|
|
|
R = (A, B, C, D, E, F, G, H) ℉ = { ABC → DEG E → BCG F → AH } |
|
R1 = ( A, B, C, D, E ) // Key: (A,B,C) R2 = ( E, B, C, G ) // Key: (E) R3 = ( F, A, H ) // Key: (F)) |
|
|
|
R1 = (A, B, C, D, E) R2 = (E, B, C, G) R3 = (F, A, H) R4 = (E, F) R5 = (B, C, F) ℉ = { ABC → DEG E → BCG F → AH } |
BTW: it's is also in 3NF....
R = (A, B, C, D, E, F, G, H) ℉ = { ABC → DEG E → BCG F → AH } |
|
|
R = (A, B, C, D, E, F, G, H) Keys: FE and FBC ℉ = { ABC → DEG E → BCG F → AH } ==> F is not a superkey and AH are not key attributes |
Decomposition:
R( A, B, C, D, E, F, G, H ) / \ / \ (F+ = FAH) / \ R1(F, A, H) R2(B, C, D, E, F, G) |
Notice that:
|
|
No proof... - See Chapter 11 of text book