 4-’}-.-"0-1'- 5000 G000-+§» 7000 2000

Show the B-tree after we insert a record with key 2500:

30f8 10/13/2018, 8:34 PM

4 of 8

http://www.mathcs.emory.edu/~cheung/Courses/554/Projects/hw4/hw4.html

¢ Question 3 (15 pts - each subquestion 5 points)

The nodes B-tree in following questions have a maximum of 2 keys and 3 pointers.

1. Starting with the following B-tree:

- T000 -

| / . Rk“‘\\
{ 3000 | 5000 8000 | 5000

1000 2000 --p 3000 4000 i S000 6000 - 7000 - 5000 —p 9000

Show the B-tree after we delete the record with key 7000

2. Starting with the following B-tree:

2 e

?uou\

1000 1500 ~-p 2000 25009 3000 4000 ——p 5500 ! 6000 6500--p 7000 8000

Show the B-tree after we delete the record with key 5500

10/13/2018, 8:34 PM

http://www.mathcs.emory.edu/~cheung/Courses/554/Projects/hw4/hw4.html

3. Starting with the following B-tree:

/“““\ /’”"“\

1000 » 5000 -+ » 3000 » 9000

Show the B-tree after we delete the record with key 6000

10/13/2018, 8:34 PM

6 of 8

http://www.mathcs.emory.edu/~cheung/Courses/554/Projects/hw4/hw4.html

® Question 4 (20 pts)

o Consider the delete algorithm for an internal node of the B*-tree:

/*

Delete(x, ry) from a node N in B*-tree

*/
Delete(x, ry, N)
{

Delete x, ry from node N;

/*
Check for underflow condition...
*/
if (N has 2 L (n+l) /2] pointers /* At least half full*/)
{
return; // Done
}
else
{
/2y
N underflowed: fix the size of N with transfer or merge
___ */
/*
Always try transfer first !!!
(Merge is only possible if 2 nodes are half filled)
*/

if (leftSibling(N) has 2 L (n+1l)/2] + 1 pointers)
{

as the first key;

2. transfer right subtree link into N as the first link

}
else if (rightSibling(N) has 2 L (n+l)/2] + 1 pointers)
{

as the last key;

2. transfer left subtree link into N as the last link
}

/*

Here: can't solve underflow with a transfer

Because: BOTH sibling nodes have minimum # keys/pointers
(= half filled !!!)

Solution: merge the 2 half filled nodes into 1 node

*/
else if (leftSibling(N) exists)
{

/*

merge N with left sibling node

*/
1. Merge (1) leftSibling(N) + (2) key in parent node + (3) N
into the leftSibling(N) node;

2. Delete (transfered key, right subtree ptr, parent(N));
else // Node N must have a right sibling node !!!

{
/*

merge N with right sibling node

*/
1. Merge (1) N + (2) key in parent node + (3) rightSibling (N)
into the node N;

1. transfer last key from leftSibling(N) through parent into N

1. transfer first key from rightSibling(N) through parent into N

// Recurse

2. Delete (transfered key, right subtree ptr, parent(N)); // Recurse !

10/13/2018, 8:34 PM

http://www.mathcs.emory.edu/~cheung/Courses/554/Projects/hw4/hw4.html

Currently, the delete algorithm for internal node does rot handle a deletion in the roof node

Question:

= Add code into the above algorithm that will include support for deletion in the root node of a B*-tree

Specify:

1. Where the code will bbe added (i.e.: give the position in the program listed in the previous figure) (5
pts)

2. The code (= statements) that you will need add to handle deletion in the root node: (15 pts)

7 of 8 10/13/2018, 8:34 PM

http://www.mathcs.emory.edu/~cheung/Courses/554/Projects/hw4/hw4.html

® Question 5 (30 pts)

o Exercise 14.5.5:

= Suppose we store a relation R (x,y) in a grid file.
= Both attributes have a range of values from 0 to 1000.
= The partitions of this grid file happen to be uniformly spaced:

= for x there are partitions every 20 units, at 20, 40, 60, and so on,
= for y the partitions are every 50 units, at 50, 100, 150, and so on.

Questions:

= How many buckets do we have to examine to answer the range query

SELECT * FROM R
WHERE 310 < x AND x < 400
AND 520 < y AND y < 730;

Answer:

= We wish to perform a nearest-neighbor query for the point (110,205) (i.e., find the closest element to the point
(110,205))

We begin by searching the bucket with lower-left corner at (100,200) and upper-right corner at (120,250).

We indicate this bucket as:

[100-120] [200-250]

We find that the closest point in this bucket is (115,220).
What other buckets must be searched to verify that this point is the closest?

Answer:

8 of § 10/13/2018, 8:34 PM

