Getting Started With POSI X Threads

Tom Wagner
Don Towsley
Department of Computer Science
University of Massachusetts at Amherst

July 19, 1995

1. Introduction: What isathread and what isit good for ?

Threads are often calleiyhtweight processes and while this term is somewhat of an over simplification, it

is agoodstartingpoint. Threads are cousins to UNIX processes though they are not processes themselves.
To understand the distinctionwe mustexaminetherelationbetweenJNIX processeandMachtasksand
threads.In UNIX, a processcontainsboth anexecutingprogramand a bundle of resources such as the file
descriptortableandaddresspace.In Mach,ataskcontainsonly a bundleof resourcesthreads handle all
exeadtionadivities. A Mad task may have any number of threads associated with it and all threads must be
associated with sometask. All threads associated with a given task share the task’s resources. Thus a thread
isesentidly aprogram courter, astadk, and aset of registers -- all the other data structures belong to the task.

A UNIX process in Mach is modeled as a task with a single thread.

Sincethreads arevery smallcomparedvith processeghreadcreationis relatively cheapin termsof CPU

costs. As processesequiretheir own resourcebundle,and threadsshareresourcesthreadsare likewise
memory frugal. Mad threads give programmers the ability to write concurrent applications that run on both
uniprocesor and multi procesor machines transparently, taking advantage of the additional processors when
they exist. Addtiondly, threads can increase performancein auniprocesor environment when the application
performs operations that are likely to block or cause delays, such file or socket 1/O.

Inthefollowing sedions we discuss portions of the POSIX threads standard and its specific implementation
inthe DEC OSH1 OS, V3.0. POSIX threads are callpthreads and are similar to the non-POSt¥reads.

2. HelloWorld

Now that theformalitiesareoverwith, letsjumprightin. Thept hr ead_cr eat e function createsa new
threal. It takes four arguments, a thread variable or holder for the thread, a thread attribute, the function for
the thread to call when it starts execution, and an argument to the function. For example:

pt hr ead_t a_t hread;
pthread_attr _t a thread attribute;
voi d t hread_function(void *argument);

char *some_ar gunent ;

pthread_create(& thread, a_thread_attribute, (void *)& hread_function,
(void *) &sone_argunent);

A thred attribute currently only specifies the minimum stack size to be used. In the future thread attributes
may be moreinteresting,but for now, mostapplicationscanget by simply usingthe defaultby passing

pt hread_at tr _def aul t inthethread attribute parameter position. Unlike processes created by the UNIX

f or k function thatbeginexecutionat the samepoint astheir parentsthreadsbegintheir executionat the
function specifiedin pt hr ead_cr eat e. Thereasonfor this is clear;if threadsdid not startexecution
elsawhere we would have multiple threads executing the same instruetitmthe same resources. Recall

that processes each have their own resource bundle and threads share theirs.

Now that we know how to create threads we are ready for our first application. Lets design a multi-threaded
applicaionthat prints the beloved "Hello World" messsgeonst dout . First we need two thread variables and

we nead afunction for the new threads to call when they start execution. We also need some way to specify
that each threadshouldprint a different message.One approachis to partition the wordsinto separate
characterstringsandto give eachthreada different string asits "startup”parameter. Take a look at the
following code:

void print_message_function(void *ptr);
mai n()
pthread_t threadl, thread?2;

char *messagel = "Hell o";
char *nmessage? "Worl d";

pt hread_create(& hreadl, pthread_attr_default,

(voi d*) &print _nmessage_function, (void*) nessagel);
pt hread_create(&t hread2, pthread_attr_default,

(voi d*) &print _nmessage_function, (void*) nessage2?);

exit(0);
}
voi d print_nessage_function(void *ptr)
{
char *nmessage;
message = (char *) ptr;
printf("% ", nmessage);
}

Note the function prototypefor pri nt _nessage_f uncti on and the casts preceding the message arguments
inthept hr ead_cr eat e cdl. The program credesthefirst thread by callingt hr ead_cr eat e and passing
"Hell 0" as its startupargumentthe secondhreadis createdwith "World" asits argument.Whenthefirst
threadbeginsexecutionit startsatthepri nt _nmessage_f uncti on with its "Hello" argument. It prints
"Hell0" and comesto the end of thefunction. A thread terminates when it leaves its initial function therefore
the first threadterminatesafter printing "Hello." Whenthe secondthreadexecutest prints "World" and
likewise terminates. While this program appears reasonable, there are two major flaws.

First andforemost, threads execute concurrently. Thus there is no guarantee that the first thread reaches the
printf functionprior tothe secondthread. Therefore we may see "World Hello" rather than "Hello World."

Thereisamore subtle point. Notethecdl toexi t made by the parent thread in the main block. If the parent
thread executeghe exi t call prior to either of the child threadsexecutingpr i nt f, no outputwill be
generatectall. This is because thexi t function exits the process (releases the task) thus terminating all
threads. Any thread, parent or child, whocadlsexi t canterminateal the other threads along with the process.
Threads wishing to terminate explicitly must usegher ead_exi t function.

Thusour little hello world programhastwo raceconditions. Therace for theexi t call and the race to see
which child reaches ther i nt f call first. Lets fix the race conditions with a little crazy glue and duct tape.
Sincewe want ead child thread to finish before the parent thread, letsinsert a delay in the parent that will give
the children time to reagdri nt f . To ensure that the first child thread reaghds:t f before the second,
lets insert a delay prior to tipe hr ead_cr eat e call that creates the second thread. The resulting code is:

void print_message_function(void *ptr);
mai n()
pthread_t threadl, thread2

char *messagel = "Hell o"
char *nmessage? "Wor | d"

pt hread_create(& hreadl, pthread_attr_default,

(void *) &print_nessage_function, (void *) nessagel);
sl eep(10);
pt hread_create(&t hread2, pthread_attr_default,

(void *) &print_nessage_function, (void *) nessage?);

sl eep(10);
} exit(0);

voi d print_nessage_function(void *ptr)

char *nmessage;

nessage = (char *) ptr;

printf("%", message);
| pt hread_exit(0);

Does this code mee our objective? Not really. It is neversafeto rely on timing delaysto perform
synchronization.Because threads are so tightly coupled its tempting to approach them with a less rigorous
attitude concerning synchronizaion, but that temptation must be avoided. The race condition here is exactly
the same situationwe have with a distributed application and a shared resource. The resource is the standard
output andthe distributed computing elements are the three threads. Thread one npustrugést dout

prior to thread two and both must do their business before the parent threadicalls

Beyond our attempt to synchronize using delays, we have made yet another blundgreephdunction,

like theexi t functionrelatesto processesWhenathreadcalls sl eep the entireprocesssleepsij.e., all

threads sleep while the process sleeps. Thus we have exactly the same situation as we had without the calls
to sl eep butthe programtakestwenty secondsonger to run. The proper function to use when delaying a
thread ispt hr ead_del ay_np (np stands fonot process). For example, to delay a thread for two seconds:

! While all threads are equal, we shall often refer to the single thread that begins execution with the application the
parent thread to distinguish it from later spawned threads, which we will refer to as child threads or children.

3

struct tinmespec del ay;

del ay.tv_sec = 2;
delay.tv_nsec = 0;

pt hr ead_del ay_np(&del ay);

Functions covered in this section: pthread_create(), pthread_exit(),
pt hread_del ay_np().

3. Thread Synchronization

POSIX provides two thread synchronization primitives, the mutex and the condition variable. Mutexes are
simple lock primitivesthatcanbe usedto controlaccesdo a sharedesource.Notethatwith threadsthe

entire addressspaces sharedso everythingcanbe considereda sharedesource.However,in mostcases

threads work individually with (conceptually) private local variables, those created within the function called

by pt hr ead_cr eat e and successive functions, and combine their efforts through global variables. Access
to the commonly written items must be controlled.

Lets crede arealersiwriters applicaionwhere a single reader and a single writer communicate using a shared
buffer and access is controlled using a mutex.

voi d reader_function(void);
void witer_function(void);

char buffer;
int buffer_has_ item= 0;
pt hread_nmut ex_t mnut ex;
struct tinmespec del ay;
mai n()

pt hread_t reader;

delay.tv_sec = 2;
delay.tv_nsec = 0;

pt hread_mutex_init(&mutex, pthread_rmutexattr_default);
pt hread_create(& eader, pthread attr_default, (void*)&reader_function,

NULL) ;
writer function();
}
void witer_function(void)
{
whil e(1)
{
pt hr ead_mut ex_| ock(&rutex);
if (buffer_has_item==0)
buf fer = make_new_iten();
buf fer _has_item = 1;
pt hr ead_nut ex_unl ock(&mtex);
pt hr ead_del ay_np(&del ay);
}
}
voi d reader_function(void)
{

whi | e(1)
{

pt hr ead_mut ex_| ock(&rutex);
if (buffer_has_item == 1)

consunme_item(buffer);
buffer has item = 0;

pt hr ead_nut ex_unl ock(&mutex);
pt hr ead_del ay_np(&del ay);

}

Inthissimple program we assume that the buffer can only hold one item so it is always in one of two states,
ether it hasanitem or it doesn't. The writer first locks the mutex, blocking until it is unlocked if it is already
locked, then chedksto seeif the buffer isempty. If the buffer is empty, it creates a new item and sets the flag,
buf fer _has_it em sothat the reader will know the buffer now has an item. It then unlocks the mutex and
delays for two secondgo give the readera chanceto consumeheitem. This delayis differentfrom our
previousdelaysin thatit is only meantto improve programefficiency. Without the delay,the writer will
releasethelock and in the next statement attempt to regain the lock again with the intent of creating another
item. Itsvery likely that the reader has nat had achanceto consume the item so quickly so the delay is a good
idea.

The reader takesa similar stance. It obtainsthe lock, checksto seeif anitem hasbeencreatedandif so
consumestheitem. It releasesthelock andthen delays for a short while giving the writer the chance to create
anew item. Inthisexample the reader and writer run forever, generating and consuming items. However, if
amutex isnolonger needed in aprogram it shoudd be released using hr ead_nut ex_dest r oy(&rut ex) .
Observe that in the mutex initialization function, which is required, we used the pthread_

mut exat t r _def aul t asthemutex attribute. In OSF/1 the mutex attribute serves no purpose what so ever,
so use of the default is strongly encouraged.

The proper use of mutexes guarantees the elimination of race conditions. However, the mutex primitive by
itsalf isvery wed asit has only two states, locked or unlocked. The POSIX condition variable supplements
mutexedsby allowing threadgo block andawaita signalfrom another thread. When the signal is received,

the blocked thread is awaken and attempts to obtain a lock on the related mutex. Thus signals and mutexes
can be combinedto eliminatethe spin-lock problemexhibitedby our readers/writerproblem. We have

designed a li brary of simpleintegersemaphoressingthe pthreadmutexandconditionvariablesandwill

henceforth discus synchronization in that context. The code for the semaphores can be found in Appendix A
and detailed information about condition variables can be found in the man pages.

Functions covered in this section: pthread_rmutex_init(), pthread_nutex_I| ock(),
pt hr ead_mut ex_unl ock(), pthread_nutex_destroy().

4. Coordinating Activities With Semaphores

Let usrevisit our readers/writerprogramusingsemaphoresWe will replace the mutex primitive with the
more robust integer semaphoreand eliminate the spin-lock problem. Semaphoreoperationsare
semaphor e_up, semaphor e_down, semaphore_init, semaphor e_destr oy, and
semaphor e_decr enent . Theupanddownfunctionsconformto traditionalsemaphorsemantics- the
down operationblocksif the semaphae hasavalueless than or equal to zero and the up operation increments
the semaphae. Theinit function must be cdled prior to semaphaeuse and all semaphores are initialized with

avaueof one. Thedestroy function releasesthe semaphare if it is no longer used. All functions take a single
argument that is a pointer to a semaphore object.

Semaphoredecrements a non-blockingfunction that decrementshe value of the semaphore.lt allows
threals to deaement the semaphore to some negative value as part of an initialization process. We will look
at an example that usesmaphor e_decr enent after the readers/writers program.

voi d reader_function(void);
void witer_function(void);

char buffer;
Semaphore witers_turn
Semaphore readers_turn
mai n()

pt hread_t reader;

semaphore_init(& eaders_turn);
semaphore_init(&witers_turn);

/* writer must go first */
semaphore_down(&readers_turn);

pt hread_create(& eader, pthread_attr_default,
(void *)&reader_function, NULL);
writer_function();

}
void witer_function(void)
{
whil e(1)
{
semaphore_down(&writers_turn);
buf fer = make_new_iten();
semaphore_up(&readers_turn);
}
}
voi d reader_function(void)
whil e(1)
{
semaphore_down(&readers_turn);
consunme_i tem(buffer);
semaphore_up(&witers _turn);
}
}

This example still does not fully utilize the power of the general integer semaphore. Let us revise the hello
world program from Section 2 and fix the race conditions using the integer semaphore.

void print_message_function(void *ptr);

Semaphore chil d_counter
Semaphore worl ds_turn;

mai n()

pthread_t threadl, thread2

"Hel | 0"
"World";

char *nmessagel
char *nmessage?2

semaphore_init(&child_counter);
semaphore_init(&wrlds_turn);

semaphore_down(&worlds_turn); /* world goes second */

semaphore_decrenment (&child_counter); /* value now 0 */
semaphore_decrenment (&child _counter); /* value now -1 */
/*
* child_counter now nust be up-ed 2 tinmes for a thread bl ocked on it
* to be rel eased

*

*/

pt hread_create(& hreadl, pthread_attr_default,
(void *) &print_message_function, (void *) nmessagel);

semaphore_down(&worlds_turn);

pt hread_create(& hread2, pthread_attr_default,
(void *) &print_message_function, (void *) nessage?);

semaphore_down(&child_counter);

/* not really necessary to destroy since we are exiting anyway */
semaphore_destroy (&child_counter);
semaphore_destroy (&wrlds_turn);

} exit(0);

voi d print_nessage_function(void *ptr)

char *nmessage;

nessage = (char *) ptr;

printf("% ", nmessage);

fflush(stdout);

semaphore_up(&worlds_turn);

semaphore_up(&child_counter);
| pt hread_exit(0);

Readers can easily satisfythemselveghat thereare no raceconditionsin this versionof our hello world
program and that the words are printed in the proper order. The semaphoui | d_count er is used to force
the parent threadto block until both children have executedthe pri ntf statementand the following
semaphore_up(&child_counter).

Functions covered in this section: semaphore_init (), semaphore_up(),

semaphore_down(), semaphore_destroy(), and
semaphor e_decrenent ().

5. Pragmatics

To compilewith pthreals you must include the pthreal healer file, #i ncl ude <pt hr ead. h> and must link
to the pthread library. For exampte, hello_world.c -0 hello_world -1 pthreads

To usethe semaphaelibrary youmust likewiseincludeits header file and link to the object file or the library.

The DEC pthreadsarebasedon the POSIXIV threadsstandardnotthe POSIXVIII threads standard. The
functionpt hr ead_j oi n allows one thread to wait for another to exit. While this could be used in the hello
world program to determine when the children are done instead of our decrement/up semaphore operations,
the DEC implementation ofpt hr ead_j oi n has unreliable behavior if the thread object specified no longer
exists. For example, inthe code below, if sone_t hr ead nolonger exists, pt hr ead_j oi n may cause an error

instead of just returning.

pt hread_t sone_t hread;
void *exit_status;
pt hread_join(some_thread, &exit_status);

Other strange errors may occur from functions outside of the thread routines. While these errors are few and
far between, some libraries make "uni-process” assumptions. For example, we have experienced intermittent
difficulti es with the bufferedstreaml/O functionsf r ead andf wr i t e thatcanonly be attributedto race
condtions. On theissueof errors,thoughwe did notcheckthe returnvaluesof the threadcalls in our
exampledo streamlinghem,the returnvaluesshouldbe consistentlychecked. Aimost all pthreadrelated
functions will return -1 on an error. For example:

pt hread_t sone_t hread;
if (pthread_create(&sonme_thread, ...) == -1)
{

perror("Thread creation error");
exit(1);

The semaphare librarywill print a messagandexit on erorrs. Someusefulfunctionsnot coveredin the
examples:

pt hread_yi el d(); Informs the scheduler that the threal iswilli ng to yield its quantum, requires
no arguments.

pt hread_t ne;
me = pthread_sel f(); Allows a pthread to obtain its own identifier

pt hread_t thread;
pt hread_det ach(t hread); Informs the library that the threadsexit statuswill not be neededby
subsequentt hr ead_j oi n calls resulting in better threads performance.

For more information consult the library or the man pages, eemn, - k pt hr ead..

Appendix A - SemaphoreLibrary Code

/*
* File: semaphore.h
*/

#i ncl ude <stdi o. h>

#i ncl ude <pthread. h>

#i f ndef SEMAPHORES
#defi ne SEMAPHORES

t ypedef struct Senmphore
{

int V;
pt hread_nutex_t nmutex;
pt hread_cond_t cond;

Semaphor e;

int senmaphor e_down (Senaphore * s);

int senmaphore_up (Semaphore * s);

voi d senmaphor e_destroy (Semaphore * s);

voi d semaphore_init (Senaphore * s);

int senmaphor e_val ue (Semaphore * s);

int tw_pt hread_cond_signal (pthread_cond_t * c);
int tw_pthread_cond_wait (pthread_cond_t * c, pthread_mutex_t * n);
int tw_pt hread_mut ex_unl ock (pthread_mutex_t * m;
int tw_pthread_mutex_lock (pthread_nutex_t * m;
voi d do_error (char *nsgQ);
#endi f
/*

* File: senmaphore.c

*/

#i ncl ude "semaphore. h"

/*
* function nust be called prior to semaphore use -- handl es
* setup and initialization. semaphore destroy (below) should
* be call ed when the semaphore is no |onger needed.
*/
voi d
senmaphore_init (Senmaphore * s)
s->v = 1;
if (pthread_nutex_init (& s->mutex), pthread_nutexattr_default) == -1)
do_error ("Error setting up semaphore mutex");
if (pthread_cond_init (& s->cond), pthread_condattr_default) == -1)
do_error ("Error setting up semaphore condition signal");
}
/

*
* function should be called when there is no | onger a need for
* the semaphore. handl es deal | ocation/rel ease.

*

*/
voi d
senmaphor e_destroy (Semaphore * s)

if (pthread_nutex_destroy (&(s->mutex)) == -1)
do_error ("Error destroying semaphore mutex");

if (pthread_cond_destroy (&(s->cond)) == -1)
do_error ("Error destroyi ng semaphore condition signal");

*
* function increnents the semaphore and signals any threads that
* are bl ocked waiting a change in the senaphore.

*/
int
semaphore_up (Senaphore * s)
int val ue_after_op;
tw_pt hread_nmut ex_I| ock (&(s->mutex));

(s->Vv) ++;
val ue_after_op = s->v;

tw_pt hread_nmut ex_unl ock (&(s->mutex));
tw_pt hread_cond_si gnal (&(s->cond));

return (val ue_after_op);

/*
* function decrenents the semaphore and bl ocks if the semaphore is
* <= 0 until another thread signals a change.

*/

int

senmaphor e_down (Senmaphore * s)
int val ue_after_op;

tw_pt hread_nut ex_I| ock (&(s->mutex));
while (s->v <= 0)

tw_pthread_cond_wait (& s->cond), &(s->nutex));
(s->V)--;
val ue_after_op = s->v;
tw_pt hread_nmut ex_unl ock (&(s->mutex));

return (val ue_after_op);

*

* function does NOT bl ock but sinply decrenents the senaphore.
* shoul d not be used instead of down -- only for prograns where
* multiple threads must up on a semaphore before another thread
* can go down, i.e., allows programmer to set the semaphore to
* a negative value prior to using it for synchronization

*

*/

int

senmaphor e_decrenment (Semaphore * s)
int val ue_after_op;

tw_pt hread_nut ex_I| ock (&(s->mutex));

10

*
*
*
*
*
*
*
*

*
*/
int

S->V--;
val ue_after_op = s->v;
t w_pt hread_nut ex_unl ock (&(s->mutex));

return (val ue_after_op);

function returns the value of the semaphore at the tine the

critical section is accessed. obviously the value is not guarenteed
after the function unlocks the critical section. provided only

for casual debugging, a better approach is for the progranmar to
protect one semaphore wi th another and then check its val ue.

an alternative is to sinply record the value returned by semaphore_up
or semaphor e_down.

senmaphor e_val ue (Semaphore * s)

* %k kX %

~————

int

tw_

int

tw_

int

tw_

/* not for sync */
int val ue_after_op;

tw_pt hread_nmut ex_I| ock (&(s->mutex));
val ue_after_op = s->v;
tw_pt hread_nmut ex_unl ock (&(s->mutex));

return (val ue_after_op);

he followi ng functions replace standard library functions in that
hey exit on any error returned fromthe systemcalls. Saves us
rom having to check each and every call above.

-

pt hread_nut ex_unl ock (pthread_mutex_t * m
int return_val ue;

if ((return_value = pthread_mutex_unlock (n)) == -1)
do_error ("pthread_nutex_unl ock");

return (return_val ue);

pthread_nutex_|l ock (pthread_mutex_t * m
int return_val ue;

if ((return_value = pthread_mutex_lock (m) == -1)
do_error ("pthread_nutex_| ock");

return (return_val ue);

pthread_cond_wait (pthread_cond_t * c, pthread_nutex_t * m
int return_val ue;

if ((return_value = pthread_cond_wait (c, nm) == -1)
do_error ("pthread_cond_wait");

11

*/

*/
*/

return (return_val ue);

int
tw_pt hread_cond_signal (pthread_cond_t * c)

int return_val ue;

if ((return_value = pthread_cond_signal (c)) == -1)
do_error ("pthread_cond_signal");

return (return_val ue);

/*
* function just prints an error nessage and exits

*/
voi d
do_error (char *nsgQ)

perror (nsg);
exit (1);

12

