

JDBC Short Course

by Magelang Institute

[Table of Contents]

The goal of this course is to provide an introduction to the JDBC
interface for connecting Java programs with SQL-based databases.
The course is interwoven with flexible exercises that, together with
the course text, allow programmers to tailor the learning process to
their particular learning style. This course covers the following main
aspects of JDBC:

How to connect to a database using the JDBC/ODBC bridge●

Sending queries to the database and getting results●

Examining metadata information from the database●

Error handling.●

Concurrency and efficiency issues●

Short Course Prerequisites

Although there is a short primer on SQL, this course assumes that
you are familiar with relational databases and SQL. In particular,
the student should know how to define a table in the database they
will be using for the exercises.

These course notes, applets, and exercises were developed and
tested with Netscape Navigator 3.01 under Windows 95/NT 4.0.
Other browsers and earlier versions of Navigator may have trouble
running all the applets.

Short Course Format and Duration

This course consists of cross-linked course notes and flexible
exercises that will take about eight hours to complete.
Programmers that have experience with concurrent programming
may finish sooner, while those for which these concepts are entirely
new will want to proceed more slowly.

How to Take this Short Course

Because people tend to learn in different ways and have different
backgrounds, this course is designed with many paths through the
material. You can begin with the exercises and refer back to the
notes, or you can begin with the Course Notes and follow the
embedded links to appropriate exercises. It is possible to cover the
course content in a depth-first, or breadth-first manner. For

JDBC Short Course

http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/index.html (1 de 2) [12/30/1999 8:33:20 PM]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/index.shtml
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://www.magelang.com/
http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/exercises/index.html

example, you may want to learn everything about a particular
subject before moving on, or you may want to get a broad overview
before exploring each subject in depth.

If you are not familiar with the integrated exercise concept, please
read the associated help.

Entry Points:

Course Notes

Exercises

Copyright © 1996 MageLang Institute. All Rights Reserved.

[This page was updated: 13-Dec-99]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World

FAQ | Feedback | Map | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-99 Sun Microsystems, Inc.
All Rights Reserved. Legal Terms. Privacy Policy.

JDBC Short Course

http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/index.html (2 de 2) [12/30/1999 8:33:20 PM]

http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/exercises/exhelp.html
http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/exercises/index.html
http://www.magelang.com/
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/index.shtml
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://java.sun.com/applets/
http://java.sun.com/docs/books/tutorial/
http://java.sun.com/jobs/
http://java.sun.com/nav/business/
http://java.sun.com/javastore/
http://java.sun.com/casestudies/
http://developer.java.sun.com/siteinfo/faq.html
http://developer.java.sun.com/feedback/index.html
http://www.dynamicdiagrams.net/mapa/cgi-bin/help.tcl?db=javasoft&dest=http://java.sun.com/
http://java.sun.com/a-z/index.html
http://www.att.com/business_traveler/attdirecttollfree/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/SMICopyright.html
http://www.sun.com/privacy/

Training Index

JDBC Short Course
Table of Contents

by Magelang Institute

Overview

Course Notes

Java Database Programming

Introduction to JDBC●

A Complete Example

Creating a Database

exercises■

❍

Getting Information from a Database

exercise■

❍

Obtaining Result MetaData Type Information

exercises■

❍

●

Connecting a Java program to a database

exercises❍

●

Talking to a Database

Database Updates❍

Database Queries

exercises■

❍

Prepared Statements

exercise■

❍

●

Metadata

Information about a database

exercises■

❍

Information about a table within a database

exercise■

❍

●

Transactions●

Stored Procedures●

JDBC Short Course: Table Of Contents

http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/contents.html (1 de 2) [12/30/1999 8:33:27 PM]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/index.shtml
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/developer/onlineTraining/index.html
http://www.magelang.com/

Java-SQL Type Equivalence●

JDBC Exception Types

SQLExceptions❍

SQLWarnings❍

Data Truncation❍

exercise❍

●

SQL Conformance

exercise❍

●

Enterprise APIs●

Resources●

SQL Primer

Creating Tables●

Accessing Columns●

Storing Information●

Resources●

Copyright © 1996 MageLang Institute. All Rights Reserved.

[This page was updated: 13-Dec-99]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World

FAQ | Feedback | Map | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-99 Sun Microsystems, Inc.
All Rights Reserved. Legal Terms. Privacy Policy.

JDBC Short Course: Table Of Contents

http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/contents.html (2 de 2) [12/30/1999 8:33:27 PM]

http://www.magelang.com/
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/index.shtml
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://java.sun.com/applets/
http://java.sun.com/docs/books/tutorial/
http://java.sun.com/jobs/
http://java.sun.com/nav/business/
http://java.sun.com/javastore/
http://java.sun.com/casestudies/
http://developer.java.sun.com/siteinfo/faq.html
http://developer.java.sun.com/feedback/index.html
http://www.dynamicdiagrams.net/mapa/cgi-bin/help.tcl?db=javasoft&dest=http://java.sun.com/
http://java.sun.com/a-z/index.html
http://www.att.com/business_traveler/attdirecttollfree/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/SMICopyright.html
http://www.sun.com/privacy/

Training Index

JDBC Short Course
Java Database Programming

by Magelang Institute

[Table of Contents]

In this course, you will learn:
What Java Database Connectivity (JDBCTM) and Open Database
Connectivity (ODBC) are

●

How to use JDBC to connect to a relational database●

How to execute SQL queries on the database●

How to handle the results of a query●

How to view the structure of a database using metadata●

Introduction to JDBC

SQL is a language used to create, manipulate, examine, and manage
relational databases. Because SQL is an application-specific language, a
single statement can be very expressive and can initiate high-level
actions, such as sorting and merging data. SQL was standardized in 1992
so that a program could communicate with most database systems
without having to change the SQL commands. Unfortunately, you must
connect to a database before sending SQL commands, and each database
vendor has a different interface, as well as different extensions of SQL.
Enter ODBC.

ODBC, a C-based interface to SQL-based database engines, provides a
consistent interface for communicating with a database and for accessing
database metadata (information about the database system vendor, how
the data is stored, and so on). Individual vendors provide specific drivers
or "bridges" to their particular database management system.
Consequently, thanks to ODBC and SQL, you can connect to a database
and manipulate it in a standard way. It is no surprise that, although
ODBC began as a PC standard, it has become nearly an industry
standard.

Though SQL is well suited for manipulating databases, it is unsuitable as
a general application language and programmers use it primarily as a
means of communicating with databases--another language is needed to
feed SQL statements to a database and process results for visual display
or report generation. Unfortunately, you cannot easily write a program
that will run on multiple platforms even though the database connectivity
standardization issue has been largely resolved. For example, if you
wrote a database client in C++, you would have to totally rewrite the
client for each platform; that is to say, your PC version would not run on
a Macintosh. There are two reasons for this. First, C++ as a language is
not portable for the simple reason that C++ is not completely specified,

JDBC Short Course: Java Database Programming

http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/jdbc.html (1 de 15) [12/30/1999 8:33:43 PM]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/index.shtml
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/developer/onlineTraining/index.html
http://www.magelang.com/

for example, how many bits does an int hold? Second and more
importantly, support libraries such as network access and GUI libraries
are different on each platform. Enter Java.

You can run a Java program on any Java-enabled platform without even
recompiling that program. The Java language is completely specified and,
by definition, a Java-enabled platform must support a known core of
libraries. One such library is JDBC, which you can think of as a Java
version of ODBC, and is itself a growing standard. Database vendors are
already busy creating bridges from the JDBC API to their particular
systems. JavaSoft has also provided a bridge driver that translates JDBC
to ODBC, allowing you to communicate with legacy databases that have
no idea that Java exists. Using Java in conjunction with JDBC provides a
truly portable solution to writing database applications.

The JDBC-ODBC bridge driver is just one of four types of drivers available
to support JDBC connectivity. It comes packaged with the JDK 1.1 (and
eventually with 1.1 browsers), or as a separate package for use with 1.0
systems.

A Complete Example

Running through a simple, but complete, example will help you grasp the
overall concepts of JDBC. The fundamental issues encountered when
writing any database application are:

Creating a database. You can either create the database outside
of Java, via tools supplied by the database vendor, or via SQL
statements fed to the database from a Java program.

●

Connecting to an ODBC data source. An ODBC data source is a
database that is registered with the ODBC driver. In Java you can
use either the JDBC to ODBC bridge, or JDBC and a vendor-specific
bridge to connect to the datasource.

●

Inserting information into a database. Again, you can either
enter data outside of Java, using database-specific tools, or with
SQL statements sent by a Java program.

●

Selectively retrieving information. You use SQL commands from
Java to get results and then use Java to display or manipulate that
data.

●

Creating a Database

For this example, consider the scenario of tracking coffee usage at the
MageLang University Cafe. A weekly report must be generated for
University management that includes total coffee sales and the maximum
coffee consumed by a programmer in one day. Here is the data:

Coffee Consumption at Cafe Jolt, MageLang University
"Caffeinating the World, one programmer at a time"

Programmer Day # Cups
Gilbert Mon 1

Wally Mon 2

Edgar Tue 8

Wally Tue 2

Eugene Tue 3

Josephine Wed 2

JDBC Short Course: Java Database Programming

http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/jdbc.html (2 de 15) [12/30/1999 8:33:43 PM]

http://splash.javasoft.com/jdbc/jdbc.drivers.html
http://splash.javasoft.com/jdbc/#The JDBC Release 1.2

Eugene Thu 3

Gilbert Thu 1

Clarence Fri 9

Edgar Fri 3

Josephine Fri 4

To create this database, you can feed SQL statements to an ODBC data
source via the JDBC-ODBC bridge. First, you will have to create an ODBC
data source. You have many choices—you could, for example, connect an
Oracle or Sybase database. For simplicity and to cover the largest single
audience, create a text file as an ODBC datasource to use for this
example. Call this ODBC data source CafeJolt.

To enter the data into the CafeJolt database, create a Java application
that follows these steps:

Load the JDBC-ODBC bridge. You must load a driver that tells the
JDBC classes how to talk to a data source. In this case, you will
need the class JdbcOdbcDriver:

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

This can also be specified from the command line via the jdbc.drivers
system property:

java -Djdbc.drivers=sun.jdbc.odbc.JdbcOdbcDriver AProgram

1.

Connect to a data source. A URL is used to connect to a particular
JDBC data source. See Section 3.1.2 URLs in General USE and 3.1.3
JDBC URLs in the JDBC Guide for more information. Given that you
have loaded the JDBC-ODBC bridge driver, URLs should be in the
following form jdbc:odbc:data-source-name. Using the DriverManager
class, you request a connection to a URL and the DriverManager
selects the appropriate driver; here, only the driver JdbcOdbcDriver is
loaded.

Connection con = DriverManager.getConnection(
 URL,
 username,
 password);

Where the username and password are empty strings, "", in this
case because text files acting as ODBC data sources cannot have
such attributes.

2.

Send SQL statements to create the table. Ask the connection
object for a Statement object:

Statement stmt = con.createStatement();

Then, execute the following SQL statement to create a table called
JoltData.

create table JoltData (
 programmer varchar (32),
 day char (3),
 cups integer,
 variety varchar (20));

3.

JDBC Short Course: Java Database Programming

http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/jdbc.html (3 de 15) [12/30/1999 8:33:43 PM]

http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/exercises/Setup/index.html
http://www.javasoft.com/products/jdk/1.1/docs/guide/jdbc/getstart/connection.doc.html#1000962
http://www.javasoft.com/products/jdk/1.1/docs/guide/jdbc/getstart/connection.doc.html#1000986

The Java code to do this is:

stmt.execute("create table JoltData ("+
 "programmer varchar (32),"+
 "day char (3),"+
 "cups integer);"
);

After you have created the table, you can the insert the appropriate
values such as:

insert into JoltData values ('Gilbert', 'Mon', 1);
insert into JoltData values ('Wally', 'Mon', 2);
insert into JoltData values ('Edgar', 'Tue', 8);
...

Here is the Java source for a complete application to create table JoltData
and insert the required rows.

Review what you have done so far. After creating a data source visible to
ODBC, you connected to that source via the JDBC-ODBC bridge and sent
a series of SQL statements to create a table called JoltData filled with rows
of data. You can examine the contents of your "database" file by looking
at file JoltData with a text editor. It will look like this:

"programmer","day","cups"
"Gilbert","Mon",1
"Wally","Mon",2
"Edgar","Tue",8
"Wally","Tue",2
"Eugene","Tue",3
"Josephine","Wed",2
"Eugene","Thu",3
"Gilbert","Thu",1
"Clarence","Fri",9
"Edgar","Fri",3
"Josephine","Fri",4

The ODBC-text driver will also create a file called schema.ini containing
metadata:

[JoltData]
ColNameHeader=True
CharacterSet=OEM
Format=CSVDelimited
Col1=programmer Char Width 32
Col2=day Char Width 3
Col3=cups Integer

exercises

Getting Started.1.

Using JDBCTest.2.

Connecting to an ODBC datasource without JDBCTest.3.

Getting Information from a Database

To retrieve information from a database, use SQL select statements via

JDBC Short Course: Java Database Programming

http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/jdbc.html (4 de 15) [12/30/1999 8:33:43 PM]

http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/code/CreateJoltData.java
http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/exercises/Setup/index.html
http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/exercises/JDBCTestConnect/index.html
http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/exercises/ConnectNoJDBC/index.html

the Java Statement.executeQuery method, which returns results as rows of
data in a ResultSet object. The results are examined row-by-row using the
ResultSet.next and ResultSet.getXXX methods.

Consider how you would obtain the maximum number of cups of coffee
consumed by a programmer in one day. In terms of SQL, one way to get
the maximum value is to sort the table by the cups column in descending
order. The programmer column is selected, so the name attached to the
most coffee consumption can also be printed. Use the SQL statement:

SELECT programmer, cups FROM JoltData ORDER BY cups DESC;

From Java, execute the statement with:

ResultSet result = stmt.executeQuery(
 "SELECT programmer,
 cups FROM JoltData ORDER BY cups DESC;");

The cups column of the first row of the result set will contain the largest
number of cups:

Clarence 9

Edgar 8

Josephine 4

Eugene 3

Eugene 3

Edgar 3

Wally 2

Wally 2

Josephine 2

Gilbert 1

Gilbert 1

Examine the ResultSet by:
"Moving" to the first row of data. Perform:

result.next();

1.

Extracting data from the columns of that row. Perform:

String name = result.getString("programmer");
int cups = result.getInt("cups");

2.

The information can be printed easily via:

System.out.println("Programmer "+name+
 " consumed the most coffee: "+cups+" cups.");

resulting in the following output:

Programmer Clarence consumed the most coffee: 9 cups.

Computing the total sales for the week is a matter of adding up the cups
column. Use an SQL select statement to retrieve the cups column:

result = stmt.executeQuery(

JDBC Short Course: Java Database Programming

http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/jdbc.html (5 de 15) [12/30/1999 8:33:43 PM]

 "SELECT cups FROM JoltData;");

Peruse the results by calling method next until it returns false, indicating
that there are no more rows of data:

// for each row of data
cups = 0;
while(result.next()) {
 cups += result.getInt("cups");
}

Print the total number of cups sold:

System.out.println("Total sales of
 "+cups+" cups of coffee.");

The output should be:

Total sales of 38 cups of coffee.

Here is the Java source for a complete application to examine the JoltData
table and generate the report.

exercise

Selecting.1.

Obtaining Result MetaData Type Information

You will occasionally need to obtain type information about the result of a
query. For example, the SQL statement:

SELECT * from JoltData

will return a ResultSet with the same number of columns (and rows) as the
table, JoltData. If you do not know how many columns there are
beforehand, you must use metadata via the ResultSetMetaData class to find
out. Continuing the Cafe Jolt scenario, determine the number and type of
columns returned by the same SQL query

SELECT programmer, cups FROM JoltData ORDER BY cups DESC;

First, perform the usual execute method call:

ResultSet result = stmt.executeQuery(
 "SELECT programmer,
 cups FROM JoltData ORDER BY cups DESC;");

Then obtain the column and type metadata from the ResultSet:

ResultSetMetaData meta = result.getMetaData();

You can query the ResultSetMetaData easily to determine how many
columns there are:

int columns = meta.getColumnCount();

and then walk the list of columns printing out their name and type:

int numbers = 0;

JDBC Short Course: Java Database Programming

http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/jdbc.html (6 de 15) [12/30/1999 8:33:43 PM]

http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/code/JoltReport.java
http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/exercises/Selecting/index.html

for (int i=1;i<=columns;i++) {
 System.out.println (meta.getColumnLabel(i) + "\t"
 + meta.getColumnTypeName(i));
 if (meta.isSigned(i)) { // is it a signed number?
 numbers++;
 }
}
System.out.println ("Columns: " +
 columns + " Numeric: " + numbers);

Here is the Java source for a complete application to print out some
metadata associated with the results of the query.

exercises

Connecting to an ODBC datasource without JDBCTest.1.

Using MetaData.2.

Connecting a Java program to a database

Currently, there are two choices for connecting your Java program to a
data source. First, you can obtain a JDBC driver from your database
vendor that acts as a bridge from JDBC to their database connection
interface. Second, JavaSoft provides a JDBC-ODBC bridge called class
JdbcOdbcDriver and, hence, you can connect to any ODBC data source.

Once you have established a JDBC database link, open a connection to
that data source through a Connection object obtained via
DriverManager.getConnection, which selects the appropriate driver for talking
with that source. All ODBC data sources are identified via a URL in the
form:

jdbc:odbc:data-source-name

The getConnection method returns a Connection to the specified source using
the JDBC-ODBC driver. For example, to connect to an ODBC source called
mage with a user name of parrt and a password of mojava, you would use:

// load the JDBC-ODBC bridge by referencing it
try {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
} catch (Exception e) {
 System.out.println(
 "Failed to load JDBC/ODBC driver.");
 return;
}
// get a connection
try {
 con = DriverManager.getConnection(
 "jdbc:odbc:mage",
 "parrt",
 "mojava");
} catch (Exception e) {
 System.err.println("problems connecting to "+URL);
}

Given a connection, you can create statements, execute queries, and so
on.

JDBC Short Course: Java Database Programming

http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/jdbc.html (7 de 15) [12/30/1999 8:33:43 PM]

http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/code/JoltMetaData.java
http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/exercises/ConnectNoJDBC/index.html
http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/exercises/MetaData-ing/index.html

See the Getting Started exercise for specific information about setting up
ODBC data sources on a PC.

Exercises

Getting Started.1.

Using JDBCTest.2.

Connecting to an ODBC datasource without JDBCTest.3.

Talking to a Database

Given a connection to a database, you can send SQL statements to
manipulate that database. Using the Connection.createStatement method,
obtain a Statement object and then execute method executeQuery or
executeUpdate. JDBC does not put any restrictions on the SQL you send via
the execute methods. but you must ensure that the data source you are
connecting to supports whatever SQL you are using. To be
JDBC-compliant, however, the data source must support at least SQL-2
Entry Level capabilities.

Database Updates

Assuming the variable con contains a valid Connection object obtained from
the method DriverManager.getConnection, simple SQL update statements
(SQL INSERT, UPDATE or DELETE) can be sent to your database by
creating a Statement and then calling method executeUpdate. For example,
to create a table called Data with one row of data, use the following:

Statement stmt = con.createStatement();
// create table with name and height columns
stmt.executeUpdate(
 "create table Data (
 name varchar (32), height integer);");
stmt.executeUpdate(
 "insert into Data values ('John', 68);");
con.close();
// close connection, committing transaction.

The method executeUpdate returns the number of rows affected with 0 for
SQL statements that return nothing.

Database Queries

In order to query a database (via the SQL SELECT statement), use the
method executeQuery, which returns a ResultSet object. The ResultSet object
returned is never null and contains the rows of data selected by the SQL
statement. For example, the following code fragment selects two columns
of data from our table called Data in ascending height order:

ResultSet result = stmt.executeQuery(
 "SELECT name, height
 FROM Data ORDER BY height ASC;");

The rows of resulting data are accessed in order, but the elements in the
various columns can be accessed in any order. However, for maximum
portability among databases, JavaSoft recommends that the columns be
accessed in order from left-to-right, and that each row be read only once.
There is a "row cursor" in the result that points at the current row. The

JDBC Short Course: Java Database Programming

http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/jdbc.html (8 de 15) [12/30/1999 8:33:43 PM]

http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/exercises/Setup/index.html
http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/exercises/Setup/index.html
http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/exercises/JDBCTestConnect/index.html
http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/exercises/ConnectNoJDBC/index.html

method ResultSet.next moves the cursor from row to row. Before reading
the first row, call method next to initialize the cursor to the first row. The
following code fragment shows how to read the first two rows of data and
print them out.

String name;
int height;
if (result.next()) { // move to first row
 name = result.getString("name");
 height = result.getInt("height");
 System.out.println(name+":"+height);
}
if (result.next()) { // get second row
 name = result.getString("name");
 height = result.getInt("height");
 System.out.println(name+":"+height);
}

The method next returns false when another row is not available.

Note that column names are not case-sensitive, and if more than one
column has the same name, the first one is accessed. Where possible,
the column index should be used. You can ask the ResultSet for the index
of a particular column if you do not know it beforehand.

int nameCol = result.findColumn ("name");
int heightCol = result.findColumn ("height");

Information about the properties of a ResultSet column is provided by the
class ResultSetMetaData and returned by the ResultSet.getMetaData method.
See the section on MetaData for details.

exercises

Selecting.1.

Using MetaData.2.

Prepared Statements

When performing the same operation multiple times, use a
PreparedStatement for runtime efficiency, which is precompiled by the SQL
engine (assuming your data source supports this feature). Prepared
statements are also useful when you have lots of arguments to specify
for a particular SQL command.

PreparedStatement is an extension of Statement and, consequently, behaves
like a Statement except that you create them with the method
Connection.prepareStatement, instead of the method Connection.createStatement:

PreparedStatement prep = con.prepareStatement(
 "INSERT into Data values (?, ?)");

The IN arguments, indicated by '?', can be filled by in by setXXX methods.
Ensure that the parameter (indicated by an index number starting from
1) you are setting matches the type of the value you are passing. For
example, for a table called Data with two columns, name of type varchar
and height of type integer, the parameters to prep can be set via:

prep.setString(1, "Jim");

JDBC Short Course: Java Database Programming

http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/jdbc.html (9 de 15) [12/30/1999 8:33:43 PM]

http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/exercises/Selecting/index.html
http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/exercises/MetaData-ing/index.html

prep.setInt(2, 70);

Finally, execute the the prepared statement with the parameters set
most recently via the executeUpdate method:

if (prep.executeUpdate () != 1) {
 throw new Exception ("Bad Update");
}

exercise

Command-Line Guestbook.1.

Metadata

You can access information about the database as a whole, or about a
particular query ResultSet. This section describes how DatabaseMetaData and
ResultSetMetaData objects are obtained and queried.

Information about a database

When you need to know about the capabilities, or the vendor, of a
database, ask the associated Connection object for its metadata:

Connection con = DriverManager.getConnection(
 "jdbc:odbc:mydatasource",
 "user", "password");
DatabaseMetaData md = con.getMetaData();

There are many questions you can ask. For example, the following code
fragment asks the database for its product name and how many
simultaneous connections can be made to it.

if (md==null) {
 System.out.println("No Database Meta Data");
} else {
 System.out.println("Database Product Name : " +
 md.getDatabaseProductName());
 System.out.println("Allowable active connections: "+
 md.getMaxConnections());
}

See the DatabaseMetaData API for more information.

Exercises

Connecting to an ODBC datasource without JDBCTest.1.

Connecting with Properties.2.

SQL Warning/Exception Handling.3.

Information about a table within a database

To find out the number and types of the columns in a table accessed via
a ResultSet, obtain a ResultSetMetaData object.

ResultSet result = ...;
ResultSetMetaData meta = result.getMetaData();
int numbers = 0;

JDBC Short Course: Java Database Programming

http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/jdbc.html (10 de 15) [12/30/1999 8:33:43 PM]

http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/exercises/ComGuest/index.html
http://www.javasoft.com/products/JDK/1.1/api/java.sql.DatabaseMetaData.html
http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/exercises/ConnectNoJDBC/index.html
http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/exercises/Connecting/index.html
http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/exercises/Exceptions/index.html

int columns = meta.getColumnCount();
System.out.println ("Columns: " + columns);

exercise

Using MetaData.1.

Transactions

A transaction is a set of statements that have been executed and
committed or rolled back. To commit a transaction, call the method
commit on the appropriate connection; use the rollback to remove all
changes since the last commit. By default, all new connections are in
auto-commit mode, which means that each "execute" is a complete
transaction. Call Connection.setAutoCommit to change the default. Any locks
held by a transaction are released upon the method commit.

Connection con = DriverManager.getConnection(...);
con.setAutoCommit(false);
Statement s = con.createStatement();
s.executeUpdate("SQL statement 1");
s.executeUpdate("SQL statement 2");
s.executeUpdate("SQL statement 3");
con.commit();
//transaction (3 statements) committed here

All JDBC-compliant drivers support transactions. Check the
DatabaseMetaData associated with the appropriate connection to determine
the level of transaction-support a database provides.

Stored Procedures

A stored procedure is a block of SQL code stored in the database and
executed on the server. The CallableStatement interface allows you to
interact with them. Working with CallableStatement objects is very similar to
working with PreparedStatements. The procedures have parameters and can
return either ResultSets or an update count. Their parameters can be
either input or output parameters. Input parameters are set via the
setXXX methods. Output parameters need to be registered via the
CallableStatement.registerOutParamter method. Stored procedures need to be
supported by the database in order to use them. You can ask the
DatabaseMetaData if it supports it via the method supportsStoredProcedures.

To demonstrate this interaction, return to Cafe Jolt. And, instead of a
weekly total, the manager asks for the daily total of a particular day of
the week. You can create a stored procedure to help, but this is usually
created by the database developer, not the applications programmer.
Once the procedure is created, the user does not need to know how it
works internally, just how to call it.

Like any other SQL statement, you need a Connection and a Statement to
create the procedure:

Statement stmt = con.createStatement();

Then execute the SQL statement:

CREATE PROCEDURE getDailyTotal
 @day char(3), @dayTotal int output

JDBC Short Course: Java Database Programming

http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/jdbc.html (11 de 15) [12/30/1999 8:33:43 PM]

http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/exercises/MetaData-ing/index.html
http://www.javasoft.com/products/JDK/1.1/api/java.sql.CallableStatement.html

 AS
 BEGIN
 SELECT @dayTotal = sum (cups)
 FROM JoltData
 WHERE day = @day
 END

The Java code is:

stmt.execute ("CREATE PROCEDURE getDailyTotal " +
 "@day char(3), @dayTotal int output " +
 "AS " +
 "BEGIN " +
 " SELECT @dayTotal = sum (cups) " +
 " FROM JoltData " +
 " WHERE day = @day " +
 "END"
);

Once created, you call it through a CallableStatement:

CallableStatement cstmt = con.prepareCall (
 "{call getDailyTotal (?, ?)}");
cstmt.setString (1, "Mon");
cstmt.registerOutParameter (2, java.sql.Types.INTEGER);
cstmt.executeUpdate();
System.out.println ("Total is " + cstmt.getInt (2));

The exact syntax to create a stored procedure may differ between
database vendors. Also, if there are no output parameters for the stored
procedure, you can it by using a PreparedStatement. And, if there happens
to be no input or output parameters, you can use a Statement.

Java-SQL Type Equivalence

For each getXXX method, the JDBC driver must convert between the
database data type and a Java equivalent--the driver will not let you
perform an invalid data conversion (for example, String to integer), but
will let you get everything as a String. The common conversions are as
follows:

Common Java - SQL Type Equivalence

Java method SQL Type
getInt INTEGER
getLong BIG INT
getFloat REAL
getDouble FLOAT
getBignum DECIMAL
getBoolean BIT
getString VARCHAR
getString CHAR
getDate DATE
getTime TIME

getTimestamp TIME STAMP

JDBC Short Course: Java Database Programming

http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/jdbc.html (12 de 15) [12/30/1999 8:33:43 PM]

getObject any type

For example, given a ResultSet containing rows of names and dates, you
can use getString and getDate to extract the information:

ResultSet result = stmt.executeQuery(
 "SELECT name, whatDay FROM ...");
result.next();
String name1 = result.getString("name");
Date whatDay1 = result.getDate("whatDay");

JDBC Exception Types

JDBC provides three types of exceptions:
SQLException●

SQLWarning●

DataTruncation●

SQLExceptions

The SQLException is the basis of all JDBC exceptions. It consists of three
pieces of information, a String message, like all children of Exception,
another String containing the XOPEN SQL state (as described by
specification), and a driver/source specific int for an additional error code.

In addition, multiple SQLException instances can be chained together.

SQLWarnings

The SQLWarning class is similar to SQLException, however it is considered a
noncritical error and is not thrown. It is up to the programmer to poll for
SQLWarning messages through the getWarnings methods of Connection,
ResultSet, and Statement. If you do not poll for them, you will never receive
them. Also, the next time something is done with a Connection, ResultSet, or
Statement, the previous warnings are cleared out.

Data Truncation

The DataTruncation class is a special type of SQLWarning. It is reported with
other SQLWarning instances and indicates when information is lost during a
read or write operation. To detect a truncation, it is necessary to perform
an instanceof DataTruncation check on each SQLWarning from a getWarnings
chain.

Exercise

SQL Warning/Exception Handling.1.

SQL Conformance

Although SQL is a standard, not all JDBC drivers support the full ANSI92
grammar. Luckily, you can determine the level of conformance by asking.
The DatabaseMetaData object contains three methods that report the
grammar level supported by a driver.

supportsANSI92EntryLevelSQL
All JDBC-compliant drivers must return true.

●

supportsANSI92IntermediateSQL●

JDBC Short Course: Java Database Programming

http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/jdbc.html (13 de 15) [12/30/1999 8:33:43 PM]

http://www.javasoft.com/products/JDK/1.1/api/java.sql.SQLException.html
http://www.javasoft.com/products/JDK/1.1/api/java.sql.SQLWarning.html
http://www.javasoft.com/products/JDK/1.1/api/java.sql.DataTruncation.html
http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/exercises/Exceptions/index.html
http://www.javasoft.com/products/JDK/1.1/api/java.sql.DatabaseMetaData.html

supportsANSI92FullSQL●

In addition to multiple ANSI92 support levels for JDBC drivers, there are
multiple SQL support levels for ODBC sources. You can determine the
level of these too by asking. The DatabaseMetaData object contains three
methods that report the grammar level supported by a database.

supportsMinimumSQLGrammar●

supportsCoreSQLGrammar●

supportsExtendedSQLGrammar●

These levels determine which specific SQL operations, or which options of
those operations, you can perform.

Also, when using the JDBC-ODBC bridge, the ODBC driver can further
restrict your capabilities; for instance, you cannot use prepared
statements with the Text File ODBC Driver.

Based upon the levels available, it may be beneficial to provide
alternative execution paths for certain operations. For instance, when
populating a table with values from another table, the core SQL grammar
permits a SELECT clause as part of the INSERT clause. This would be much
quicker than performing a select loop with an insert for each record,
which is necessary if you are relying on the minimum SQL grammar.

Exercise

SQL Warning/Exception Handling.1.

Enterprise APIs

JDBC is just one part of what JavaSoft calls the Java Enterprise APIs. The
remaining three parts are Remote Method Invocation (RMI) for
Java-to-Java communications, via RPC-like calls, Java IDL for
Java-to-CORBA connectivity through OMG's Interface Definition Language
specification, and Java Naming and Directory Interface (JNDI) for
directory services support. Closely related is Java Object Serialization,
which permits programs to send objects across streams for persistence.

RMI●

Serialization●

Java IDL●

JNDI●

Resources

Some web-based resources:
JDBC Guide●

JDBC Home●

and books:
Java Database Programming with JDBC by Prantik Patel and Karl
Moss (Coriolis Group ISBN 1-57610-056-1)

●

Database Programming with JDBC and Java by George Reese
(O'Reilly ISBN 1-56592-270-0)

●

Copyright © 1996 MageLang Institute. All Rights Reserved.

[This page was updated: 13-Dec-99]

JDBC Short Course: Java Database Programming

http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/jdbc.html (14 de 15) [12/30/1999 8:33:43 PM]

http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/exercises/Exceptions/index.html
http://www.javasoft.com/products/jdk/1.1/docs/guide/rmi/index.html
http://chatsubo.javasoft.com/current/serial/index.html
http://java.sun.com/products/jdk/idl/docs/JavaIDLspecification.html
http://www.javasoft.com/products/jndi/index.html
http://www.javasoft.com/products/jdk/1.1/docs/guide/jdbc/getstart/introTOC.doc.html
http://splash.javasoft.com/jdbc/
http://www.magelang.com/

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World

FAQ | Feedback | Map | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-99 Sun Microsystems, Inc.
All Rights Reserved. Legal Terms. Privacy Policy.

JDBC Short Course: Java Database Programming

http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/jdbc.html (15 de 15) [12/30/1999 8:33:43 PM]

http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/index.shtml
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://java.sun.com/applets/
http://java.sun.com/docs/books/tutorial/
http://java.sun.com/jobs/
http://java.sun.com/nav/business/
http://java.sun.com/javastore/
http://java.sun.com/casestudies/
http://developer.java.sun.com/siteinfo/faq.html
http://developer.java.sun.com/feedback/index.html
http://www.dynamicdiagrams.net/mapa/cgi-bin/help.tcl?db=javasoft&dest=http://java.sun.com/
http://java.sun.com/a-z/index.html
http://www.att.com/business_traveler/attdirecttollfree/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/SMICopyright.html
http://www.sun.com/privacy/

Training Index

JDBC Short Course
SQL Primer

by Magelang Institute

[Table of Contents]

This section is meant to serve as a SQL refresher to help you along
with the exercises. It is not meant to be a tell-all resource for SQL.
It takes you through the basic commands necessary for CRUD
operations.

C - Create●

R - Read●

U - Update●

D - Delete●

Creating Tables

Use the CREATE TABLE statement when you want to create a table.
Because creating tables is such an important operation, it only
requires minimum conformance. However, some datasources, such
as Text ODBC sources, only support the simplest column elements,
with little or no constraint support.

CREATE TABLE <table name>
 (<column element> [, <column element>]...)

A column element is of the form:

<column name> <data type>
 [DEFAULT <expression>]
 [<column constraint> [, <column constraint>]...]

A column constraint is of the form:

NOT NULL |
 UNIQUE |
 PRIMARY KEY

Example:

CREATE TABLE java (
 version_name varchar (30),
 major_version int,
 minor_version int,
 release_date date);

JDBC Short Course: SQL Primer

http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/sql.html (1 de 3) [12/30/1999 8:34:10 PM]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/index.shtml
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/developer/onlineTraining/index.html
http://www.magelang.com/

Use the DROP TABLE statement when you want to drop a table. Like
CREATE TABLE, it only requires minimum conformance.

DROP TABLE <table name>

Accessing Columns

Use the SELECT statement when you want to retrieve a set of
columns. The set may be from one or more tables, and you can
specify the criteria to determine which rows to retrieve. Most of the
available clauses are available with minimum conformance.
Additional capabilities are available with the core grammar.

SELECT [ALL | DISTINCT] <select list>
 FROM <table reference list>
 WHERE <search condition list>
 [ORDER BY <column designator> [ASC | DESC]
 [, <column designator> [ASC | DESC]]...]

The select list usually contains a comma-separated list of columns or
an '*' to select all of them.

SELECT version_name, release_date from java;

If your driver supports core compliance, you can also use the GROUP
BY, HAVING, and UNION clauses.

Storing Information

Use the INSERT statement when you want to insert rows. It too can
provide different capabilities depending upon the conformance level
supported.

INSERT INTO <table name>
 [(<column name> [, <column name>]...)]
 VALUES (<expression> [, <expression>]...)

For example:

INSERT INTO java VALUES
 ('2.0Beta', 2, 0, 'Aug-1-1997');

If the core grammar is supported, you can use a SELECT clause to
load multiple rows at a time.

Use the UPDATE statement when you want to update rows. It only
requires the minimum grammar.

UPDATE <table name>
 SET <column name = {<expression> | NULL}
 [, <column name = {<expression> | NULL}]...
 WHERE <search condition>

Use the DELETE statement when you want to remove rows. It only
requires the minimum grammar.

JDBC Short Course: SQL Primer

http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/sql.html (2 de 3) [12/30/1999 8:34:10 PM]

DELETE FROM <table name>
 WHERE <search condition>

Resources

Some web-based resources:
Access FAQ●

dbANYWHERE FAQ●

Oracle FAQ●

Sybase FAQ●

Tina London's Guide to SQL●

and books:
Teach Yourself SQL in 14 Days by Bryan Morgan and Jeff
Perkins (Sams Publishing ISBN 0-67230-855-X)

●

Understanding the New SQL: A Complete Guide by Jim Melton
and Alan Simon (Morgan Kaufman ISBN 1-55860-245-3)

●

LAN Times Guide to SQL by James R. Groff & Paul N. Weinberg
(McGraw-Hill ISBN 0-07882-026-X)

●

Copyright © 1996 MageLang Institute. All Rights Reserved.

[This page was updated: 13-Dec-99]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World

FAQ | Feedback | Map | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-99 Sun Microsystems, Inc.
All Rights Reserved. Legal Terms. Privacy Policy.

JDBC Short Course: SQL Primer

http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/jdbc/sql.html (3 de 3) [12/30/1999 8:34:10 PM]

http://www.microsoft.com/MSAccessSupport/content/faq/
http://www.symantec.com/dba/dbawfaq.html
http://www.onwe.co.za/frank/faq.htm
http://reality.sgi.com/pablo/Sybase_FAQ/
ftp://www.bf.rmit.edu.au/pub/Oracle/notes/TinaLondon.txt
http://www.magelang.com/
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/index.shtml
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://java.sun.com/applets/
http://java.sun.com/docs/books/tutorial/
http://java.sun.com/jobs/
http://java.sun.com/nav/business/
http://java.sun.com/javastore/
http://java.sun.com/casestudies/
http://developer.java.sun.com/siteinfo/faq.html
http://developer.java.sun.com/feedback/index.html
http://www.dynamicdiagrams.net/mapa/cgi-bin/help.tcl?db=javasoft&dest=http://java.sun.com/
http://java.sun.com/a-z/index.html
http://www.att.com/business_traveler/attdirecttollfree/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/SMICopyright.html
http://www.sun.com/privacy/

	sun.com
	JDBC Short Course
	JDBC Short Course: Table Of Contents
	JDBC Short Course: Java Database Programming
	JDBC Short Course: SQL Primer

	CGLEHJPEFGPFOIICDIEMGPLGENJPLJLH:
	form1:
	x:
	f1:

	f2:

	FFPNKHMLEHBJELKKPBLJONEABCDHJPMN:
	form1:
	x:
	f1:

	f2:

	EHMPFEOONBADGECIEPNFENJEHDJLCEPC:
	form1:
	x:
	f1:

	f2:

	LKPDGIHMFCMCHLFDKELGBMONAEKCDJJH:
	form1:
	x:
	f1:

	f2:

