
CS554, Homework 4

Question 1 (20 pts)

Exercise 14.1.1 (a)

Suppose blocks hold either three records, or ten key-pointer pairs.

As a function of n (= the number of records), how many blocks do we need to store a data file using a dense index

Answer:

Exercise 14.1.1 (b):

Suppose blocks hold either three records, or ten key-pointer pairs.

As a function of n (= the number of records), how many blocks do we need to store a data file using a sparce index

Answer:

http://www.mathcs.emory.edu/~cheung/Courses/554/Projects/hw4/hw4.html

1 of 8 10/13/2018, 8:34 PM

Question 2 (15 pts - each subquestion 5 points)

The nodes B-tree in following questions have a maximum of 3 keys and 4 pointers.

Show the pointers followed by the operation to lookup the record with key 41: (don't forget to include the data record pointers

-- i.e., the bottom arrows)

1.

Show the pointers followed by the operation to lookup all records in the range 20 to 30: (don't forget to include the data record

pointers -- i.e., the bottom arrows)

2.

http://www.mathcs.emory.edu/~cheung/Courses/554/Projects/hw4/hw4.html

2 of 8 10/13/2018, 8:34 PM

Starting with the following B-tree:

Show the B-tree after we insert a record with key 2500:

3.

http://www.mathcs.emory.edu/~cheung/Courses/554/Projects/hw4/hw4.html

3 of 8 10/13/2018, 8:34 PM

Question 3 (15 pts - each subquestion 5 points)

The nodes B-tree in following questions have a maximum of 2 keys and 3 pointers.

Starting with the following B-tree:

Show the B-tree after we delete the record with key 7000

1.

Starting with the following B-tree:

Show the B-tree after we delete the record with key 5500

2.

http://www.mathcs.emory.edu/~cheung/Courses/554/Projects/hw4/hw4.html

4 of 8 10/13/2018, 8:34 PM

Starting with the following B-tree:

Show the B-tree after we delete the record with key 6000

3.

http://www.mathcs.emory.edu/~cheung/Courses/554/Projects/hw4/hw4.html

5 of 8 10/13/2018, 8:34 PM

Question 4 (20 pts)

Consider the delete algorithm for an internal node of the B+-tree:

 /* ==

 Delete(x, rx) from a node N in B
+-tree

 == */
 Delete(x, rx, N)

 {
Delete x, rx from node N;

 /* ====================================
 Check for underflow condition...

 ==================================== */

 if (N has ≥ ⌊(n+1)/2⌋ pointers /* At least half full*/)
 {
 return; // Done
 }
 else
 {
 /* ---

 N underflowed: fix the size of N with transfer or merge
 --- */

 /* ==
 Always try transfer first !!!
 (Merge is only possible if 2 nodes are half filled)
 == */

 if (leftSibling(N) has ≥ ⌊(n+1)/2⌋ + 1 pointers)
 {
 1. transfer last key from leftSibling(N) through parent into N

as the first key;

 2. transfer right subtree link into N as the first link
 }

 else if (rightSibling(N) has ≥ ⌊(n+1)/2⌋ + 1 pointers)
 {
 1. transfer first key from rightSibling(N) through parent into N

as the last key;

 2. transfer left subtree link into N as the last link
 }

 /* ==
 Here: can't solve underflow with a transfer

 Because: BOTH sibling nodes have minimum # keys/pointers
 (= half filled !!!)

 Solution: merge the 2 half filled nodes into 1 node
 == */

 else if (leftSibling(N) exists)
 {

 /* ===
 merge N with left sibling node

 === */
 1. Merge (1) leftSibling(N) + (2) key in parent node + (3) N

into the leftSibling(N) node;

 2. Delete (transfered key, right subtree ptr, parent(N)); // Recurse !!
 }
 else // Node N must have a right sibling node !!!
 {

 /* ===
 merge N with right sibling node

 === */
 1. Merge (1) N + (2) key in parent node + (3) rightSibling(N)

into the node N;

 2. Delete (transfered key, right subtree ptr, parent(N)); // Recurse !!
 }

 }

http://www.mathcs.emory.edu/~cheung/Courses/554/Projects/hw4/hw4.html

6 of 8 10/13/2018, 8:34 PM

Currently, the delete algorithm for internal node does not handle a deletion in the root node

Question:

Add code into the above algorithm that will include support for deletion in the root node of a B+-tree

Specify:

Where the code will bbe added (i.e.: give the position in the program listed in the previous figure) (5

pts)

1.

The code (= statements) that you will need add to handle deletion in the root node: (15 pts)

2.

http://www.mathcs.emory.edu/~cheung/Courses/554/Projects/hw4/hw4.html

7 of 8 10/13/2018, 8:34 PM

Question 5 (30 pts)

Exercise 14.5.5:

Suppose we store a relation R (x,y) in a grid file.

Both attributes have a range of values from 0 to 1000.

The partitions of this grid file happen to be uniformly spaced:

for x there are partitions every 20 units, at 20, 40, 60, and so on,

for y the partitions are every 50 units, at 50, 100, 150, and so on.

Questions:

How many buckets do we have to examine to answer the range query

 SELECT * FROM R
 WHERE 310 < x AND x < 400
 AND 520 < y AND y < 730;

Answer:

We wish to perform a nearest-neighbor query for the point (110,205) (i.e., find the closest element to the point

(110,205))

We begin by searching the bucket with lower-left corner at (100,200) and upper-right corner at (120,250).

We indicate this bucket as:

 [100-120][200-250]

We find that the closest point in this bucket is (115,220).

What other buckets must be searched to verify that this point is the closest?

Answer:

http://www.mathcs.emory.edu/~cheung/Courses/554/Projects/hw4/hw4.html

8 of 8 10/13/2018, 8:34 PM

