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Preface

Today, there are three primary sets of multithreading (MT) libraries: the
“standards-based” libraries (all of the UNIX® implementations and VMS, which
are moving to POSIX), the OS/2® library, and the Win32 library. (The NT and
OS/2 libraries are fairly similar, which should not be too surprising. NT did start
life as OS/2, version 2, after all.) Although the APIs1 and implementations differ
significantly, the fundamental concepts are the same. The ideas in this book are
valid for all three; the details of the APIs differ.

All the specific discussion in this book focuses on the POSIX multithreading
model, with comparisons to OS/2 and Win32 throughout.

A frank note about our motivation is in order here. We have slaved away for
countless hours on this book because we’re propeller-heads who honestly believe
that this technology is a superb thing and that the widespread use of it will make
the world a better place for hackers like ourselves.

Your motivations for writing MT programs? You can write your programs better
and more easily, they’ll run faster, and you’ll get them to market more quickly,
they’ll have fewer bugs, you’ll have happier programmers, customers, and higher
sales. The only losers in this game are the competitors, who will lag behind you
in application speed and quality.

MT is here today. It will soon be ubiquitous. As a professional programmer, you
have an obligation to understand this technology. It may or may not be
appropriate for your current project, but you must be able to make that
conclusion yourself. This book will give you what you need to make that
decision.

Welcome to the world of the future!

1. “Applications Programming Interface.” This is the set of standard library calls that an operating system makes
available to applications programmers. For MT, this means all the threads library function calls.
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Who Should Use This Book

This book aims to give the programmer or technical manager a solid, basic
understanding of threads—what they are, how they work, why they are useful,
and some of the programming issues surrounding their use. As an introductory
text, it does not attempt a deep, detailed analysis. (At present, there are no deep,
detailed analyses!) After reading this book the reader should have a solid
understanding of the fundamentals, be able to write credible, modestly complex,
threaded programs and have the understanding necessary to analyze their own
programs and determine the viability of threading them.

This book is written with the experienced C/UNIX programmer in mind. A non-
UNIX programmer will find a few of the details unfamiliar, but the concepts clear.
A non-C programmer will find the code fragments and API descriptions mildly
challenging, though possible to decipher, while the concepts should be clear. A
technically minded nonprogrammer should be able to follow most of the concepts
and understand the value of threads. A nontechnical person will not get much
from this book.

This book does not attempt to explain the usage of the Win32 or OS/2 APIs. It
does contrast them to the POSIX API in order to give the POSIX programmer a
feeling for what kind of porting issues might be involved when writing to more
than one of these libraries.

How This Book Is Organized

Chapter 1, Introduction—In which we present the motivation for creating thread
libraries, discuss the advent of shared memory multiprocessors, and the
interactions between threads and SMP machines.

Chapter 2, Concepts—In which the reader is introduced to the basic concepts of
multitasking operating systems and of multithreading as it compares to other
programming paradigms. The reader is shown a set of reasons why
multithreading is a valuable addition to programming paradigms, and a number
of examples of successful deployment are presented.

Chapter 3, Foundations—In which the reader is introduced to the underlying
structures upon which threads are built, the construction of the thread itself, and
the operating system support that allows an efficient implementation.

Chapter 4, Lifecycle—In which the reader is treated to a comprehensive
explanation of the intricacies in the life of a thread—birth, life, and death. Even
death by vile cancellation. A small program which illustrates all of these stages
concludes the chapter.
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Chapter 5, Scheduling—In which we explain the myriad details of the different
scheduling models and the various alternative choices that could be made. Then
we describe context switching in detail. Finally, we delve into gruesome detail of
the various POSIX options and parameters. There is a light at the end of the
tunnel, however.

Chapter 6, Synchronization—In which the reader is led on a hunt for the
intimidating synchronization variable and discovers that it is not actually as
frightening as had been thought. Programs illustrating the basic use of the POSIX
primitives are shown.

Chapter 7, Complexities—In which a series of more complex synchronization
variables and options are presented and the trade-off between them and the
simpler ones are discussed. Synchronization problems and techniques for dealing
with them conclude the chapter.

Chapter 8, TSD—In which an explanation of thread-specific data is provided, its
use and some of the implementation details. We note a few places where use of
TSD could be made more efficient and a few other optimizations that can be
made.

Chapter 9, Cancellation—In which we describe the acrimonious nature of some
programs and how unwanted threads may be disposed of. The highly complex
issues surrounding bounded time termination and program correctness are also
covered. A simple conclusion is drawn.

Chapter 10, Signals—In which we deal with the various aspects of handling
asynchronous events in a multithreaded program. The definitions are given,
alternative designs are discussed, and a program illustrating the most complex
case is shown.

Chapter 11, Details—In which the details of actually writing and compiling an
MT program are reviewed. The defined constants are described and methods of
dealing with errors are proposed. We note which vendors have made extensions
to Pthreads, and where POSIX is headed.

Chapter 12, Libraries—In which we explore a variety of operating systems issues
that bear heavily upon the usability of the threads library in actual programs. We
examine the status of library functions and the programming issues facing them.
We look at some design alternatives for library functions.

Chapter 13, Design—In which we explore some designs for programs and library
functions. Making both programs and individual functions more concurrent is a
major issue in the design of these functions. We look at a variety of code
examples and the trade-offs between them.
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Chapter 14, Languages—In which the use of threads in various programming
languages is considered and a few minor notes about special features and
requirements are made. A number of public Pthreads libraries and some
commercial products exist and are noted.

Chapter 15, Tools—In which we consider the kinds of new tools that a reader
would want when writing a threaded program. An overview of the Solaris tool
set is given, as representative of what should be looked for.

Chapter 16, Performance —In which we make things faster, looking at general
performance issues, political performance issues, and thread specific performance
issues. We conclude with a discussion of the actual performance of multithreaded
NFS.

Chapter 17, Hardware—In which we look at the various designs for SMP
machines (cache architectures, interconnect topologies, atomic instructions,
invalidation techniques) and consider how those designs affect our programming
decisions. Some optimization possibilities are looked at.

Chapter 18, Examples—In which several complete programs are presented. The
details and issues surrounding the way they use threads are discussed and
references to other programs on the net are made.
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Introduction 1

In which we present the motivation for creating thread libraries, discuss
the advent of shared memory multiprocessors, and the interactions
between threads and SMP machines.

Multithreading is a technique that allows one program to do multiple tasks
concurrently. The basic concept of multithreaded programming (MT) has existed
in R&D labs for several decades. Co-routine systems such as Concurrent Pascal &
InterLisp’s Spaghetti stacks were in use in the mid-70s and dealt with many of the
same issues. Ada’s tasks are a language-based construct that maps directly onto
threads (so directly, in fact, that current Ada compilers implement tasks with
threads). Other versions of co-routining have existed even longer.

The emergence of this concept in industry as an accepted, standardized
programming paradigm is a phenomenon of the 90s. As with many other
concepts, the research and the experimental use of threads has been widespread
in specific industries, universities and research institutes, and it is entering
industry as a relatively well-formed whole on all fronts almost simultaneously. In
1991, no major commercial operating systems contained a robust user-level
threads library. In 1997, every major player in the computer industry has one.

Some of the motivation for this can be ascribed to general good sense and the
recognition of a technology whose time has come. Some can be related to the
unification efforts surrounding UNIX. Probably the greatest push, especially
when viewed from the point of view of the ISV and the end user, is the
emergence of shared memory symmetric multiprocessors (SMP). MT provides
exactly the right programming paradigm to make maximal use of these new
machines.

The threading models we describe in this book are strictly software models that
can be implemented on any kind of general-purpose hardware. Much research is
going into the problem of creating a better kind of hardware that would be
uniquely suited for threaded programming. We do not address that aspect in this
book.
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To those of us who are concerned with the theoretical underpinnings of
programming paradigms and language design, the true value of multithreading
is significant and obvious. It obviously provides a far superior paradigm for
constructing programs. For those others who are concerned with the practical
details of getting real tasks done using computers, the value is also significant
and obvious. Multithreading obviously makes it possible to obtain vastly greater
performance than was ever before possible; by taking advantage of
multiprocessor machines.

At whatever price point, the purchasers of workstations want to get maximal
performance from their machines. The demands of computationally intensive
users are always growing, and they invariably exceed the provisions of their
wallets. They might want a “Personal Cray,” but they can’t afford one.

One of the solutions to this demand lies in the ever-increasing performance of
CPUs. Along with the obvious technique of increasing the clock speed, a wide
range of other methods are used to increase the performance of individual CPUs.
The use of long instruction pipelines or superscalar techniques have allowed us to
produce multiple-instruction machines that can do a lot more in a single clock
tick. Finer compiler optimization techniques, out-of-order execution, predictive
branching, VLIW, etc., allow us to obtain better and better performance from
processors. However good these methods are, they still have their limits.

One of the major limiting factors is the problem of limited bus, memory, and
peripheral speeds. We can build CPUs today that operate at 600 MHz, but we
can’t build communications buses that operate at the same speed. RAM speeds
are also falling further and further behind the demands of the CPUs. It is
expensive to build 600 MHz CPUs, but as there are only a few in a system, it’s
affordable. To build memory that can keep up with these speeds would be
prohibitively expensive. A great many machines today implement two-level
caches to deal with this problem (single-level caches weren’t enough!). Multilevel
caches work effectively with well-behaved programs, where sequential data and
instruction references are likely to be physically adjacent in memory. But truly
random-access programs wreak havoc on this scheme, and we can point to any
number of programs that run faster on slower machines that lack that second-
level cache.

None of the issues addressed above play favorites with any manufacturers. Sun,
Intel, HP, IBM, SGI, DEC, etc., have come up with techniques for dealing with
them. Some techniques have proven to be more effective than others, but none of
them avoid the fundamental limitations of physics. Nature is a harsh mistress.

This is where SMP comes into play. It is one more weapon in our arsenal for
performance. Just as the above techniques have allowed us to increase our single-
CPU performance, SMP allows us to increase our overall system performance.
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And that’s what we really care about—overall system performance. As one
customer put it “SMP, superscalar—buzzwords! I don’t care if you have little
green men inside the box! I want my program to run faster!”

We can build 64-processor machines today (e.g., the Cray CS6400) that will yield
64 times the performance of a single-processor machine (on some problems). The
cost of that 64-CPU machine is a fraction of the cost of 64 single-processor
machines. In a 64-way SMP machine, all 64 processors share the system costs:
chassis, main memory, disks, software, etc. With 64 uniprocessors, each processor
must have its own chassis, memory, etc. This fact makes SMP highly attractive for
its price/performance ratio. An additional attraction of SMP is that it is also
possible to purchase a machine with a small number of CPUs and add more
CPUs as demands (and budgets) increase. In the chart below, these advantages of
SMP are clear.

Figure 1-1 Cost vs. Performance for SMP Workstations and Servers

The economics of purchasing an SMP machine are pretty much the same as the
economics of purchasing any machine. There are some extra unknowns (“I have
600 different applications that I run from time to time, how much faster will they
all run? How much time will I save in a day?”), but if we focus on the primary
applications in use, we can get reasonable data upon which to make our
decisions. The basic question is “If my applications run an average of N% faster
on a dual-CPU machine which costs M% more, is it worth it?”
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Only you (or your customers) can answer this question, but we can give you
some generalities. Here is a typical situation: The customer’s major application is
MARC Analysis’ MARC Solver (for circuit simulation). The MARC Solver runs
about 80% faster on a dual-processor SPARCstation™ 20 than it does on a single-
processor SPARCstation 20. The single-processor machine costs $16,000, the dual-
processor costs $18,000 (about 12% more). If the designers (who cost at least
$100,000/year) are constantly waiting for the solver to complete its runs, is it
worth it? Obviously, yes. You will save a lot of money on a minor investment.
Indeed, MARC sells very well on SMP machines.

If you are a program developer (either in-house or an ISV), your question is going
to be “Should I spend the time to write my program so that it will take advantage
of SMP machines?” (This probably means threading, although there are other
possibilities.) Your answer will be related to your anticipated sales. If your
program runs 50% faster on a dual-processor machine, will your customers buy
SMP machines and more of your software? Or, to pose the question differently, if
you don’t do it, will some competitor do it instead and steal your customers?

The answer depends upon your program. If you write a simple text editor that is
never CPU-bound, the answer is a clear “no.” If you write a database that is
always CPU-bound, it’s “yes.” If you write a page-layout program that is
sometimes CPU-bound, the answer is “maybe.” In general, if users ever have to
wait for your program, you should be looking at threading and SMP.

But there is more value to threading than just SMP performance. In many
instances uniprocessors will also experience a significant performance
improvement. And that bit about programming paradigms? It really does count.
Being able to write simpler, more readable code helps you in almost all aspects of
development. Your code can be less buggy, get out there faster, and be easier to
maintain.

Multithreading is not a magic bullet for all your ills1, and it does introduce a new
set of programming issues which must be mastered, but it goes a long way
toward making your work easier and your programs more efficient.

1. If you have ever spent days debugging complex signal handling code, you may disagree. For asynchronous
code, it is a magic bullet!
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Concepts 2

In which the reader is introduced to the basic concepts of multitasking
operating systems and of multithreading as it compares to other
programming paradigms. The reader is shown a set of reasons why
multithreading is a valuable addition to programming paradigms, and a
number of examples of successful deployment are presented.

Background: Traditional Operating Systems
Before we get into the details of threads, it will be useful for us to have some clear
understanding of how operating systems without threads work. In the simplest
operating system world of single-user, single-tasking operating systems such as
DOS, everything is quite easy to understand and to use, though the functionality
offered is minimal.

DOS divides the memory of a computer into two sections: the portion where the
operating system itself resides (kernel space1) and the portion where the programs
reside (user space). The division into these two spaces is done strictly by the
implicit agreement of the programmers involved—meaning that nothing stops a
user program from accessing data in kernel space. This lack of hardware
enforcement is a good thing, because it is very simple and works very well when
people write perfect programs. When a user program needs some function
performed for it by kernel code (such as reading a file from a disk), the program
can call the DOS function directly to read that file.

Each program has some code that it runs (which is just a series of instructions,
where the program counter points to the current instruction), some data (global
and local) that it uses, and a stack where local data and return addresses are
stored (the stack pointer designates the current active location on the stack).

Figure 2-1 illustrates the traditional DOS operating system memory layout.

1. “Kernel space” is UNIX-lingo for this concept, but the concept is valid for all operating systems.
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Figure 2-1 Memory Layout for DOS-Style Operating Systems

Thus, the division between user space and kernel space, as shown in Figure 2-1, is
a division by agreement of the programmers; there is no hardware enforcement of
the policy at all. The drawbacks to this technique are significant, however. Not all
programs are written flawlessly, and a programming mistake (or virus!) here can
bring down the entire machine or, worse, destroy valued data. Neither can a
machine run more than one program at a time, nor can more than one user log in
to the machine at a time. Dealing with networks from DOS machines is somewhat
awkward and limited.

In a typical multitasking operating system such as VMS, UNIX, Windows NT,
etc., this dividing line between the user space and the kernel space is solid
(Figure 2-2); it’s enforced by the hardware. There are actually two different modes
of operation for the CPUs: user mode, which allows normal user programs to run,
and kernel mode, which also allows some special instructions to run that only the
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kernel can execute. These kernel-mode instructions include such things as I/O
instructions, processor interrupt instructions, instructions that control the state of
the virtual memory subsystem, and, of course, the change mode instruction.

Figure 2-2 Memory Layout for Multitasking Systems

So, a user program can execute only user-mode instructions, and it can execute
them only in user space. The data it can access and change directly is also limited
to data in user space. When it needs something from the kernel (say, it wants to
read a file or find out the current time), the user program must make a system call.
This is a library function that sets up some arguments, then executes a special trap
instruction. This instruction causes the hardware to trap into the kernel, which
then takes control of the machine. The kernel figures out what the user wanted
(based upon the data that the system call set up), and whether the user has
permission to do so. Finally the kernel performs the desired task, returning any
information to the user process.

Because the operating system has complete control over I/O, memory, processors,
etc., it needs to maintain data for each process it’s running. The data tells the
operating system what the state of that process is—what files are open, which
user is running it, etc. So, the concept of process in the multitasking world extends
into the kernel (see Figure 2-2), where this information is maintained in a process
structure. In addition, as this is a multitasking world, more than one process can
be active at the same time, and for most of these operating systems (notably
neither Windows NT nor OS/2), more than one user can log in to the machine
independently and run programs simultaneously.
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Figure 2-3 Processes on a Multitasking System

Thus, in Figure 2-3, process P1 can be run by user Kim, while P2 and P3 are being
run by user Dan, and P4 by user Bil. There is also no particular restriction on the
amount of memory that a process can have. P2 might use twice as much memory
as P1, for example. It is also true that no two processes can see or change each
other’s memory, unless they have set up a special shared memory segment.

For all the user programs in all the operating systems mentioned so far, each has
one stack, one program counter, and one set of CPU registers per process. So,
each of these programs can do only one thing at a time. They are single threaded.

What Is a Thread?
Just as multitasking operating systems can do more than one thing concurrently
by running more than a single process, a process can do the same by running
more than a single thread. Each thread is a different stream of control that can
execute its instructions independently, allowing a multithreaded process to
perform numerous tasks concurrently. One thread can run the GUI, while a
second thread does some I/O, while a third one performs calculations.

A thread is an abstract concept that comprises everything a computer does in
executing a traditional program. It is the program state that gets scheduled on a
CPU, it is the “thing” that does the work. If a process comprises data, code, kernel
state, and a set of CPU registers, then a thread is embodied in the contents of

Kernel

Processes

P1 P2 P3 P4
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those registers—the program counter, the general registers, the stack pointer, etc.,
and the stack. A thread, viewed at an instant of time, is the state of the
computation.

“Gee,” you say, “That sounds like a process!” It should. They are conceptually
related. But a process is a heavy-weight, kernel-level entity and includes such
things as a virtual memory map, file descriptors, user ID, etc., and each process
has its own collection of these. The only way for your program to access data in
the process structure, to query or change its state, is via a system call.

All parts of the process structure are in kernel space (Figure 2-4). A user program
cannot touch any of that data directly. By contrast, all of the user code (functions,
procedures, etc.) along with the data is in user space, and can be accessed directly.

Figure 2-4 Relationship Between a Process and Threads

A thread is a light-weight entity, comprising the registers, stack, and some other
data. The rest of the process structure is shared by all threads: the address space,
file descriptors, etc. Much (and sometimes all) of the thread structure is in user-
space, allowing for very fast access.

The actual code (functions, routines, signal handlers, etc.) is global and can be
executed on any thread. In Figure 2-4, we show three threads (T1, T2, T3), along
with their stacks, stack pointers (SP), and program counters (PC). T1 and T2 are
executing the same function. This is a normal situation, just as two different
people can read the same road sign at the same time.
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All threads in a process share the state of that process (below2). They reside in the
exact same memory space, see the same functions, see the same data. When one
thread alters a process variable (say, the working directory), all the others will see
the change when they next access it. If one thread opens a file to read it, all the
other threads can also read from it.

Figure 2-5 The Process Structure and the Thread Structures

Let’s consider a human analogy: a bank. A bank with one person working in it
(traditional process) has lots of “bank stuff” such as desks and chairs, a vault, and
teller stations (process tables and variables). There are lots of services that a bank
provides: checking accounts, loans, savings accounts, etc. (the functions). With
one person to do all the work, that person would have to know how to do
everything, and could do so, but it might take a bit of extra time to switch among
the various tasks. With two or more people (threads), they would share all the
same “bank stuff,” but they could specialize in their different functions. And if
they all came in and worked on the same day, lots of customers could get
serviced quickly.

To change the number of banks in town would be a big effort (creating new
processes), but to hire one new employee (creating a new thread) would be very
simple. Everything that happened inside the bank, including interactions among

2. From here on, we will use the squiggle shown in the figure to represent the entire thread—stack, stack pointer,
program counter, thread structure, etc.
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the employees there, would be fairly simple (user space operations among
threads), whereas anything that involved the bank down the road would be much
more involved (kernel space operations between processes).

When you write a multithreaded program, 99% of your programming is identical
to what it was before—you spend you efforts in getting the program to do its real
work. The other 1% is spent in creating threads, arranging for different threads to
coordinate their activities, dealing with thread-specific data, and signal masks.
Perhaps 0.1% of your code consists of calls to thread functions.

Kernel Interaction

We’ve now covered the basic concept of threads at the user level. As noted, the
concepts and most of the implementational aspects are valid for all thread
models. What’s missing is the definition of the relationship between threads and
the operating systems. How do system calls work? How are signals handled?
And how are threads scheduled on CPUs?

It is at this level that the various implementations differ significantly. The
operating systems provide different system calls, and even identical system calls
can differ widely in efficiency and robustness. The kernels are constructed
differently and provide different resources and services.

Keep in mind, as we go though this implementation aspect, that 99% of your
threads programming will be done above this level, and the major distinctions
will be in the area of efficiency. For UNIX machines, you will be writing strictly at
the user level, so as soon as all the vendors implement the POSIX standard, your
program can be completely portable, requiring no more than a single TSR
(Theoretical Simple Recompile) in order to move to different platforms.

Concurrency vs. Parallelism

Concurrency means that two or more threads (or LWPs, or traditional processes)
can be in the middle of executing code at the same time; it could be the same
code, it could be different code (see Figure 2-6). They may or may not be actually
executing at the same time, but they are in the middle of it (i.e., one started
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executing, it was interrupted, and the other one started). Every multitasking
operating system has always had numerous concurrent processes, even though
only one could be on the CPU at any given time.

Figure 2-6 Three Threads Running Concurrently on One CPU

Parallelism means that two or more threads actually run at the same time on
different CPUs (see Figure 2-7). On a multiprocessor machine, many different
threads can run in parallel. They are, of course, also running concurrently.

Figure 2-7 Three Threads Running in Parallel on Three CPUs

The vast majority of timing and synchronization issues in MT are issues of
concurrency, not parallelism. Indeed, the threads model was designed to avoid
your ever having to be concerned with the details of parallelism. Running an MT
program on a uniprocessor does not simplify your programming problems at all.
Running on a multiprocessor doesn’t complicate them. This is a good thing.

Let us repeat this point. If your program is correctly written on a uniprocessor, it
will run correctly on a multiprocessor. The probability of running into a race
condition is the same on both a UP and an MP. If it deadlocks on one, it will
deadlock on the other. (There are lots of weird little exceptions to the probability
part, but you’d have to try hard to make them appear.) A buggy program,
however, may run as (naively) expected on a UP, and only show its problems on
an MP. Happily, a static analysis tool (such as Static Lock Analyzer on page 255)
can find all of those problems, leaving you the program logic to work on.
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System Calls

A system call is basically a function that ends up trapping to routines in the
kernel. These routines may do things as simple as looking up the user ID for the
owner of the current process, or as complex as redefining the system’s scheduling
algorithm. For multithreaded programs, there is a very serious issue surrounding
how many threads can make system calls concurrently. For some operating
systems the answer is “one”; for some, it’s “many.” The most important point is
that system calls run exactly as they did before, so all your old programs continue
to run as they did before, with (almost) no degradation.

Signals

Signals are the UNIX kernel’s way of interrupting a running process and letting it
know that something of interest has happened. (Neither NT nor OS/2 have such
a mechanism.) It could be that a timer has expired, or that some I/O has
completed, or that some other process wants to communicate something Signals
are one of the harder aspects of multithreaded programming to understand and
to use effectively. Truth be known, they are not so simple in regular UNIX
programming. The primary requirement, when designing the multithreaded
signal model, was to ensure that the original UNIX semantics were retained.
Single-threaded programs had to run exactly the same way as they did before,
and on top of this, the multithreaded programs had to have some sort of
“reasonable” semantics. The details we’ll reserve until later, but the important
point here is that for your old programs, nothing changes.

Synchronization

Synchronization is the method of ensuring that multiple threads coordinate their
activities so that one thread doesn’t accidently change data that another thread is
working on. This is done by providing function calls that can limit the number of
threads that can access some data concurrently.

In the simplest case (a Mutual Exclusion Lock—a mutex), only one thread at a time
can execute a given piece of code. This code presumably alters some global data
or does reads or writes to a device. For example, thread T1 obtains a lock and
starts to work on some global data. Thread T2 must now wait (typically it goes to
sleep) until thread T1 is done before it can execute the same code. By using the
same lock around all code that changes the data, we can ensure that the data
remains consistent.

Scheduling

Scheduling is the act of placing threads onto CPUs, so that they can execute, and
of taking them off of those CPUs so that others can run instead. In practice,
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scheduling is not generally an issue because “it all works” just about the way
you’d expect.

The Value of Using Threads
There is really only one reason for writing MT programs—you get better
programs, more quickly. If you’re an ISV, you sell more software. If you’re
developing software for your own in-house use, you simply have better programs
to use. The reason that you can write better programs is because MT gives your
programs and your programmers a number of significant advantages over non-
threaded programs and programming paradigms.

A point to keep in mind here is that you are not replacing simple, non-threaded
programs with fancy, complex, threaded ones. You are using threads only when
you need them to replace complex or slow non-threaded programs. Threads are
really just one more way you have to make your programming tasks easier.

The main benefits of writing multithreaded programs are:

• Performance gains from multiprocessing hardware (parallelism)

• Increased application throughput

• Increased application responsiveness

• Replacing process-to-process communications

• Efficient use of system resources

• Simplified realtime processing

• Simplified signal handling

• The ability to make use of the inherent concurrency of distributed objects

• There is one binary that runs well on both uniprocessors and

multiprocessors

• The ability to create well-structured programs

• There can be a single source for multiple platforms

The following sections elaborate further on these benefits.

Parallelism

Computers with more than one processor offer the potential for enormous
application speedups (Figure 2-8). MT is an efficient way for application
developers to exploit the parallelism of the hardware. Different threads can run
on different processors simultaneously with no special input from the user and no
effort on the part of the programmer.
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A good example of this is a process that does matrix multiplication. A thread can
be created for each available processor, allowing the program to use the entire
machine. The threads can then compute distinct elements of the result matrix by
doing the appropriate vector multiplication.

Figure 2-8 Different Threads Running on Different Processors

Throughput

When a traditional, single-threaded program requests a service from the
operating system, it must wait for that service to complete, often leaving the CPU
idle. Even on a uniprocessor, multithreading allows a process to overlap
computation with one or more blocking system calls (Figure 2-9). Threads
provide this overlap even though each request is coded in the usual synchronous
style. The thread making the request must wait, but another thread in the process
can continue. Thus, a process can have numerous blocking requests outstanding,
giving you the beneficial effects of doing asynchronous I/O, while still writing
code in the simpler synchronous fashion.

Figure 2-9 Two Threads Making Overlapping System Calls

Processors

Sleeping System Call or ReturnWorking
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Responsiveness

Blocking one part of a process need not block the whole process. Single-threaded
applications that do something lengthy when a button is pressed typically display
a “please wait” cursor and freeze while the operation is in progress. If such
applications were multithreaded, long operations could be done by independent
threads, allowing the application to remain active and making the application
more responsive to the user. In Figure 2-10, one thread is waiting for I/O from the
buttons, and several threads are working on the calculations.

Figure 2-10 Threads Overlapping Calculation and I/O

Communications

An application that uses multiple processes to accomplish its tasks can be
replaced by an application that uses multiple threads to accomplish those same
tasks. Where the old program communicated among its processes through
traditional interprocess communications facilities (e.g., pipes or sockets), the
threaded application can communicate via the inherently shared memory of the
process. The threads in the MT process can maintain separate connections while

Worker ThreadsController Thread
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sharing data in the same address space. A classic example is a server program,
which can maintain one thread for each client connection. This provides excellent
performance, simpler programming, and effortless scalability.

Figure 2-11 Different Clients Being Handled by Different Threads

System Resources

Programs that use two or more processes to access common data through shared
memory are effectively applying more than one thread of control. However, each
such process must maintain a complete process structure, including a full virtual
memory space and kernel state. The cost of creating and maintaining this large
amount of state makes each process much more expensive, in both time and
space, than a thread. In addition, the inherent separation between processes may
require a major effort by the programmer to communicate among the different
processes or to synchronize their actions. By using threads for this
communication instead of processes, the program will be easier to debug and can
run much faster.

An application can create hundreds or even thousands of threads, one for each
synchronous task, with only minor impact on system resources. Threads use a
fraction of the system resources used by processes.

Simplified Realtime Processing

Programs that run in so-called “real time” scheduling classes have complete
control over when they get to run and can easily block out other important user
or system tasks inadvertently. By running only the truly time-critical sections of a
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program in a realtime thread, and letting the program do all the rest of its work in
a normal, time-shared thread, much of the complexity of realtime programming
can be avoided.

Simplified Signal Handling

The asynchronous nature of signal handling makes it very difficult to write code
that can handle these asynchronous events and do anything non-trivial. By
dedicating a thread to this purpose, it is possible to handle signals in a simple,
synchronous fashion.

Distributed Objects

With the first releases of standardized distributed objects and object request
brokers, your ability to make use of these will become increasingly important.
Distributed objects are inherently multithreaded. Each time you request an object
to perform some action, it executes that action in a separate thread. Object servers
are an absolutely fundamental element in distributed object paradigm, and those
servers are inherently multithreaded.

Although you can make a great deal of use of distributed objects without doing
any MT programming, knowing what they are doing and being able to create
objects that are threaded will increase the usefulness of the objects you do write.

Figure 2-12 Distributed Objects Running on Distinct Threads

T1 T2 T3
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Same Binary for Uniprocessors and Multiprocessors

In most older parallel processing schemes, it was necessary to tailor a program
for the individual hardware configuration. With threads, this customization isn’t
required because the MT paradigm works well irrespective of the number of
CPUs. A program can be compiled once, and it will run acceptably on a
uniprocessor, whereas on a multiprocessor it will just run faster.

Program Structure

Many programs are more efficiently structured with threads because they are
inherently concurrent. A traditional program that tries to do many different tasks
is crowded with lots of complicated code to coordinate these tasks. A threaded
program can do the same tasks with much less, far simpler code. Multithreaded
programs can be more adaptive to variations in user demands than single-
threaded programs.

Figure 2-13 Simplified Flow of Control in Complex Applications

Single Source for Multiple Platforms

Many programs must run on numerous platforms. With the POSIX threads
standard (see Threads Standards on page 53), it is possible to write a single source
and recompile it for the different platforms. Most of the UNIX vendors have
POSIX threads.

Task 1

Simple Flow of Control

Task 1 Task 2

Complex Flow of Control

Task 2
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This is quite some set of claims, and a bit of healthy skepticism is called for when
reading things like this. Sure, it sounds good when we say it, but what about
when you try to use it? We cannot guarantee that you will experience the same
wonderful results, but we can point out a number of cases where other folks have
found MT programming to be of great advantage (see Performance on page 54).

What Kind of Programs to Thread?
There is a spectrum of programs that one might wish to thread. On one side, there
are those that are inherently “MT-ish”—you look at the work to be done, and you
think of it as several independent tasks. In the middle, there are programs where
the division of work isn’t obvious, but possible. On the far other end, there are
those that cannot reasonably be threaded at all.

Inherently MT Programs

The inherently MT programs are ones that are just more easily expressed as
numerous threads doing numerous things. Such programs are easier to write
using threads, because they are doing different things concurrently anyway. They
are generally simpler to write and understand when threaded, easier to maintain,
and more robust. The fact that they may run faster is a mere pleasant side effect.
For these programs, the general rule is that the more complex the application, the
greater the value of threading.

Typical programs that are inherently MT include:

Independent tasks: A debugger needs to run and monitor a program, keep its
GUI active, and display an interactive data inspector, dynamic call grapher,
and performance monitor. All in the same address space, all at the same
time.

Servers: A server needs to handle numerous overlapping requests
simultaneously. NFS®, NIS, DBMSs, stock quotation servers, etc., all receive
large number of requests that require the server to do some I/O, then
process the results and return answers. Doing this by completing one
request at a time would be very slow.

Repetitive tasks: A simulator needs to simulate the interactions of numerous
different elements that operate simultaneously. CAD, structural analysis,
weather prediction, etc., all model tiny pieces first, then combine the results
to produce an overall picture.
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Not Obviously MT Programs

This class comprises those programs that are not inherently MT, but for which
threading is reasonable. This is where you take an algorithm that does not have
an obvious decomposition and impose threads upon it in order to achieve a
speedup on an MP machine. Such a program is somewhat harder to write, a bit
more difficult to maintain, etc., than its nonthreaded counterpart. But it runs
faster. Because of these drawbacks, the (portions of) programs chosen are
generally quite simple.

Typical programs in this class include:

Numerical programs: Many numerical programs (e.g., matrix operations) are
made up of huge numbers of tiny, identical, and independent operations.
They are most easily (well, most commonly) expressed as loops inside of
loops. Slicing these loops into appropriate-sized chunks for threads is
slightly more complicated, and there would be no reason to do so, save for
the order-N speedup that can be obtained on an N-way SMP machine.

Old code: These are the “slightly modified existing systems.” This is existing
code that makes you think to yourself: “If I just change a few bits here and
there, add a few locks, then I can thread it and double my performance.”

It’s true, it is possible to do this, and there are lots of examples. However,
this is a tough situation because you will constantly be finding new
interactions that you didn’t realize existed before. In such cases (which, due
to the nature of the modern software industry, are far too common), you
should concentrate on the bottlenecks and look for absolutely minimal
submodules that can be rewritten. It’s always best to take the time to do it
right: rearchitect and write the program correctly from the beginning.

Automatic Threading

In a subset of cases, it is possible for a compiler to do the threading for you. If
you have a program written in such a way that a compiler can analyze its
structure, analyze the interdependencies of the data, and determine that parts of
your program could run simultaneously without data conflicts, then the compiler
can build the threads for you.

With current technology, the types of programs that avail themselves of this are
largely limited to Fortran programs that have time-consuming loops where the
individual computations in those loops are obviously independent. The primary
reason this is limited to Fortran is that Fortran programs tend to have very simple
structuring, both for code and data, making the analysis viable. Languages such
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as C, which have constructs such as pointers, make the analysis enormously more
difficult. There are MP compilers for C, but far fewer programs can take
advantage of such compiling techniques.

With the different Fortran MP compilers3, it is possible to take vanilla Fortran 77
or 90 code, make no changes to it whatsoever, and have the compiler turn out
threaded code. In some cases it works very well; in others, not. The cost of trying
it out is very small, of course.

A number of Ada compilers will map Ada tasks directly on top of threads,
allowing existing Ada programs to take advantage of parallel machines with no
changes to the code.

Programs Not to Thread

Then there is a large set of programs that it doesn’t make any sense to thread.
Probably 99% of all programs either do not lend themselves easily to threading or
run just fine the way they are. Some programs simply require separate processes
to run in. Perhaps they need to execute one task as root, but need to avoid having
any other code running as root. Perhaps the program needs to be able to control
its global environment closely, changing working directories, etc. Most programs
run quite fast enough as they are and don’t have any inherent multitasking, such
as an icon editor or a calculator application.

In all truth, multithreaded programming is harder than regular programming.
There are a host of new problems that must be dealt with, many of which are very
difficult. Threads are primarily of value when the task at hand is complex.

What About Shared Memory?
Right about now you may be asking yourself this question: “What can threads do
that can’t be done by processes sharing memory?”

The first answer is “nothing.” Anything that you can do with threads, you can
also do with processes sharing memory. Indeed, a number of vendors implement
a significant portion of their threads library in roughly this fashion. If you are
thinking about using shared memory in this fashion, you should make sure you
have (a) plenty of time to kill programming, (b) plenty more time to kill
processing, and (c) lots of money to burn buying RAM.

3. Sun® Fortran MP, Kuck and Associates Fortran compiler, EPC’s Fortran compiler, SGI’s MP Fortran compiler.
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You see: (a) Debugging cross-process programs is tough, and the tools that exist
for this are not as good as those for MT. (b) Things take longer. In Solaris, creating
a process is about 30 times slower than creating a thread, synchronization
variables are about 10 times slower, and context switching about 5 times slower.
(c) Processes eat up lots of kernel memory. Building a few thousand threads is no
big deal. Building a few thousand processes is.

You can do everything with shared memory. It just won’t be as easy or run as fast.

On the other hand... There are a great number of multi-process programs which
work quite well. Moreover there are plenty of instances where separate process
do make more sense. These are normally cases where the frequency of data
exchange is limited and the complexity of the interactions is small. One of your
jobs is going to be to figure out what kind of program you’re working with.

Threads Standards
There are three different definitions for thread libraries competing for attention
today: Win32, OS/2, and POSIX. The first two are proprietary and limited to their
individual platforms (Win32 threads run only under NT and Win95, OS/2 threads
on OS/2). The POSIX specification (IEEE 1003.1c, aka Pthreads) is intended for all
computing platforms, and implementations are available or in the works for
almost all major UNIX systems (including Linux), along with VMS.

POSIX Threads

The POSIX standard defines the API and behavior that all the Pthreads libraries
must meet. It is part of the extended portion of POSIX, so it is not a requirement
for meeting XPG4, but it is required for X/Open UNIX 98, and all major UNIX
vendors have committed to meeting this standard. As of this writing, (7/97)
almost all UNIX vendors have released a library.

Win32 and OS/2 Threads

Both the NT and OS/2 implementations contain some fairly radical differences
from the POSIX standard—to the degree that even porting from one or the other
to POSIX will prove moderately challenging. Microsoft has not announced any
plans to adopt POSIX. There are freeware POSIX libraries for Win32 (see
Commercial Products on page 249), and OS/2 also has an optional POSIX library.
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DCE Threads

Before POSIX completed work on the standard, it produced a number of drafts
which it published for comment. Draft 4 was used as the basis for the threads
library in DCE. It is similar to the final spec, but it does contain a number of
significant differences. Presumably, no one is writing any new DCE code.

Solaris Threads

Also known as “UI threads,” this is the library which SunSoft used in developing
Solaris 2 before the POSIX committee completed their work. It will be available
on Solaris 2 for the foreseeable future, although we expect most applications
writers will opt for Pthreads. The vast majority of the two libraries are virtually
identical.

Performance
Even after reading all these wonderful things about threads, there’s always
someone who insists on asking that ever-so-bothersome question: “Does it
work?” For an answer, we turn to some real, live, shipping programs. Some of
these are described in greater detail in the MT “Case Studies” (see Threads
Newsgroup on page 321).

Operating Systems

OSs are large, complex, yet still highly efficient and robust programs. The various
OSs have been in daily use by millions of users over the past couple of years and
have endured the stress put on them by hundreds of thousands of programmers
who are not known for their generosity towards operating system quirks. Mach,
Windows NT, Windows 95, Solaris, IRIX, AIX, OS/2, and OSF/1 are all threaded,
and many of the other UNIX vendors are also moving toward a threaded kernel.



Concepts 55

2

NFS

Under most UNIX systems, both the NFS client and server are threaded. There
aren’t any standardized benchmarks for the client side, so you’ll have to take our
word for it that it’s faster. On the server side, however, there is the LADDIS
benchmark from SPEC. A great deal of time has been spent optimizing NFS for
multiple CPUs, quite successfully.

Figure 2-14 NFS Performance on MP Machines (SPEC ‘96)

SPECfp 95

The rules for the SPECfp benchmark are that a compiler is allowed to do pretty
much anything it wants to, as long as that same compiler is available to
customers and nobody changes the source code at all. The various Fortran 77/90
MP compilers automatically multithread a program with no user intervention, so
they are legal. You give the compiler the code, completely unchanged, and it
looks to see if there is any possibility of threading it. It is possible to
automatically thread 6 of the 14 SPECfp programs. The results are very
impressive.

Table 2-1 SPECfp95 Results for Alpha 4100 5/466 (SPEC ‘97)

# CPUs Tomcatv Swim Su2cor Hydro2d Mgrid Turb3d

1 23.8 25.4 10.1 10.0 17.5 19.1

2 33.1 46.2 18.0 15.4 24.5 33.4

4 40.3 83.8 30.3 21.3 34.6 54.9
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SPECint_rate95

SPECfp 95 is a reasonable set of benchmarks for single-CPU machines, but it does
not give a very good picture of the overall performance potential of
multiprocessor machines. The SPECrate is intended to demonstrate this by
allowing the vendor to run as many copies of the program as desired (e.g., in one
test with 30 CPUs, Sun ran 37 copies of each program). This does not use the MP
compiler.

Figure 2-15 Running SPECrate_fp95 on an SGI Origin/200, 2000 (SPEC ‘96)

Summary
Threads are a method of allowing concurrent execution in a single address space.
Threads allow parallel execution on multiple processor machines and also make
many complex programs easier to write. Most programs are simple and fast
enough that they don’t need threads, but for those programs that do need them,
threads are wonderful.
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Foundations 3

In which the reader is introduced to the underlying structures upon
which threads are built, the construction of the thread itself, and the
operating system support that allows an efficient implementation.

Implementation vs. Specification
When writing a book of this nature, the authors are often faced with a difficult
decision: How much should they restrict themselves to the pure specifications,
and how much in the way of implementation should they allow to show through?
By talking only about the specifications, the reader is given a pure rendition of
what the library should do and is not misled into thinking that because a
particular implementation did things one way, they all have to be like that1.

Unfortunately, describing only the specification is rather akin to teaching the
concepts of mathematics without ever mentioning the existence of numbers2. It’s
clean and pure, but it’s terribly difficult to comprehend fully. So we have chosen
to bring in implementation details when we think they will aid in comprehension.
The implementation we will refer to most is the Solaris one, largely because we
know it best.

Please keep in mind that these implementation details are included for your
edification, but you should never write programs that depend upon them. They
can change at any time, with no notification. Learn from the implementation,
write to the specification.

Thread Libraries
There are two fundamentally different ways of implementing threads. The first is
to write a user-level library that is substantially self-contained. It will make calls
to system routines, and it may depend upon the existence of certain kernel

1. A specification is a description of what a program is supposed to do. An implementation is an actual program,
which hopefully does what the spec says it should. The U.S. constitution is a specification for a country. The
United States is an implementation.

2. Yes, we are members of the “New Math” generation.
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features, but it is fundamentally a user-level library and contains no “magic”
hooks into secret kernel routines. All of the defining structures and code for the
library will be in user space. The vast majority of the library calls will execute
entirely in user space and make no more use of system routines than does any
user-level library.

The second way is to write a library that is inherently a kernel-level
implementation. It may define all the same functions as in the first case, but these
functions will be completely dependent upon the existence of kernel routines to
support them and may well be almost entirely in kernel space. The user-level
portion of the library will be relatively small compared to the amount of kernel-
level support it requires. The majority of library calls will require system calls.

Both of these methods can be used to implement exactly the same API, and they
overlap in the kinds of kernel support they require. Some implementations of the
POSIX standard are of the first kind, while both OS/2 and Win32 threads are of
the second type.

In either case, the programmer will use an API that is implemented by a threads
library. That library will provide a set of function calls (typically about 50 calls)
that is the programmer’s sole interface to threads. Everything not provided by
those calls must come from the system’s other libraries, meaning that 99% of
writing a multithreaded program consists of writing regular, old-fashioned code
almost the same way as before.

As you read the descriptions of the APIs, you may be struck by the lack of fancy
features. This is intentional. These libraries provide a foundation for writing MT
programs, but not every little thing you might like. They provide you the
resources with which to build more elaborate functions. Spin locks, priority-
inheriting mutexes, deadlock-recovery features, etc., can be built out of these
primitives with relative ease. Thus, if you want very fast, minimal functionality
constructs, they are provided. If you want the slower, more complex constructs,
you can build them.

We begin by talking about the parts of the system that are not inherently related
to threads, but that do define a great deal about how threads must work. We use
the specific example of how Solaris deals with the issues involved in building a
viable interface between kernel-provided functionality and the user-level threads
requirements. Other operating systems and other libraries have chosen different
ways of providing this interface, and we do discuss them in general terms. We
believe that by understanding one implementation in detail, you will acquire the
background needed to fill in the gaps for the other implementations.
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The Process Structure
The only thing the kernel knows about is the process structure. And the process
structure has changed (slightly) since you last looked at it in traditional
multitasking operating systems such as SunOS 4.x (see Figure 3-1).

Figure 3-1 The Process Structure in Traditional UNIX and in Solaris 2

It used to contain the memory map, the signal dispatch table, signal mask, user
ID, group ID, working directory, etc., along with runtime statistics, CPU state
(registers, etc.), and a kernel stack (for executing system calls). In Solaris 2, the
last couple bits have been abstracted out and placed into a new structure called a
lightweight process (LWP)3. So, a process contains all of the above, except for the
runtime statistics, CPU state, and kernel stack, which are now part of the LWP

3. The other operating systems that support user-level threads have different ways of dealing with the same issue.
Some of them copy the entire process structure for each thread, some of them don’t do anything. The concept of
a separate, schedulable entity, such as the LWP, proves to be an excellent pedagogical concept, and the other
designs can be easily described in terms of LWPs. LWP is, of course, a Solaris term.
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structure. A process thus contains some number of LWPs (one for a “traditional”
process, more for a multithreaded process). Just as the threads all share the
process variables and state, the LWPs do the same.

The process structure shown in Figure 3-1 is in kernel space—below the solid line
in the figures. It is not directly accessible by any user code. User code can only
access it via a system call. That restriction allows the kernel to check the legality
of the call and prevent user code from doing things it shouldn’t, either by
intention or mistake. Because a system call is required to access the process
structure information, it is a more costly operation than a function call.

Lightweight Processes
A lightweight process4 can be thought of as a virtual CPU that is available for
executing code. Each LWP is separately scheduled by the kernel. It can perform
independent system calls and incur independent page faults, and multiple LWPs
in the same process can run in parallel on multiple processors.

LWPs are scheduled onto the available CPU resources according to their
scheduling class and priority, as illustrated later in Figure 3-4. Because scheduling
is done on a per-LWP basis, each LWP collects its own kernel statistics—user
time, system time, page faults, etc. This also implies that a process with two LWPs
will generally get twice as much CPU time as a process with only one LWP. (This
is a wild generalization, but you get the idea—the kernel is scheduling LWPs, not
processes.)

An LWP also has some capabilities that are not exported directly to threads, such
as kernel scheduling classes. A programmer can take advantage of these
capabilities while still retaining use of all the thread interfaces and capabilities by
specifying that the thread is to remain permanently bound to an LWP (known as
System Contention Scope Scheduling, and discussed further in Realtime LWPs on
page 97).

LWPs are an implementation technique for providing kernel-level concurrency
and parallelism to support the threads interface. There is no reason for you to
ever use the LWP interface directly. Indeed, you should specifically avoid it. It
gains you nothing but costs you your portability.

4. SunOS 4.x had a library known as the LWP library. There is no relationship between Solaris 2 LWPs and SunOS
4.x LWPs.
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Threads and LWPs

In a typical, traditional, multitasking operating system, a process comprises
memory, the CPU register state, and some system state (file descriptors, user ID,
working directory, etc., all stored in the process structure). When it’s time to
context switch two processes, the kernel saves the registers in the process
structure, changes some virtual memory pointers, loads the CPU registers with
data from the other process structure, and continues.

When context-switching two threads, the registers are saved as before, but the
memory map and the “current process” pointer remain the same. The idea is that
you have a single program, in one memory space, with many virtual CPUs
running different parts of the program concurrently.

What actually makes up a thread are (see Figure 3-2): its own stack and stack
pointer; a program counter; some thread information, such as scheduling priority,
and signal mask, stored in the thread structure; and the CPU registers (the stack
pointer and program counter are actually just registers).

Everything else comes either from the process or (in a few cases) the LWP. The
stack is just memory drawn from the program’s heap. A thread could look into
and even alter the contents of another thread’s stack if it so desired. (Although
you, being a good programmer, would never do this, your bugs might.)

Figure 3-2 The Contents of a Thread

Putting all this together, we end up with a picture such as Figure 3-3. The threads,
their stacks, the code they run, and the global data that they share, are all in user
space, directly under user control. The thread structures are also in user space,
but completely under control of the threads library. There is no legal5 way for a

!#PROLOGUE# 1

save %sp,-136,%sp
sethi %hi(L1D137),%o0
sethi %hi(VAR_SEG1),%o1
ld [%o0+%lo(L1D137)],
sethi %hi(L1D134),%o2
sethi %hi(v.16),%o0
ld [%o2+%lo(L1D134)],
or %o0,%lo(v.16),%o0!
call ___s_wsle,1
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sethi %hi(L1D126),%o1
or %o1,%lo(L1D126),%
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user program to directly access those structures. The library itself, like every
other system library, is just regular user code that you could have written
yourself.

Figure 3-3 How the Threads Library Fits into a Process

The LWPs are part of the process structure, but we show them crossing the line
because this is how we think of their use. They are the main vehicle for
processing from the threads library’s point of view, so we show them in
illustrations crossing that boundary, although they are, strictly speaking, in kernel
space. The actual process structure is completely in kernel space.

As you can deduce, this definition of threads residing in a single address space
means that the entire address space is seen identically by all threads. A change in
shared data by one thread can be seen by all the other threads in the process. If
one thread is writing a data structure while another thread is reading it, there will
be problems (see Race Conditions on page 145).

As threads share the same process structure, they also share most of the operating
system state. Each thread sees the same open files, the same user ID, the same
working directory, each uses the same file descriptors, including the file position
pointer. If one thread opens a file, another thread can read it. If one thread does an
lseek()  while another thread is doing a series of reads on the same file
descriptor, the results may be, uh..., surprising.

5. Because this is in user space, there is no way to prevent you from accessing those structures if you really want
to, unlike the process structure, where you cannot do so. But once again, don’t! If the API doesn’t give you what
you think you need, you’re probably doing something wrong. (Don’t do that!)
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The other important aspect of the threads library being a user-level library is that
it doesn’t change UNIX at all. All UNIX semantics are retained, and old,
nonthreaded programs continue to run exactly the same way they always did.
The same compilers you’re using still work. All the same tools still work the same
way6.

Solaris Multithreaded Model

Figure 3-4 The Solaris Multithreaded Architecture

In this model, threads are the portable application-level interface. Programmers
write applications using the threads library. The library schedules the threads
onto LWPs. The LWPs in turn are implemented by kernel threads7 in the kernel.
These kernel threads are then scheduled onto the available CPUs by the standard
kernel scheduling routine, completely invisibly to the user. At no time will the

6. You may not always like the results, however. The data will be the same as before, but with MT programs you
often discover that what you really want is something different. (See Chapter 15, Tools.)

7. All of the kernels are implemented using a threads library, often similar to Pthreads (Solaris kernel threads are
very similar, DEC uses OFS’s Mach threads which are quite different). These kernel threads are used to
implement LWPs. The kernel also uses them for its own internal tasks, such as the page daemon. The term
“kernel thread” is not used uniformly, and many people use it to refer to LWPs (or logical equivalent). We will
not deal with kernel threads at all.
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programmer ever need to go below the public threads interface. Indeed, doing so
would seriously compromise the portability and upward compatibility of the
program.

System Calls
A system call is the way multitasking operating systems allow user processes to
get information or request services from the kernel. Such things as “Write this file
to the disk” and “How many users are on the system?” are done with system
calls. We divide system calls into two categories, blocking and nonblocking calls
(aka synchronous and asynchronous I/O). In a blocking call, such as “Read this file
from the disk,” the program makes the call, the operating system executes it and
returns the answer, and the program proceeds. If a blocking system call takes a
long time, then the program just waits for it. (Usually another process will be
scheduled while this one is waiting.)

In a nonblocking system call such as “Write this file to the disk without waiting,”
the program makes the call, the operating system sets up the parameters for the
write, then returns, and the program continues. Exactly when the disk write
actually occurs is not particularly important, and the program is able to continue
working. A nonblocking system call may send the process a signal to tell it that
the write is completed. Asynchronous I/O is very important for many
nonthreaded applications, as it allows the application to continue to work, even
while there is I/O pending.

When a process makes a system call, the following events occur:

1. The process traps to the kernel.

2. The trap handler runs in kernel mode, and saves all of the registers.

3. It sets the stack pointer to the process structure’s kernel stack.

4. The kernel runs the system call.

5. The kernel places any requested data into the user-space structure that the
programmer provided.

6. The kernel changes any process structure values affected.

7. The process returns to user mode, replacing the registers and stack pointer,
and returns the appropriate value from the system call.
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Figure 3-5 The Operation of a System Call

Of course, system calls don’t always succeed. They can out-and-out fail (e.g., if
you supply an incorrect argument), in which case they return a failure value and
set errno . Or they can be interrupted by a signal (see Signals on page 66), in
which case the call is forced out of the kernel, the signal handler is run, and the
system call returns EINTR. Presumably the program will see this value and repeat
the system call. (As a diligent programmer, you always check for these things,
right?8)

What happens in a process with multiple LWPs? Almost exactly the same thing.
The LWP enters the kernel, there’s a kernel stack for each LWP, all the usual
things happen, and the system call returns. And if several LWPs make system
calls? They all execute independently and everything works as expected. With the
usual caveats.

If several calls affect the same data, things could turn ugly. For example, if two
threads issue calls to change the working directory, one of them is going to get a
surprise. Or if two threads do independent calls to read() , using the same file
descriptor, the file pointer will not be coordinated by either one of them, resulting
in one thread reading from a different place than it expected. We’ll deal with
these issues later.

8. Nor do we. But we know we should.
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The really nice thing about different threads being able to execute independent
system calls is when the calls are blocking system calls. Ten different threads can
issue ten synchronous reads, all of which block, and yet all the other threads in
the process can continue to compute. Cool.

Signals
Signals are the mechanism that UNIX uses in order to get asynchronous behavior
in a program9. How this works in non-threaded programs is this: Your program is
running along normally, minding its own business. Then something (another
process or the kernel) sends a signal to your process. The kernel then stops your
process in its tracks, and forces it to run some other function (it is probably one
you have written). That function runs, doing whatever it wants, then it can either
return (and your program will then resume right where it left off), or it can do a
siglongjmp()  (in which case your program resumes at the sigsetjmp()
location), or it can just call exit()  (causing the entire process to exit).

So, a typical program will start up in main() , as in Figure 3-6.

Figure 3-6 The Operation of a Signal

When a process makes a system call, the following events occur:

9. Neither NT nor OS/2 implements anything like signals, making interruptible behavior difficult to achieve.
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1. The program will call sigaction()  to declare some function to be the
handler for a given signal (say, function foo()  will handle SIGUSR1). The
kernel will put a pointer to that handler into the process structure’s signal
dispatch table.

2. Next, your program will call sigprocmask()  to tell the kernel which
signals it is willing to accept (here, SIGUSR1, yes; SIGUSR2, no).

3. Finally your program takes off and starts doing what you wrote it to do.

4. Now, when some other process sends your process SIGUSR1, your program
will stop what it’s doing...

5. and run the handler code you wrote. You have no idea what your program
might be doing when the signal arrives. That’s the idea with signals, they
can be completely asynchronous.

6. When the signal handler is done, it typically just does a return, and your
program continues where it left off, as if nothing had happened.

In a threaded program, we will discover that threads allow us to accomplish the
same tasks in a much simpler fashion.

Summary
Threads libraries can be implemented as self-contained user-level libraries or as
kernel-based routines. The same program can be written in either, the difference
being often quite minor. The main distinction of threads vs. processes is that
threads share all process resources and data.
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In which the reader is treated to a comprehensive explanation of the
intricacies in the life of a thread—birth, life, and death. Even death by
vile cancellation. A small program which illustrates all of these stages
concludes the chapter.

Thread Lifecycle
The fundamental paradigm of threads is the same in all of the libraries. In each of
them, the program starts up in the same fashion as single threaded programs
always have—loading the program, linking in the dynamic libraries, running any
initialization sections and finally starting a single thread running main()  (the
main thread). For an MT program, all the same things occur and one of the
libraries linked in will be the threads library. The main function will then be free
to create additional threads as the programmer sees fit.

In the simplest case, you can call the create function with a function to run and an
argument for the function to run on. Everything else will then take default values.
Should you desire to pass your start routine more than a single argument, you
must create a structure and pass the multiple arguments in that. As you can see
from the code fragments below, all of the libraries have very similar creation
functions and operate in very similar fashions.

Conversely, a thread is exited by calling the appropriate thread exit function or
simply returning from the initial function. Beyond the actual call to the create
function, there is no parent/child relationship—any thread can create as many
threads as it pleases and after creation there will be no relationship between the
creator and createe.

Code Example 4-1 A Simple Call to Create a POSIX Thread

pthread_create(&tid, NULL, start_fn, arg);
pthread_exit(status);
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Each thread has a thread ID which may be used to control certain aspects
(scheduling classes, cancellation, signals, etc.) of that thread. (Win32 defines both
a TID and a handle, both of which uniquely identify a thread. The TID is defined
inside the process, the handle across all processes. Some functions use the TID,
others the handle.) POSIX TIDs are of type pthread_t , which is an opaque
datatype and should not be confused with any other datatype (see POSIX Thread
IDs on page 191).

Both OS/2 and Win32 have several different functions to create and exit threads.
These different functions allow them some extra latitude in how much
initialization is done. Unfortunately, the different functions have non-overlapping
sets of functionality, making it somewhat challenging to choose the correct one.
Threads in both OS/2 and Win32 are kernel objects and have access to some
kernel-level resources which are not shared by other threads in the process. For
example, only the thread which creates a window can receive messages from it.
(This seems like an unnecessary burden on the programmer.) POSIX has no such
restrictions.

For Win32, the thread handle is a system-level reference to the thread structure
and it must be closed before that structure can be freed.

Returning Status and Memory

Sometimes you specifically want to wait for a thread to exit. Perhaps you’ve
created 20 threads to do 20 pieces of a task and you can’t continue until they are
all finished. One way to do this, is to call the wait (in POSIX, join) function on

Code Example 4-2 A Simple Call to Create an OS/2 Thread

DosCreateThread(NULL, start_fn, arg, NULL, NULL);
DosExit(EXIT_THREAD, uExitCode);
_beginthread(start_fn, NULL, StackSize, arg);
_endthread();

Code Example 4-3 A Simple Call to Create an Win32 Thread

CreateThread(NULL, NULL, start_fn, arg, NULL, &tid)
ExitThread(status);
_beginthreadx(NULL, 0, start_fn, arg, NULL, &tid);
_endthreadx(status);
_beginthread(start_fn, 0, arg);
_endthread();
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each of the desired thread IDs. The caller will block until each of the specified
threads has exited. The other way is to use normal synchronization functions, (see
Using Semaphores to Count Exiting Threads on page 115).

Figure 4-1 Using pthread_join() and pthread_exit()

In addition to waiting for the threads to exit, the caller can receive a status from
the exiting threads (Win32 and POSIX only). To ensure no deadlocks occur, it
makes no difference if the waiting thread calls the join function first or if the
exiting thread calls the exit function first. Calling return(status)  from the
start routine implicitly calls the exit function with that value.

Not all pthreads can be joined. At creation time, you can specify that you intend
not to join a thread, creating a so-called detached thread. You can specify that you
do intend to do a join, creating a nondetached thread. Any thread can call
pthread_join()  on any other nondetached thread, but the exiting thread can
be joined only once. (In UI threads it was possible to request a join on “any
thread” by passing NULL instead of a thread ID. This was a bad idea and not
continued in POSIX.) The main thread is always a nondetached thread, so it can
be joined.

Win32 and OS/2 do not have this detached thread concept—all threads may be
waited for. In Win32, any thread (except those created with _beginthread() )
can also return status. In OS/2 no thread can return status.

Code Example 4-4 Waiting for Threads to Exit

POSIX Win32 OS/2

pthread_join(T1,) WaitForSingleObject(T1,) DosWaitThread(T1,)

Working Sleeping

T1

T5

pthread_join(T5)pthread_create()

pthread_exit(status)
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Don’t Wait for Threads, Don’t Return Status

When should you wait for a thread? Our opinion is never. Consider: Why do you
care when a thread exits? Because you are waiting for that thread to complete
some task, the results of which some other thread needs. By doing a join on that
thread, you are implicitly assuming that the task will be complete when the
thread exits. While this may indeed be true, it would be conceptually cleaner if
you simply waited for the task itself, using one of the synchronization variables
discussed in Chapter 6, Synchronization. In many of our examples we simply
count the number of threads that exit.

As for returning status, the same argument applies. It isn’t the thread that has
status to return, it’s the task which the thread was executing that has status, and
that status may be handled without calling join.

The one case where you actually do wish to know that the thread has exited is
when you have allocated the thread’s stack yourself and need to free that space.
Here, joining the thread is essential. The one case where you need an actual status
from the thread is when the thread might be cancelled (killed by another thread,
see Cancellation on page 157). A cancelled thread will return status of
PTHREAD_CANCELED.

In all honesty, there are plenty of programs that don’t take our advice and which
work just fine. You don’t have to take our advice either, but you should consider
it before making your decision.

That’s Not a Bug, That’s a Feature!

Nondetached threads are not the most common case, but they are the default. You
have to be careful with this, because it bites. If you try to join on a detached
thread, pthread_join()  will probably return an error (although this is actually
considered a programming error and it may crash!). If you forget to join on a
nondetached thread, however, it will simply remain a zombie, not free its storage,
and you will have a very big memory leak.

You see, a detached thread will clean up after itself upon exit, returning its thread
structure, TSD array, and stack to the heap for reuse. A nondetached thread will
clean up after itself only after it has been joined1. And as you create and exit more
threads, your application will use up more and more of your address space, and
finally die a slow and horrible death, for which you will bear sole responsibility.

1. Sure, it could clean up some of its structures at pthread_exit()  time, but that would imply that we expect
programmers to make this mistake. By doing it this way, it’s actually simpler, because big memory leaks are
much easier to find than small ones.
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It is possible to dynamically change the detach status of a thread
(pthread_detach() ), should you change your mind and decide not to join a
thread. This seems like a bad idea and likely to lead to massive confusion.

Exiting the Process

The semantics of exit()  are retained in MT programs for POSIX, Win32, and
OS/2. When any thread in a process calls exit() , the process exits, returning its
memory, system resources, process structure, all LWPs, etc. If main()  “falls off
the bottom” of the initial thread, it makes an implicit call to exit() , also killing
the process.

When any other thread falls off the bottom of its initial function, it implicitly calls
pthread_exit() , exiting only that one thread. In the special case where the
main thread calls the thread exit function directly, that thread exits but does not
call exit() , and the process continues. This is true for POSIX and Win32, but
OS/2 requires the main thread to stay alive.

Finally, should all user threads exit (the library may create threads for its own
use, they will not be counted), the thread library will detect this and call exit()
itself. This situation is not typical, however, as you will generally be aware of
when it’s time to exit your process, and you should call exit()  explicitly.

Suspending a Thread

UI, Win32, and OS/2 all have a function to force a thread to suspend its execution
for an arbitrary length of time and a second function to cause the thread to
resume (e.g., in UI, thr_suspend()  and thr_continue() ). These functions
were included for the purpose of allowing such things as garbage collectors and
debuggers to gain full control of a process. As such, they are useful, however for
almost any other purpose they are the wrong thing. Because a suspended thread
may hold locks that a controller thread needs, it is almost impossible to use them
effectively. POSIX does not include them in its API. Instead it allows the vendors
to write private versions of these functions in the vendor’s debugging interface
(see Threads Debugger Interface on page 218).
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Cancellation

It is possible for one thread to tell another thread to exit. This is known as
cancellation in POSIX and simply as “killing a thread” in OS/2 and Win32. (UI
threads does not have anything like this.) In theory it’s quite simple. T1 (below)
tells T2 to exit, and it does. There is no relationship between the threads. Maybe
T2 created T1, maybe T3 created both of them, maybe something else.

Figure 4-2 Cancellation

The details of how to make cancellation work correctly, in bounded time, and
without destroying any data is a different story. That part is highly complex and
handled in Chapter 9, Cancellation.

An Example: Create and Join

In the code below we make a series of calls to pthread_create() ,
pthread_join() , pthread_cancel() , and pthread_exit() . The basic code
is very simple and should require little explanation. A series of well-placed calls

Code Example 4-5 Cancellation in the Three Libraries

POSIX OS/2 Win32

pthread_cancel(T1); DosKillThread(T1); TerminateThread(T1);

T1

T2
pthread_cancel(T1)

(pthread_exit)
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to sleep()  arrange for the threads to execute in exactly the order we desire.
Removing those calls will cause the speed and order of execution to change, but
will not affect the correctness of the program.

Figure 4-3 POSIX Thread Create and Join

Things to note about this program include:

• One of the include files is pthread.h . Later we’ll see other include files.

• The use of pthread_self()  to return the thread ID, and thread_name()

to produce a printable string for the TID2.

• All of the threads are time-shared. This is what the constant

PTHREAD_SCOPE_SYSTEM does for us. We’ll explain in detail later.

• All of the threads are joinable (unusual for our programs). This is actually

the default, but we make it explicit with the constant
PTHREAD_CREATE_JOINABLE.

2. The functions prefixed with “thread ” are from our library, thread_extensions.so .
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• We return status values from the different threads (also unusual for us).

Normally we’ll use pthread_exit()  all of the time, but we use return()
in sub_a()  and sub_d()  just to prove it works.

• We test for error return values from a number of functions (e.g.,

pthread_create() ) by using a wrapper function we wrote of a similar
name (e.g., PTHREAD_CREATE() see Return Values and Error Reporting on
page 195).

All code examples in this book are available from the web (see Code Examples on
page 321).

Code Example 4-6 POSIX Thread Create and Join (multi_thr.c)

/*
  Simple program that just illustrates thread creation,

thread exiting,
  waiting for threads, and returning status from threads.
*/

/*
cc -o multi_thr multi_thr.c -L. -R. -g -lpthread -lthread

-lthread_extensions -lposix4
*/

#define _POSIX_C_SOURCE 199506L

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <time.h>
#include “thread_extensions.h”

/* Function prototypes for thread routines */
void *sub_a(void *);
void *sub_b(void *);
void *sub_c(void *);
void *sub_d(void *);
void *sub_e(void *);

pthread_t thr_a, thr_b, thr_c, thr_d, thr_e, thr_main;
pthread_attr_t attr;
int zero;



Lifecycle 77

4

int time1()
{return(time(NULL)-zero);}

void *sub_a(void *arg)
{int err, i;
 pthread_t tid = pthread_self();

 printf(“[%2d] A: \t In thread A [%s]\n”, time1(),
thread_name(tid));

 sleep(1);
 PTHREAD_CREATE(&thr_d, &attr, sub_d, NULL);
 printf(“[%2d] A: \t Created thread D [%s]\n”, time1(),

thread_name(thr_d));

 sleep(3);
 printf(“[%2d] A: \t Thread exiting...\n”, time1());
 return((void *)77); /* Same as pthread_exit((void *)77) */
}

void *sub_b(void *arg)
{pthread_t tid = pthread_self();
 printf(“[%2d] B: \t In thread B [%s]\n”, time1(),

thread_name(tid));

 sleep(4);

 printf(“[%2d] B: \t Thread exiting...\n”, time1());
 pthread_exit(NULL);
}

void *sub_c(void *arg)
{void *status;
 int err, i;
 pthread_t tid = pthread_self();
 char *name = thread_name(tid);

 printf(“[%2d] C: \t In thread C [%s]\n”, time1(), name);
 sleep(2);

 printf(“[%2d] C: \t Joining main thread...\n”, time1());
 if (err=pthread_join(main_thr, &status))

Code Example 4-6 POSIX Thread Create and Join (multi_thr.c)
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   printf(“pthread_join Error. %s”, strerror(err)), exit(1);
 printf(“[%2d] C: \t Main thread [%s] returning status: %d\n”,

time1(), thread_name(main_thr), (int) status);

 sleep(1);

 PTHREAD_CREATE(&thr_b, &attr, sub_b, NULL);
 printf(“[%2d] C: \t Created thread B [%s]\n”, time1(),

thread_name(thr_b));

 sleep(4);
 printf(“[%2d] C: \t Thread exiting...\n”, time1());
 pthread_exit((void *)88);
}

void *cleanup(void *arg)
{pthread_t tid = pthread_self();
 char *name = thread_name(tid);

  printf(“[%2d] D: \t %s cancelled! \n”, time1(), name);
}

void * sub_d(void *arg)
{int err, i;
 pthread_t thr_e;
 void *status;
 pthread_t tid = pthread_self();

 printf(“[%2d] D: \t In thread D [%s]\n”, time1(),
thread_name(tid));

 pthread_cleanup_push(cleanup, NULL);
 pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL);
 pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL);

 sleep(1);
 PTHREAD_CREATE(&thr_e, &attr, sub_e, NULL);
 printf(“[%2d] D: \t Created thread E [%s]\n”, time1(),

thread_name(thr_e));

 sleep(5);

Code Example 4-6 POSIX Thread Create and Join (multi_thr.c)
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/* D should get cancelled before this runs. */
 printf(“[%2d] D: \t Thread exiting...\n”, time1());
 pthread_cleanup_pop(0);
 return((void *)55);
}

void * sub_e(void *arg)
{int err, i;
 void *status;
 pthread_t tid = pthread_self();

 printf(“[%2d] E: \t In thread E [%s]\n”, time1(),
thread_name(tid));

 sleep(3);
 printf(“[%2d] E: \t Joining thread A...\n”, time1());
 if (err=pthread_join(thr_a, &status))
   printf(“pthread_join Error. %s”, strerror(err)), exit(1);
 printf(“[%2d] E: \t Thread A [%s] returning status: %d\n”,

time1(), thread_name(thr_a), (int) status);

 sleep(2);

 printf(“[%2d] E: \t Joining thread C...\n”, time1());
 if (err=pthread_join(thr_c, &status))
   printf(“pthread_join Error. %s”, strerror(err)), exit(1);
 printf(“[%2d] E: \t Thread C [%s] returning status: %d\n”,

time1(), thread_name(thr_c), (int) status);

 sleep(2);
 printf(“[%2d] E: \t Joining thread D...\n”, time1());
 if (err=pthread_join(thr_d, &status))
   printf(“pthread_join Error. %s”, strerror(err)), exit(1);
 if ((void*) status == (void*) PTHREAD_CANCELED)
   printf(“[%2d]E:Thread D [%s] returning status:PTHREAD_CANCELED”,

 time1(), thread_name(thr_c));
 else
   printf(“[%2d] E: \t Thread D [%s] returning status: %d\n”,

  time1(), thread_name(thr_c), (int) status);

 sleep(1);
 printf(“[%2d] E: \t Thread exiting...\n”, time1());
 pthread_exit((void *)44);
}

Code Example 4-6 POSIX Thread Create and Join (multi_thr.c)
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main()
{
 int err;

 zero = time(NULL);
 main_thr = pthread_self();
 printf(“Time Thread \t Event\n”);
 printf(“==== ====== \t =====\n”);
 printf(“[%2d] Main: \t Started [%s]\n”, time1(),

thread_name(main_thr));

 PTHREAD_ATTR_INIT(&attr);
 pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 sleep(1);
 PTHREAD_CREATE(&thr_a, &attr, sub_a, NULL);
 printf(“[%2d] Main: \t Created thread A [%s]\n”, time1(),

thread_name(thr_a));

 sleep(1);
 PTHREAD_CREATE(&thr_c, &attr, sub_c, NULL);
 printf(“[%2d] Main: \t Created thread C [%s]\n”, time1(),

thread_name(thr_c));

 sleep(2);
 printf(“[%2d] Main: \t Cancelling thread D [%s]\n”, time1(),

thread_name(thr_c));
 pthread_cancel(thr_d);

 sleep(1);
 printf(“[%2d] Main: \t Thread exiting...\n”, time1());
 pthread_exit((void *) NULL);
}

Code Example 4-6 POSIX Thread Create and Join (multi_thr.c)
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Summary
The basic paradigm of thread creation is to build a new entity which will run a
given function on a given argument. Threads can wait for each other, kill each
other, or simply exit themselves. We showed a small program which illustrated
each of these.
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In which we explain the myriad details of the different scheduling
models and the various alternative choices that could be made. Then we
describe context switching in detail. Finally, we delve into gruesome
detail of the various POSIX options and parameters. There is a light at
the end of the tunnel, however.

Different Models of Kernel Scheduling
There are three primary techniques for scheduling threads onto kernel resources
(and indirectly, CPUs). Two of them involve the use of LWPs (or something
similar). These are the techniques from which the designers of the various
operating systems had to choose. They wanted a model that would adequately
support the complexity of the operating system and still meet the various
demands that dedicated programmers would make. All of these three models are
perfectly reasonable and give the programmer different sets of trade-offs, while
building programs that do exactly the same things with different levels of
efficiency.

All three of these models are in use by different vendors.

Many Threads on One LWP

The first technique is known as the “Many-to-One” model. It is also known as
“co-routining1.” Numerous threads are created in user space, and they all take
turns running on the one LWP. Programming on such a model will give you a

1. The exact use of this term varies from book to book, but in broad terms, this is accurate.
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superior programming paradigm, but running your program on an MP machine
will not give you any speedup, and when you make a blocking system call, the
whole process will block. However, the thread creation, scheduling, and
synchronization is all done 100% in user space, so it’s fast and cheap and uses no
kernel resources. The DCE threads library followed this model on HP-UX 10.20.

There is a clever hack2 that is used for blocking system calls in some threads
libraries (e.g., DCE threads) that is worth mentioning. The library puts a “jacket”
routine around each blocking system call. This jacket routine replaces the
blocking system call with a nonblocking one. Thus, when a thread makes a
blocking system call, the library can put that thread to sleep and allow another
one to run. When the signal comes back from the kernel, saying that the system
call is complete, the library takes care of figuring out which thread made the call,
waking up that sleeping thread, and everything proceeds as if the thread had
blocked in the first place. It’s hassle-free async I/O!

One Thread per LWP

The “One-to-One” model allocates one LWP3 for each thread. This model allows
many threads to run simultaneously on different CPUs. It also allows one or more
threads to issue blocking system calls while the other threads continue to
run—even on a uniprocessor.

This model has the drawback that thread creation involves LWP creation, hence it
requires a system call, as does scheduling and synchronization. In addition, each
LWP takes up additional kernel resources, so you are limited as to the total
number of threads you can create. Win32 and OS/2 use this model. Some POSIX
implementations (DCE, IBM’s draft 7, Peterson’s LinuxThreads) also use it.

2. “Speak for yourself! I had to code and debug the monster and I still have to explain it to users.”—Dave
Butenhof, reviewing this section.

3. Remember, when you read about how a vendor implements this model, the vendor may not distinguish
between the thread and the (possibly conceptual) LWP. The vendor may simply refer to the thread and expect
you to understand that it’s a single entity containing everything.
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Many Threads on Many LWPs (Strict)

The third model is the strict “Many-to-Many” model. Any number of threads are
multiplexed onto some (smaller or equal) number of LWPs. Thread creation is
done completely in user space, as is scheduling and synchronization (well,
almost). The number of LWPs may be tuned for the particular application and
machine. Numerous threads can run in parallel on different CPUs, and a blocking
system call need not block the whole process. As in the Many-to-One model, the
only limit on the number of threads is the size of virtual memory4. No one
actually uses this strict version.

The Two-Level Model

The “Two-Level Model” (known commonly as the “Many-to-Many” model), is a
strict Many-to-Many model with the ability to specifically request a One-to-One
binding for individual threads.

This model is probably the best of the choices. Several operating systems now use
this model (Digital UNIX, Solaris, IRIX, HP-UX). Win32 has a “fibers” library
which sits on top of its threads and gives a rough approximation to the two-level
model. However, fibers has a completely different API and requires explicit
context-switching, so it’s best not to consider them to be threads. The two-level
model is a bit more work for the library writers than the other models, but gives
the programmer the optimal model to work with.

4. On a 32-bit machine, this is roughly 2 GB (total virtual memory) / 8 KB (minimum stack size) = 256,000 threads.
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Thread Scheduling
As we have just seen, there are two basic ways of scheduling threads: process
local scheduling (known as Process Contention Scope, or Unbound Threads—the
Many-to-Many model) and system global scheduling (known as System Contention
Scope, or Bound Threads—the One-to-One model). These scheduling classes are
known as the scheduling contention scope, and are defined only in POSIX. Process
contention scope scheduling means that all of the scheduling mechanism for the
thread is local to the process—the threads library has full control over which
thread will be scheduled on an LWP. This also implies the use of either the Many-
to-One or Many-to-Many model.

System contention scope scheduling means that the scheduling is done by the
kernel. POSIX allows both (it doesn’t require both), while both Win32 and OS/2
specify only global scheduling.

Globally scheduled threads also have a policy and a priority associated with them
which further refines the scheduling details at the kernel level. These policies are
part of the optional portion of the POSIX specification, and currently none of the
vendors implement every possible option.

The whole subject of scheduling is fraught with problems. Both the scheduling of
threads, and the scheduling of processes themselves have problems in all
operating systems that have never been resolved to everyone’s satisfaction. In
brief, there are two basic situations in which we find ourselves.

The first case (the “independent” case) is when two processes (or threads) are
running almost completely independently—neither ever has anything it wants
from the other, and both would happily chew up every CPU cycle they could get.
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For example, consider two developers working on different projects on the same
machine. Time-slicing is necessary for both of them to get a fair share of the
machine.

Figure 5-1 The Two Basic Types of Scheduling

The other situation (the “dependent” case) is when the two processes do depend
very directly upon each other. One process needs another to perform some task
for it before it can continue—a text editor cannot do anything until the file system
has delivered it files to work on, and the file system has nothing to do until the
text editor requests some services from it. In such a case, time-slicing is of no use
at all. In the figure above, we show two independent threads being time sliced,
and two dependent threads which require some resource. In the second case, T1 is
allowed to run as long as it wants to. It could run forever, if only it didn’t need to
exchange that resource with T2.

A real machine is typically faced with both situations all the time, along with the
judgements of users and system administrators as to the relative importance of
the various processes.

We will not attempt to solve these problems here. Suffice it to say that the use of
both priorities and time-slicing results in less than perfect scheduling algorithms,
but we have done fairly well with them over the past 30–40 years nonetheless.
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We will now go into some of the gory details of how scheduling is done. The
major point that we are going to make is that most threaded programs are of the
“dependent” case above, and scheduling is accomplished mainly by dependence
upon the program’s need for synchronization.

Process Contention Scope

PCS scheduling is done by the threads library. The library chooses which
unbound thread will be put on which LWP. The scheduling of the LWP is (of
course) still global and independent of the local scheduling. While this does mean
that unbound threads are subject to a sort of funny, two-tiered scheduling
architecture, in practice, you can ignore the scheduling of the LWP and deal
solely with the local scheduling algorithm.

There are four means of causing an active thread (say, T1) to context switch. Three
of them require that the programmer has written code. These methods are largely
identical across all of the libraries.

1. Synchronization. By far the most common means of being context switched
(a wild generalization) is for T1 to request a mutex lock and not get it. If the
lock is already being held by T2, then the T1 will be placed on the sleep
queue, awaiting the lock, thus allowing a different thread to run.

2. Preemption. A running thread (T6) does something that causes a higher
priority thread (T2) to become runnable. In that case, the lowest priority
active thread (T1) will be preempted, and T2 will take its place on the LWP.
The ways of causing this to happen include releasing a lock, changing the
priority level of T2 upwards or of T1 downwards.

3. Yielding. If the programmer puts an explicit call to sched_yield() in the
code that T1 is running, then the scheduler will look to see if there is another
runnable thread (T2) of the same priority (there can’t be a higher priority
runnable thread). If there is one, then that one will then be scheduled. If
there isn’t one, then T1 will continue to run.

4. Time-Slicing. If the vendor’s PCS allows time-slicing (like Digital UNIX,
unlike Solaris), then T1 might simply have its time slice run out and T2 (at
the same priority level) would then receive a time slice.

A bit of reflection will show the reader that two of the methods can be executed
entirely in user space, with the thread-level context switch requiring about 10
microseconds on a 167 MHz UltraSPARC. Preemption, however, is a bit more
involved and requires a system call to execute (see Preemption on page 96).
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In actual practice, you, the programmer, will spend very little time thinking about
issues of scheduling. When a thread needs a common resource, it uses a lock. If it
doesn’t get the lock, it blocks, and another thread runs. Sooner or later the owner
will release the lock, and the first thread will become runnable again.

The scheduler for PCS threads has a very simple algorithm for deciding which
thread to run. Each thread has a priority number associated with it. The runnable
threads with the highest priorities get to run. These priorities are not adjusted by
the threads library. The only way they change is if the programmer writes an
explicit call to pthread_setschedparam() . This priority is an integer in C. We
don’t give you any advice on how to choose the value, as we find that we don’t
use it much ourselves. You probably won’t, either.

The natural consequence of the above discussion on scheduling is the existence of
four scheduling states for threads. (The astute reader has already figured this all
out and may skip this section.)

A thread may be in one of the following states:

Active: Meaning that it is on an LWP5.

Runnable: Meaning that it is ready to run, but there just aren’t enough LWPs for
it to get one. It will remain here until an active thread loses its LWP or until a new
LWP is created.

Sleeping: Meaning that it is waiting for a synchronization variable.

Stopped (not in POSIX): Meaning that a call to the suspension function has been
made. It will remain in this state until another thread calls the continue function
on it.

Zombie: Meaning that it is a dead thread and is waiting for its resources to be
collected. (This is not a recognizable state to the user, though it might appear in
the debugger.)

5. Whether or not the LWP is on a CPU is irrelevant.
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Figure 5-2 Some Process Contention Scope Threads in Various States

In Figure 5-2, we see a process with eight PCS threads and three LWPs. Five of the
threads want to run, but only three can do so. They will continue to run as long
as they want or until one of them makes a threads library call that changes
conditions, as noted above. The two runnable threads are of equal or lower
priority than the three active ones, of course. Should one of the sleeping or
stopped threads be made runnable, then whether they actually become active will
be a question of priority levels. If the newly runnable thread is of higher priority
than one of the active threads, then it will displace the lowest priority active
thread. If it is of lower priority than all of them, then it won’t. If it is of equal
priority, then we make no guarantees. You should not write a program assuming
anything about this condition.

The LWPs that are to be used by the unbound threads are set up in a pool and are
identical in all respects. This setup allows any thread to execute on any of the
LWPs in this pool. You should not change any attributes of these LWPs (e.g.,
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scheduling class, “nice” level), as you don’t know which thread will be running
on them at any given time. Should you want a special LWP, you’ll want a bound
thread to run on it.

Figure 5-3 Simplified View of Thread State Transitions

When a PCS thread exits, or goes to sleep, and there are no more runnable
threads, the LWP that was running the thread goes to sleep in the kernel. When
another thread becomes runnable, the idling LWP wakes up and runs it. Should
an LWP remain idle for an extended length of time (five minutes for Solaris 2.5),
the threads library may kill it. You will never notice this. Should your application
become more active later, more LWPs will be created for you.

When a SCS thread blocks on a synchronization variable, its LWP must also stop
running. The LWP does so by making a system call that puts it to sleep. When the
synchronization variable is released, the thread must be awakened. This is done
by making a system call to wake up the LWP. The LWP then wakes up, and the
thread resumes running. Much the same thing happens when a locally scheduled
thread blocks on a cross-process synchronization variable. In both cases the LWP
goes to sleep in the kernel until the synchronization variable is released. This
description is pretty much the same for Win32, and OS/2. Only the names are
different.

ACTIVE

SLEEPINGSTOPPED

RUNNABLE

Sleep

Dispatch

Preempt

Stop

Continue

Stop

Stop

Wake up

Continue

ZOMBIEExit



92 Threads Primer

5

System Contention Scope

An SCS thread is nothing more than a typical thread that is permanently bound
to a specific LWP. The LWP runs only that thread and that thread runs only on
that LWP. This means that this thread is never merely runnable. It is either
sleeping on a synchronization variable, suspended, or active. It is never
prevented from getting time (that is, “virtual time”—time on an LWP) when it
wants it.

Figure 5-4 Some System Contention Scope Threads in Various States

Both OS/2 and Win32 have only SCS scheduling, and it is completely handled by
the normal kernel scheduler. There are a number of different scheduling classes
for the different operating systems (batch, timesharing, interactive, realtime, etc.),
which we will touch on later. Suffice it to say that with a SCS thread, you can set
the kernel-level scheduling class and priority using the process-level API.

So, when do you want to use SCS threads? The answer is unclear. For some time
the common wisdom was “Only use globally scheduled threads when an event
outside the process requires immediate processing by that particular thread or
when you want time-slicing. If you use globally scheduled threads everywhere,
your program will use a lot more kernel resources than it presumably needs.”
Since that was first said, we have had some reservations. After spending more
time with actual programs, we’re more inclined to say the opposite! Use PCS
threads only when you are going to have very large numbers of threads and use
SCS threads normally.
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This change of mind is not as egregious as it may sound. The logic is that if your
program is computationally intensive, then you’re probably expecting all threads
to be either computing or waiting for I/O 95% of the time. So you’re unlikely to
be doing much local context switching anyway. On top of this, a number of
empirical studies indicate that SCS threads end up being faster (we don’t know
why!). Finally, if you have a kernel-level LWP tracing tool, it’s very nice to know
which thread will be on which LWP.

The primary conclusion in both cases is that you should see no particular
differences between locally and globally scheduled threads as long as there are
sufficient LWPs.

Context Switching
Context switching is a rather complicated concept and has many details of
significance, so it is difficult to explain in just a few paragraphs. Nonetheless, we
shall try. If you don’t feel that you have a firm grasp of how it works, you should
go bug a friend to explain all of the subtle nuances. Threads or no threads, you
should understand this concept thoroughly.

A context switch is the act of taking an active thread off its LWP and replacing it
with another one that was waiting to run. This concept extends to LWPs and
traditional processes on CPUs, also. We will describe context switching in
traditionally, process/CPU terms.

The state of a computation is embodied in the computer’s registers—the program
counter, the stack pointer, general registers, along with the MMU’s (Memory
Management Unit) page tables. These, plus the memory contents, disk files, and
other peripherals, tell you everything about the computer. When it’s time to
context switch two traditional processes, all the register state must be changed to
reflect the new process that we wish to run. It works approximately like this:

All the current registers are stored into the process structure for P1.

All the stored register values from the process structure for P2 are loaded
into the CPU’s registers.

The CPU returns to user mode, and voila! P1 is context switched out and P2
is context switched in and running.

All the other data in the process structure (working directory, open files, etc.)
remains in the process structure where it belongs. If a process wishes to use that
data, it will reference it from the process structure. When two LWPs in the same
process context switch, all of the above happens in much the same fashion.
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Notice also that a context switch must be done by the CPU itself. One CPU cannot
do the context switch for another. CPU1 can send an interrupt to CPU2 to let it
know that it should context switch, but CPU1 cannot actually change the registers
in CPU2. CPU2 has to want to context switch.

Finally, context switching for PCS threads involves much the same procedure. A
thread (T1) decides that it has to context switch (perhaps it is going to sleep on a
synchronization variable). It enters the scheduler. The CPU stores its register state
into the thread structure for T1, then it loads the registers from another thread
(T2) into the CPU and returns from the scheduler as T2. No system calls need be
involved. It is possible that it happens 100% in user space and is very fast.

It may be a bit unclear what the role of the LWP is when threads context switch.
The role is invisible. The threads save and restore CPU registers with no regard to
the LWP at all. The threads scheduler does not do anything to the LWP structure.
Should the operating system decide to context switch the LWP, it will do so
completely independently of what the LWP happens to be doing at that time.
Should two threads be in the middle of context switching when the kernel
decides to context switch the LWP, it still makes no difference. The threads’
context switch will just take a little longer.

Consider the situation in Figure 5-5. Three threads are runnable on two LWPs at
time 0. Thread T1 holds a mutex, M. Clearly, T1 and T2 will be the active threads,
as they have the highest priorities. We’ll imagine that T1 is on LWP1, and T2 on
LWP2, while T3 is on the runnable queue.

Figure 5-5 How a Context Switch Works

Approaching time 1, T2 attempted to lock M and failed. So, as part of the code for
pthread_mutex_lock() , T2 put itself onto the sleep queue for M, then called
the scheduler. The scheduler code ran (still as T2) and decided to run T3. Next,
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the scheduler stored away the CPU registers into T2’s thread structure and loaded
the registers from T3’s. (At this particular instant, it’s not defined which thread is
running on LWP2, and it’s not important, either.) At time 1, the scheduler code
finishes its work and returns with T3 running on LWP2.

At time 2, T1 releases the mutex. As part of the code for
pthread_mutex_unlock() , it takes the first thread off of M’s sleep queue (T2)
and makes it runnable and releases the mutex. Finally, it calls the scheduler.

The scheduler notices that there’s a runnable thread (T2) that has a higher priority
than one of the active threads (T3). The scheduler then sends a signal in order to
preempt the thread on LWP2. Now the scheduler has done its work. It returns,
and T1 continues to run. This is the state of the world at time 2 (with a signal
pending).

For some short period of time, T3 continues to run. When the signal arrives from
the kernel, T3 is interrupted and forced to run the signal handler. That, in turn,
calls the scheduler, which context switches T3 out and T2 in. And that’s it! At
time 3, T1 and T2 are both active, T3 is runnable, and T2 holds the mutex.

There are a couple things to notice here. There’s no guarantee that T2 will get the
mutex. It’s possible that T1 could have reclaimed it; it’s even possible that T3
could have snatched it away just before the signal arrived. If either of these
events occurred, the net result is that a bit of time would have been wasted, but
they would both work perfectly. This scenario works as described, irrespective of
the number of CPUs. If this runs on a multiprocessor, it will work exactly the
same way as it does on a uniprocessor, only faster.

In this example, we have described two context switches. The first one was
voluntary—T2 wanted to go to sleep. The second was involuntary (pre-
emptive)—T3 was perfectly happy and only context switched because it was
forced to.
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0

Held?
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1
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2 lock
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3 lock
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Preemption

Preemption is the process of rudely kicking a thread off its LWP (or an LWP off its
CPU) so that some other thread can run instead. (This is what happened at time
3.) For SCS threads, preemption is handled in the kernel by the kernel scheduler.
For PCS threads, it is done by the thread library. Preemption is accomplished by
sending the LWP in question a signal specifically invented for that purpose6. The
LWP then runs the handler, which in turn realizes that it must context switch its
current thread and does so. (You will notice that one LWP is able to direct a signal
to another specific LWP in the case where they are both in the same process. You
should never do this yourself. You may send signals to threads, but never to
LWPs.)

Preemption requires a system call, so the kernel has to send the signal, which
takes time. Finally the LWP, to which the signal is directed, has to receive it and
run the signal handler. Context switching by preemption is involuntary and is
more expensive than context switching by “voluntary” means. (You will never
have to think about this while programming.)

The above discussion of context switching and preemption is accurate for all the
various libraries. It is accurate for threads on LWPs, and for LWPs (or traditional
processes) on CPUs, substituting the word “interrupt” for “signal.”

How Many LWPs?

The UI threads library has a call, thr_setconcurrency() , which tells the
library how many LWPs you’d like to have available for PCS threads. (The
X/Open extension to Pthreads includes pthread_setconcurrency() .) If you
set the number to 10, and you have nine threads, then when you create a tenth
thread, you’ll get a tenth LWP. When you create an 11th thread, you won’t get
another LWP. Now the caveat. This is a hint to the library as to what you’d like.
You may not get what you ask for! You might even get more. Your program must
run correctly without all the LWPs you want, though it may run faster if it gets
them. In practice, this is an issue only when your program needs a lot of LWPs.

You’ve got the power, but how do you use it wisely? The answer is totally
application dependent, but we do have some generalities. (N.B.: Generalities. If
you need a highly tuned application, you’ve got to do the analysis and
experimentation yourself.) We assume a dedicated machine.

6. In Solaris, it’s SIGLWP. This is a kernel-defined signal that requires a system call to implement. Digital UNIX
uses a slightly different mechanism, but the results are the same.
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• If your program is completely CPU-bound, then one LWP per CPU will give

you maximum processing power. Presumably you’ll have the same number
of threads.

• If your program is highly CPU-bound and you do some I/O, then one LWP

per CPU and enough to cover all simultaneous blocking system calls7 is
called for.

• If your program is only I/O bound, then you’ll want as many LWPs as

simultaneous blocking system calls.

Realtime LWPs

Just because a thread is bound to an LWP does not imply that the LWP is going to
be scheduled on a CPU immediately. Depending upon the nature of your
application requirements, you may need to alter the kernel-level scheduling
priority of that LWP. If you merely need to ensure that it gets a CPU within a
second, then relying upon the normal time-slicing scheduler is probably
sufficient. If response is required on the order of 100 ms, then simply raising the
timesharing class priority of the LWP is probably sufficient.

It’s when you require response in the 2–100 ms range that things get interesting.
You’ll need to put the LWP into the realtime scheduling class. You’ll want to do
all of the typical realtime tricks—meaning no blocking system calls, probably no
I/O8, no paging (you’ll need to lock down all the memory that your thread will
use: functions, stack, data.), etc. (“Etc.” means that there is plenty more involved
that we haven’t thought about, but that you’d better. Realtime processing is a
tricky thing; be very careful!) Both Win32 and OS/2 also have realtime scheduling
classes.

POSIX defines three scheduling classes for realtime threads, SCHED_RR,
SCHED_FIFO, and SCHED_OTHER. They are all optional and are not implemented
in all of the current operating systems (e.g., Digital UNIX and IRIX do all three,
Solaris does only SCHED_OTHER). In actual practice, the two optional classes are
quite reasonably replaced with the existing realtime scheduling algorithms. They
are only interesting when you have several threads with the same realtime
priority level which are competing for the CPU. This is very unusual.

7. Blocking system calls include all calls to the usual system calls such as read() , but also any thread that blocks
on a cross-process synchronization variable should be counted. Bound threads are independent of this, as they
each have their own LWP.

8. For I/O, you’d typically set up the buffers in the realtime thread but then allow a normal thread to execute the
I/O call on those buffers.



98 Threads Primer

5

SCHED_FIFO

Assume a realtime situation such as in Figure 5-6, where T1 is of highest priority.
It gets a CPU whenever it is runnable (like now). T2 is currently blocked, and T3
and T4 are of lower priority and get a CPU only when the others don’t want it. T3
was the first one to go onto the queue, so it will always get a CPU before T4 does.

If T1 blocks, then T4 will get a CPU. As soon as T1 unblocks, then T4 will lose
that CPU. Should T2 unblock, then T3 will lose its CPU, but will regain it as soon
as T2 blocks again. There is no time slicing and threads never change their
priorities (unless the programmer makes a call to pthread_setschedparam() ).

Figure 5-6 Realtime Scheduling Operation

SCHED_RR

This is much the same as SCHED_FIFO, save that there is time slicing and threads
rotate in their queues. So, in Figure 5-6, after one time slice, T3 will lose the CPU
and T4 will get to run. At the end of T4’s time slice, T3 will get to run again. T1,
being of higher priority, will continue to run as long as it wants.

Should T1 block or T2 unblock, the behavior will be identical to SCHED_FIFO.

T1 CPU1

T3 T4

T2

CPU2

Sleeping Runnable

Realtime Priority Queue
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SCHED_OTHER

POSIX puts no limits on the behavior of this option. In Solaris, this is identical to
SCHED_FIFO, save that no guarantee is made about which of T3 or T4 will run. In
Figure 5-6, should T2 unblock, then T3 will lose its CPU. When T2 blocks again,
there is no guarantee which of T3 or T4 will run, but the chosen thread will be
able to run as long as it wants. Other systems do different mappings.

Specifying Scope, Policy, Priority, and Inheritance

There are four aspects of scheduling attributes (see Attribute Objects on page 185)
which you can set when creating a new thread. You can set the scheduling:

Scope pthread_attr_setscope()  allows you to select either
PTHREAD_SCOPE_PROCESS (local scheduling, unbound threads)
or PTHREAD_SCOPE_SYSTEM (global scheduling, bound threads).

Policy pthread_attr_setschedpolicy()  allows you to select
SCHED_RR, SCHED_FIFO, or SCHED_OTHER, or other
implementation-defined policies.

Priority pthread_attr_setschedparam()  allows you to set the priority
level of a thread by setting the sched_param  struct element
param.sched_priority . You can also change the parameters of
a running thread via pthread_setschedparam().  POSIX gives
no advice on how to use the priority levels provided. All you know
is that for any given policy, the priority level must be between
sched_get_priority_max( policy)  and
sched_get_priority_min( policy).

Inheritance pthread_setinheritsched()  allows you to specify if the
scheduling policy and parameters will be inherited from the
creating thread (PTHREAD_INHERIT_SCHED), or will be set
directly by the other functions (PTHREAD_EXPLICIT_SCHED).

Unless you are doing realtime work, only scope is of interest, and that will almost
always be set to PTHREAD_SCOPE_SYSTEM. POSIX does not specify default
values for these attributes, so you should really set all four.

Avoid Realtime

One place where you might require a realtime thread is when you have the
undivided attention of a user and are doing constant updating (e.g., mouse
tracking, video or audio playback). Another place would be where you are doing
machine feedback and control (e.g. autonomous vehicle navigation, robotics).
Other places include where you are doing realtime data collection with analysis.
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Places you might think you need it, but don’t, include updating displays with the
divided attention of a human (if you’re 100 ms late in seeing the latest from the
stock ticker, no big deal). Avoid using the realtime class if you possibly can.

Allocation Domains

POSIX recognizes the desire of some programmers for closer control over the
scheduling of LWPs onto CPUs. Unfortunately there is little convergence on the
methods of doing so by the vendors, so there is little that POSIX can say about it.
Basically POSIX defines allocation domains, which are sets of CPUs. The
programmer then specifies that certain LWPs are allowed to execute on the CPUs
in the chosen domains. All of these functions are implementation-specific.

Do allocation domains really gain you anything? In certain realtime applications,
yes. Otherwise, probably not. Our opinion is that you are more likely to bog your
program down with excessive complexity than to improve it if you use them in
most programs.

Binding LWPs to Processors

It’s often possible to ensure that a given LWP will always run on a selected
processor. It’s also possible to ensure that a given LWP will run to the exclusion of
all other LWPs in all processes by putting it into the realtime class. Doing both
effectively binds the processor to the LWP so long as the LWP wants to run.

The question of when these things are useful has a somewhat tricky answer, and
it changes with new operating system releases. If schedulers worked perfectly
and had ESP, you would never bind an LWP to a CPU. In practice, it’s sometimes
otherwise.

Happiness Is a Warm Cache

The main issue is that of cache memory latency. The current batch of PCs and
workstations have external caches of significant size (typically 1 - 4 megabytes).
To completely replace the contents of such a cache can take a very long time
(upwards of 100 ms, depending upon individual architecture). If an LWP was
running on CPU 0 and it was context switched off for a short time, then the vast
majority of that cache will still be valid. So, it would be much better for that LWP
to go back onto CPU 0.

The normal schedulers in the various OSs endeavor to do precisely that via
processor affinity. Solaris, for example, will delay running an LWP on CPU 1,
should that LWP have previously been on CPU 0. If CPU 0 becomes available
relatively quickly (currently, 30 ms—three clock ticks), then that LWP will be put
back on CPU 0. If CPU 0 does not become available within that time frame, then
the LWP will be scheduled on whatever CPU is available.
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We know of some instances where it has proven valuable to do processor binding
of LWPs. If you are considering this, test first. You should not even consider processor
binding unless you already know that there’s a clear problem of this nature. And you
must be aware that everything may be different on a different architecture or
different OS release. The details of these issues are well beyond the scope of this
book, and we wish to caution you that it is rare for anyone to have to address
these issues.

When Should You Care About Scheduling?
There are times when you will want to deal with scheduling directly, but those
times are few and far between for any of the libraries. If you find yourself
thinking about this a lot, you’re probably doing something wrong. Some
examples:

It is possible to design a server program where each thread runs forever, picking
up requests off the net, processing them, and returning for more. It is possible for
an unbound thread to get starved out in this situation. Here you would want to
add LWPs for the purpose of effecting a time-slicing scheme.

A program that used a set of threads to produce data, and another single thread
to push that data out to some device in real time, would need to ensure that the
output thread got to run when it needed to. Here a higher priority would be in
order. In the Delphax/Uniq case study (see Vendor’s Threads Pages on page 321),
where they built a high-speed printer driver, they found it worthwhile to make a
bound thread and put the LWP into the realtime class.

Scheduling is not a topic you will spend much time thinking about. In spite of all
the attention we just paid to explaining it, you will not write much (if any!) code
to deal with it. If the library writers did their job well in writing the library,
everything will “just work,” without any effort on your part at all. In most MT
programs, the different threads all depend upon one another, and it doesn’t really
matter which one runs first. Sooner or later, the running threads will need
something from the other threads, and they will be forced to sleep until those
other threads have produced that something.

Summary
Several scheduling models exist, most of which are overkill. For all but truly
exceptional programs, the normal vendor scheduler does a fine job and that,
along with proper synchronization, means we don’t have to worry about
scheduling at all. Realtime folks are on their own.
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In which the reader is led on a hunt for the intimidating synchronization
variable and discovers that it is not actually as frightening as had been
thought. Programs illustrating the basic use of the POSIX primitives are
shown.

Synchronization Issues
In order to write any kind of concurrent program, you must be able to reliably
synchronize the different threads. Failure to do so will result in all sorts of ugly,
messy bugs. Without synchronization, two threads will start to change some data
at the same time, one will overwrite the other. To avoid this disaster, threads must
be able to reliably coordinate their actions.

Code Example 6-1 Why Synchronization is Necessary

Atomic Actions and Atomic Instructions

Implementation of synchronization requires the existence of an atomic test and set
instruction in hardware. This is true for uniprocessor, as well as multiprocessor,
machines. Because threads can be preempted at any time, between any two
instructions, you must have such an instruction. Sure, there might be only a 10
nanosecond window for disaster to strike, but you still want to avoid it.

A test and set instruction tests (or just loads into a register) a word from memory
and sets it to some value (typically 1), all in one instruction with no possibility of
anything happening in between the two halves (e.g., an interrupt or a write by a
different CPU). If the value of the target word was 0, then it gets set to 1 and you

Thread 1 Thread 2

bal = GetBalance(account); bal = GetBalance(account);
bal += bal * InterestRate; bal += deposit;

PutBalance(account, bal);
PutBalance(account, bal);
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are considered to have ownership of the lock. If it already was 1, then it gets set
to 1 (i.e., no change) and you don’t have ownership. All synchronization is based
upon the existence of this instruction.

Code Example 6-2 Assembly Code for the Basic Mutual Exclusion Lock

In SPARC machines, the test and set instruction is ldstub  (“load and store
unsigned byte”), which loads a byte into a register while setting that byte to all
ones. The code above shows how it can be used to create a basic lock. The
important thing to understand here is that no matter how many different threads
on how many different CPUs call ldstub  at the same time, only one of them will
get ownership. Exactly how the go_to_sleep  function works is unimportant.
Indeed, even if it did nothing at all, and just jumped right back to try , the
locking code would still work (see Spin Locks on page 135). Notice that there is
nothing that guarantees a thread which goes to sleep will get the lock when it
wakes up.

Other types of atomic instructions are used on other machines, most of which are
logically equivalent. The one type of instruction which is substantially different is
the compare and swap style instruction, which compares one word of main memory
with a register and swaps the contents of that word with a second register when
equal. This type of instruction allows some other types of atomic actions which
are qualitatively distinct (see LoadLocked/StoreConditional and Compare and Swap on
page 299), giving significantly superior performance for very specific situations.

Critical Sections

A critical section is a section of code that must be allowed to complete atomically
with no interruption that affects its completion. We create critical sections by
locking a lock (as above), manipulating the data, then releasing the lock
afterwards. Such things as incrementing a counter or updating a record in a
database need to be critical sections. Other things may go on at the same time,
and the thread that is executing in the critical section may even lose its processor,
but no other thread may enter the critical section. Should another thread want to
execute that same critical section, it will be forced to wait until the first thread
finishes.

try_again: ldstub address -> register
compare register, 0
branch_equal got_it
call go_to_sleep
jump try_again

got_it: return
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Critical sections are typically made as short as possible and often carefully
optimized because they can significantly affect the concurrency of the program.
As with all of the code in this book, we rely upon the programmer to obey the
rules for using critical sections. There is no external enforcement that prevents a
sloppy programmer from manipulating data without holding the proper lock.

Lock Your Shared Data!

All shared data must be protected by locks. Failure to do so will result in truly
ugly bugs. Keep in mind that all means all. Data structures which are passed to
other threads and global variables are the obvious examples1. All data structures
that can be accessed by multiple threads are included. Static variables are
included.

Statics are really just global variables that can be seen by only one function or
functions in one file. It was somewhat convenient to use these in the single-
threaded programs of yore, but in MT programs they are disaster waiting to
strike. You should reconsider your use of statics very carefully. If you do use ‘em,
lock ‘em first!

Synchronization Variables
Synchronization is provided by a set of functions that manipulate special
structures in user memory. POSIX implements three synchronization variables and
the function pthread_join()  to provide this functionality. Win32 and OS/2
both provide synchronization variables of a slightly different nature. In all the
libraries, these provide the only reliable means you have to coordinate the
interactions of your threads. There are other tricky things you can do to try to
coordinate your threads, but they won’t work reliably because the hardware is
designed assuming that you will be using synchronization variables.

There are two basic things you want to do. Thing one is that you want to protect
shared data. This is what locks do. Thing two is that you want to prevent threads
from running when there’s nothing for them to do. You don’t want them
spinning, wasting time. This is what semaphores, condition variables, join,
barriers, etc. are for.

1. It is, of course, possible to have global variables that are not shared, but this would be rather unusual. Be very
careful if you think you have one. If you’re wrong, you’re going to be very unhappy when something breaks.
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Mutexes

The mutual exclusion lock is the simplest and most primitive synchronization
variable. It provides a single, absolute owner for the section of code (thus a
critical section) that it brackets between the calls to pthread_mutex_lock()
and pthread_mutex_unlock() . The first thread that locks the mutex gets
ownership, and any subsequent attempts to lock it will fail, causing the calling
thread to go to sleep. When the owner unlocks it, one of the sleepers will be
awakened, made runnable, and given the chance to obtain ownership. It is possible
that some other thread will call pthread_mutex_lock() and get ownership before
the newly awakened thread does. This is perfectly correct behavior and must not
affect the correctness of your program2. It’s unusual to write code that would be
affected by this behavior (see FIFO Mutexes on page 130).

Figure 6-1 A Mutex with Several Threads Sleeping on It

2. In the absurd case of two threads trying to increment a counter, it is possible that only one of them will ever run,
even though the program was written “correctly.” The probability of T1 failing to get the mutex 1000 times in a
row is always tiny and is only of interest to the rarest of non-realtime programs. As for those realtime folks...
They have a lot of issues not covered in this book. We don’t know RT and we’re not going to guess.
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In Figure 6-1, three threads all need a mutex. They have different priorities (“P:”),
which determine the order in which they go onto the sleep queue. The threads
have requested the lock in the order: T1, T2, T3. Being the first to try, T1 owns the
lock, and T3 will be awakened as soon as T1 releases it, even though T2 requested
the lock before T3. Note that the mutex doesn’t know who owns it3.

Because mutexes protect sections of code, it is not legal for one thread to lock a
mutex and for another thread to unlock it. Depending upon the library
implementation, this might not result in a runtime error, but it is illegal. The
locking may occur in one function, while the unlocking occurs in another; locks
may overlap in their use (lock 2, unlock 1, lock 3, unlock 2, etc.), but under no
circumstances should you ever release a lock from the wrong thread. If you think
you need this kind of behavior, you should (a) think really hard about what
you’re doing, and (b) look at semaphores. (Look at the use of death_lock  in A
Cancellation Example on page 161.)

In the execution graph for mutexes shown in the figure below we see the timing
behavior of locks. The graph is shown for two threads on two CPUs, but for a
uniprocessor the behavior will be identical, save that there will be gaps in each

3. POSIX doesn’t prevent a mutex from recording its owner, it just doesn’t require it. Some implementations can
be much faster if ownership is not recorded.

Code Example 6-3 Using Mutexes in the Different Libraries

POSIX Win32

pthread_mutex_lock(m) WaitForSingleObject(m)
... ...
pthread_mutex_unlock(m) ReleaseMutex(m)

OS/2

DosRequestMutexSem(m)
...
DosReleaseMutexSem(m)
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time line as the CPU context switches. Those gaps will affect neither the
correctness of the code nor the probability of encountering race conditions in
correctly locked code (see Race Conditions on page 145).

Figure 6-2 Execution Graph of the Operation of a Mutex

The code fragment below shows the proper way to use mutexes while putting
items onto a list (as T1 is doing) and taking them off (T2). Should two threads call
remove() at the same time, one of them will get mutex ownership while the
other will have to go to sleep. When the mutex is released, the sleeper will be
awakened, but it is possible that either the T1 or third thread could slip in at just
the right instant and get the lock. In this case the new thread would remove

T1

T2

Expected “Normal” Behavior

Possible Legal Behavior

Work Sleep Unlock Lock
(attempt)

T1

T2

Critical Section
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Request2  from the list instead of the sleeper doing so. Presumably all the threads
will be executing the same code, so it won’t make any difference which thread
actually gets to process the request.

In the code above, you will notice that we’re placing new requests onto the front
of the queue, and also taking old requests off of the front. You probably wouldn’t
want to do this with your own programs, but for pedagogical purposes, it suits us
quite well. For example, if the consumers start falling behind the producers, you
will be able to see that some requests end up at the back of the list and are never
processed.

Code Example 6-4 Protecting a Shared List With a Mutex

Thread 1 Thread 2

add(request_t *request)
{ pthread_mutex_lock(&lock);

request->next = requests; request_t *remove()
requests = request; { pthread_mutex_lock(&lock);
pthread_mutex_unlock(&lock); ... sleeping...

}
request = requests;
requests = requests->next;
pthread_mutex_unlock(&lock)
return(request);

}

requests Request2Request3 Request1

Request4

add(Request4)

remove() -> Request3
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For the (rare) situation when you really don’t want to go to sleep, a trylock
function is included in each API. In POSIX, pthread_mutex_trylock()
returns 0 if you get the lock, and EBUSY if you don’t. (OS/2 and Win32 functions
have timeouts for same purpose.) If you get EBUSY, you’ll have to figure out
something else to do, as entering the critical section anyway would be highly
antisocial. This function is used very rarely, so if you think you want it, look very
carefully at what you’re doing4! (See Making malloc() More Concurrent on
page 224.)

It is important to realize that although locks are used to protect data, what they
really do is protect that section of code that they bracket. There’s nothing that
forces another programmer (who writes another function that uses the same data)
to lock his code. Nothing but good programming practice.

Win32 provides a similar mutex, along with a critical section5, which is pretty
much the same, save for some different features. OS/2 calls mutexes mutex
semaphores, but defines much the same behavior (there are a bunch of added bells
and whistles). Both Win32 and OS/2 mutexes are recursive—meaning that the
same thread can lock the mutex multiple times.

Semaphores

In the 19th century, when trains were still advanced technology and railroad
tracks were exotic and expensive, it was common to run single sets of tracks and
restrict the trains to travel in only one direction at a time. Semaphores were
invented to let the trains know if other trains were on the rails at the same time.
A semaphore was a vertical pole with a metal flag that was adjusted to hang at
either 45 or 90 degrees to indicate the existence of other trains.

In the 1960s, E. W. Dijkstra, a professor in the Department of Mathematics at the
Technological University, Eindhoven, Netherlands, extended this concept to
computer science. A counting semaphore6 (aka PV semaphore) is a variable that you
can increment arbitrarily high, but decrement only to zero. A sem_post()
operation (aka “V” –verhogen in Dutch) increments the semaphore, while a
sem_wait()  (aka “P” – Proberen te verlagen) attempts to decrement it. If the
semaphore is greater than zero, the operation succeeds; if not, then the calling
thread must go to sleep until a different thread increments it.

4. We apologize if these warnings seem a bit much. We realize that you understand the issues involved. We just
want to make it clear for that other programmer.

5. We find it is somewhat confusing to use a generic term like critical section, which refers to a concept, for the
name of a specific synchronization variable.

6. The word semaphore has come to take on other meanings in computer science. System V semaphores, for
example, are much more elaborate objects than counting semaphores.
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A semaphore is useful for working with “train-like” objects, that is, objects where
what you care about is whether there are either zero objects or more than zero.
Buffers and lists that fill and empty are good examples. Semaphores are also
useful when you want a thread to wait for something. You can accomplish this by
having the thread call sem_wait()  on a semaphore with value zero, then have
another thread increment the semaphore when you’re ready for the thread to
continue.

Figure 6-3 How a Semaphore Operates

In Figure 6-3, the semaphore started with a value of zero. The threads have
executed their respective operations in the order: T1, T2, T3, T4, T5. After T1
executed its sem_wait() , it had to wait (as the value was zero). When T2 did the
sem_post() , T1 was awakened, and decremented the value back to zero. T3 did
a sem_post() , incrementing the value to one. When T4 did its sem_wait()  it
could continue without waiting at all. Finally, T5 called sem_wait() , and is still
waiting.

Although there is a function sem_getvalue()  which will return the current
value of a semaphore, it is virtually impossible to use correctly because what it
returns is what the value of the semaphore was. By the time you use the value it
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returned, it may well have changed. If you find yourself using
sem_getvalue() , look twice, there’s probably a better way to do what you
want.

Win32 implements counting semaphores with very similar definitions. OS/2 does
not implement them at all, though building them would not be difficult.

In the execution graph below we see the operation of the above example. Notice
that when T1’s decrement attempt fails, it simply goes to sleep and tries it again
later. Another thread could jump in and decrement the value just as thread T1
was waking up, in which case T1 would have to go back to sleep. As with
mutexes, this is usually not a problem.

Figure 6-4 Execution Graph of the Operation of a Semaphore

Code Example 6-5 Basic Use of Counting Semaphores (OS/2 has none)

POSIX Win32

sem_wait(&s); WaitForSingleObject(s,...);
sem_post(&s); ReleaseSemaphore(s,...);

T3

T2

T4

T5

T1
 S=0, waiting S=0

 S=1, waking up T1

 S=0

 S=1

 S=0

 S=0, waiting

Work Sleep Post Decrement
(attempt)

Critical Section
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POSIX semaphores are unique among synchronization variables in one particular
fashion: They are async safe, meaning that it is legal to call sem_post()  from a
signal handler (see Async Safety on page 178). No other synchronization variable
is async safe. So, if you want to write a signal handler that causes some other
thread to wake up, this is the way to do it.

If you look at the definition of semaphores, you will also notice that they may
return from a wait with a legal, non-zero value, -1 , with errno  set to EINTR.
This means that the semaphore was interrupted by a signal and it did not
successfully decrement. Your program must not continue from this point as if it did.

Correct usage of a semaphore therefore requires that it be executed in a loop. If
you block out all signals, then, and only then, can you use semaphores without a
loop. Of course you would need to be completely certain that no one who
maintains your code ever allows signals. In all of our code, we simply use a help
function:

The logic for this EINTR behavior is that you might want your thread to do
something different, should it be interrupted by a signal. Admittedly we have
never run into such a situation, none-the-less, there it is.

A typical use of semaphores is shown below. This is a producer/consumer
example where one thread is continually receiving requests from the net which it
adds to a list, while the other thread is busy removing items from that list and
processing them. It is particularly interesting to notice that the number of items
on the list is contained in the semaphore, but the program never actually gets to
look at that number. Should the producer place twenty items on the list all at
once, the consumer function will be able to call sem_wait()  twenty times
without blocking. The twenty-first time, the semaphore will be zero, and the
consumer will have to wait. Because the critical sections are so small, the chance
of any thread ever blocking on the mutex is very small.

In the code below, the main things to notice are that get_request()  allocates
the memory for the request structure which will be appended to the list, while
process_request()  is responsible for freeing it. This code may be safely run
by any number of threads running the producer, and any number running the
consumer. In no case will a consumer ever attempt to remove a request from an
empty list. The semaphore actually encodes the minimum length of the list.

Code Example 6-6 Semaphore Ignoring EINTR (thread_extensions.c)

void SEM_WAIT(sem_t *sem)
{ while (sem_wait(sem) != 0) {}}
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During the brief moments between when a producer places a request onto the list
and the semaphore is incremented, the semaphore value is one less than the
actual length of the list. For now, this is fine.

The list is unbounded and may continue to grow longer until memory is
exhausted. This is a problem with our example code which must be solved. You
should be able to come up with a solution yourself now. We’ll get to it a bit later.

Code Example 6-7 The Classic Producer/Consumer Example (one_queue_problem.c)

request_t *get_request()
{request_t *request;

request = (request_t *) malloc(sizeof(request_t));
request->data = read_from_net();
return(request)

}

void process_request(request_t *request)
{ process(request->data);

free(request);
}

producer()
{request_t *request;
 while(1)

{request = get_request();
 add(request);
 sem_post(&requests_length);
}

}

consumer()
{request_t *request;
 while(1)

{SEM_WAIT(&requests_length);
 request = remove();
 process_request(request);
}

}
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Using Semaphores to Count Exiting Threads

Sometimes we do want to know when a set of threads have completed their
work. One way of doing this is to use a semaphore as a sort of barrier (distinct
from the Barriers on page 137). Each exiting thread will increment the semaphore,
and the thread which is waiting for them will call sem_wait()  once for each
thread in question. This gives a convenient replacement for pthread_join() .
This code is used in A Stoppable Producer/Consumer Example on page 124.

A Different View of Semaphores

Now let’s look at a different picture of how a semaphore works. The flow chart
below depicts the actual operation of sem_wait()  and sem_post()  on Solaris
2.5. As the value of the semaphore is a shared data item, it must be protected by
a mutex (or logical equivalent). This mutex is part of the semaphore structure and

Code Example 6-8 A Simple Barrier to Block One Thread

/* Block *one* thread, waiting for the others. */
void thread_single_barrier(sem_t *barrier, int count)
{
  while (count > 0)
    {SEM_WAIT(barrier);
     count--;
    }
}
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is hidden from the programmer. The first thing sem_wait()  does is lock that
mutex. Then it checks the value. If it is greater than zero, the value is
decremented, the hidden mutex is released, and sem_wait()  returns.

Figure 6-5 A Flow Chart for Semaphores

If the value of the semaphore is zero, then the mutex will be released, and the
thread will then go to sleep. Upon waking up, the thread then must repeat the
operation, reacquiring the mutex and testing the value.

The operation of sem_post()  is quite simple. It locks the mutex, increments the
value, releases the mutex and wakes up one sleeper (if there is one). The results
are exactly what you expect. Even though you have no idea what the scheduling
order might be, it is impossible to accidently decrement the value below zero, and
no thread can ever get “stuck” on the sleep queue when the value is greater than
zero. There are timing gaps where things look momentarily inconsistent, and it is
possible for a thread to be awakened by mistake, but the end results are always
correct.

A semaphore is perfect for situations where you want to count things and have
threads sleep when some limit is hit. If you wish to count up to some number, say
for a list limited to ten items, you simply view the semaphore as counting the
number of “spaces” in the list, initialize it to ten and count down (see Controlling
the Queue Length on page 122).

There are occasions where you want the same kind of sleeping behavior as with
semaphores, but your test is more complex than just “Is v > 0?”
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Condition Variables

In the figure below we show a flow chart for a generalization on semaphores.
Here the mutex is visible to the programmer and the condition is arbitrary. The
programmer is responsible for locking and unlocking the mutex, testing and
changing the condition, and waking up sleepers. Otherwise, it is exactly like a
semaphore.

Figure 6-6 Using a Condition Variable

Perhaps you want a thread to execute some code only if X > 17, Y is prime, and
grandmother is visiting next Thursday. As long as you can express the condition
in a program, you can use it in a condition variable. A condition variable creates
a safe environment for you to test your condition, sleep on it when false, and be
awakened when it might have become true.

It works like this: A thread obtains a mutex (condition variables always have an
associated mutex) and tests the condition under the mutex’s protection. No other
thread should alter any aspect of the condition without holding the mutex. If the
condition is true, your thread completes its task, releasing the mutex when
appropriate. If the condition isn’t true, the mutex is released for you, and your
thread goes to sleep on the condition variable. When some other thread changes
some aspect of the condition (e.g., it reserves a plane ticket for granny), it calls
pthread_cond_signal() 7, waking up one sleeping thread. Your thread then
reacquires the mutex8, reevaluates the condition, and either succeeds or goes back
to sleep, depending upon the outcome. You must reevaluate the condition! First,

7. The term “signal” here is distinct from UNIX signals (SIGINT, etc). “Wakeup” might be a better term.

8. Obviously, when a thread sleeps on a condition variable, the mutex must be released (so other threads can
acquire it) and reacquired upon waking. All of this is handled for you by pthread_cond_wait() .
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the other thread may not have tested the complete condition before sending the
wakeup. Second, even if the condition was true when the signal was sent, it could
have changed before your thread got to run. Third, condition variables allow for
spurious wakeups. They are allowed to wakeup for no discernible reason what-
so-ever9!

Figure 6-7 A Condition Variable in Use

In Figure 6-7, T1, T2 and T3 all evaluated the condition, determined it to be false,
and went to sleep on the condition variable. T4 then came along and changed the
condition to true, and woke up the first of the sleeping threads. T3 was
awakened, reevaluated the condition, found it to be true, and did its thing,
releasing the mutex when done. We’ll assume that T3 also changed the condition
back to false, so there was no reason to wake any other threads. If T3 hadn’t
changed the condition, then it should have woken up another thread.

Depending upon your program, you may wish to wake up all the threads that are
waiting on a condition. Perhaps they were all waiting for the right time of day to
begin background work, or were waiting for a certain network device to become
active. A pthread_cond_broadcast()  is used exactly like
pthread_cond_signal() . It is called after some aspect of the condition has
changed. It then wakes all of the sleeping threads (in an undefined order), which
then must all hurry off to reevaluate the condition. This may cause some
contention for the mutex, but that’s OK.

9. Due to some arcania in the hardware design of modern SMP machines, it proves to be highly convenient to
define them like this. The hardware runs a little faster, and the programmer needed to reevaluate the condition
anyway.
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Presumably you are calling signal or broadcast any time that the condition has
been changed such that it may have become true. In most cases you will have
completely evaluated the condition before you signal or broadcast, but you do
not have to. You certainly would want to signal any time that the condition
became true.

There are several things you can do with condition variables that the compiler
won’t complain about, but are guaranteed trouble. You could use the same
condition variable with different mutexes. You could have several functions
which use one condition variable, but which evaluate different conditions. You
could initialize the condition variable to be cross-process, but not the mutex; or
vice-versa. Don’t do that!

Condition variables also allow you to limit the sleep time. By calling
pthread_cond_timedwait() , you can arrange to be awakened after a fixed
amount of time, in case you’re the impatient type. Should you know the condition
ought to change within some time frame, you can wait for that amount of time,
then go out and figure out what went wrong.

You can also use it simply as a thread-specific timer, although the standard timer
functions (sleep() , nanosleep() ) are more appropriate and easier to use. Be
aware that the system clock will limit the precision of the wakeup. A 10ms
quantum is typical. If you want 100µs precision you’ll probably have to use
something highly vendor-specific and you may have trouble getting such
precision at all.

Once the wait time expires, the sleeping thread will be moved off the sleep queue
and pthread_cond_timedwait()  will return ETIMEDOUT. It doesn’t make any
difference should another thread signal the sleeper 1ms later. It also makes no
difference should it subsequently take the ex-sleeper 16 hours to become active or
get the mutex. Counterwise, once the sleeper is signaled, it is taken off the sleep
queue and the timer is turned off. If it takes another week before
pthread_cond_timedwait()  returns, too bad. You will not get a timeout.

Neither of the wait functions will ever return without the mutex being locked.
Not on normal wakeups, not on timeouts, not on spurious wakeups, not even on
cancellation. It is possible that right after waking up, a thread must go back to
sleep because the mutex is held by another thread!

Code Example 6-9 Using a Condition Variable

Thread 1 Thread 2

pthread_mutex_lock(&m);
while (!my_condition)
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Because of the kind of interaction that exists between the condition variable and
its associated mutex, it is possible to get some unwanted contention for the
mutex. This is most evident when calling broadcast. Unfortunately there isn’t
much you can do about it, and your program may well suffer dozens of
microseconds in wasted mutex blocks.

The figure below illustrates the problem. In the “Desired Behavior” case, the little
bit of extra time it takes T2 to wake up and try for the mutex is just long enough
for T1 to release it. In the “Possible Behavior” case, the waiting threads wake up,
try for the mutex, and have to go right back to sleep because the mutex hasn’t

  pthread_cond_wait(&c, &m);
pthread_mutex_lock(&m);

... sleeping ... my_condition = TRUE;
pthread_mutex_unlock(&m);
pthread_cond_signal(&c);

do_thing();
pthread_mutex_unlock(&m);

Code Example 6-9 Using a Condition Variable
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been released yet. The most obvious solution for at least some of this problem is
to make the call to signal or broadcast outside of the critical section. This is what
all of our code does.

Figure 6-8 Extra Contention: When the Signal is Sent from Inside the Critical Section

Both Win32 and OS/2 implement what they call event objects (event semaphores),
which are similar to condition variables and serve the same purpose (see Event
Objects on page 138).

The Lost Wakeup

If you simply neglect to hold the mutex while testing or changing the value of the
condition, your program will be subject to the fearsome lost wakeup problem. This
is where one of your threads misses a wakeup signal because it had not yet gone
to sleep. Of course, if you’re not protecting your shared data correctly, your
program will be subject to numerous other bugs, so this is nothing special.

There is a point of confusion surrounding the lost wakeup that should be
clarified. In much of Sun’s documentation it is described incorrectly as a problem
which occurs when calling broadcast or signal outside of the critical section. That
is not the case. The explanation was simply written down incorrectly. This should
be fixed when Solaris 2.6 documentation comes out.
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Controlling the Queue Length

So how do we prevent the queue from growing in the Producer/Consumer
example? The simplest way is to initialize a second semaphore to the maximum
allowed length and count it down. (One way to imagine this inverse use of a
semaphore is to consider the queue to have some number of available slots in it.
The semaphore encodes this number. When a producer places a new request onto
the queue, there is one less available slot, so we decrement the semaphore. When
a consumer takes a request off, there is one more, so we increment it.)

This particular design is nice because it separates the producer from add() , the
code which inserts the new request onto the queue. This works quite well for
simple programs.

Code Example 6-10 Producer/Consumer with Bounded Length (Using Semaphores)

producer()
{request_t *request;
 while(1)

{SEM_WAIT(&requests_slots);
 request = get_request();
 add(request);
 sem_post(&requests_length);
}

}

consumer()
{request_t *request;
 while(1)

{SEM_WAIT(&requests_length);
 request = remove();
 process_request(request);
 sem_post(&requests_slots);
}

}
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Sometimes you will find that you have more extensive demands on the program
and will need to use a condition variable. The code below shows this. We use the
mutex requests_lock  to protect both length  and the list itself, so we move it
out of add()  and remove() . (The list and length  must be changed together,
atomically, for this to work, so we must use the same mutex.)

Code Example 6-11 Producer/Consumer with Bounded Length (Using Condition Variables)

void *producer(void *arg)
{request_t *request;

 while(1)
   {request = get_request();
    pthread_mutex_lock(&requests_lock);
    while (length >= 10)
      pthread_cond_wait(&requests_producer, &requests_lock);
    add(request);
    length++;
    pthread_mutex_unlock(&requests_lock);
    pthread_cond_signal(&requests_consumer);
  }
}

void *consumer(void *arg)
{request_t *request;

 while(1)
   {pthread_mutex_lock(&requests_lock);
    while (length == 0)
      pthread_cond_wait(&requests_consumer, &requests_lock);
    request = remove();
    length--;
    pthread_mutex_unlock(&requests_lock);
    pthread_cond_signal(&requests_producer);
    process_request(request);
  }
}



124 Threads Primer

6

A Stoppable Producer/Consumer Example
Let’s use the ideas above to deal with a more complex situation. Say you like the
operation of the producer/consumer, but you want to be able to start and stop at
will. Let’s say there is a global variable, stop , which will control the threads. If it
is TRUE, all the producers and consumers will finish what they’re doing and exit.
Let’s further say that we don’t want the queue to be emptied at stop time. When
we decide to start up the producers and consumers again, we’ll require that the
consumers empty the queue before any producers are started.

The only tricky part to this exercise is that some of the threads may be sleeping at
the time we set stop  to TRUE and we must ensure that they get awoken so that
they can exit. We must also have the main thread sleep until the new consumers
have emptied the queue. By having the threads wait on the condition ((length
>= 10) && (!stop)) , they can be awakened on a change of state for either the
length or stop .

Code Example 6-12 A Stoppable Producer/Consumer (stop_queue.c)

void *producer(void *arg)
{request_t *request;

 while(1)
   {request = get_request();
    pthread_mutex_lock(&requests_lock);
    while ((length >= 10) && (!stop))
      pthread_cond_wait(&requests_producer, &requests_lock);
    add_request(request);
    length++;
    if (stop) break;
    pthread_mutex_unlock(&requests_lock);
    pthread_cond_signal(&requests_consumer);
  }
 pthread_mutex_unlock(&requests_lock);
 sem_post(&barrier);
 pthread_exit(NULL);
}

void *consumer(void *arg)
{request_t *request;

 while(1)
   {pthread_mutex_lock(&requests_lock);
    while ((length == 0) && (!stop))
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When we set stop  to TRUE, we will need to wake up all threads that might be
sleeping. Below we spawn a thread to set stop  true after four seconds. After it’s
set, the thread calls pthread_cond_broadcast ()  to wake up all of the worker
threads. We’d do the same if it were a button we were using, or any other
method. Notice that we must lock the mutex before changing the value of stop ,
otherwise we’ll be subject to the lost wakeup problem.

Finally, in this bit of code from main() , we see how we can synchronize on the
exiting of the threads and the emptying of the queue. First we start them all up.
Then we wait for all of the threads to complete their work (they’ll probably exit
immediately after they call sem_post() , however we don’t really care). After
they have all completed their work, we can set stop back to FALSE. (What if we
didn’t wait for all the threads to finish?) Then we create the consumers and wait

      pthread_cond_wait(&requests_consumer, &requests_lock);
    if (stop) break;
    request = remove_request();
    length--;
    pthread_mutex_unlock(&requests_lock);
    pthread_cond_signal(&requests_producer);
    process_request(request);
  }
 pthread_mutex_unlock(&requests_lock);
 sem_post(&barrier);
 pthread_exit(NULL);
}

Code Example 6-13 Stopping the Producer/Consumer  (stop_queue.c)

void *stopper(void *arg)
{
  sleep(4);
  pthread_mutex_lock(&requests_lock); /* REQUIRED! */
  stop = TRUE;
  pthread_mutex_unlock(&requests_lock);
  pthread_cond_broadcast(&requests_producer);
  pthread_cond_broadcast(&requests_consumer);
  pthread_exit(NULL);

Code Example 6-12 A Stoppable Producer/Consumer (stop_queue.c)
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for them to empty the queue. (Notice how we use the condition variable
requests_producer .) Once the queue is empty, we start up the producers
again.

A minor point: when we set stop = FALSE , we don’t lock the mutex. Why can
we get away with this?

Summary
The main issue in writing MT programs is how to get threads to work together.
Locks and condition variables are the fundamental building blocks from which
anything can be built. Although there are many non-intuitive aspects of
synchronization, most of them can be ignored, as things “just work”.

Code Example 6-14 A Stoppable Producer/Consumer (Starting Up and Shutting Down)

 for (j=0; j < 3; j++)
   {printf(“Starting consumers. List length: %d.\n”, length);
    for (i=0; i<N_CONS; i++)
      PTHREAD_CREATE(&tid, &attr, consumer, NULL);
    pthread_mutex_lock(&requests_lock);

    while (length != 0)
      pthread_cond_wait(&requests_producer, &requests_lock);

    printf(“Starting producers.\n”);
    pthread_mutex_unlock(&requests_lock);
    for (i=0; i<N_PROD; i++)
      PTHREAD_CREATE(&tid, &attr, producer, NULL);

    PTHREAD_CREATE(&tid, &attr, stopper, NULL);
    thread_single_barrier(&barrier, N_PROD+N_CONS);
    stop = FALSE; /* Lock not required! */
    printf(“All exited. List length: %d.\n”, length);
    sleep(4);
   }
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In which a series of more complex synchronization variables and
options are presented and the trade-off between them and the simpler
ones are discussed. Synchronization problems and techniques for
dealing with them conclude the chapter.

Complex Locking Primitives
There are times when a simple mutex does not provide you with all the
functionality that you desire. There are situations in which you can improve your
program’s efficiency or fairness by implementing more complex locking
primitives. You should keep in mind that the locks described below are more
complex and therefore slower than normal mutex locks, generally by a factor of
two or more. They are not generally useful, so be advised to consider your
requirements closely before using them.

Readers/Writer Locks

Sometimes you will find yourself with a shared data structure that gets read
often, but written only seldom. The reading of that structure may require a
significant amount of time (perhaps it’s a long list through which you do
searches). It would seem a real waste to put a mutex around it and require all the
threads to go through it one at a time when they’re not changing anything.
Hence, readers/writer locks.

With an RWlock, you can have any number of threads reading the data
concurrently, whereas writers are serialized. The only drawback to RWlocks is
that they are more expensive than mutexes. So, you must consider your data
structure, how long you expect to be in it, how much contention you expect, and
choose between a mutex and an RWlock on that basis.

As a rule of thumb, a simple global variable will always be locked with a mutex,
while searching down a 1000-element, linked list will often be locked with an
RWlock.
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The operation of RWlocks is as follows: The first reader that requests the lock will
get it. Subsequent readers also get the lock, and all of them are allowed to read
the data concurrently. When a writer requests the lock, it is put on a sleep queue
until all the readers exit. A second writer will also be put on the writer’s sleep
queue in priority order. Should a new reader show up at this point, it will be put
on the reader’s sleep queue until all the writers have completed. Further writers
will also be placed on the same writer’s sleep queue as the others (hence, in front
of the waiting reader), meaning that writers are always favored over readers.
(Writer priority is simply a choice we made in our implementation, you may
make a different choice.)

The writers will obtain the lock one at a time, each waiting for the previous writer
to complete. When all writers have completed, the entire set of sleeping readers
are awakened and can then attempt to acquire the lock. Readers’ priorities are not
used.

Figure 7-1 How Reader/Writer Locks Work

In Figure 7-1, five threads all need an RWlock. They have different priorities,
which determine the order in which they go onto the writers’ sleep queue. The
threads have requested the lock in the order: T1, T2, T3, T4, T5. T1 and T2 own the
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lock, and T5 will be awakened as soon as they both release it, even though T3 and
T4 requested the lock before T5. In the execution graph below, we see exactly this
happening. Note the overlapping read sections for T1 and T2.

Figure 7-2 Execution Graph for Reader/Writer Locks

You will be disappointed to discover that none of the three libraries define
RWlocks. However, all is not lost. They can be built out of the primitives already
available to you—mutexes and condition variables. We build them in our
extensions library. Some of these are also defined in specific implementations as
non-portable extensions (see Pthread Extensions on page 200).

Priority Inheritance Mutexes

Should a high-priority thread (T2 in Figure 7-3) be blocked, waiting for a lock that
is held by another thread of lower priority (T1), it may have to wait a longer time
than seems reasonable, because a third thread (T3) of middling priority might be
hogging the CPU. In order to do justice to overall system performance, it would
be reasonable to elevate the scheduling priority of T1 to the level of the blocked
thread (T2). This is not done for normal Pthread mutexes, so user programs may
suffer from priority inversion. In POSIX, priority inheritance is an option during
mutex initialization for realtime threads only. (Calling a PI mutex from a non-
realtime thread is simply not defined in POSIX. Consult your vendor’s
documentation.)
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Figure 7-3 Priority Inversion

POSIX defines two types of priority-inheritance mutexes. In the first, a Priority
Ceiling Mutex, you declare a ceiling priority level for the mutex and any thread
that locks the mutex automatically gets that priority. In Priority Inheritance
Mutexes, a thread may lock a mutex without any change in priority level. When a
second thread then goes to sleep, waiting for the mutex, the owner is given the
priority of the sleeper, should the sleeper have a higher priority. Additional
sleepers may cause additional changes in priority level of the owner. Upon
release, the owner regains its previous priority level.

It is not terribly difficult to build basic priority-inheritance mutexes in the other
libraries or for non-realtime POSIX threads, but it’s not often of much value. To
build them 100% correctly and efficiently is tough.

FIFO Mutexes

Every now and then, you come upon a program where you want to ensure that
the thread that is blocked on a mutex will be the next owner of the
mutex—something which is not in the definition of simple POSIX mutexes.
Typically, this situation occurs when two threads both need a mutex to do their
work, they hold the mutex for a significant length of time, they do their work
independently of each other, and they have very little to do when they don’t hold
it. Thus, what happens is (below) that T1 grabs the mutex and does its work,
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while T2 tries for the mutex, and blocks. T1 then releases the mutex and wakes up
T2. BeforeT2 manages to obtain the mutex, T1 reacquires it. This is illustrated in
case 2.

Figure 7-4 When FIFO Mutexes Are Valuable

Case 3 assumes that you have implemented FIFO mutexes, where the owner of
the mutex automatically hands ownership over to the first waiter when releasing
the mutex.

This is a rare situation, and it merits reconsidering your algorithm before dealing
with it. (If you contrast case 2 and case 3 against case 1, you will notice that the
two threads are spending a lot of time sleeping on the job. This might run better
with fewer threads!) But should you find yourself stuck with this kind of
problem, it is a simple programming effort for you to implement guaranteed
FIFO mutexes yourself.

1: The common case: Very little contention, normal mutexes work well.

2: The uncommon case: T1 keeps reacquiring the mutex.

3: The uncommon case: Using a FIFO mutex.
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Recursive Mutexes

Win32 and OS/2 mutexes are recursive—they can be locked multiple times from
the same thread without deadlocking. POSIX mutexes cannot do this. Building a
recursive mutex with POSIX is not at all difficult (an excellent exercise!) and we
even include a definition in thread_extensions.c . The real question is not if
you can build them, the real question is whether it’s a good idea.

The chances are very high that if you have a situation where you want to use
recursive mutexes, you’d be better off redesigning your code so that you don’t
need them. Why are you locking this mutex? To protect some shared data. Once
you’ve done so, why would you ever want to lock it again? Because your code is
structured poorly. Fix your code.

Once you’ve locked a recursive mutex three times, you will need to unlock it
three times before any other thread can lock it. You could write an “unlock_all”
routine, but it would probably just make your code even more confusing.

Now that we’ve so thoroughly denigrated recursive mutexes, we’ll take a small
step backwards and admit that there are “special situations.” You situation might
be one of them. If so, use ‘em. Just be very careful to make sure you’re correct.

Non-Blocking Synchronization

All of the synchronization variables have non-blocking calls associated with
them. (For POSIX, pthread_mutex_trylock() and sem_trywait() . In
Win32 and OS/2 there are time-outs associated with each call.) These functions
can be used for things such as spin locks and complicated methods of
coordinating threads while avoiding deadlock when you are unable to establish a
lock hierarchy. It is very rare to ever use these functions. (See Making malloc()
More Concurrent on page 224.)

Debug Mutexes

Sometimes it is difficult to debug a program because you don’t know the owner
of a mutex. Even though you don’t need to know the owner for the production
code, it can be very nice while debugging. Building a mutex that meets these
requirements is fairly simple and easy to do. Some of the vendors supply
debugging environments (e.g., Digital UNIX and HP-UX). In the example below,
we show such a mutex (pthread_dmutex_t ) which keeps track of its owner,
how many times it was locked, how many times a thread tried to lock it, and
aborts the program should the wrong thread try to unlock it. You would use this
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mutex while debugging, then do a global replace of “dmutex ” with “mutex ” to
use normal mutexes in your code for final testing and release. Some vendors also
supply some type of debug mutex.

Monitors

If you chose to encapsulate the shared data with the locking required for its use,
you would have a monitor. This can be done informally in C by simply declaring
everything to be local to the access functions (as in the example below), or
formally in an object oriented language such as C++ or Java, by creating a class

Code Example 7-1 Using a Debug Mutex (from test_dmutex.c)

pthread_dmutex_t lock1, lock2, lock3;

void *test3(void *arg)
{int i = (int) arg;

 pthread_dmutex_lock(&lock3);
 printf(“%s in critical section 3\n”, thread_name(pthread_self()))
 print_dmutexes();
 pthread_dmutex_unlock(&lock3);
 return;
}

main()
{...
 PTHREAD_CREATE(&tid, &attr, test3,  NULL);
 ...
 printf(“Now crash with a self-deadlock...\n”);
 pthread_dmutex_lock(&lock3);
 pthread_dmutex_lock(&lock3);/* Comment out for next error */
 printf(“Now crash with a non-owner unlock...\n”);
 pthread_dmutex_unlock(&lock1);
}

OUTPUT
T@8 in critical section 3
&lock3 T@10  Times locked:  14,  failed:  10.  Sleepers: ( )
&lock2 ----  Times locked:   0,  failed:   0.  Sleepers: ( )
&lock1 T@8   Times locked:  13,  failed:  15.  Sleepers: ( T@6 T@7 )

Now crash with a self-deadlock...
Error! T@1 deadlocking dmutex &lock3.
Abort
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that does this for you. In Java, monitors are already defined as part of the base
language. In C++ you can define them yourself (see C++ on page 243) or use one
of the commercial libraries (see Commercial Products on page 249).

In many situations, monitors are an excellent synchronization technique. By
forcing the programmer to manipulate shared data via monitored code, you
ensure that there can never be a failure to lock its use, and that the access
methods will be well-defined. Monitors cannot handle all types of locking
situations, however. When you need to acquire and release locks in an
overlapping fashion (as in One Local Lock on page 233), or when you want to use
the “trylock” functions, you must use regular mutexes.

There’s no great magic here. Where monitors make the most sense, use them.
When simple mutexes are required, use them. With a sufficiently intelligent
compiler, a monitor will be just as fast as regular mutexes.

The code above shows encapsulation in C. This is nice, though it doesn’t prevent
you from forgetting to releasing the mutex, and you would need a separate
function for each data item. In C++ and Java, these little short-coming are
covered. In the code below, the destructor for Monitor  will be called any time
that bar()  returns, insuring that the mutex will be released.

Code Example 7-2 Monitor Style Encapsulation in C

void count_things(int i)
{static int count=0;
 static pthread_mutex_t count_lock = PTHREAD_MUTEX_INITIALIZER;

 pthread_mutex_lock(&count_lock);
 count += i;
 i = count;
 pthread_mutex_unlock(&count_lock);
 return(i);/* Cannot return count outside the CS! */
}

Code Example 7-3 A Monitor in C++

class Monitor
{pthread_mutex_t *mutex;

 public:
 Monitor(pthread_mutex_t *m);
 virtual ~Monitor();
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Spin Locks

Normally, you should hold a lock for the shortest time possible, to allow other
threads to run without blocking. There will occasionally be times (few and far
between) when you look at the blocking time for a mutex (about 42 µs on an SS4,
see Appendix C, Timings) and say to yourself “42 µs?! The other thread is only
going to hold the mutex for 5 µs. Why should I have to block, just ‘cause I
stumbled into that tiny window of contention? It’s not fair!”

You don’t. You can use a spin lock and try again. It’s simple. You initialize a
counter to some value, and do a pthread_mutex_trylock() — that takes
about 2 µs. If you don’t get the lock, decrement the counter and loop. Another 2
µs. Repeat. When the counter hits zero, then give up and block. If you get the
mutex, then you’ve saved a bunch of time. If you don’t get it, then you’ve only
wasted a little time.

};

// Monitor constructor
Monitor::Monitor(pthread_mutex_t *m)
{ mutex = m;
  pthread_mutex_lock(mutex);
}

// Monitor destructor
Monitor::~Monitor()
{pthread_mutex_unlock(mutex);}

void bar()
{Monitor m(&data_lock);
 int temp;

 ...
 /* Now the destructor gets called to unlock the mutex */
}

Code Example 7-3 A Monitor in C++
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In Code Example 7-4, we show the construction of a simple spin lock. Although
this is a good description of a spin lock, it’s actually a poor implementation. We
will discuss the issues and show a better implementation in Chapter 17, Hardware.

Spin locks can be effective in very restricted circumstances. The critical section
must be short, you must have significant contention for the lock, and you must be
running on more than one CPU. If you do decide that you need a spin lock, test
that assumption. Set the spin count to zero and time your standardized,
repeatable test case (you must have one!). Then set the spin count to a realistic
value, and time the test again. If you don’t see a significant improvement, go back
to regular mutex locks. Spin locks are almost always the wrong answer, so be
careful!

Spin locks are not part of any of the libraries, but they are easily built in all of
them. They are also included in the proposed extension to POSIX.

Adaptive Spin Locks

A refinement of spin locks, called adaptive spin locks, is used in many kernels. You
can’t build them yourself and they are not generally provided by the vendor, but
you might be interested in knowing what they are.

If you could find out whether the thread holding the desired mutex was in fact
currently running on a CPU, then you could make a more reasoned judgement as
to whether or not to spin. This is what an adaptive lock does. If the mutex owner
is running, then the requestor spins. If the owner isn’t, then the requestor doesn’t.

Unfortunately, in the user-level threads library, you generally cannot find out
which thread holds a mutex, and even if you could, the system call required to
find out whether the thread in question was on a CPU would be more expensive
than just blocking. A clever trick in some operating systems does make this
possible.

Code Example 7-4 A Simple Spin Lock (thread_extensions.c)

/* Don’t use this code! */
spin_lock(mutex_t *m)
{int i;

for (i=0; i < SPIN_COUNT; i++)
{if (pthread_mutex_trylock(m) != EBUSY)

return; } /* got the lock! */
pthread_mutex_lock(m); /* give up and block. */
return; } /* got the lock after blocking! */
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A fair (and unanswered) question is “Will the time saved by not spinning make
up for the extra time to use adaptive locks?” If you are using spin locks, you
should know exactly how long a critical section can be held for. It may well prove
faster to spin for the known time and ignore run state entirely!

Other Synchronization Variables

Join

The join functions are sort of synchronization variables in that they allow you to
synchronize threads on the event of another thread exiting. You almost never
actually care about when a thread exits, and almost everything you do with join,
you can do with the other synchronization variables. (See Don’t Wait for Threads,
Don’t Return Status on page 72.)

Barriers

A barrier allows a set of threads to sync up at some point in their code. It is
initialized to the number of threads to be using it, then it blocks all the threads
calling it until it reaches zero, at which point it unblocks them all. The idea is that
you can now arrange for a set of threads to stop when they get to some
predefined point in their computation and wait for all the others to catch up. If
you have eight threads, you initialize the barrier to eight. Then, as each thread
reaches that point, it decrements the barrier, and then goes to sleep. When the last
thread arrives, it decrements the barrier to zero, and they all unblock and
proceed.

Figure 7-5 Barriers

T1
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barrier_wait(&B);
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barrier_wait(&B);

barrier_wait(&B);

barrier_wait(&B);

barrier_set(&B, 4);
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Barriers are not part of any of the libraries, but they are easily implemented. They
are also implemented in our extensions package and part of the proposed
extensions to POSIX.

Event Objects

Both Win32 and OS/2 define event objects (called event semaphores in OS/2),
which are really condition variables by a different name. (Their APIs are different,
but they’re used in the same way: to wait for complex events.) Win32 objects are
either in a signaled state (meaning a thread will not have to wait when it calls
WaitForSingleObject() , or in a nonsignaled state (meaning a thread will have
to wait). Thus a signaled mutex is an unlocked mutex, a signaled semaphore has
a positive value, and a signaled event object will not delay you.

There are two versions of Win32 events objects. The automatic reset version wakes
up one sleeper at a time. The thread calls WaitForSingleObject()  and goes to
sleep until another thread calls PulseEvent()  or SetEvent() . The first wakes
up one sleeper (if any) and leaves the object nonsignaled. The second wakes up
one sleeper (if any) and leaves the object signaled (until a thread calls
ResetEvent() ).

The other type, manual reset events objects, are quite similar, save they wake up
all sleepers.

Win32’s wait function, WaitForSingleObject() , does not release the
associated mutex for you. You must unlock the mutex, wait, then relock the
mutex yourself. This is problematical.   Because you are unlocking the mutex
yourself, it is possible for a event pulse to arrive in between the unlocking and
the going to sleep—the lost wakeup problem! Don’t use PulseEvent()  like you
would pthread_cond_signal() .

When an object is signaled, any thread calling WaitForSingleObject()  will
not go to sleep, but simply continue and loop back to retest the condition as long
as the object remains signaled. Thus, you are responsible for resetting the event
explicitly.

Code Example 7-5 Using Event Objects

Thread 1 Thread 2

WaitForSingleObject(mutex)
while (!condition)

{ResetEvent(event);
 ReleaseMutex(mutex);
 WaitForSingleObject(event)
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OS/2 event semaphores work in a fairly similar fashion, save that they must be
reset to the “not posted” state explicitly.

OS/2 Critical Sections

OS/2 defines a rather extreme version of synchronization under the name critical
section. Between calls to DosEnterCritSec()  and DosExitCritSec() , all
other threads are stopped. It is possible to build such calls from POSIX primitives,
but it does not seem a terribly useful idea. Indeed, we have yet to come up with a
single example of where these things would work better than using mutexes, etc.

Win32 Critical Sections

In Win32, the term critical section is used to describe a simple mutex. The major
distinction between Win32’s mutexes and Win32’s critical sections is that the
former can be defined to be cross-process, while the latter cannot. All of the
Win32 synchronization variables other than critical sections are kernel objects.
Their handles must be closed before the kernel structures are released. They are
also much slower than critical sections by about two orders of magnitude(!).

Multiple Wait Semaphores

In Win32, it is possible to wait for (a) any one of a set of synchronization
variables, or (b) all of that set. In POSIX, you would write the program differently,
and simply have a condition variable waiting on a complex condition.

Interlocked Instructions

In Win32, several special functions are defined: InterlockedIncrement(),
InterlockedDecrement() , and InterlockedExchange() . As suggested by
their names, they perform their tasks atomically without the need of an explicit
lock. This makes them quite fast, but limits their usefulness greatly. (Sure, you’ve
incremented the value, but you don’t know if someone else also incremented a
microsecond later.) These are implemented by the Digital UNIX compiler as
intrinsics using LockedLoad/StoreConditional instructions (see
LoadLocked/StoreConditional and Compare and Swap on page 299).

 WaitForSingleObject(mutex)
} WaitForSingleObject(mutex)

condition = TRUE;
ReleaseMutex(mutex);
SetEvent(event);

Code Example 7-5 Using Event Objects
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The things you can do with them include reference counting, semaphores, and
not much else. These types of operations are not part of POSIX and the requisite
instructions are not on all CPU architectures.

Message Queues
One thing which is discussed a fair amount is the question of how one can build
message queues for threads—queues where one thread can line up requests for
another thread to process. If this is truly what you need in your program, the
answer is quite simple: build a producer/consumer model with a queue as
previously shown. This gives you both complete control over your program and a
simple programming model. What more could you ask for?

Win32 implements a kernel-level message queue which you can use for the same
purpose. As it is part of the Win32 library, it makes sense to use it for cross-
process communication, especially when you don’t have control over all the
source code. Otherwise, in a single process, it simply imposes too heavy a burden,
both in CPU time and code complexity.

The ability to interrupt a thread and change what it’s doing is a much different
requirement and a far more difficult one to achieve. If you are thinking along
these lines, reconsider your objectives very carefully! Why do you want to
interrupt this particular thread? Could you get your work done by either (a)
polling from this thread, (b) waiting for this thread to complete its present task
and then look at a queue, or (c) simply creating a new thread to execute the task
at hand? There is probably a simpler means of doing what you want. Find it.

If you really want to interrupt a thread (other than killing it), then there is only
one method of doing so—UNIX signals. We’ll look at those later.

Win32 I/O Completion Ports

An I/O completion port is Win32’s answer to the producer/consumer problem.
You create a completion port with a file handle and then have a number of
threads waiting on that completion port. When a packet arrives on that handle,
one of the waiting threads is woken up and given the packet to work on. Upon
completion, the thread sends any reply it needs to and goes back to wait on the
port again. Windows NT hackers love these things.
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Cross-Process Synchronization Variables
Threads in different processes can synchronize with each other via
synchronization variables placed in shared memory. This kind of synchronization
works in all the libraries (it’s an option in POSIX), even though threads in
different processes are invisible to each other, as shown in Figure 7-6.

Figure 7-6 Synchronization Variables in Shared Memory

Both processes must know about the synchronization variable, and (exactly) one
of them must initialize it to be cross-process. Then, both processes (or possibly
more) can use it as a normal synchronization variable. The only difference
between a single-process synchronization variable and a shared memory
synchronization variable occurs when the requestor must go to sleep (e.g., a
mutex is already locked). Then, the shared memory version will simply take
longer (see Appendix C, Timings). There is no requirement that the processes
themselves be multithreaded.

The implementation of blocking involves the unsuccessful thread making a
system call, then going to sleep in the kernel. Thus, for locally scheduled threads,
one LWP is effectively removed from the pool during this time. When another
thread awakens the sleeper (e.g., via pthread_mutex_unlock() ), the sleeping
LWP is awakened. Once again, there is no guarantee that the newly wakened
thread will succeed in its request on the synchronization variable, though the
odds favor it.

Synchronization variables can also be placed in files and have lifetimes beyond
that of the creating process. For example, a file can be created that contains
database records. Each record can contain a mutex that controls access to the
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associated record. A process can map the file into its address space. A thread
within this process can directly acquire the lock that is associated with a
particular record that is to be modified. If any thread within any process that
maps in the file attempts to acquire this lock, then that thread will block until the
lock is released. Obviously, a process cannot be allowed to exit while it is still
holding such a shared lock.

Initialization and Destruction
All synchronization variables have both initialization and destruction functions.
The initialization functions take care of initializing the memory that the
synchronization variables use, along with setting up kernel state should the
synchronization variable be defined to be cross-process. It is legal for the
initialization function to allocate additional memory for the synchronization
variables or have other side effects, so initialization is required. The initialization
functions are called once before the first use of the synchronization variable, and
never again. You cannot use them to “reinitialize” a synchronization variable1.

The destructor functions mark the synchronization variables as being unusable,
and free any memory that the initialization functions allocate. They do not do any
kind of garbage collection for the synchronization variable itself. Destruction of a
synchronization variable is not strictly required, unless you plan to free its
memory. If you do build one from malloc’d memory, you probably will want to
free it. If you do free it, you must call destroy first.

Destroying a synchronization variable and freeing its memory can be a bit tricky,
as you must ensure that no thread ever accesses that variable again (e.g., there
can be no sleepers). Either you must know that no other thread still has a pointer
to it, or you must maintain some kind of list of valid dynamic synchronization
variables. There are no particular differences between freeing memory used by
synchronization variables and freeing memory used for other things. You just

1. Once you call the destroy function, the variable reverts to its original status of just being undistinguished
memory. You may initialize that memory to anything you want. It is not the same object as before and no
previous references to it are valid.
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have to be careful in both cases. The snippet of code below (from Manipulating
Lists on page 226) shows the allocation and initialization of a mutex inside of a
structure, and its eventual destruction and freeing.

Notice that we lock p1->lock  before destroying it. In this particular program, it
is possible that some other thread is holding the lock and working on the
structure when we decide to free that structure. So we must wait for it to finish.
Once that thread releases the mutex, we know (because we wrote the code) that
there is no possibility of any other thread ever accessing this structure and
locking it again. This is a requirement. It must be impossible for any other thread
to access the structure, if for no other reason than that section of memory might
be reallocated for some other purpose2.

2. One of the more “amusing” bugs we’ve seen is where a structure with a mutex in it was freed while a thread
was still sleeping on it. That same area of memory was later reallocated as the same type of structure, not
initialized, and the sleeping thread awoken. Don’t do that!

Code Example 7-6 Allocation, Initialization, Destruction, and Deallocation of a Mutex

void liquidate_person(person_t *p)
{person_t  *p1;
 ...
 pthread_mutex_lock(&(p1->lock));
 pthread_mutex_unlock(&(p1->lock)); /* Must unlock before destroy */
 pthread_mutex_destroy(&(p1->lock));
 free(p1->name);
 free(p1);
}

void add_to_people(char *name)
{person_t *p;

 p = (person_t *) malloc(sizeof(person_t));
 p->name = name;
 pthread_mutex_init(&(p->lock), NULL);
 ...
}
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Synchronization Problems
A number of things can go wrong when you try to coordinate the interactions of
your threads. Not using synchronization variables is the most obvious and most
common. But even when you’ve been careful to lock everything in sight, there are
still other problems you may encounter. All of them have solutions, none of them
have perfect solutions.

Deadlocks

A deadlock is kind of a Catch-22, where one thread needs another thread to do
something before it proceeds, and the other thread needs something from the
first. So they both sit there, doing nothing, waiting for each other, forever. This is
a bad thing.

A typical deadlock occurs when thread T1 obtains lock M1, and thread T2 obtains
lock M2. Then thread T1 tries to obtain lock M2, while thread T2 tries for lock M1.
Although typically a two-thread kind of problem, deadlocks can involve dozens
of threads in a circle, all waiting for one another. They can involve a single thread
that tries to obtain the same mutex twice, and they can involve a thread that
holds a lock dying while another thread is waiting for it.

Figure 7-7 A Typical Deadlock

Deadlocks can always be avoided simply by careful programming practices. If
you declare a lock hierarchy and always acquire locks in the same order—A
before B before C, etc.—then there is no chance of a deadlock. In instances where
you want to do out-of-order locking, you can use the trylock functions to see if
you can get all the locks you need, and if not, then release them all and try again
later.
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A typical instance of this is the Solaris virtual memory system which must lock
access to pages. There is an official hierarchy that says page #1 must be locked
before page #2, etc. Occasionally the VM system will lock page #2 and then
discover that it also wants page #1. It will then execute a trylock on page #1. If
that succeeds, then all is well and it proceeds. If it fails, then it releases the lock
on page #2 and requests the locks in proper order3. This is a simple optimization
that saves a bit of time in the normal case and is always correct.

Race Conditions

Races are instances of indeterminacy in otherwise deterministic programs. The
result a program will give in a race condition depends upon the luck of the
draw—which thread happens to run first, which LWP happens to get kicked off
its processor by the page daemon, etc. Race conditions are generally bad things,
although there are situations where they are acceptable. Certainly one would be
upset if 1414.60/2.414 came out to be 586 on one run of a program, and 586.001
on the next.

Most commonly, race conditions come around in programs where the
programmer forgot to write proper locking protection around some shared data,
or where locks were taken out-of-order. Still, it is certainly possible to write code

3. Note that you must release lock m2. Just spinning, waiting for m1 to become available, will not work.

Code Example 7-7 Locking Mutexes Out-of-Order

pthread_mutex_lock(&m2);
...

 if (EBUSY == pthread_mutex_trylock(&m1))
{pthread_mutex_unlock(&m2);
 pthread_mutex_lock(&m1);
 pthread_mutex_lock(&m2);
}

do_real_work(); /* Got ‘em both! */
}
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that is perfectly correct, yet suffers from races. Consider Code Example 7-8, if v
starts with the value one, then the result will either be one or zero, depending
upon which thread runs first.

It is worth noting that some instances of indeterminacy in a program are
acceptable. If you write a program that searches for a solution to a chess problem
by creating lots of threads to consider lots of different possible moves, then you
may get different answers depending upon which thread completes first. As long
as you get one good answer (“Checkmate in three!”), you don’t really care if you
move your pawn first or your rook.

Recovering from Deadlocks

A common question is “What if a thread that is holding a lock dies? How can I
recover from this?” The first answer is “You can’t.” If a thread was holding a lock,
then it could legitimately have changed portions of the data that the lock
protected in ways impossible to repair. If it was in the midst of changing the
balance of your bank account, there is no inherent way for you to know if it had
credited the deposit it was working on or not. This, of course, is a very bad thing.

Pthreads makes no provision for this situation. Only the owner of a mutex can
release it, and should that owner die, the mutex will never be released. Period.
This is not really a problem for well-written programs. The only way for a thread
to die is for the programmer to write the code that kills it. Thus, the proper
answer here is “Fix your code!”

You can, however, build arbitrarily complex “recoverable” locks from the
primitives in all of the libraries. Using them properly is the trick. Win32 mutexes
do allow recovery, should the owner thread die. This is nice functionality if you
need it, but it makes mutexes more expensive to use when you don’t.

In a single-process, multithreaded program, recovering from deadlocks is not too
much of an issue. You have complete control over your threads, and if your
process dies, all the threads die with it. In a shared memory, multiple-process
program, it is more problematic, as it is possible for one process to die, while
leaving others running.

Code Example 7-8 A Simplistic Race Condition

Thread 1 Thread 2

pthread_mutex_lock(&m) pthread_mutex_lock(&m)
v = v - 1; v = v * 2;
pthread_mutex_unlock(&m) pthread_mutex_unlock(&m)
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It is somewhat reasonable to consider recovering from a deadlock in the case of a
process dying unexpectedly. In other deadlock situations, where threads are
waiting for each other, you really shouldn’t be looking at recovery techniques.
You should be looking at your coding techniques.

System V shared semaphores do make provision for recovery, and they may
prove to be the solution to your problem. They provide room for a system-
maintained “undo” structure, which will be invoked should the owner process
die, and they can be reset by any process with permission. They are expensive to
use, though, and add complexity to your code.

Both Win32 and OS/2 mutexes have built-in “death detection” also, so that your
program can find out that the mutex it was waiting for was held by a newly dead
thread.

Still, just having undo structures that can reset semaphores does not solve the real
problem. The data protected may be inconsistent, and this is what you have to
deal with. It is possible to build arbitrarily complex undo structures for your
code, but it is a significant task that should not be lightly undertaken.

Database systems do this routinely via “two-phase commit” strategies, as they
have severe restrictions on crash recovery. Essentially, what they do is (a) build a
time-stamped structure containing what the database will look like at the
completion of the change, (b) save that structure to disk and begin the change, (c)
complete the change, (d) update the time stamp on the database, (e) delete the
structure. A crash at any point in this sequence of events can be recovered from
reliably.

Be very, very careful when dealing with this problem!

Summary
Deadlocks can always be avoided, race conditions are more problematical. More
complex synchronization is possible, but probably not useful. Trying to recover
from deadlocks is very, very tricky.
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In which an explanation of thread-specific data is provided, its use and
some of the implementation details. We note a few places where use of
TSD could be made more efficient and a few other optimizations that
can be made.

Thread-Specific Data
Sometimes it is useful to have data that is globally accessible to any function, yet
still unique to the thread. Two threads that are printing out data, one in French
and the other in Danish would find it most convenient to have a private global
variable which they could set to the desired language. The example of errno  also
comes to mind. It sure would be a bummer if one thread made a system call, got
an error, and just before it got the chance to look at errno , another thread also
got an error on a system call and changed the value of errno  (a race condition!).

TSD provides this kind of global data by means of a set of function calls.
Essentially, this is done by creating an array of “key” offsets to “value” cells,
attached to each thread structure.
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Figure 8-1 Thread-Specific Data

To use POSIX TSD, you first create a new key, which is then added to the TSD
arrays for all threads. Keys are just variables of type pthread_key_t  (which are
opaque data types, most commonly integers), and key creation (“initialization”
would be a more descriptive term) consists of setting the value of the key to the
next location. Once the key has been created, you can access or change the value
associated with the key via calls to pthread_getspecific()  and
pthread_setspecific() .

The value cell is a (void *) , which is a single word (typically either 32 or 64
bits). For those cases when the data you want to be thread specific is a structure,
array, object, or anything larger than one (void *) , you’ll need to malloc  the
storage for that structure and place a pointer to it in the TSD array. To ease your
programming burden when exiting the thread, you may declare a destructor
function for each item. At key creation time, you can include a function that will
be run on that item when the thread exits. If you malloc a structure and place a
pointer to it in TSD, then the destructor will just be free() .

The typical usage of TSD is to declare all the keys globally, initialize (er, “create”)
them in main() , then create threads and start the program for real. If you are
creating some TSD in a library, you must arrange for that library to do the
initialization before use1.
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In the code below, bar()  in the first thread will see root(2)2, the second thread
will see Π.

POSIX allows you to delete (and presumably recycle) a TSD key with
pthread_key_delete() . It is your responsibility to clean up any TSD data
which needs it. The destructors will not be run. Deleting TSD keys sounds like a
bad idea in general. You are also allowed to create a new key at any time. This
also sounds like a bad idea.

Calling pthread_getspecific()  in a thread where the value has not yet been
set is legal and will return a value of NULL. You may use NULL as a legal value
yourself, just be aware of this. In addition, TSD destructors will not be run on a
NULL value.

1. SVR4 libraries have “.ini” sections in which you can define functions to be called before main()  starts. In
Win32, you can do this in the DLL.

2. One of my best friends, a math wiz, purchased a small farm in rural Minnesota. His address was 1414, rural
route 2.

Code Example 8-1 Usage of POSIX TSD

pthread_key_t house_key;

foo((void *) arg)
{

pthread_setspecific(house_key, arg);
bar();

}

bar()
{float n;

n = (float) pthread_getspecific(house_key);
}

main()
{...

pthread_keycreate(&house_key, destroyer);
pthread_create(&tid, NULL, foo, (void *) 1.414);
pthread_create(&tid, NULL, foo, (void *) 3.141592653589);

...}
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In Win32 and OS/2 there are different versions of TSD. Win32 calls it dynamic
thread local storage and the usage is virtually identical to TSD in POSIX. Other
than the lack of destructors, you may use it in the same fashion as TSD.

In OS/2, the design is simpler and the usage more awkward. You are provided
with one (void *)  for each thread. You then store whatever value you want
into that (void *) . Typically this will be a pointer to a structure which you have
allocated yourself to hold the actual values of interest.

The actual implementation of TSD is different from vendor to vendor, but in
general they’re all the same. When accessing a TSD item, we first need to know
which thread we’re running on. Think about this for a moment. How does a
thread find out who it is? How does it find its own thread structure? On SPARC
machines, there is one register (g7) which is reserved for special use. Compiler
writers are instructed not to use it. This is where the threads library places a
pointer to the thread structure of the running thread. As in the figure below, the

Code Example 8-2 Dynamic TLS in Win32

key = TlsAlloc();
TlsSetValue(key, data);
data = TlsGetValue(key);

Code Example 8-3 TSD in OS/2

foo()
{...

my_data_pointer = (my_data_struct **) _threadstore();
*my_data_pointer = malloc(sizeof(my_data_struct));
(*my_data_pointer)->key = data;

...}

bar()
{...

my_data_pointer = (my_data_struct **) _threadstore();
data = (*my_data_pointer)->key;

...}
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thread first dereferences g7 to find the structure, then it dereferences an element
of the structure to find the TSD array. Finally it looks up the appropriate element
in the array.

Figure 8-2 Expanding a TSD Array

In some implementations the TSD array may be dynamically expanded. If it starts
with 32 elements and you create a 33rd key, then when you try to set that
element, the library will copy the current array into a larger array, adding a 33rd
value to it. According to the spec, a library need only support 128 TSD elements,
so a portable program should not assume more. (See Constants Comments on
page 198.)

So, how does errno  work? It’s a hack. Essentially, it is a thread-specific data
item. In multithreaded programs, all system calls change the TSD value instead of
the global value. Then, when you reference errno  in your program, there is a
#define  in the errno.h  header file that conditionally redefines errno  to be a
call to a thread specific value3. Clever, eh? (See The Actual Definition of errno in
errno.h (Solaris) on page 214.)

TSD is simple but somewhat expensive when compared to accessing a global
variable. Each call to a TSD function requires a function call, then a series of
offsets: first to the array pointer in the thread structure, then from the array to the

3. Actually, POSIX defines the implementation slightly differently. If you look at errno.h , you’ll see that the
definition of errno  is ___errno() . The effect is the same as if TSD had actually been used.
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key value. It requires about 40 instructions, while a simple global reference
requires just one load instruction. It is a useful feature, but you clearly want to
restrict its use to where you really need it.

The best answer to the problems of TSD is to write good, clean code that eschews
the excessive use of globals. Unfortunately, far too many programs have
preexisting conditions, and they seem to demand TSD. It is worthwhile to
consider a couple of tricks to avoid excessive use of TSD. Don’t even consider any of
this stuff until you are sure you have a problem!

One thing you can do is to cache TSD data in a local block of its own, where you
know it’s safe.

Not this:

but rather:

The other thing you can do is to create your own personal version of lexical
scoping. Create a structure that contains all the data you wish to be thread
specific and pass that structure to every function that is going to access it.

Code Example 8-4 Normal Use of TSD

for (i ...)
{v = pthread_getspecific(v_key);
 s+=f(v);
}

Code Example 8-5 Cached Use of TSD

v = pthread_getspecific(v_key);
for (i ...) s+=f(v);

Code Example 8-6 Passing Structures Instead of Using TSD

struct MY_TSD
{ int a

int b;
}

start_routine()
{struct MY_TSD *mt;
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No, this isn’t pretty. However it is clean, safe, and relatively efficient.

Thread Local Storage

TLS is an alternate method of providing the functionality of TSD. It allows you to
declare a set of global variables to be “thread local.” These variables can then be
treated exactly like normal global variables (except that you don’t have to lock
them). Unfortunately, TLS has a number of severe limitations. It requires either a
change to the compiler or some tricky memory map manipulations, it cannot
dynamically allocate new keys—the TLS segment is fixed at link time—and it is
not portable.

The Pthreads committee couldn’t require compiler changes, so chose to specify
TSD instead. Win32 implements TLS in addition to TSD. It’s called static TLS, and
it does indeed require compiler support.

Global Variables, Constants, and Cheating
Now a little detail to consider: a TSD key is a shared global variable. We say you
should always lock shared data when using it. Here’s the exception. If you can
guarantee that a global will never be changed (and changing the value of a key
would be a bad idea), then you can safely get away without putting a lock around
its use. This guarantee effectively means that the key is really being treated like a
constant, not a variable.

The same is true for any globally declared variable that is used as a constant. If
you are doing this kind of “cheating,” you must be certain that you set the
variable from only one thread (presumably the initial thread). You must do so

mt = malloc(sizeof(MY_TSD));
mt->a = 42; mt->b = 999;
foo(x, y, z, mt);
bar(z, mt);
...

}

void foo(x, y, z, struct MY_TSD *mt)
{int answer = mt->a;
...}

Code Example 8-6 Passing Structures Instead of Using TSD

struct MY_TSD
{ int a
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before creating any other threads. It absolutely must be used as a constant and
never changed. Any deviation from this will cause you no end of problems. A
Cancellation Example on page 161, addresses this issue.

The other time when you may wish to deal with shared data outside a critical
section is when you don’t need the value to be correct. If you are content to test a
variable, then do something on the basis of its probably being correct, then you can
do so. The actual definition of spin locks does this (see Spin Locks Done Better on
page 299).  This kind of “cheating” is a very rare thing to do, and it’s easy to do it
wrong.

Summary
We described the basic design of thread-specific data storage, its use and some of
the implementation details. We noted a few places where use of TSD could be
made more efficient.
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In which we describe the acrimonious nature of some programs and
how unwanted threads may be disposed of. The highly complex issues
surrounding bounded time termination and program correctness are
also covered. A simple conclusion is drawn.

What Cancellation is
Sometimes you have reason to get rid of a thread before it has completed its
work. Perhaps the user changed her mind about what she was doing. Perhaps the
program had many threads doing a heuristic search and one of them found the
answer. In such cases you want to be able to have one thread kill the other
threads. This is known as cancellation (POSIX), termination (Win32), and killing
(OS/2).

No matter how you choose to deal with the issues of cancellation, be it in OS/2,
Win32, or POSIX threads, the primary issues remain the same. You must ensure
that any thread that you are going to cancel is able to release any locks it might
hold, free any memory it may have allocated for its own use, and that it leaves
the world in a consistent state.

The fundamental operation is quite simple: you call the cancellation function with
the target TID and the target thread dies sometime “soon.” The ramifications of
doing this are, however, quite complex, making cancellation one of the most
difficult operations to execute correctly.

In Win32 and OS/2, there is a single, simple method of cancellation—you call it,
the target thread dies. Unfortunately, should that thread own some resource, hold
some lock, or should it have malloc’d some memory, your program will be in
trouble. This type of cancellation is known as unrestricted asynchronous
cancellation and it is the responsibility of the killer to know that the victim can be
safely eliminated at the time of cancellation—a difficult task at best, impossible at
worst.
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POSIX has a more elaborate version of cancellation. It defines a cancellation state
for each thread which will enable or disable cancellation for that thread. Thus you
can disable cancellation during critical sections and reenable it afterwards.
Neither Win32 nor OS/2 define this, although it would not be too difficult for you
to write it yourself. Cancellation state makes it feasible to use asynchronous
cancellation safely, although there are still significant problems to be dealt with.
For example, if your thread has malloc’d some storage and is then cancelled, how
do you free that storage?

In Win32 there is an additional problem facing cancellation: system-wide active
handles and runtime library private data which are not freed upon cancellation,
along with the thread stack and attached DLLs. As you have no control over this,
it is nearly impossible to use Win32’s cancellation at all1.

The other type of cancellation, defined only in POSIX, is known as deferred
cancellation. In this type of cancellation, a thread only exits when it polls the
library to find out if it should exit, or when it is blocked in a library call which is
a cancellation point. This polling is done by calling the function
pthread_testcancel() , which in turn just checks to see if a bit has been set. If
a request is pending, then pthread_testcancel()  will not return at all, and
the thread will simply die. Otherwise, it will return, and the thread will continue.
You may call pthread_testcancel () in your own code. POSIX also defines a
set of standard library functions that must call it (see Defined Cancellation Points
on page 160).

In deferred cancellation, a thread may run for an arbitrary amount of time after a
cancellation has been issued, thus allowing critical sections to execute without
having to disable/enable cancellation. The disadvantage of this is that you must
do extra work if you wish to ensure bounded cancellation times. A thread in
deferred state might go off and run in a loop for hours before hitting a
cancellation point. Of course, this might be OK.

There is no pat answer to these issues and you, as the responsible programmer,
must resolve them on a program by program basis. You may select asynchronous
for one program, deferred for a second, and a mixture of both for a third. All
pthreads start life with deferred cancellation enabled.

Although neither Win32 nor OS/2 define deferred cancellation, it would not be
terribly difficult for you to define the polling part yourself. To make it possible to
cancel threads blocked in system calls, you would really have to wrap every such
call with a wrapper function—a bit much to ask for.

1. From the Microsoft documentation: “TerminateThread is a dangerous function that should only be used in the
most extreme cases.” In other words, expect your program to hang after you call it!
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Cancellation Cleanup Handlers

When a thread is cancelled, pthreads provides a way to clean up the thread’s
state. This is done through a set of cleanup handlers that are called upon the
exiting of a thread. These are functions of one argument which you define and
then push onto a thread’s cleanup stack2. Should the thread exit (either via
cancellation or a call to pthread_exit () ), the functions on the stack will be run
on the argument you supplied. Should the thread not be cancelled, then you may
pop the functions off when they are no longer required.

If pthread_cleanup_pop()  is invoked with a non-zero argument, then the top
handler function will be popped off the stack and executed. If the argument is
zero, then the top handler will be popped off the stack, but not executed.

Figure 9-1 Cancellation Cleanup Handler Functions

The calls pthread_cleanup_pop()  and pthread_cleanup_push()  are
typically implemented as macros emphasizing that they must be paired (one
push, one pop) at the same lexical level. Jumping out of the push/pop block may
compile, but would leave the cleanup handlers on the stack. Jumping into a block
will probably crash the program as soon as the pop is executed. Don’t do this.

2. The cleanup stack is probably not implemented as a separate stack (as in our picture). It is probably just entries
on the call stack.

Code Example 9-1 How Cleanup Handlers are Used

Correct:

Cleanup
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pthread_cleanup_pop()
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The general idea for cancellation is that programmers will write their programs
such that sections of code that allocate resources, obtain locks, etc., are
immediately preceded (or followed) by cleanup handler pushes. The cleanup
handlers will be responsible for freeing resources, reestablishing data invariants,
and freeing locks.

These sections of code must be performed atomically with respect to cancellation.
Then, the body of the code that uses that resource is run with cancellation
allowed. Upon completion, the resource is freed and the handler popped off the
stack atomically. If there are cancellation points (e.g. sem_wait() ) in the middle
of the allocation or deallocation sections, then cancellation must be disabled
during that period.

Defined Cancellation Points

POSIX requires that the following set of library functions must be cancellation
points and that they must be interruptible should they be blocked at cancellation
time. They are required to test for cancellation even if they don’t block.

aio_suspend(3R), close(2), creat(2), fcntl(2),
fsync(3C), mq_receive(3R), mq_send(3R), msync(3C),
nanosleep(3R), open(2), pause(2),
pthread_cond_timedwait(3T), pthread_cond_wait(3T),
pthread_join(3T), pthread_testcancel, read(2),
sem_wait(3R), sigwaitinfo(3R), sigsuspend(2),
sigtimedwait(3R), sigwait(2), sleep(3C), system(3S),
tcdrain(3), wait(2), waitpid(2), write(2).

POSIX allows these functions to be cancellation points (they may well call one of
the functions above), but leaves it to the vendor’s discretion:

 pthread_cleanup_push(free, pointer);
 ...
 pthread_cleanup_pop(1);

Incorrect (won’t compile):

   pthread_cleanup_push(free, pointer);
...

  }
 pthread_cleanup_pop(1); /* Outside the code block */

Code Example 9-1 How Cleanup Handlers are Used
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closedir(3C), ctermid(3S), fclose(3S), fcntl(2),
fflush(3S), fgetc(3S), fgets(3S), fopen(3S),
fprintf(3S), fputc(3S), fputs(3S), fread(3S),
freopen(3S), fscanf(3S), fseek(3S), ftell(3S),
fwrite(3S), getc(3S), getc_unlocked(3S), getchar(3S),
getchar_unlocked(3S), getcwd(3C), getgrgid(3C),
getgrgid_r(3C), getgrnam(3C), getgrnam_r(3C),
getlogin(3C), getlogin_r(3C), getpwnam(3C),
getpwnam_r(3C), getpwuid(3C), getpwuid_r(3C), gets(3S),
lseek(2), rename(2), opendir(3C), perror(3C),
printf(3S), putc(3S), putc_unlocked(3S), putchar(3S),
putchar_unlocked(3S), puts(3S), readdir(3C), remove(3C),
rewind(3S), rewinddir(3C), scanf(3S), tmpfile(3S),
ttyname(3C), ttyname_r(3C), ungetc(3S), unlink(2).

Unexpected Cancellation Points

Because POSIX allows vendors to implement different cancellation points, it is
possible for a thread to exit in different code on different platforms. In particular,
you might have tested your program on Solaris, knowing that gets()  was not a
cancellation point. Perhaps it is one on AIX. If you had a locked mutex while
calling gets() , then your program would work fine on Solaris, but deadlock on
AIX. This would be a bad thing.

For code that will run on a single platform, it is easy enough to look up all the
library calls which are cancellation points. For multi-platform code, you will
either need to look up all the calls which are cancellation points on all of the
platforms, or assume that all of the above functions are, but also verify your code
where only the first group are.

In writing your own libraries, it would be nice to have all of your functions
deferred-cancellation safe. You can assure this by never calling any of the
functions above, or by properly handling cancellation when you do. You might
simply turn off cancellation while your function runs. You might need to install
cancellation handlers. You might not need to do anything. You do have to figure
it out.

A Cancellation Example
The program below uses cancellation to get rid of unneeded search threads. This
program has the objective of finding a certain number by using a heuristic. The
desired number is the process ID and the heuristic is to generate random
numbers, checking to see if they happen to be the PID. Admittedly this is not a
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very clever heuristic, but the concept is solid. You can reasonably replace the
problem and heuristic with more meaningful ones, such as a chess position and
an Alpha-Beta search. The cancellation issues won’t change.

The main thread gets the PID and creates 25 threads to search for it. Each of the
searcher threads enables deferred cancellation. Then each searcher proceeds to
generate a random number, checking to see if that happens to be the PID. When
one thread finds the number, it decrements a semaphore which is acting as a lock
(1), and then sends a cancellation request to all the other threads (2). Instead of
calling sem_trywait()  at (1), we could have simply called sem_wait()  and
slept there until cancelled. We just wanted to illustrate this version here.

Each of the searcher threads calls pthread_testcancel()  at several points
during the loop, so there is no concern about them never seeing the cancellation.
On the off chance that a second thread also finds the number before it gets
cancelled, it also tries to decrement the semaphore. Because the semaphore is
zero, this thread knows that it’s about to be cancelled, and it simply exits (3).
When the successful searcher thread tries to cancel the exited thread,
pthread_cancel()  simply returns ESRCH (2).

Each searcher needs to use some memory. When it mallocs that memory, it also
places a cleanup handler on the stack (4), to be run in case a cancellation request
comes in before that memory is freed (5). Note that asynchronous cancellation
would not work here (6).

The main thread looks for the result in the global variable answer . It prints out
its success, noting the number of attempts required, then waits for all of the
searchers to exit. When they have all exited, it repeats the process. Simple? Well...

Code Example 9-2 Cancellation in the Heuristic Search Program cancellation.c

/*
This program does a heuristic search for an integer, then cancels

   all threads that didn’t find it.  The actual heuristic is silly
   (it calls rand_r()), but the technique is valid.

   All of the calls to delay() are there to slow things down and
   make different contention situations more likely.

   A couple of simple cleanup handlers are included.  In a real
   program, these would be even more complex.

   NB: sem_trywait() -> EBUSY in Solaris 2.5 is a bug.
   It *should* be EAGAIN (fixed in 2.6).
*/



Cancellation 163

9

/*
cc -o cancellation cancellation.c -L. -R. -g -lpthread -lthread

-lthread_extensions -lposix4
*/

#define _POSIX_C_SOURCE 199506L
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>
#include <semaphore.h>
#include <errno.h>
#include “thread_extensions.h”

#ifdef __sun /* This is a bug in Solaris 2.5 */
#define MY_EAGAIN EBUSY
#else
#define MY_EAGAIN EAGAIN /* Correct errno value from trywait() */
#endif

#define NUM_THREADS 25 /* the number of searching threads */

pthread_attr_t attr;
pthread_t threads[NUM_THREADS];
pthread_mutex_t threads_lock = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t wait_lock    = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t rand_lock    = PTHREAD_MUTEX_INITIALIZER;
sem_t death_lock;/* I’m using it like a lock */
pthread_mutex_t count_lock   = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t wait_cv      = PTHREAD_COND_INITIALIZER;

int answer; /* Protected by death_lock */

void count_tries(int i) /* Note the encapsulation */
{static int count=0, old_count=0, max_count = 0;
 static pthread_mutex_t count_lock = PTHREAD_MUTEX_INITIALIZER;

 pthread_mutex_lock(&count_lock);
 count += i;
 if (i == -1) printf(“Total attempt count: %d\n”, max_count);
 if (count > max_count)
   max_count = count;
 pthread_mutex_unlock(&count_lock);

Code Example 9-2 Cancellation in the Heuristic Search Program cancellation.c
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}

void cleanup_count(void *arg)
{int *ip = (int *) arg;
 int i = *ip;
 pthread_t tid = pthread_self();
 char *name = thread_name(tid);

 count_tries(i);
 printf(“%s exited (maybe cancelled) on its %d try.\n”, name, i);
 /* Note that you can’t tell if the thread exited, or was cancelled*/
}

void cleanup_lock(void *arg)
{pthread_t tid = pthread_self();
 char *name = thread_name(tid);

  printf(“Freeing & releasing: %s\n”, name);
  free(arg);
  pthread_mutex_unlock(&rand_lock);

}

void *search(void *arg)
{char *p;
 unsigned int seed;
 int i=0, j, err, guess, target = (int) arg;
 pthread_t tid = pthread_self();
 char *name = thread_name(tid);
 seed = (unsigned int) tid;

 pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, NULL);
 pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL);
 pthread_cleanup_push(cleanup_count, (void *) &i); /* Q: Why &i ? */

 while (1)
   {i++;

/* Extra stuff to make it more realistic and complex. */
    pthread_mutex_lock(&rand_lock);
    p = (char *) malloc(10); /* Must free this up! */

Code Example 9-2 Cancellation in the Heuristic Search Program cancellation.c



Cancellation 165

9

/* Q:  What if you allow cancellation here? */
    pthread_cleanup_push(cleanup_lock, (void *) p); /* 4 */
    guess = rand_r(&seed);
    delay(0, 10);
    pthread_testcancel(); /* 5 */
    pthread_cleanup_pop(0);
    /* Q:  What if you allow cancellation here? */ /* 6 */
    free(p);
    pthread_mutex_unlock(&rand_lock);

    delay(0, 10);

    if (target == guess)
      {printf(“%s found the number on try %d!\n”, name, i); /* 7 */
       /* I could also simply do sem_wait() & let cancellation work */
       while (((err = sem_trywait(&death_lock)) == -1) /* 1 */

&& (errno == EINTR)) ;
       if ((err == -1) && (errno == MY_EBUSY))

 {printf(“%s Exiting...\n”, name);
   pthread_exit(NULL); /* 3 */
 }

       count_tries(i);
       answer = guess;
       delay(5000, 0); /* Encourage a few more threads to find it. */
       pthread_mutex_lock(&threads_lock);
       for (j=0;j<NUM_THREADS;j++)

if (!pthread_equal(threads[j], tid))
if (pthread_cancel(threads[j]) == ESRCH) /* 2 */

printf(“Missed thread %s\n”,
thread_name(threads[j]));

       pthread_mutex_unlock(&threads_lock);
       break;/* Cannot release death_lock yet! */
     }
    pthread_testcancel();/* Insert a known cancellation point */
  }
 pthread_cleanup_pop(1);
 pthread_exit(NULL);
}

start_searches()
{int i, pid, n_cancelled=0, status;
 pthread_t tid;

Code Example 9-2 Cancellation in the Heuristic Search Program cancellation.c
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 pid = getpid();

 while (pid > RAND_MAX)
     pid /= 2;

 printf(“\n\nSearching for the number = %d...\n”, pid);

 pthread_mutex_lock(&threads_lock);
/* Q: Why do we need threads_lock ? */

 for (i=0;i<NUM_THREADS;i++)
   PTHREAD_CREATE(&threads[i], &attr, search, (void *)pid);
 pthread_mutex_unlock(&threads_lock);

 for (i=0;i<NUM_THREADS;i++)
   {pthread_mutex_lock(&threads_lock);
    tid = threads[i]; /* Actually a constant now
    pthread_mutex_unlock(&threads_lock);/* Q: Why like this? */
    pthread_join(tid, (void **) &status); /* 9 */
    if ((void *)status == (void *)PTHREAD_CANCELED) n_cancelled++;
  }
 sem_post(&death_lock); /* Cannot release any earlier! */
 count_tries(-1);
 printf(“%d of the threads were cancelled.\n”, n_cancelled);
 printf(“The answer was: %d\n”, answer);
}

main()
{int i;

 PTHREAD_ATTR_INIT(&attr);
 pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
 SEM_INIT(&death_lock, NULL, 1);

 for (i=0; i<2; i++)
   start_searches();

 pthread_exit(NULL);
}

Code Example 9-2 Cancellation in the Heuristic Search Program cancellation.c
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Using Cancellation
You’ve seen the definition of cancellation. Now how can you use it effectively?
The answer is “not easily!”

First, let us consider your objectives in using cancellation. You created some
threads to accomplish a task and now you don’t need them to work on it any
longer. Perhaps the task has already been accomplished, perhaps the user has
changed her mind. Normally, we use cancellation to stop threads because we
don’t want them to waste time on something unnecessary. This is the best case.
Sometimes we want to use cancellation to prevent threads from doing something
which we no longer desire. This is harder.

In cancelling a thread, what do you want? Do you want to

1. Kill it instantly?

2. Kill it in bounded CPU time?

3. Prevent it from making any more global changes?

4. Prevent it from wasting CPU time?

Presumably you want #4, generally implying #2. After all, if you don’t care if the
CPU time is bounded, why bother cancelling the thread at all?

If you think you need #1, you’d best do some rethinking. First, it isn’t possible;
second, it isn’t even well-defined3. So, instead of #1, what is it that you really
want?

If it was #3 you were thinking of, you’re in much the same boat. It really isn’t
possible and not very meaningful. Now if you’re satisfied with “not very many
more global changes,” then we can put that in with #4 and proceed.

Ensuring Bounded CPU Time

The exact time of cancellation is not guaranteed by POSIX. The target thread will
become aware of a pending cancellation some time “soon” after
pthread_cancel()  has been called. If you are using asynchronous cancellation,
then the thread will indeed spend very little extra time processing. No assurances
here, but you can reasonably expect that it will be gone within a few milliseconds
of CPU time (who knows how long it might sleep for!). With deferred
cancellation, the timing situation is more complex. The main point here is that
you cannot rely upon the target thread exiting at any specific time. If you need to
know when it has exited (you usually do!), then you must use some sort of
synchronization.

3. If nothing else, special relativity denies the concept of objective synchronisity. Practically speaking, it will take
at least 1µs to send an interrupt anyway.
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As an example of long wall-clock delay in cancellation, consider the case of a low-
priority target thread and a high-priority killer on one LWP. The cancellation will
be sent, but as the high-priority thread continues to run, the target thread will not
get a chance to exit any time soon. If the killer is running in realtime mode, the
target might never exit! (Of course, in that case, you have lots of other problems
to deal with.)

In asynchronous cancellation, you can expect the target thread to exit the next
time it is scheduled onto a CPU. As long as your concerns are #2 and #4, you’re
fine. All you have to worry about is the cancellation safety issues below.

Deferred cancellation is a polling scheme when a thread is running, and more like
async cancellation when the thread is blocked. For running threads, the polling is
essentially the code below. Thread T2 cancels T1 by calling pthread_cancel() ,
which in turn sets a variable in the thread structure. When T1 enters a
cancellation point such as sem_wait() , that function then checks to see if the
thread has been cancelled, and exits if so.

In order to ensure bounded cancellation time with deferred cancellation, it is up
to you, the programmer, to insert calls to cancellation points within every
unbounded code path. In other words, for every loop which might run longer
than your declared time limit, you must make sure that there is a cancellation
point in that loop. The obvious method of doing this is simply to include a call to
pthread_testcancel()  in the loop.

In a tight loop, the overhead of pthread_testcancel()  may prove excessive,
even though it is very fast (~250ns on an SS4). Your options include:

Code Example 9-3 Deferred Cancellation as Polling

T2 T1 Cancellation Point

sem_wait(...)
die[T1] = TRUE; sem_wait(...) {...
... ... if (die[self])

 pthread_exit();
}
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1. Testing only once every N iterations:

This is the best solution for most programs.

2. Changing your mind, and deciding that your time limit is greater than the
maximum execution time of the loop (should it be a bounded loop).

This is a great solution if you can actually do it.

3. Using asynchronous cancellation for just that one portion.

This is possible, if awkward. Almost certainly you will need to either disable
cancellation during other portions of the program or switch back and forth
between deferred and asynchronous mode:

So how long a latency can you afford for cancellation? That’s a decision for you to
make. Most likely the answer is going to be something like “I want the target
thread gone within 10ms of CPU time after the call to cancel, with a probability of
99.999%4.” With any sort of normal program, you’ll have no problems. Analyze
your program carefully, then test it.

What if you want bounded wall clock time? Things get a bit stickier. We are now
talking about realtime processing and a whole different set of issues. The basic
answer is “Don’t do that!” If you are going to do it, you’ll need to know more
than we do about realtime.

4. What if you want 100% probability? Forget it. Ain’t no such beast. When the probability of program failure
drops below the probability of the computer being hit by a meteorite (about 1E-11 per year) you can relax.

Code Example 9-4 Testing Once Every 1000 Iterations

for (i=0; i < N; i++)
{a[i] = b[i];
 if (i%1000 == 0) pthread_testcancel();
}

Code Example 9-5 Turning Async Cancellation On and Off

 pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL);
for (i=0; i<N; i++)
... /* Must be Async-Cancellation Safe! */

 pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, NULL);
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Cancelling Sleeping Threads

A thread which is waiting for a mutex to be unlocked is not at a cancellation
point, and it will continue to sleep until that mutex is unlocked. Once it acquires
the mutex, it then must proceed until it hits a cancellation point. This can be a
serious sticking point when you are concerned about elapsed wall clock time. The
best answer to this problems is “Don’t do that.”

Consider the code in our example above. At (7), the thread has already found the
number and now wishes to cancel all the other threads. Unfortunately, two
threads could find the number at the same time and both reach (1) at the same
time. We only want a single thread to do the cancellation (imagine that there were
multiple threads, all killing each other at the same time!), so we need to block out
all the others as soon as one gets in. There are different methods of doing so. We
could have used a lock as in the code, testing with trylock and exiting if it was
owned. We could also block on a semaphore as below.

In this example we are not calling pthread_exit()  ourselves (unlike the
searcher code), but because sem_wait()  is a cancellation point, the thread will
be woken up when we cancel it. We could also have done something similar with
a more complex condition using a condition variable (the condition wait
functions are also cancellation points). What we can’t do, is to sleep on a mutex.
The mutex functions are not cancellation points.

What would happen if we just call pthread_mutex_lock()  instead of trylock
and exit in search() ? Take the code, make the change. It deadlocks every now
and then, right? Don’t do that.

Cancellation in pthread_join()

If T1 is waiting for a T2 to exit, and T3 cancels T1, there will be a problem with
the fact that no one is left waiting for T2. When T2 exits, it will then become a
zombie and never have its structure freed. The easiest solution is simply never to
cancel a thread that might call pthread_join() . Lacking that, you could have
another thread also do a join on T2. (If two threads try to join the same thread,
one of them will get a return value of ESRCH.) You could also write a cleanup
handler which called pthread_detach()  on T2.

By far, the best solution is the first.

Code Example 9-6 Avoiding Blocking on Mutexes During Cancellation

if {target == guess)
SEM_WAIT(&s); /* Allow only one thread to proceed */
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Cancellation in Condition Variables

While pthread_cond_timedwait(3T)  and pthread_cond_wait(3T)  are
cancellation points, there is an additional issue that must be addressed. Upon a
normal return, they always lock the mutex. Upon cancellation, they also lock said
mutex! Any cancellation handlers will be run with the mutex held. You’d better
make sure the mutex gets unlocked if you ever expect to use it again. Only the
owner thread is allowed to unlock a mutex, so, by definition, the unlocking has to
occur in a cleanup handler!

The code below shows how our cancellation example could have used condition
variables with cleanup handlers instead of simply exiting as it does now. Note the
required cleanup handler unlocking the mutex!

The Morning After

Well, now that we’ve done all that, we’re ready to get back to some useful work,
right? Not quite...

Threads are rather particular about how they’re treated after cancellation. They
want to be pampered. They want to be joined or at least waited for after they
clean up.

The point here is that you don’t want to be starting up new threads until the old
ones are truly gone. What if you have global variables that you need properly
initialized? What if there is shared data that you don’t want old and new threads

Code Example 9-7 Cancellation in Condition Variables

void cleanup_lock2(void *arg)
{
  printf(“Freeing M: T@%s\n”, thread_name(pthread_self()));
  pthread_mutex_unlock((pthread_mutex_t *) arg);
}

    if (target == guess)
      {printf(“T@%d found the number on try %d!\n”, tid, i);

pthread_mutex_lock(&answer_lock)
pthread_cleanup_push(cleanup_lock2, (void *) &answer_lock);
while (!first_thread_to_find_the_answer)

pthread_cond_wait(&cv, &answer_lock);
pthread_cleanup_pop(0);

 }
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sharing? If nothing else, it’s nice to clean up memory before making new
demands. (We’re assuming that you’ll run the same code again in your program.
If you really only ran it once, you wouldn’t need to be so careful.)

In the searcher example we have one global array of TIDs. It would not do to start
filling in new TIDs while the successful searcher was still busy killing off the old
losers. Instead we must wait for all of the threads to exit before we reinitialize
and start over again5.

Instead of using join, the same effect could be accomplished by using a
thread_single_barrier() . However we would not know if a thread had
been cancelled or had exited voluntarily. (We may not care.) In this case, a new
problem arises: TIDs for detached threads may be recycled! You must not cancel a
detached thread unless you know it’s alive. For our program, we can accomplish
this by having the searcher threads block on sem_wait(&death_lock) . This
program is on the web under the name cancellation_detached.c .

Another detail to note in this code is the joining code at (9), we first lock the
mutex, then unlock it again before calling join. Why? Well try it! Just put the
lock/unlock outside of the loop. Deadlock again! (The main thread is holding the
mutex, blocking on a join, while the successful searcher needs to lock the mutex
before it can cancel the other searchers.)

This is actually a very interesting bit of code. As soon as the main thread has
created the last searcher thread and released the mutex, the array can be treated
as a constant—no other changes will be made to it until all searcher threads exit.
This means that the main thread, which knows that the array is a constant, could
dispense with locking the array. The searcher threads, which don’t know when
the array becomes a constant, must synchronize on that state somehow. The
existing mutex is the most obvious (and fastest) method. (What if one of the
searchers found the PID before the main thread had finished creating the rest? It
might execute the cancellation loop and miss the not-yet-created threads.)

Cancellation Safety
What if a library function, say printf() , were to hold a lock just as it got
cancelled? This would not be a good thing. Some functions are Async Cancellation
Safe, some aren’t. If you are going to use cancellation, you’re going to have to
worry about this.

5. We don’t actually need the threads to exit. We merely need the threads to reach a point where they will never
change any shared data and we will never use their TIDs again.
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Some functions are certainly going to be cancel-safe. Such functions as atoi()
and sqrt()  which don’t need locks or other shared data are obvious examples.
Unfortunately, unless they are actually listed as cancel-safe, you shouldn’t assume
it.

Mixing Cancellation Types

In a well-written, complex program using cancellation, you might well find
yourself mixing things. You may disable cancellation during initialization, enable
it deferred during the majority of the program, and enable it asynchronously
during long-running, tight loops that make no library calls.

Changing State and Type in Libraries

It is legal for a function to restrict cancellation while running sensitive code, as
long as it resets the cancellation state and type to their previous settings. A
function may not make cancellation less restrictive.

Simple Polling
In a program of any complexity, using cancellation is very difficult. A program
which will be ported to other platforms will be even harder to write correctly. A
strict polling scheme such as in A Stoppable Producer/Consumer Example on
page 124 would be vastly superior in almost every respect, as long as we don’t
have to worry about blocked threads. In the code for cancellation_not.c
(web page), we see the same searcher program written using polling.

Summary
Cancellation is the method by which one thread can kill another. Because of
issues surrounding shared resources, held locks, and dynamically allocated
storage, cancellation is extremely difficult to use correctly6. In Win32 and OS/2,
there is virtually no way to use cancellation correctly. Cancellation can be
completely avoided by implementing a polling scheme in any of the libraries, as
long as we don’t have to worry about blocked threads. In POSIX, deferred
cancellation combined with cleanup handlers make it merely difficult to use
cancellation.

Avoid cancellation if at all possible.

6. Just spelling cancellation is an issue! Webster’s allows it to be spelled with either one “l” or two.
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In which we deal with the various aspects of handling asynchronous
events in a multithreaded program. The definitions are given,
alternative designs are discussed, and a program illustrating the most
complex case is shown.

Signals in UNIX
Signals were invented in UNIX to handle a series of issues related to
asynchronous events. The basic question was “How can a program do what it’s
supposed to do while still being able to respond to unexpected events in a timely
fashion?” For example, a program which does fancy 3D modeling spends massive
amounts of time in simple calculation loops. That program also has to respond to
unpredictable window events such as “open,” “close,” and “repaint.” Having the
program poll for external events would be slow and awkward.

Instead of polling, UNIX invented signals which will interrupt a program and
send it off to execute some other code to handle whatever situation might have
arisen. Thus our 3D program can do its calculations completely independent of
any repainting code, hence the loops can be simple and fast. When a SIGWINCH
(“window has changed”) comes in, the loop will be interrupted, and the program
will then repaint the window, returning to the calculation loop when complete.

The basic UNIX signal model is that a program gets to declare which code it
wants to handle the different incoming signals. The program also gets to set a
signal mask to indicate if it wants to see the different signals. (A program may
wish to disallow a signal while a specific section of code is executing.) When a
signal is generated (normally by an external process), the kernel looks at the
signal mask and the dispatch table to decide what code to run (if any). The kernel
will then interrupt the process, pushing the current state onto the stack, and
restarting it in the chosen signal handler. The signal handler may do anything at
all. Normally it will do its job and return. It may decide to exit the process or it
may even do a siglongjmp()  to a different point in the execution.
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If several of the same signal (say SIGUSR1) are sent to a process, UNIX
guarantees that at least one signal will be delivered at some point in time after the
last one was sent. Presumably the signal will be delivered quite quickly, but this
is not guaranteed. In particular, if process 1 sends a SIGUSR1 to process 2 and
then does it again, process 2 may not awaken soon enough to handle the first
signal. In that case, process 2 will only see a single signal. This is an important
detail: you cannot count signals. The logic is that a signal tells the program that
something needs attention and it’s up to the program to decide what that
something is. Thus, should window 1 be obscured by both window 2 and
window 3, and should they both be closed, then the window system will send
two SIGWINCH signals to the process. If the process only sees one of them, that’s
OK, because the process must check all of its repainting requirements upon
receipt, and it will see that two different portions of window 1 need repainting.

UNIX signals are used for three different purposes: error reporting, situation
reporting, and interruption. In traditional, single threaded programs, these three
purposes were mixed together and handled identically. Indeed, most UNIX
programmers wouldn’t even distinguish between them. In multithreaded
programming, the distinctions become important and the methods of dealing
with them are different.

Error Reporting is when a program has executed an illegal instruction. Perhaps it
tried to divide by zero, perhaps it tried to reference unmapped memory. In such
cases, the hardware itself takes a trap on the illegal instruction, and then a trap
handler is run by the kernel. The kernel figures out what happened and sends a
signal to the process (e.g., SIGFPE for divide by zero). As the process has
obviously halted at that instruction, we can be certain that the signal handler will
be run with that as the return address. Signals which are generated by traps are
known as synchronous signals1.

Situation Reporting is asynchronous signal delivery when the objective is to inform
the program that some situation has changed and needs attention. SIGWINCH is
an obvious example. In such cases you are happy with what the program is
doing, you simply wish the program to do something extra.

Interruption is asynchronous signal delivery when the objective is to stop the
program from what it’s doing and give it something else to do. For example, you
have just invented an unreliable device and you wish to call read()  on it, but
you don’t want to lose control should the device fail to respond. If there is no
automatic time-out on your read()  call, you could set a timer to go off after ten

1. It is the delivery of the signal which is synchronous with the illegal instruction, not the signal itself. You could
send a SIGFPE asynchronously via a call to kill()  yourself if you wanted to. Don’t do that.
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seconds. That timer would send a SIGALRM to the process, which would then run
a signal handler, realize that the device has failed, and then deal with it. Perhaps
it would do a siglongjmp()  and force the program out of the read()  call.

In traditional programs, the three situations are all mixed together. Indeed, there
is no particular reason to separate them out. In multithreaded programs, each of
these cases must be handled differently. OS/2 and Win32 have completely
different methods of dealing with traps, so signals are not an issue for them.

For Error Reporting, the library guarantees that the signal will be delivered to the
offending thread. (It would be pretty dumb for thread 1 to do a divide by zero
and for thread 2 to get the signal.) Thus, if you wish to handle these situations,
you can declare a signal handler, and whichever thread executes an illegal
instruction will run it.

For situation reporting, externally generated signals (the asynchronous ones) are
directed to the process (not to the LWP, certainly not to the thread). As we saw,
the process structure contains a single dispatch table, so there can be only one set
of signal handlers for the entire process (i.e., one handler for SIGUSR1, another
for SIGUSR2, etc.). Normally, the library simply decides which user thread
should receive the signal and arranges for that thread to run the user-installed
signal handler. (Any thread in the process can run the signal handler, depending
upon the state of its individual signal mask and how attractive it looks in terms of
priority level, run-state, etc.) Which thread will run the handler is
implementation-dependent and is not guaranteed to be the same each time. You
cannot rely on it. The only control you have is to set the thread signal mask.

This definition works fine. It really doesn’t make much difference which thread
repaints a dirty window.

For interruptions, the POSIX definition really doesn’t do what you want. A
SIGALRM will be delivered to the process (not the thread that requested it), and
there’s no general, reliable method of ensuring that it then gets delivered to the
proper thread. (Masking out the signal on all but one thread would work, but it
wouldn’t be general.) This poses a problem which we shall look at more.

Multithreading obviates most of the need for signals because multithreaded
programs are already asynchronous, and they don’t need much additional
asynchronous behavior. A multithreaded program can simply spawn a new
thread to wait for whatever events the programmer is interested in. There are still
times when you will need to deal with signals, however. The most likely reasons
for this are (a) the new program needs to deal with old programs that send
signals, and (b) you really do want to be able to interrupt individual threads.
Win32 and OS/2 don’t have the first problem, but the second problem they have
no general solution for.
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Each individual thread has its own signal mask, and this is what determines
which signals that thread will accept. When you are programming with threads,
you will be concerned solely with the thread signal mask, and will never read,
change, or even think about the kernel-level signal masks. You cannot control
which thread will run the signal handler other than by setting the signal mask.
The library will manage those details for you.

As the programmer, you can also send signals. You can even send them directly
to individual threads inside your program by using pthread_kill() . These
signals will behave exactly as if they had been sent from the outside, save that
they are guaranteed to be delivered to the thread chosen. As is consistent with
UNIX semantics, if they are masked out at the time, they will be queued as
pending on the thread until such time as the mask is changed.

Async Safety

Just as you thought you had it all figured out, there’s one more little detail. This
is not an MT issue per-se, but it bears mentioning here. Imagine you have just
called malloc()  from your thread, and a signal came in. Now imagine that the
signal handler also called malloc() . Well, most implementations of malloc()
require it to lock some global data. If your thread’s call to malloc()  happened to
hold that lock just when the signal came in, then trouble would be brewing.
When the signal handler’s call to malloc()  tried to grab that same lock, it
wouldn’t get it. Deadlock! So, there’s also a safety category known as async safe
(or signal safe). The library routine malloc()  is not async safe, nor for that matter
are very many of the routines in any of the libraries.

Conclusion? Look at the manual page for every library call that you are planning
to use. That will tell you if it’s safe, if there’s an alternate call to use, or if you
have to do some hacking yourself. In practice, this will not be a very big issue for
you, if you take our very good advice (below) and use sigwait()  instead of
installing signal handlers2. There are about 80 functions defined to be signal safe
(consult your vendor’s documentation).

The Solaris Implementation of Signal Handling
As we have said previously, we wish to keep implementation aspects separate
from the specifications and talk about implementation only when necessary for
clarity’s sake. In the body of the text, we have told you everything you need in

2. This is one of those rare instances where we actually take our own advice!
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order to use signals correctly, and there is no need to say anything more. We
include this section only because we know that bugs happen, and you are likely
to run into this aspect of the implementation when debugging your program.

Once again, this is a peek under the covers. Do not base any of your
programming upon what you read here!

The Solaris threads library has a distinguished bound thread of its own that
handles all signal delivery issues (see Figure 10-1). This thread is created at start-
up time and promptly calls sigwait() , which is a new POSIX function which
simply waits for any signals you ask it to. The distinguished thread waits for all
signals, hence it is assured that every signal will be delivered to it.

Figure 10-1 Solaris 2.4 Signal Handler Implementation

When a signal is delivered to the process, that thread then looks around at all the
user threads, comparing thread signal masks and considering run-state (active,
runnable, sleeping, etc.). It decides which thread is to run the signal handler. The
chosen thread is interrupted, it runs the signal handler, then returns to whatever
it was doing before (which could be sleeping!).

Should one of your threads call sigwait()  itself, the threads library will
interpose its own definition of sigwait() . This interposed function will simply
inform the distinguished thread of your desires. When a signal comes in that your
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thread should receive in its sigwait()  call, the distinguished thread will figure
this out and cause the interposed function to return as if the signal had been
delivered to sigwait()  as specified.

Notice that you will never change the process signal mask. This is officially
undefined in POSIX, and most likely sigprocmask()  has been overwritten with
an interposed function anyway.

By the way, this is the implementation that is being used in Solaris 2.4 and 2.5. A
completely different implementation was used in Solaris 2.3 that did not rely on
the use of sigwait()  at all (it also didn’t work very well). If somebody comes
up with a better idea for Solaris 2.6, it could all change again. But no matter what
kind of implementation is used, the specification will remain constant, so your
programs will continue to work properly.

Don’t Use Signal Handlers!
Now that you understand all the tricky details of how threads can receive signals
and run signal handlers, we’re going to suggest you avoid it all together. There
will be some programs where you will want to have threads handle signals as
we’ve just described, but not very many. What we suggest is that you designate
one thread to do all of the signal handling for your program. This will simplify
your programming, yet still give you all the functionality you need.

There are two ways of designating a signal-handling thread. You can mask out all
asynchronous signals on all threads but one, then let that one thread run your
signal handlers. You can just create the thread, and then immediately have it
block. Even though it’s sleeping, the library will still wake it up to run the signal
handler.

Code Example 10-1 Using a Sleeping Thread to Catch Signals

pthread_sigmask(SIG_UNBLOCK, signal_set, NULL);
sigaction(signal_handler...)
SEM_WAIT(&s); /* Sleep forever */
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The other, more recommended method, is to have this one thread call
sigwait() . It will then go to sleep waiting for a signal to come in. When one
does, it will return from the sigwait()  call with the signal, and you will decide
how to act on it. Notice that you will have to block out the selected signals from all
threads.

Per-Thread Alarms

Sometimes you will find the need to have an alarm sent to an individual thread.
It’s not terribly common, but it does happen. The canonical instance is when you
have a specific thread doing I/O to an unreliable device, and you want the thread
to time out if the device fails. Unfortunately, POSIX does not provide a good
solution to this problem.

Some implementations did (or still do!) specify that certain kinds of alarms send
their expiration signal directly to the calling thread (or LWP); however, this is not
part of the POSIX standard, and it should not be relied upon3. So, what’s a poor
programmer to do?

We recommend that you write a thread-specific timer call-out queue yourself,
depending upon the POSIX semantics for SIGALRM. That is, you write code that
keeps track of which thread is waiting for the alarm, when that alarm is to go off,
and you also take care of delivering that signal.

3. Solaris UI threads implemented SIGALRM in this fashion before POSIX had settled upon the standard. Solaris
2.5 and above will now implement SIGALRM according to the POSIX standard. There is a compiler flag which
will allow you to select per-LWP semantics for UI-compatibility. (Don’t do that!)

Code Example 10-2 Using a Sigwait Thread

pthread_sigmask(SIG_BLOCK, signal_set, NULL);
sigwait(&signal_set, &signal);
switch(signal)
{ case SIGALRM: run_alarm();

case SIGUSR1 run_usr1();
}
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In the example below we show the gist of how per-thread alarms can be built,
demonstrating the use of pthread_kill()  as we do.

Figure 10-2 Building a Per-Thread Alarm

First the waiter thread starts up during library initialization. It blocks all signals,
sets up a handler for SIGUSR1, and enters a sigwait()  loop. Then main starts
up and spawns T1 and T2. T1 and T2 unblock only SIGUSR1, then call
thread_settimer() , which arranges to set an alarm and also juggle any
pending alarms. Then they both go to work.

When the first alarm goes off, the waiter thread returns from sigwait()  with
SIGALRM, figures out which thread requested that alarm, and sends a SIGUSR1 to
that thread. In this case that happened to be T2. T2 runs the handler, which
decides to exit, and does.

As there is only one SIGALRM, the waiter thread must do some fancy footwork to
keep track of which thread requested the alarm at what time, and it must also
reset the alarm when required. We’ll leave that bit as an exercise (it’s in the
extensions library).

Some time later, a SIGARLM comes in again, and the waiter thread figures out that
it should be directed to T1. The scenario repeats, however the handler concludes
that T1 should not exit, so when the handler is finished, T1 resumes where it was
interrupted.

T1

T2

Working Sleeping Signal

thr_main() do_work()

SIGALRM

thr_main() do_work()

SIGUSR1

handler()

handler()

SIGALRM

SIGUSR1

do_work()

Waiter

waiter()
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An important detail to notice is that this design for per-thread alarms requires the
use of two signals. If we had tried to use SIGALRM when doing the
pthread_kill() , then we would have had to have unblocked SIGALRM in the
worker threads and we couldn’t have guaranteed that the external SIGALRM would
be delivered to the sigwaiting thread.

Creating Threads for Events: SIGEV_THREAD

A number of the functions in the POSIX realtime specification, POSIX.1b, allow
for asynchronous I/O—you start an operation (e.g., aio_read() ), but don’t wait
for it to complete. As part of this, you get to tell the operation what you would
like it to do when it does complete. The common thing is for it to generate a
signal, which you will then handle, presumably doing something with the data
just read.

It is now possible to tell the library that you would like it to create a thread for
you instead. The mechanism for doing this is straight-forward. You request that a
function be run on an argument in a new thread.

Code Example 10-3 Implementing a Per-Thread Alarm (callout.c)

thr_main() waiter()
{

{ int sig;
set_timer(5); sigset_t set;
do_work();
clear_timer(); init_set(&set);
}

while(1)
{err = sigwait(&set, &sig);
 switch(sig)

{case SIGALRM : tell_thr();
 case SIGUSR1 : do_usr1();
 default: etc...

}}}

Code Example 10-4 Setting up a SIGEV_THREAD Handler

struct sigevent event;

event.sigev_notify = SIGEV_THREAD
event.sigev_value.sival_int = 100;
event.sigev_attributes = attr;
event.sigev_notify_function = handler
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What advantages does this have over receiving the signal in sigwait()  and
then creating a thread? None we can think of. It’s a little bit more complex, harder
to debug, and gives you less control over your threads.

This is part of Pthreads and is supported by HP-UX 10.30, but not Solaris 2.5 or
Digital UNIX 4.0 (a bug!). It is scheduled to be in Solaris 2.6 and Digital UNIX
4.0.1.

Summary
Signal handling has been extended to MT programs, however we will generally
eschew the use of asynchronous signal handling in favor of waiting for signals
directly. Per-thread alarms are the one exception where we will need signal
handlers.

mq_notify(mesage_queue, &event);

Code Example 10-4 Setting up a SIGEV_THREAD Handler
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In which the details of actually writing and compiling an MT program
are reviewed. The defined constants are described and methods of
dealing with errors are proposed. We note which vendors have made
extensions to Pthreads, and where POSIX is headed.

Attribute Objects

The different threads APIs permit the programmer to create threads and
synchronization variables with a variety of different attributes. For example, a
thread can be created joinable or detached, a mutex variable can be initialized to
be interprocess or intraprocess. UI, Win32, and OS/2 control these states by using
flags during the creation or initialization process. Pthreads uses a different
approach. In Pthreads you use attribute objects which contain the details for the
desired attributes. The attribute object is then used as an argument to the creation
(initialization) function.

Code Example 11-1 Creating a Detached, Bound Thread in UI and POSIX

In UI (using flags)

thr_create(NULL, NULL, foo, NULL, THR_DETACHED | THR_BOUND);

In POSIX (using attribute objects)

pthread_attr_t attr;

pthread_attr_init(&attr);
pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);
pthread_attr_setdetachstate(&attr,PTHREAD_CREATE_DETACHED);
pthread_create(&tid, &attr, foo, NULL);
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The state information in the attribute object is used only during creation
(initialization). Once it is complete, a change in the attribute object will not affect
the state of the thread (synchronization variable).

There are two major advantages to using attribute objects. The first is that it
improves the readability of application code. A programmer can define all the
attribute objects used in an application in one location. This allows all the
initialization and state information for all the threads and synchronization
variables in the application to reside in one piece of code. This also provides an
easy way to modify the behavior of all the threads and synchronization variables
in just a few lines of code.

The other advantage of attribute objects is that it now becomes possible to add
new functionality to the library without changing the existing API. If UI decided
to add a function to set a thread’s signal mask at creation time, they would have
to extend the thr_create()  call to have a new argument. In Pthreads, they can
simply add a new attribute object function: pthread_attr_setmask() .

Although attribute objects provide an easy way to initialize threads and
synchronization variables, they require memory to hold state information. This
memory must be managed by the programmer. The memory is allocated when
the attribute object is initialized, using the appropriate initialization function.
This memory can be released by means of the related destructor function.

Although it is legal to allocate attribute objects dynamically, it probably isn’t very
practical. In all of our code we declare the attribute objects globally, initialize
them, and use them. It would be convenient if attribute objects could be statically
initialized the way that mutexes and condition variables can be. Unfortunately,
that would mean exporting the implementation to the header file, making it
impossible to extend the definition of attribute objects.

You may simply pass NULL to the creation (initialization) function instead of an
attribute object, in which case the vendor-specific default values will be used.

Thread Attribute Objects

The attribute object used in creating a thread contains all the information needed
to define the state of the new thread. This state information is the thread’s:

• Scheduling scope
• Detach state
• Stack base address
• Stack size
• Other scheduling information
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In most programs all threads will be created with identical attributes, so you’ll
declare one attribute object, initialize it, set its values, and use it everywhere. In
almost all of our code we use globally scheduled, detached threads, and default
synchronization variables. We don’t use those other attributes at all.

Scheduling Scope pthread_attr_{set|get}scope()

The scope determines whether the thread will have local or global scheduling.
With scope set to PTHREAD_SCOPE_SYSTEM, the thread will be globally
scheduled by the kernel in a one-to-one model. With scope set to
PTHREAD_SCOPE_PROCESS, the thread will be locally scheduled by the library
in a many-to-many model.

Detach State pthread_attr_{set|get}detachstate()

The detach state determines whether the thread will be joinable from another
thread and whether the thread can return exit status. A detach state of
PTHREAD_CREATE_DETACHED means that a thread’s resources and exit status
will be discarded immediately. A detach state of PTHREAD_CREATE_JOINABLE
(POSIX default), means the thread exit status and resources will be retained until
the thread is joined by another thread.

Stack Size pthread_attr_{set|get}stacksize()

The stack size in the attribute object defines the size of the stack, in bytes, for a
thread. If the size of the stack is non-null, then the thread will use the stack size
given in the attribute object. If a stack size is given, then it must be at least
PTHREAD_STACK_MIN bytes in size (typically about 8k). If the size of the stack is
NULL, then the system default stack size will be used (e.g., 64k on HP-UX, 1m on
Solaris).

The default stack size is implementation dependent. For Solaris it is one
megabyte, plus a guard page. A guard page is a page that is mapped invalid and
will cause a SEGV when the stack overflows onto it. One megabyte is a huge stack
and gives you plenty of room to do just about anything you want. Because it has
mapped-in MAP_NORESERVE, none of the pages actually use any physical
memory or swap space unless they are accessed. Should you decide that you
need more or less room for your stack, you may select a size, and the threads
library will create for you a stack that size, plus guard page. It’s up to you to
figure out how much stack space you’ll need. Window system calls can get nested
pretty deeply, and if your thread might run a signal handler, you’ll need room for
that too.
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Stack Address pthread_attr_{set|get}stackaddr()

It is possible for you to manage the stack yourself. You can allocate the memory,
create a guard page, then garbage collect the stack when the thread exits. When
building realtime programs you might need to do this, otherwise forget it.

The stack address specifies the starting address of the stack which you have
allocated for the thread. If the value for the stack address is non-null, then the
system will initialize the threads stack, starting at the given address. Obviously
you would not want to have two threads sharing the same stack.

The default value for a thread stack address is NULL, which means the system
will allocate the stack for the thread.

Scheduling Policy pthread_attr_{set|get}schedpolicy()

The scheduling parameters define how the thread is scheduled for realtime
threads. The policy may be: SCHED_OTHER, SCHED_RR, or SCHED_FIFO.

Scheduling Inheritance pthread_attr_{set|get}inheritsched()

The scheduling parameters define how the thread obtains its scheduling
information. Does it inherit those of its parents (PTHREAD_INHERIT_SCHED) or
does it look at the rest of the information in the attribute object
(PTHREAD_EXPLICIT_SCHED)?

Scheduling Parameters pthread_attr_{set|get}schedparam()

The scheduling parameters define how the thread is scheduled and what its
priority will be.

Code Example 11-2 Using an Attribute Object in Thread Creation

pthread_attr_t attr;

pthread_attr_init(&attr); /* Necessary */
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
pthread_create(NULL, &attr, foo, NULL);
pthread_create(NULL, &attr, bar, NULL);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
pthread_create(NULL, &attr, baz, NULL);
pthread_attr_destroy(&attr); /* Not necessary */
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In the code above, we create two detached threads with the default local scope
and stack size. The third thread will be joinable and the change in the attribute
object will not affect either of the first two threads.

Default Thread Attributes

When an attribute object is initialized, it is defined with a default state. The
default state for a thread attribute object is largely implementation defined, so it
would be wise to supply specific values yourself. Passing NULL instead of an
attribute object will also give the defaults. In the table below we note what the
POSIX spec says, and what we use in most of our programs. Individual vendor
defaults will have to be looked up for each vendor.

Synchronization Variable Initialization

Mutexes and condition variables in Pthreads use attribute objects to define the
scope of the variable (process-local or cross-process) and the priority inheritance
aspects of mutexes for realtime processing. Both of them may be initialized to the
default state by passing NULL instead of an attribute object. They may also be
statically initialized to the default values by setting them to a constant defined in
the header file. In our code, you will see static synchronization variables are
always statically initialized when we want the default values (i.e., almost always).

In order for static initialization to work, the size of the object in question must be
known at compile time. Thus, mutexes and condition variables cannot change
size in future library releases. (A binary you compiled under IRIX 6.2 has to be
able to run under 6.3.) Their size has become part of the public interface! By
contrast, attribute objects cannot be statically initialized. Their sizes are not part
of the public interface.

Table 11-1 Default Settings for Thread Attribute Objects

Attribute POSIX Default Setting Our Defaults

Scope PTHREAD_SCOPE_PROCESS PTHREAD_SCOPE_SYSTEM

Detach State PTHREAD_CREATE_JOINABLE PTHREAD_CREATE_DETACHED

Stack Address Implementation Defined NULL

Stack Size Implementation Defined NULL

Parameter Implementation Defined NULL

Policy Implementation Defined SCHED_OTHER

Inheritsched Implementation Defined PTHREAD_EXPLICIT_SCHED
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Mutex Attribute Objects

The static initializer is PTHREAD_MUTEX_INITIALIZER. It delivers the default
values of non-shared, non-priority-inheriting mutex.

Cross-Process pthread_mutexattr_{set|get}pshared()

If PTHREAD_PROCESS_SHARED, then the mutex will be sharable by other
processes. If PTHREAD_PROCESS_PRIVATE (default), then not.

Priority Inheriting pthread_mutexattr_{set|get}protocol()

For realtime threads. The thread owning such a mutex can either inherit the
priority of the sleeping thread (PTHREAD_PRIO_INHERIT) or the predetermined
“ceiling” priority of the mutex (PTHREAD_PRIO_PROTECT), otherwise it will not
change its priority (PTHREAD_PRIO_NONE) (default).

Ceiling Priority pthread_mutexattr_{set|get}prioceiling()

For realtime threads. You can set the ceiling priority level.

Condition Variable Attribute Objects

The static initializer is PTHREAD_COND_INITIALIZER. It delivers the default
value of non-shared condition variable.

Cross-Process pthread_condattr_{set|get}pshared()

If PTHREAD_PROCESS_SHARED, then the condition variable will be sharable by
other processes. If PTHREAD_PROCESS_PRIVATE (default), then not.

Code Example 11-3 Static vs. Dynamic Initialization of Synchronization Variables

pthread_mutex_t length_lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t length_cv = PTHREAD_COND_INITIALIZER;
pthread_mutex_t shared_lock;
pthread_mutexattr_t ma;

pthread_mutexattr_init(&ma);
pthread_mutexattr_setshared(&ma, PTHREAD_SHARED);
pthread_mutex_init(shared_lock, &ma);
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Semaphore Initialization

Semaphore variables are not officially part of the Pthreads specification; they are
actually part of the POSIX realtime specification (POSIX.1b). Hence they have a
different protocol for their initialization. They cannot be statically initialized and
use direct values instead of an attribute object. If the second argument is non-
zero, then it will be a cross-process semaphore. The third argument is initial
value.

POSIX Thread IDs
Although it’s easy to miss this point, TIDs are opaque datatypes—you do not
know how large they are, or what their structure is. In practice they are usually
integers, either 32 or 64 bits long, but this is not part of the interface and you
should not rely on it. The consequences of this include:

• You cannot compare TIDs with ==, you must use pthread_equal() .

• You cannot pass a TID to a function which expects a (void *) .

• You cannot print a TID.

On the other hand, you can pass TIDs to functions which are expecting them (e.g.,
pthread_equal() ), and you can set variables to TIDs with =. (You can copy any
structure with =.)

You will notice in our library of “help” functions, we have a function
thread_name(),  which maps a TID to a printable string. These strings have
only coincidental association with the contents of the actual TID. We also cheat

Code Example 11-4 Semaphore Initialized to be Cross-Process with an Initial Value of 10

sem_t requests_length;

sem_init(&requests_length, TRUE, 10);

Code Example 11-5 Incorrect Use of POSIX TIDs

if (tid == pthread_self()) ...
printf(“T@%d”, pthread_self());
pthread_exit((void *) pthread_self());
if (tid1 > tid2) ...
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for known systems. We #ifdef  more convenient (and non-portable) versions of
thread_name()  for known systems (Solaris, IRIX, Digital UNIX) which map our
printed names onto the same printed names those systems use in their debuggers.

One last thing with TIDs which we find to be a bother is the fact that there is no
“null” TID—nothing you can pass to a function to indicate that we have no TID
to pass it. For example, it would be very nice to be able to pass thread_name()
a null value, indicating that it should return the print name for the current thread,
or to have a null value we could use for static initialization. Technically, we
cannot do this. We do it, however (in just a few instances), defining NULL_TID  to
be -1L , which just happens to work on the known systems (notice that
NULL_TID  is the last element in the initializer below). We are cheating and we
might get burned!

One more little detail... Detached threads may have their TIDs reused1. Once a
detached thread exits, you must not use its TID again. This affects only such
things as pthread_kill()  and pthread_cancel() .

Win32 Thread IDs and Thread Handles
In Win32 there are two references to thread objects, a thread handle which is local
to the process (and most similar to a POSIX TID), and a thread ID which is a
system-wide referent to the thread. Most functions use the handle, although the
debugger and analyses use the TID. Both TIDs and handles are opaque, but they
can be compared with == and passed as an LPVOID.

1. A pox on anyone who implements a library which recycles TIDs! There are better ways to deal with the problem
than recycling TIDs.

Code Example 11-6 Illegal (but very Useful) Use of POSIX TIDs

/* This NULL_TID may not work on all implementations! */
#define NULL_TID (pthread_t) -1L

#define THREAD_FIFO_MUTEX_INITIALIZER \
{ PTHREAD_MUTEX_INITIALIZER, PTHREAD_COND_INITIALIZER, 0, \

FALSE, NULL_TID}
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Initializing Your Data: pthread_once()
Normally, you will initialize all of your data before your program gets going “for
real.” You can use the “.ini” section in your libraries to run initialization functions
there, and you can write an initialization function for your own main module. If,
for some reason, you need to do initialization after the program has gotten going
and there are multiple threads already in existence, then you’ll have to be more
careful. It certainly wouldn’t do to have two threads both doing the initialization.

The basic method of doing this is to have the first thread calling your function
lock a mutex, test to see if initialization is complete, and do the initialization if
not. Any subsequent calls would have to wait until the first one completed. You
could write all of this yourself, or you could use a special function designed for
just this purpose.

The function pthread_once()  does exactly what we’ve just described. It locks a
mutex, tests to see if initialization is complete, then executes the initialization
function if not. You use it like this:

Code Example 11-7 Initializing a Value in a Library’s .ini Section

int epoch;

void initializer(void)
{epoch = now();}

#ifdef __sun
#pragma init (initializer)
#elseif __dec
__init_thread_timer()
{initializer;}
#endif

Code Example 11-8 Using pthread_once()

int epoch;

void initializer(void)
{epoch = now();}

int time_since_epoch()
{static pthread_once_t initialized = PTHREAD_ONCE_INIT;
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The one obvious drawback to this is that the data being initialized must be global,
where in this example it might make more sense for epoch  to be a static variable
local to time_since_epoch() . The other drawback is that even just that little
bit of testing does take time, about the time of locking and unlocking one mutex
(~2µs). This is where you might pull one of those ugly little tricks...

It’s ugly because you’re really duplicating the work of pthread_once() , but the
cost of checking one global variable is very cheap (about 30 times faster)
compared to calling a function , locking the mutex, etc. (If a few threads happen
to get the wrong value for done , the worst that happens is you’ll spend a few
extra microseconds.)

If you can do load-time initialization, do!

POSIX Namespace Restrictions
In order to avoid conflicting names, POSIX strictly reserves the prefixes
“PTHREAD_” and “pthread_ ” for the library functions. Vendors who add their
own extensions to the library may use those prefixes as long as they add the
suffix “_np ” to indicate that the function in question is “non-portable.” Hence,
our naming scheme for the error-checking wrappers (PTHREAD_CREATE(), etc.)
is pretty dicey. All of our other functions use the unreserved prefix “thread_ ”.

pthread_once(&initialized, initializer);
return(now() - epoch);

}

Code Example 11-9

 if (!done)
  pthread_once(&initialized, initializer)

void initializer(void)
{
 ...

 /* The last thing done should be to reset the flag. */
 done = TRUE;
}

Code Example 11-8 Using pthread_once()
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Return Values and Error Reporting
All of the libraries make extensive use of return values to indicate errors. In
general they do not set the value of errno  and you should not look at it. It is
possible that a thread function could call another library function which does set
the value of errno , resulting in errno  being set to a reasonable value, but you
should not depend upon this. (E.g., pthread_create()  might call malloc() ,
which would set errno  to EAGAIN, should there be insufficient available free
space. Then pthread_create()  would return the value EAGAIN and errno
would be coincidentally set to EAGAIN also.) The one exception to this is
semaphores, which do set errno .

Pthreads also return error values when they detect programming
bugs—something that you might well expect to be handled in a different fashion.
For example, passing a semaphore to pthread_mutex_lock()  is clearly a
programming bug. Yet pthread_mutex_lock()  is defined to return the value
EINVAL2! There is no realistic way for a running program to recover from a bug
of this nature and for the vast majority of MT programmers, it may actually be a
disservice to return an error value. We think it would be far more useful for the
program simply to crash at that location so that it could be debugged.

None-the-less, there is method to this madness. One of the groups heavily
involved in the standardization effort was the realtime machine control crowd.
These folks deal with such extremes as aircraft autopiloting where “crash” takes
on a whole new meaning. They wanted to include options in the standard which
would allow them to recover from anything.

Well, that’s the logic. If you are doing realtime control, you’ve probably thought a
great deal about this kind of problem. The best advice we can give with respect to
making such programming errors in the first place is “Don’t do that!”

So how ought one deal with programming error? It makes for very heavy, ugly
code to test for every error return value from every threads function, especially
when you aren’t going to do anything about these errors. You really have two
choices: you can write good code and ensure you never run into these situations,
or you can write wrappers which check for the return values and simply aborts
the program.

In most of our programs, we do the former. In all of our calls to mutexes, for
example, we assume that we have done a good job of programming and in no
instance do we ever get confused and cast a semaphore to a mutex.

2. If it notices, of course. It is always possible that one structure looks enough like another to fool any function.
This error detection is optional.
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One set of error values indicate a runtime error that we could not have
programmed around—running out of free memory. In these instances it is best to
take the second course of action. Below are the full set of wrappers required to
cover these runtime errors.

There are a few more return values which are not really errors, but rather
conditions which you have to deal with. They are the unsupported options and
lack of permission. For the former, you must decide what to do for the specific
platform you’re on. Presumably you know what options are supported when you
write the program and have already dealt with the situation. Very likely, your
decision will be to ignore the missing option and run the program anyway.
Presumably the program will still run correctly, just a little less efficiently.

For example, if the platform doesn’t support priority inheritance mutexes, you’ll
just ignore that potential inefficiency. On the other hand, you might decide to
write inheritance mutexes yourself. Once again, this would not be a runtime
decision, but rather a porting-time decision.

A lack of permission comes from a thread trying to do something with realtime
scheduling when it is not running as root. On most systems, you cannot promote
a thread into the realtime class, nor can you declare a mutex to be priority
inheritance unless you are root. Presumably you’ll avoid this altogether by
checking for root permission as soon as your program starts up.

Code Example 11-10 Error Detection Functions for Pthreads (thread_extensions.c)

int PTHREAD_CREATE(pthread_t *new_thread_ID,
   const pthread_attr_t *attr,
   void * (*start_func)(void *), void *arg)

{int err;
 if (err = pthread_create(new_thread_ID, attr, start_func, arg))
   {printf(“%s\n”, strerror(err));
    abort();
  }}

int PTHREAD_ATTR_INIT(pthread_attr_t *a) ...

int PTHREAD_CONDATTR_INIT(pthread_condattr_t *a) ...

int PTHREAD_MUTEXATTR_INIT(pthread_mutexattr_t *a) ...

int SEM_INIT(sem_t *sem, int pshared, unsigned int value) ...
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Finally there are a few return values that you’ll only see if you are expecting
them. These are not errors, but rather informational values. If you request a
condition variable to time-out after a given period,
pthread_cond_timedwait()  will return ETIMEDOUT. The “try” function,
pthread_mutex_trylock(),  will return EBUSY if it cannot lock the mutex.

The functions that take a TID as an argument are legal to call even if the
particular joinable thread has already exited. Thus pthread_cancel() ,
pthread_kill() , pthread_getschedparam() ,
pthread_setschedparam() , and pthread_join()  may all be called on
joinable threads that don’t exist, returning ESRCH. This is not true for detached
threads, whose TIDs might be recycled. For them, you must be certain that they
are still alive.

Not all compliant libraries are equal. Many do return different error values
because (a) they interpreted the spec differently, (b) they chose different options,
(c) they made a mistake(!)

Below is the complete list of return values from Pthreads functions and what we
think you should do about them. There will be cases where you will want to do
something more elaborate than what we suggest. These are only the defaults.

Table 11-2 Pthread Function Return Values

Value Meaning Handling Technique

EINVAL Invalid argument Don’t

EFAULT Illegal address Don’t

EINTR Interrupted by a signal Wrapper

EBUSY A “try” function failed Handle

ETIMEDOUT A time limit has been reached Handle

EPERM No permission for operation Don’t

EAGAIN Resource temporarily unavailable Wrapper

ESRCH No such thread Ignore

EDEADLK Program would have deadlocked Don’t

ENOSPC No space on device Wrapper

ENOMEM Not enough memory Wrapper

ENOTSUP Unsupported option Ignore

ENOSYS Unsupported function Don’t
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“Don’t” means write your program so this never happens. (It’s a
programming bug!)

“Wrapper” means use one of the wrappers defined above.

“Ignore” means run your program without the desired option, or don’t worry
if the thread has already exited.

“Handle” means that this is a condition you specifically requested, so you’ll
obviously know how to handle it.

Constants Comments
Some of these constants are defined directly in the header files, some of them are
either not defined at all, or defined as calls to runtime functions. For example, to
get the value of PTHREAD_STACK_MIN in Solaris, you will see that it is defined to
be:

#define PTHREAD_STACK_MIN _sysconf(_SC_THREAD_STACK_MIN)

Code Example 11-11 Pthreads Constants

in <unistd.h> DEC
4.0D

IBM
4.2

SGI
6.2

Sun
2.5

HP
10.30

_POSIX_THREADS X X X 1 X
(Are threads implemented?)
_POSIX_THREAD_ATTR_STACKSIZE X X X 1 X
(Can you set the stack size?)
_POSIX_THREAD_ATTR_STACKADDR X X X 1 X
(User allocated the stacks?)
_POSIX_THREAD_PRIORITY_
SCHEDULING

X X X 1 X

(Can you use realtime?)
_POSIX_THREAD_PRIO_INHERIT — - - — -

(Priority inheriting mutexes?)
_POSIX_THREAD_PRIO_PROTECT — - - — -
(Priority ceiling mutexes?)
_POSIX_THREAD_PROCESS_SHARED — - - 1 -
(Can SVs be cross-process?)
_POSIX_THREAD_SAFE_FUNCTIONS X X X 1 X
(MT-safe library calls?)

in <limits.h>

PTHREAD_DESTRUCTOR_ITERATIONS 4 4 4 4 4
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The “max” constants are a little bit confusing to read. The constant
_POSIX_THREAD_THREADS_MAX represents the minimum number of threads
every POSIX system must support. In other words, a compliant system may set
the maximum number of threads to be 64, but no lower. This is the lower bound
on the constant PTHREAD_THREADS_MAX, which is an implementation-dependent
constant. It, in turn, tells you the minimum number of threads the implementation
will support. The actual number may be higher.

Pthread Futures
The POSIX threads standard, POSIX.1c, was ratified in June ‘95. As with all
standards, it is the product of a great many, very diligent, very hard working
people with different needs and different objectives. Not everything that
everyone thought valuable made the standard, and parts of the standard are less
than perfect. Overall, it is a superb piece of work. The members of the group have
done an excellent job. (Way to go, y’all!)

(Iterations of TSD destructors)
PTHREAD_KEYS_MAX 255 128 128 128 128
(Max TSD keys: implementation)
Actual runtime value >1m
PTHREAD_STACK_MIN 8k 8k 8k 1k 8k
(Smallest thread stack)
Actual runtime value 24k ~8k
PTHREAD_THREADS_MAX 64 64 64 64 64
(Max threads: implementation)
Actual runtime value >10k >10k >10k >10k >10k

Code Example 11-12 Pthread Constants (Required Minimums)

Constant Minimum Required Value (Actual)

PTHREAD_DESTRUCTOR_ITERATIONS _POSIX_THREAD_DESTRUCTOR_
ITERATIONS (4)

PTHREAD_KEYS_MAX _POSIX_THREAD_KEYS_MAX (128)
PTHREAD_STACK_MIN 0
PTHREAD_THREADS_MAX _POSIX_THREAD_THREADS_MAX (64)

Code Example 11-11 Pthreads Constants
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In addition to the various optional portions of the standard, there are a number of
things that would have been nice to have, but which the members were unable to
completely concur on. There is work going on to resolve the differences and add
these to a future version of Pthreads. Pthreads, the next generation, has two parts,
neither is likely to emerge before 2000(?).

POSIX.1d (Realtime, part 2)

• Timed mutex lock

• Timed semaphore post

POSIX.1j (Realtime, part 3)

• Relative wait functions (i.e., “In 10 minutes” vs. the current absolute wait

functions which say “At 10:15”)

• Barriers

• Readers/Writer locks

• Spinlocks

• pthread_abort()  (Forced cancellation which ignores the disabled state.)

POSIX.14

This working group is focused on clarifying how multiprocessor systems should
deal with the optional portions of Pthreads, which should become required on
MP systems.

Pthread Extensions
In addition to POSIX, X/Open has also written a number of extensions to
Pthreads, as have a number of different vendors. In some cases, the naming
scheme will include the suffix “_NP” (“_np”) to indicate that they are additions to
the standard. A great number of the extensions are easily written at user level and
many are included in our extensions library.

Solaris Extensions

• pread()  and pwrite()

• Readers/Writer Locks (via UI threads)

• thr_setconcurrency() (via UI threads)
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• Debugger interface: libthreaddb.so

X/Open Extensions

X/Open has developed XSH5 (part of UNIX98 brand) which requires 1003.1b,
10031c and add some thread extensions.

The UNIX95 specification (aka Spec 1170) was an extension of POSIX where the
vendors collected all of the library functions on all of the systems in order to
make a truly usable specification. The XSH5 working definitions overlap with
some of POSIX.1j, and it is likely that they will converge before ratification. They
have included:

• Variable size guard pages

• Recursive mutexes

• Debug mutexes

• Readers/Writer locks

• pthread_setconcurrency()

• pread()  and pwrite()

• Additional required cancellation points

AIX Extensions

• pthread_mutexattr_set{get}kind_np()  for either fast or recursive

mutexes.

• pthread_mutex_getowner_np()

• pthread_mutex_getunique_np()

Digital UNIX Extensions

• Much of the XSH5 extensions (with slightly different names): pread(),

pwrite() , guardsize, different mutex types

• Full character names for objects (threads, mutexes, etc.)

• Debugger interface: libpthreaddebug.so
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• Thread Independent Services—Pthread-like interfaces that are fast in

nonthreaded processes, but vector to Pthread functions otherwise (instead of
using stub functions in libc)

Comparing the OS/2, Win32, and POSIX Libraries
If we look at the specifications of the different libraries, we find a number of
distinctions in their design philosophies, their functionalities, and some factors
that affect the maximal efficiency of the implementations.

The POSIX thread specification is the most “primitive” of the libraries in the sense
that it provides all of the base functionality but requires the programmer to
construct the fancy stuff on top. This is good because these primitives are much
faster than the fancy stuff, but it does require a bit more programming work in
some cases. Of course, it also means that you are able to build exactly what you
want.

OS/2 and Win32 both have much heavier libraries, containing more complex
primitives. This is good where that functionality is required, but your programs
pay for it dearly in efficiency when it’s not used. OS/2 and Win32 contain a built-
in interdependency between windows and threads. Not just any thread can
construct and use windows. OS/2 also has a system-wide limit of 256
(configurable to 4096) on the total number of threads.

Table 11-3 Comparing the Different Thread Specifications

Functionality POSIX
Threads

Win32
Threads

OS/2
Threads

Design Philosophy (Simple Primitives?) Simple Complex Complex

Scheduling Classes Local/Global Global Global

Mutexes Simple Complex Complex

Counting Semaphores Simple Complex Buildable

R/W Locks Buildable Buildable Buildable

Condition Variables Simple Complex Complex

Multiple-Object Synchronization Buildable Complex Complex

Thread Suspension Difficult Yes Yes

Cancellation Difficult Unusable Unusable

Thread-Specific Data Yes Yes Difficult

Signal-Handling Primitives Yes n/a n/a

Compiler Support Required No Yes No
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In Table 11-3 we give a simple comparison of the four specifications. By “simple,”
we mean that the object is just about as small and fast as is possible to implement
the functionality, whereas “complex” implies that it has other functionality that
makes it more useful in limited circumstances, but also slower. “Buildable” means
that such functionality is not part of the specification but is fairly simple to
construct. “Difficult” means that it is humanly possible to construct from the
supplied primitives but involves some tricky programming. It may not be
possible to build all of that functionality, and it may require all programmers to
do extra work, such as calling initialization functions when starting a thread.
“Unusable” means that the API really can’t be used, though you may be able to
build a usable version yourself.

From our own, biased point of view, we find the simplicity and inherent speed of
the POSIX threads specification most attractive. We think Win32 and OS/2 are too
complex and slow, contain unreasonable limitations (the window system
dependencies, the requirements for using system-wide handles), and in general
do not seem to be as well thought-out as other parts of those systems.

Nonetheless, we recognize that you, the programmer, do not have a great deal of
choice in the matter and must use the libraries supplied. To the largest degree,
you can write any program with any of the libraries. For the most part, even the
design and construction of the programs will be identical. They have more in
common than they have that which is different.

Summary
Pthreads uses attribute objects for initialization instead of flags. Many of the more
exotic portions of Pthreads are optional and system constants indicate their
existence in an individual implementation. Most of the errors that POSIX
functions return are best handled by aborting the program and fixing it. Several
extensions to Pthreads are being worked on, while some vendors provide some of
these already.
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In which we explore a variety of operating systems issues that bear
heavily upon the usability of the threads library in actual programs. We
examine the status of library functions and the programming issues
facing them. We look at some design alternatives for library functions.

Multithreading is a fine and wonderful programming paradigm as we have
described it thus far. However, it’s not worth too much if it doesn’t have the
operating system support to make it viable. Most of the major operating systems
are in a state of significant flux, so it would be difficult for us to say much about
all of them. Instead we will stick with the issues that need to be considered and
describe where the major systems are with respect to them.

The Threads Library

The threads library is an integral, bundled part of the operating system for some
(Solaris, IRIX, AIX, Digital UNIX, UP-UX, Win95, NT, OS/2), but not all OSs.
When it is there, you can write your program and not worry about whether the
dynamic library will be there when you need it. As long as you write your
programs legally, you will be able to move them across different machines and
across different versions of the operating system without any problems at all.

All the system files you require in order to write and ship MT programs are
bundled with the operating systems. The threads library is just a normal system
library, so any legal compiler can be used, and there are plenty of them out there.
Any legal debugger will work, although a debugger with MT extensions is to be
vastly preferred.

Multithreaded Kernels

Many of the kernels are implemented using threads (Solaris, NT, OS/2, AIX, IRIX,
Digital UNIX, HP-UX). The kernels use generally the same API that you have
access to (Solaris kernel threads are very similar, Mach kernel threads are much
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lower level). There is no inherent connection between the kernel being
multithreaded and the existence of a user-level MT library. Kernel programmers
could have written the user-level library without the kernel being threaded, and
they could have threaded the kernel without supplying you with a user-level
library. They even could have built LWPs, made them realtime, SMP, and
preemptable without the use of threads. Theoretically.

In practice, the same things that make MT so attractive to you also make it
attractive to the kernel hackers. Because the kernel implements all internal
schedulable entities as threads, it is much easier to implement SMP support,
realtime scheduling, and make the kernel preemptable. So, LWPs are built on top
of kernel threads. Interrupts are built with kernel threads. Creation, scheduling,
synchronization, etc. of kernel threads works much the same way as for user-level
threads.

The OS can be viewed as one gigantic program with many library calls into it
(read() , write() , time() , etc.). Kernels are unusual in that they have always
been designed for a type of concurrency. DOS is simple and allows no concurrent
calls. If your program blocks while reading from disk, then everything waits.
Multitasking systems on the other hand have always allowed blocking system
calls to execute concurrently. The calls would get to a certain point (say when
read()  actually issues the disk request), they would save their own state and
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then go to sleep on their own. This was non-preemptive, and it did not allow for
parallelism. Code paths between context switching points could be very long, so
few systems claimed any time of realtime behavior.

Figure 12-1 Concurrency Within the Kernel

In the first case in the figure above (which is like SunOS 4.1.3 and most early
operating systems), only one process can be in executing a system call at any one
time. In the second case, locks are put around each major section of code in the
kernel, so several processes can be executing system calls, as long as the calls are
to different portions of the kernel. In the third case (like most current systems),
the granularity of the locks has been reduced to the point that many threads can
be executing the same system calls, so long as they don’t use exactly the same
structures.

Now, if you take these diagrams and substitute “processor” for “process,” you
will get a slightly different picture, but the results will be largely the same. If you
can execute several things concurrently, with preemptive context switching, then
you can execute them in parallel. A slightly different, but perfectly valid way of
looking at this is to consider it in terms of critical sections. In the “no
concurrency” case, the critical section is very large—it’s the whole kernel. In the
“more concurrency” case, there are lots of little critical sections.
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Symmetric Multiprocessing

SMP merely means that all processors are created equal and endowed by their
designers with certain inalienable functionalities. Among these functionalities are
shared memory, the ability to run kernel code, and the processing of interrupts.
The ability of more than one CPU to run kernel code simultaneously is merely an
issue of concurrency—an important issue, of course, but not a defining one.

All of the OSs discussed here were designed to run on uniprocessor systems and
tightly coupled, shared memory multiprocessors. The kernel assumes all
processors are equivalent. Processors run kernel threads from the queue of
runnable kernel threads (just as in user code). If a particular multiprocessor
implementation places an asymmetric load on the processors (e.g., if interrupts
are all directed to a single CPU), the kernel will nonetheless schedule threads to
processors as if they were equivalent, not taking this asymmetry into account.

Are Libraries Safe?

Just because you write perfectly safe code that will run in a multithreaded
environment with no problems doesn’t mean that everyone else can. What would
happen if you wrote a wonderful MT program, but then called a library routine
that used a bunch of global data and didn’t lock it? You’d lose. So, you must be
certain that if you call a routine from multiple threads, it’s MT safe. MT safe
means that a function must lock any shared data it uses, it must use the correct
definition of errno , and it must only call other MT safe functions.

Well, even programmers with the best of intentions find themselves with
conflicting goals. “Make it fast,” “Retain UNIX semantics,” and “Make it MT
safe” don’t always agree. Some routines in some libraries will not be MT safe. It’s
a fact of life, and you have to deal with it. The manual page for each library call
should indicate its level of “MT safeness.” (Not all the documentation for all the
systems are quite there yet. Ask your vendor.)

Libraries themselves are not safe or unsafe, per se. The functions in them are. Just
to confuse things, there are libraries that contain some functions that are safe and
some functions that aren’t safe. Every time you use a function, you must make
sure it’s MT safe.
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Some functions, (e.g., malloc()  and printf() ) use global data structures
internally. They need to lock the use of that data to become thread-safe. And
that’s exactly what they do. When a thread calls either malloc() or free() , it
must acquire the lock first.

There are also functions that are defined to return global data. The function
ctime()  for example, puts its data into a static string. There is no way to make
this MT safe while retaining its semantics. (Even if we put a lock around the call,
as soon as it returned and you tried to use the data, some other thread could
sneak in and change it. It’s like the errno  problem.) In this case, a new library
call was written: ctime_r() , which operates just like ctime() , save that you
must allocate a string to pass along with the call1. The results will be stored in
this string. This is probably how ctime()  should have been defined in the
beginning, but it’s too late to change it now (too many programs depend upon its
current behavior).

1. A different solution would be to make that data thread-specific, which is exactly what Win32 does.
Unfortunately, TSD would slow some functions significantly, and it would change the semantics, strictly
speaking.

Code Example 12-1 Making malloc() MT safe with a Mutex

void *malloc(int size)
{pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

pthread_mutex_lock(&m);
...
pthread_mutex_unlock(&m);
return(pointer);

}

Code Example 12-2 The Unsafe ctime() and the MT safe ctime_r()

char *ctime(const time_t *clock)
{static char s[SIZE];

... Place the date string into s ...
return(s);

}

char *ctime_r(const time_t *clock, char *s, int buflen)
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Next there are a few functions that simply ran too slowly in their threaded
version. The function getc() , for example, was actually implemented as a little
macro. It ran very fast because it didn’t even have to make a subroutine call.
When the system programmers made it MT safe, they had to put a mutex lock
around every call, and getc()  became painfully slow. So, for non-threaded
programs the original version of getc()  is used. For threaded programs, the
slower MT safe version is substituted in the header file. And for those MT
programs where you plan to use the file descriptor from only one thread (or do
the locking yourself), the original version of getc()  is available under the name
getc_unlocked() . (Note that we are locking the use of the particular file
descriptor, not getc()  itself.)

{
... Place the date string into s ...
return(s);

}

Code Example 12-3 Definition of getc() (from stdio.h)

#ifdef (defined(_REENTRANT) || _POSIX_C_SOURCE >= 199506L)

extern int getc(FILE *);

#define getc_unlocked(p)(--(p)->_cnt < 0 \
? __filbuf(p) \
: (int)*(p)->_ptr++)

#else /* _REENTRANT */

#define getc(p) (--(p)->_cnt < 0 ? __filbuf(p) : (int)*(p)->_ptr++)

#endif /* _REENTRANT */

/* Approximate implementation of MT safe getc() */
int getc(FILE *p)
{pthread_mutex_t *m = _get_lock(p);

pthread_mutex_lock(m);

Code Example 12-2 The Unsafe ctime() and the MT safe ctime_r()
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The calls read()  and write()  are technically MT safe, in as much as you can
call them from multiple threads and get correct results. Unfortunately, they both
move a pointer associated with the file descriptor. You’d have to keep track of
that pointer yourself. In practice, if you do concurrent operations from different
threads on the same file descriptor, you’re likely to get very confused. For this
reason, there is a pair of calls: pread() 2 and pwrite() , which operate just the
same way, except that you have to pass an explicit file position pointer along with
them. Although not part of the Pthreads, they are part of the pending UNIX98
and can be found on many platforms (Solaris, HP-UX, Digital UNIX).

Figure 12-2 Using pread() and pwrite() to Keep Track of the File Pointer

XView™ and CDE Motif are two of the most important libraries that are not MT
safe3. The amount of global state associated with the windows, the widgets, etc.,
made it difficult to sanitize. Because they are designed around the concept of

2. “Parallel read” and “parallel write.” Why not read_r() ? Well...

3. The CDE 2.1 release is scheduled to be MT safe and will begin appearing in systems in late 1997.

c = (--(p)->_cnt < 0 ? __filbuf(p) : (int)*(p)->_ptr++)
pthread_mutex_unlock(m);
return(c);

}

Code Example 12-3 Definition of getc() (from stdio.h)

pread(fd, fp)

pread(fd, fp)

read(fd)

read(fd)

PRT++

file.txt

(T1)

(T2?!)



212 Threads Primer

12

having an “event loop” waiting for window events, the only way to use them in
an MT program is to execute all window calls from one thread. You can then have
it dispatch work to other threads that it will subsequently collect for display.

Figure 12-3 Threads Using Pipe Callbacks with the Window Toolkit

As the window toolkit thread will be in the event loop all the time, the only way
for a thread to communicate with it is either (a) to pretend to send an X event,
which will cause the event loop to run the callback for that particular event (see
XCreateEvent()  in an X programming manual), or (b) to open a pipe down
which the worker thread will send notification, also causing the event loop to run
the callback for that pipe.

The code below is from the program ThreadWin (see Threads and Windows on
page 305) and shows callbacks being added for the buttons and the pipe, the
function which runs when you push a button (which just creates a thread and
returns), the work function (which does its work, then writes to the pipe), and the
display function (which is run when the pipe is written to).

Code Example 12-4 Threads Using Pipe Callbacks with the Window Toolkit

main()
{
 ... initialize stuff ...
 pipe(msg); /* Open a pipe */

/* Add callbacks for the pipe and the buttons */
 XtAppAddInput(app, msg[READ], XtInputReadMask, WorkComplete, 0);
 XtAddCallback(button[i], XmNactivateCallback, ButtonPushed, MT);
 XtMainLoop();/* Remain in the event loop forever */

Read Execute callback1()
{draw_results()}

callback2()
{pthread_create(long_calc)}

callback3()
{read_text()}

Pipe

File

Mouse

long_calc()
{calculate()

write(Pipe)
}
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As XView is not one of the toolkits of the future, Sun has no plans to ever make it
MT safe. The future of X Window System™ toolkits is CDE™ Motif and these
libraries will be made MT safe, presumably in the near future.

On top of all these details, there’s the question of whether a library contains calls
that are even consistent with an MT environment. Remember errno ? And how
there is a #define  to turn it into a call to a distinguished TSD value? Well, it
would be a disaster if some library were used in an MT program that didn’t know
about this trick. Even if it were only called from one thread, it would still be

}

DoWork(void *arg)
{
 ... do work ...
 write(message[WRITE], &w, sizeof(w)
 pthread_exit(NULL);
}

ButtonPushed(Widget w, XtPointer MT)
{
 pthread_create(&tid, &pt_attr, DoWork, w);
}

WorkComplete()
{
 read(msg[READ], &w, sizeof(w));
 ... redisplay whatever ...
}

Code Example 12-4 Threads Using Pipe Callbacks with the Window Toolkit
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incorrect. This and several similar #define  calls are enabled by a flag to the
compiler4. All libraries that will be used in an MT program must be compiled
with this flag.

There is a clever hack (Solaris) which allows you to use a library compiled non-
reentrant. By defining the location of the main thread’s TSD errno  to be the same
as the global location for errno , you can safely use calls to these “MT Illegal”
libraries from the main thread only.

Whew! That gives us five categories for library calls:

Of these, only the terms MT safe and MT unsafe are ever used in the man pages5.

4. The flag is _REENTRANT for UI threads and earlier POSIX drafts (e.g., DCE threads), and
POSIX_C_SOURCE>=199506L for POSIX (June 1995 is the date of Pthreads ratification).

5. In Solaris 2.4 and 2.5 you will see a distinction made between “Safe” and “MT safe.” You may treat them as
being synonymous.

Code Example 12-5 The Actual Definition of errno in errno.h (Solaris)

#if (defined(_REENTRANT) || _POSIX_C_SOURCE >= 199506L)
extern int *___errno();
#define errno (*(___errno()))
#else
extern int errno;
#endif/* defined(_REENTRANT) || _POSIX_C_SOURCE >= 199506L)

Table 12-1 Categories of MT Library Calls

Category Meaning

MT safe A function may be called concurrently from different threads.

MT hot An MT safe function that is also “fast” (perhaps it spawns threads,
perhaps it uses no global data, perhaps it just uses a tiny bit of global
data, reducing locking contention). (Marketing loves this name!)

MT unsafe A function that is legal in an MT program but cannot be called
concurrently.

Alternative A function that is MT unsafe, but there is an MT safe equivalent function
that you can use (e.g., ctime_r() )

MT illegal A function that wasn’t compiled with the reentrant flag and may be
called only from the main thread.
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Stub Functions in libc
Some library functions, such as printf()  and malloc(),  need local mutexes to
protect their internal data structures and other resources. This is all fine and well,
but it means that all of these functions need the threads functions defined. If
you’re linking in libpthread.so  anyway, that’s not a problem. But what about
all those primitive, uncouth single threaded programs out there? Do they have to
use a different version of libc? Do they have to link in threads?

Neither! There are several different tricks used to solve this problem on the
different OSs, all of which having the same consequences. In Solaris’ libc.so
there are stub functions for mutexes and condition variables. These functions do
nothing (they just return -1) and will be overridden if libpthread.so  is linked
in. This way printf()  will use the real definition for mutexes in multithreaded
programs and the stub version in single threaded programs. This is also why
libpthread.so  must be linked in after libc.so . (Other OSs accomplish the
same thing by different methods.)

UI threads worked in a similar fashion, save that all of the thread functions had
stubs. So what do you do if you want to include a call to pthread_create()
(which has no stub) in a library that must be linkable non-threaded? First you
should think carefully whether or not you really want to do this. Then...

Use a new Solaris6 pragma, weak . This pragma gives a symbol a value of 0 while
allowing it to be used as a function. It will be overridden if the symbol is defined
by another library at run time. Thus you can write this code:

6. Other systems have other methods of dealing with the same problem.

Code Example 12-6 Using a Pragma for Undefined Functions

#pragma weak pthread_create

if (pthread_create == 0)
 do_work(); /* No threads! */

else
 pthread_create(&tid, NULL, do_work, NULL);/* Threads! */
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New Semantics for System Calls

Several of the UNIX system calls have new semantics when used in a
multithreaded program. The choices of how to handle these new semantics are
not uniform between early POSIX drafts (e.g., DCE), UI and POSIX, although in
any realistically normal program, the differences will not be noticed.

Forking New Processes

According to the old definition of fork() , the kernel is to duplicate the entire
process completely. With threads, the question comes up “Should it duplicate all
of the threads and LWPs?” The most common usage of fork()  is to follow it
immediately with a call to exec() . In that case, all the effort to duplicate the
threads and LWPs would be wasted. So, there are two possible ways of defining
fork() . In fork1 semantics, only the calling thread is duplicated. In forkall
semantics, all threads and LWPs are duplicated. POSIX chose to define fork()
(and all the variants) to have fork1 semantics. UI threads chose forkall semantics.

Should you use fork()  and not immediately call exec() , you should be
cautious about touching any locks that might be held by threads that do not exist
in the child process. A deadlock would be very easy to arrive at. Even just calling
printf()  from the child can cause a deadlock. So, if you’re doing this stuff, be
very, very careful!

Fork Safety and pthread_atfork()

POSIX defines a function intended to help with the deadlock-in-the-child
problem. The function pthread_atfork()  will place three functions on three
stacks to be called when a thread calls fork() . The first function is called just
before fork()  takes place. The second is run in the parent after the fork
completes, the third is run in the child. The idea is that the prepare function can
lock all necessary locks so that no other thread can get them. Once forked, the
locks are then released in the parent and child.

This could be done by hand, writing all the code in-line with the call to fork() ,
but it’s nicer to have it separated out. This way different modules can place their
own atfork handlers onto the stack so that their functions can be fork-safe. The
prepare handlers are called off the top of the stack, Last-in, First-out. This will be
important if there are interactions between the different modules. The after-fork
functions are called in FIFO order, though this doesn’t make any difference.
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In order to be able to do fancy things in the child before exec’ing a new program
(or instead of), you have to ensure that all locks that the child will ever want are
controlled in an atfork fashion. Any functions that use locks which are not
controlled must not be called from the child.

So, for example, printf()  has a private lock which is not controlled. The Sun
library writers could have added an atfork()  call for this lock, but they didn’t.
So printf()  is not fork-safe in Solaris 2.5. You must not call it from a child
process in a multithreaded program. If you do, it will deadlock every now and
then (try it!). Being a race condition, you may safely assume that such a program
will pass all SQA and release engineering tests, only to deadlock the first time
your most important customer uses it.

In addition to that little problem, it’s also the case that POSIX defines fork()  in
such a way that it isn’t even legal to call anything except async-safe functions in
the child! (This is presumably a minor error in the updating of the POSIX spec
and should soon be fixed.) The long and the short of this matter is that you, the
programmer are fully responsible for this issue and need to work with your
vendor.

Practically speaking, the easiest way to handle this case is to have the forking
thread wait for all the other threads to arrive at a known, fork-safe location, and
then call fork() . A trio of functions our “help functions” library do exactly this,
wait_for_others() , wait_for_forker() , and awake_others() .

The best answer to all of these issues above is “Don’t do that!” If the child process calls
exec() immediately, there are no deadlock issues.

Executing a New Program

The call exec()  does exactly what it did before—it deletes the entire memory
mapping for the calling process and replaces it with one appropriate for the new
program. A program with multiple threads that calls exec()  will have all of
those threads (and any LWPs) terminated, and the only thing left will be the new
program.

Are Libraries Safe?
There are four categories in which library functions may or may not be safe. The
requirements for being defined as safe in each of the four categories are similar,
but distinct. A function could be in any combination of these categories. If the
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manual pages for all library functions were complete, they would list the status of
each function in all five categories. Currently only signal safety and MT safety are
listed.

Threads Debugger Interface
If you are not involved in writing a debugger or some other related tool for
threads, then this section is not interesting. You will never use any of this
information in an end-user MT program. You may be interested in knowing that
it exists, however. This is implementation-specific; there is no POSIX standard for
a debugging interface.

Basically, the debugging library (libthread_db.so , for Solaris;
libthreaddebug.so  for Digital UNIX, etc.) provides an interface to the
internals of the threads library. With it you can do all sorts of things that you can’t
do otherwise, such as look at the scheduling queues, lists of extant threads,
synchronization variable sleep queues, TSD data arrays, and current LWP lists
and their internal states. You can also “reach in” and alter these things directly,
look at and change the individual thread’s stack, etc. The library gives you all the
power you need to implement a debugger, a garbage collector, or other kinds of
tools.

Again: Do not even think of writing a “normal” MT program that depends upon
anything in this library. Use the standard API for everything.

Mixing Solaris Pthreads and UI Threads
It is legal to write a program that uses APIs from both libraries. It is certainly not
anything you should do voluntarily. Read the manual pages very carefully if you
do. There are going to be different semantics for some library calls. For example,
SIGALRM is sent to the LWP under UI threads, not the process as in POSIX.

Table 12-2 Safety Categories of Library Calls

Category Meaning

MT safe A function that may be called concurrently from different threads.

Signal Safe
(Async Safe)

A function that may be called from signal handlers. (It may just
block out all signals temporarily.)

Asynchronous
Cancellation Safe

A function that may be running when an asynchronous cancellation
request arrives. (It may just disable cancellation temporarily.)

Fork Safe A function that may be called from the child process after a fork.
This is actually identical to “Signal Safe.”
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The one place where you may find yourself mixing the two libraries is when you
write a Pthreads program and link in a library written in UI threads (say,
libc.so ). The good news here is that the two libraries actually call the same
underlying functions. This means that you can safely link in UI libraries and
everything will just work.

Comparisons of Different Implementations
We now touch on an issue that is slightly sensitive. Comparisons of different
implementations are not difficult to do, but they are difficult to do 100 percent
correctly and without bias. We contacted each of the different vendors and asked
them about their current status and their plans. There are enough things that
happen quickly enough that we might be out of date already. Consider this list to
be something to check out when porting, not as the gospel truth.

Table 12-3 Comparison of Different Operating Systems  (July ‘97)

Feature

Solaris
2.5

 Linux
Threads

0.6

 OS/2  NT
4.0

 Digital
UNIX
4.0D

HP-
UX

10.30

IRIX
6.2

 AIX
4.1

AS400

Multithreaded
Kernel

Yes Yes Yes Yes Yes Yes Yes Yes

SMP Support Yes Yes Yes Yes Yes Yes Yes Yes

User Threads
Libraries
Bundled?

Yes Yes Yes Yes Yes Yes Yes Yes

Current
POSIX Library
(draft level)

Yes
Full

Yes
Full

Option
(4)

Free-
ware

Yes
Full

Yes
Full

Yes
Full

Yes
Full

Architecture M:M 1:1 1:1 1:1 M:M M:M M:M M:M

Automatic
Threading
Compilers

FTN
C

Ada

No No No FTN
C

Ada

No FTN
C

Ada

No

All Libraries
MT Legal?

All Some All All Most ? ? ?

Debugger
Interface
Public?

Yes No ? ? Yes ? ? ?



220 Threads Primer

12

Architecture refers to the scheduling model (see Different Models of Kernel
Scheduling on page 83), where M:M is Many-to-Many, M:1 is Many-to-One, and
1:1 is One-to-One.

The major point of this chart is not that one vendor is so much better than any
other, but rather that all major vendors are actively working on some sort of
threads library, and all the libraries are based on the same paradigm. In spite of
the differences we have noted throughout this book, all the libraries are actually
very similar, and knowing how to write a program in one gives you just about
everything you need to write in another.

Summary
Many library functions are not MT safe and several different techniques are used
in dealing with this, some by POSIX, some by individual vendors. Stub functions
allow a library that uses locks to operate unchanged in a non-threaded
environment. Forking new processes has a set of MT safety issues surrounding it.
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In which we explore some designs for programs and library functions.
Making both programs and individual functions more concurrent is a
major issue in the design of these functions. We look at a variety of code
examples and the trade-offs between them.

Making Libraries Safe and Hot
Now that we’ve discussed the grand generalities of what’s possible, let’s move to
the other extreme and take a look at some of the specific programming issues that
MT programs come up against and how they can be dealt with. We’ll look at the
issues of designing and working with libraries—the vendor’s libraries, third
party libraries, and your own libraries—how they can be written to be both
correct and efficient. By far, the most important design issue is simplicity. Debugging
multithreaded programs is difficult and the current tools are not that good
(because none of us have figured out how to build better tools!), so this is a major
issue.

Often there are simple, obvious methods of making functions MT-safe. Sometimes
these methods work perfectly, but sometimes they introduce contention between
different threads calling those functions. The job of the library writer is to analyze
those situations and make things fast.

We can divide functions into a number of categories:

Trivial Library Functions

A great number of functions are trivially safe. Functions like sin()  have no need
to write any shared data, and can be used exactly as first implemented thirty
years ago.



222 Threads Primer

13

Another set of functions have very little shared state and can be made thread-safe
simply by surrounding the use of global data with a lock. The pseudo random
number generator, rand()  is a very small, fast function which takes about 1µs on
an SS10/40. It uses a seed value which it changes on each call. By protecting that
seed, the function can be made safe:

This new version of rand()  is safe, and now runs about 1µs slower due to the
mutex. For most programs, this is fine.

Functions Which Maintain State Across Invocations

There are cases where you might wish a function to set values in one invocation
and use those same values in another invocation, but don’t want those values
shared by different threads. When you call strtok()  for example, you first pass
it a string to be parsed, and it returns the pointer to the start of the first token in
that string. When you call it a second time (with a NULL argument), it returns a
pointer to the start of the second token, etc.

It is highly unlikely that you would want thread 1 to get the first token in a
string, and thread 2 to get the second, although this is exactly what strtok()
will do.

Two solutions propose themselves. One is to write a new function, strtok_r() ,
which takes an extra argument that the programmer uses to maintain state
explicitly. This is a good technique because the programmer can explicitly choose
how to use the arguments to best advantage. But at the same time, it puts an
additional burden on the programmer who must keep track of those arguments,
passing them from function to function as required.

Code Example 13-1 Simple MT-Safe Implementation of rand(), Version 1

rand_1()
{static unsigned int seed;
 static pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;
 int value;

 pthread_mutex_lock(&m);
 value = _rand(&seed); /* Calculate new value, update seed */
 pthread_mutex_unlock(&m);
 return(value);
}
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The second solution is to use thread specific data, and have strtok()  maintain
separate state for each thread (this is what Win32 does). The advantages to this
solution are consistency (no code changes required) and simplicity at the cost of
some efficiency.

We’ll use rand()  again to illustrate these points. Normally, a function like
rand() will be used only occasionally in a program, and there will be very little
contention for its critical section (which is very short anyway). However, should
your program happen to call rand()  a great deal, such as in a Monte Carlo
simulation, you may experience extensive contention. By keeping the seed as
thread specific data, this limitation can be avoided.

With the rand_2()  definition, there is no contention for a critical section (as
there is none). However, even rand_2()  is two times slower than rand() . One
advantage of rand_1()  and rand_2()  is that they don’t change the interface of
rand() , and existing libraries that use rand()  don’t need to be changed1.

POSIX chose to retain the old, fast, MT-unsafe definition of rand() , while
defining a new, (also) fast, safe version, rand_r() . This leaves programmers
with the following options:

1. For maximum performance, use rand_r()  and just deal with the confusion
of tracking the use of the seed throughout the code. (If you only call it from
one function, this is no problem at all.)

2. For maximum simplicity, implement rand_1()  or rand_2() .

3. For the best of both, combine 1 and 2 and design your program with that in
mind.

1. The semantics of rand_2()  are different than rand() , in as much as pseudo random number generators are
deterministic, and their results are repeatable when a known seed value is used. Both rand()  and rand_1()
would be non-deterministic, as thread scheduling is non-deterministic. This is unlikely ever to be a problem.

Code Example 13-2 Implementing rand() with TSD, Version 2

int rand_2()
{unsigned int *seedp;
 int value;

 seedp = (int *) pthread_getspecific(rand_key);
 value = _rand(seedp); /* Calculate new value, update seed */
 return(value);
}
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Making malloc() More Concurrent

The implementation of malloc()  on Solaris 2.5 is quite simple. There’s one
global lock which protects the entire heap. When a thread calls either malloc()
or free()  it must hold that lock before doing the work. It’s a simple, effective
design which works fine in most programs. When you have numerous threads
calling malloc()  often, then you can get into a performance problem. These two
functions take some time to execute and you can experience contention for that
one lock. Let’s consider some other possible designs. Keep in mind that we are
not going to be changing the definition of malloc() , nor will we change the API.
We are only going to change the implementation underneath.

Figure 13-1 Current Solaris Implementation of malloc()
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Using Thread Specific Data to Make malloc() More Concurrent

When used sparingly, a simple mutex works fine. But when called very often, this
can suffer from excessive contention. The TSD solution is a possibility, but it
introduces some problems of its own.

Figure 13-2 Threads with Individual TSD malloc() areas.

What if T2 mallocs some storage and T1 frees it? How does T1 arrange to return
that memory to the correct free list? (Because free()  will glue adjacent pieces of
freed memory together into a single large piece, the free() must be called with
the original malloc area.) If T2 exits, who takes care of its malloc area? If an
application creates large numbers of threads, but uses malloc()  seldomly, it will
be creating excessive numbers of malloc areas.

So this is possible, but not very attractive. One of the fellows in our group
actually implemented this for a customer with a very specific problem. It worked
well, but it was not at all generalizable.

Using Other Methods to Make malloc() More Concurrent

It is possible to assign a mutex to protect each individual piece of free storage,
and have threads skip over those areas when locked. Although possible, this
technique suffers from excessive complexity. It also suffers from excessively fine-
grained locking. (If malloc()  has to lock a mutex for every single node in the
free list, it could easily spend more time doing the locking then looking for the
memory. We do exactly this in One Local Lock on page 233.)

A different approach to this problem is to build a static array of malloc areas to be
shared by all threads. Now a thread calling malloc()  can check for an unlocked
malloc area by calling pthread_mutex_trylock()  on the area’s mutex. If held,

free(p2)

?!
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the thread will simply check the next area. The probability of more than a few
malloc areas being locked is vanishingly small for any vaguely normal program.
This version of malloc()  would be safe, fairly fast, and relatively simple.

Figure 13-3 Threads Using an Array of malloc() Areas.

Storage being freed must still be replaced into its area of origin, but this is a
manageable problem. The freeing thread could simply block. It could place the
pointer to be freed onto a list for that area, and let the thread holding the lock
take care of doing the free on its way out. We could dedicate a special thread to
the task of returning freed storage to its proper location.

These are a few of the most common problems that we have seen. There are two
points worthy of note: 1) There are many viable solutions to every problem. 2) No
one solution is optimal for all aspects of a problem. Each of the three versions of
malloc()  is fastest in some situation.

As of the writing of this book, several people were working on different
variations of this last solution. We will probably see them in later operating
system releases by the different vendors.

Manipulating Lists
Now we are going to take a look at some designs for a program which adds,
removes, and searches for entries on a singly linked list. The program creates a
list of people with their salaries. One set of threads is going to search down that
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list, looking for friends of Bil’s, and give those people raises. Another set of
threads is going to search down the list looking for people whom Dan detests,
and remove those people from the list. There may be some overlap of Bil’s friends
and Dan’s enemies.

In order to make the program a bit more interesting (and emphasize certain
issues), we will associate a delay time with each raise and liquidation. These
delays may represent the time to write to disk or to do additional computation.
For this purpose we’ll make a call to nanosleep() . On Solaris, the minimum
sleep time is 10ms (it’s based on the system clock), which is typical for most OSs.
The main question we’ll be asking is “For a given configuration of CPUs, delay
times, list length, and number of threads giving raises and performing deletions,
which design is best?” For different configurations we’ll get different answers.

Basic Design

The complete code for all examples is available on the web (see Code Examples on
page 321). Here we show the basic outline:

Figure 13-4 Friends/Enemies: Basic Design

A few notes about the program. The function find_person(char *name)  is to
be used by both the friends and enemies threads, hence it will return a pointer to
the previous element of the people list (the liquidate function needs access to the
previous person in order to remove a person from the list). The appropriate
element of the list must remain locked when find_person()  returns, and which

Main Thread

Enemy ThreadsFriend Threads

Initialization:
make_list_of_people()
pthread_create(give_friends_raise,make_list_of_friends()...)
pthread_create(liquidate_enemies,make_list_of_enemies()...)

give_friends_raise()
{f = find_person(name)
give_friend_raise(f)

liquidate_enemies()
{e = find_person(name)
liquidate_enemy(e)
}}
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lock is appropriate will change with the different designs. It is possible to search
for someone who has been liquidated, so NULL is a possible return value. We’ll
have to be careful.

Single, Global Mutex

This is by far the simplest design. All that is necessary is to lock the mutex before
starting a search and release it after the thread is finished with liquidation or
giving raises. This is the extreme case of course grain locking. It has very little
overhead and has the best performance when there is only one thread or when
the delay times are zero. Once the delay times go up and more threads are added,
the wall clock performance of this design goes to pot. It will not get any
advantage from multiple CPUs either.

Figure 13-5 Friends/Enemies: Global Mutex Lock

There are a couple of things worth noting. The mutex protects the entire
list—every element on it, all of the pointers, and the data inside (name and
salary). It is not legal for a thread to hold a pointer to any element of the list if it
does not hold the mutex. (It would be possible that some other thread could
remove that element from the list, free the storage, and then reallocate that same
storage for a completely different purpose.) Don’t do that!
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One other thing that you may notice if you run this code, is an odd tendency for
one thread to get the mutex and then keep it. Typically one thread will get the
lock, execute a dozen or more iterations of its loop before another thread ever
runs its loop at all. Often, one thread will run to completion before any other
thread even starts! Why?

In the snippet of code above, we see the central function which runs down a list
of friends, looking them up and giving them raises. It locks the mutex, does all its
work, then unlocks the mutex. It gets the next friend off the list of friends and
starts all over again. There are no more than a few dozen instructions between the
time it unlocks the mutex and locks it again! The probability of another thread
getting in there fast enough to get the mutex is quite low. Using a FIFO mutex in
this code would make it much fairer. And slightly slower.

Global RWLock with Global Mutex to Protect Salaries

Version two of the program uses a Readers/Writer lock to protect the list and a
mutex to protect the salaries. This way any number of threads can run down the
list, searching for people to give raises to, at the same time. Once found, we need
to protect the salary data while we update it. We add the Salary_Lock  for this
purpose. Clearly we could not update the salary if we only held a read lock.
When a thread wishes to remove one of Dan’s enemies from the list, that thread
must hold a writer lock while it searches down the list and removes the offending
element.

It’s important for us to think very carefully about what each lock is protecting.
The RWlock protects the list structures and the pointers. It does not protect the
salaries. Surprisingly, the performance of this code is not much better than the

Code Example 13-3give_friends_raise() (list_global_lock.c)

void *give_friends_raise(void *arg)
{person_t *p, *friends = (person_t *) arg;

  while(friends != NULL)
    {pthread_mutex_lock(&people_lock);
     p = find_person(friends->name);
     give_raise(p);
     pthread_mutex_unlock(&people_lock);
     friends = friends->next;
   }
  sem_post(&barrier);
}
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previous code! Inspecting the code closely, you should realize that very little time
is spent actually searching down the list (about 1µs per element). It is the
contention for the salary lock when the delay is non-zero that takes all the time.

Figure 13-6 Friends/Enemies: Global RWlock and Salary Lock

Once again, no thread may hold a pointer to any portion of the list unless it owns
one of the locks.

Below is the code which updates the salary of Bil’s friends. The delay is inside of
the critical section, thus while one thread is sleeping here, all the other threads
must wait outside. Moving the delay outside would vastly increase the
performance of the program. It wouldn’t be terribly realistic to do so. As the
delay represents a write to disk or some other operation on the salary, it really
must be inside the critical section.

Code Example 13-4give_raise() (list_global_rw.c)

void give_raise(person_t *p)
{
  if (p != NULL)
    {pthread_mutex_lock(&salary_lock);
     pthread_np_rw_unlock(&people_lock); /* Unlock here */
     p->next->salary++;
     delay(RAISE_DELAY, 0);  /* If the delay is outside the lock? */
     pthread_mutex_unlock(&salary_lock);
   }
  else
    pthread_np_rw_unlock(&people_lock); /* Unlock here */
}
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Note that we release the RWLock as soon as we obtain the salary lock, allowing
other threads to begin their searches. Even the liquidator threads are allowed to
run while we’re updating the salary! To make this work correctly, the function
liquidate_person()  must also lock the salary lock before it frees the storage
(see Code Example 13-5 on page 232).

Global RWLock with Local Mutex to Protect Salaries

Version three of the program uses a Readers/Writer lock to protect the list and a
local mutex to protect individual salaries. This way any number of threads can
run down the list searching for people to give raises to at the same time. Once
found, we need to protect the individual salary data while we update it. Now we
have overcome the major bottleneck of this program. Many threads may now
update different salaries at the same time.

Figure 13-7 Friends/Enemies: Global RWlock and Local Salary Lock

Once again, no thread may hold a pointer to any portion of the list unless it owns
one of the locks. If it only holds a local salary lock, it may not do anything except
access that one data item. As before, the liquidator must lock the local salary lock
before freeing the element (Code Example 13-5 on page 232). It does not need to
own that lock to remove the element from the list, as removal does not involve
accessing the salary. It’s when the structure is freed that the salary is affected.
Once the element is removed from the list, we can release the RWlock.

The addition of the mutex to the structure increases its size. You could reduce
memory requirements by allocating an array of global mutexes, each of which
would protect a subset of the structures. A simple hash function would assign all
structures located at 0 mod(N)  to global_salary_mutex[0] , those located at
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1 mod(N)  to global_salary_mutex[1] , etc. This would also improve
runtime due to the reduction in cache misses. (This is left as an exercise for the
reader.)

In this code, the only points of contention are:

• Only one liquidator at a time may search.

• Only one thread at a time may give a raise to a given individual.

Something that you might consider at this point is: Why not allow multiple
liquidators to search at the same time, then once they’ve found the object they
were searching for, convert the read lock into a write lock? We could modify the
definition of RWlocks to allow this, however it wouldn’t work. We would have to
ensure that only one thread ever wanted to make the conversion at a time, and as
soon as it made that request, every other thread with a read lock would have to
eventually release that lock without making a conversion request. In other words,
it’s possible to do, but it’s so limited in functionality as to be nearly worthless.

For pretty much any program of this nature, design #3 will turn out to be the best.
However, there are other possibilities.

Code Example 13-5 Removing an Element from the List (list_global_rw2.c)

void liquidate_person(person_t *p)
{person_t  *p1;

 if (p)
   {p1 = p->next;
    p->next = p1->next;

thread_rw_unlock(&people_lock);

pthread_mutex_lock(&(p1->salary_lock));
pthread_mutex_unlock(&(p1->salary_lock));
pthread_mutex_destroy(&(p1->salary_lock));
free(p1->name);
free(p1);
delay(LIQUIDATE_DELAY, 0);

  }
 else

thread_rw_unlock(&people_lock);
}
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One Local Lock

What if we allocated one mutex per element to protect only one element? In the
design below, each mutex protects a pointer and the structure which the pointer
points to. (The global mutex protects only the global pointer and first structure.)
With this design, multiple threads may search down the list at the same time,
either to update a salary or to remove an element. Yes, multiple liquidator threads
may search and destroy simultaneously! Unfortunately, as soon as one thread
finds the element it is searching for, it will continue to hold the lock while it
finishes its work. Other threads will quickly pile up behind it, waiting to acquire
that mutex.

This design yields abysmal results for every combination of CPUs, threads, list
length, delay times, etc.

Figure 13-8 Friends/Enemies with Only One Local Mutex Lock

It is illegal for a thread to hold a pointer to an element unless it holds the
appropriate mutex. In this case, the appropriate mutex is local, so numerous
threads may hold pointers to different elements. Note that the mutex in Jan’s
structure protects the “next” pointer and the following structure (Kim’s).

To update Kim’s salary, a thread will need to hold the mutex in Jan’s structure,
not the one in Kim’s. To remove Kim from the list, once again the thread must
hold the mutex in Jan’s structure. To free Kim’s structure, the thread must hold
Kim’s mutex. As soon as it has been removed from the list, Jan’s mutex may be
released. It will be impossible for any other thread to get a pointer to Kim.
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Let’s look at the searching routine (used by both liquidators and raisers). The
basic loop is simple: look at each element, compare the name strings, return the
previous pointer if found. What is interesting about this function is the order in
which locks are acquired and released.

First we lock the global lock and compare our name to the first element (Jan). If
this isn’t it, we lock Jan’s lock, release the global lock, and compare again. The
locking/unlocking is being done in an overlapping fashion! (It’s often called chain
locking.) This makes it somewhat challenging to ensure that the correct locks are
locked and unlocked in the correct order in all the different functions.

Two Local Locks

A superior version of the local lock design may be had by providing two local
locks, one to protect the element and one to protect the salary. Now we have the
advantage of allowing multiple liquidators to search down the list while not

Code Example 13-6 The Searching Code (list_local_lock.c)

person_t *find_person(char *name)
{person_t *p = &people, *p1, *p2;

 pthread_mutex_lock(&(p->lock));
 p1 = p->next;
 while(p1 != NULL)
   {if (strcmp(p1->name, name) == 0)
      /* Found! Return previous, Still holding p->lock ! */
       return(p);
    pthread_mutex_lock(&(p1->lock));
    pthread_mutex_unlock(&(p->lock));
    p = p1;
    p1 = p->next;
  }
 pthread_mutex_unlock(&(p->lock));
 return(NULL); /* Couldn’t find ‘em!  Too bad. */
}



Design 235

13

causing bottlenecks. The only points of contention that occur are when two
threads wish to operate on the same element. There’s nothing we can do about
that.

Figure 13-9 Friends/Enemies: Two Local Locks

That’s the good news. The bad news is that it takes time to lock mutexes. It may
well take more time to lock and unlock each mutex than it takes to do the
comparison! In this code, it does. This version of the program is significantly
slower than the RWlock version. Only if the time to execute a comparison were
long, would this design give superior results.

Local RWLock with Local Mutex to Protect Salaries

Just for the sake of completeness, we’ll consider one more design. By making the
local lock be an RWlock, we could allow multiple threads to do comparisons on
the same element at the same time. If comparisons took significant amounts of
time, this could be a viable design. For our program, which does a simple string
compare, this design proves to be the worst yet. It takes up much more space,
adds more complexity, and is slower by a very significant amount.
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Figure 13-10 Friends/Enemies: Local Lock and RWLock

We’ve now completed the journey from very course-gained locking to very fine-
grained locking and come to the obvious conclusion. The best results are usually
found in the middle, but the only way to know is to try.

Program Design
There is a small number of high-level design strategies which have been
discussed in several books (see The Authors on the Net on page 323). These names
are not used completely uniformly. They are:

• Master/Slave: One thread does the main work of the program, creating

other threads to help in some portion of the work.

• Client/Server (Thread per Request): One thread listens for requests, then

creates a new thread to handle each request.

• Client/Server (Thread per Client): One thread listens for new clients to

attach, then creates a new thread to handle each client. The thread is
dedicated to its client, doing work only for that client.

• Producer/Consumer (aka Work Queue or Workpile): Some threads create

work requests and put them on a queue. Other threads take the work
requests off of the queue and execute them.

• Dogpile: Similar to the workpile, but instead of maintaining a queue, all the

threads look for work directly.
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• Pipeline: Each thread does some work on a task, then passes the partially

completed task to the next thread.

In the discussion below, we will elaborate on each of the designs and include
some sample code. All of the code will be based on a client/server program
which takes in requests from a socket, processes them, and sends replies back out
over the same socket file descriptor. The complete code for three versions of the
program (Thread per Request, Producer/Consumer, and non-threaded) are on the
web site.

Master/Slave

The master/slave design is the most obvious for many kinds of tasks. In its most
elemental form, it will be implemented by a library and the programmer will not
even be aware of there being multiple threads. A matrix multiply routine (see
Dakota Scientific Software on page 250) may well spawn a set of threads to do the
work, but all the programmer knows is that she called matrix_multiply() .

Client/Server (Thread per Request)

This is a master/slave design for client/server programs. The master thread will
do the listening. In the fragment of the socket program below, each time a new
request comes in from a client, the main thread spawns off a thread to handle that
request. The main thread then returns to its accept()  loop while the thread
works on the request independently, exiting when it’s done.

Code Example 13-7 Master/Slave Socket Design

while(TRUE)
 {newsockfd = accept(sockfd, &cli_addr, &clilen);
  PTHREAD_CREATE(&tid, &thr_attr, process_request, newsockfd);
 }

void *process_request(void *arg)
{
 read(mysocfd, data, LENGTH);
 result = process_data(data);
 write(mysocfd, result, LENGTH);
 close(mysocfd);
 pthread_exit();
}
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While this design has some positive aspects to it, e.g. simplicity and directness, it
also admits to some drawbacks. The cost of thread creation is not going to be
significant unless the task itself is very short (< 10ms). Of more significance is that
the programmer has no simple control over the number of threads running at any
one time. Should there be a sudden spike in the number of requests, there will be
an equal spike in the number of threads, causing performance degradation due to
the excessive number of threads competing for the same locks, CPUs, virtual
memory and other resources. (Running this program on a fast 32-bit machine will
crash the program when it runs out virtual memory.)

Rewriting the program to limit the number of threads would be somewhat ugly,
and there are better ways of handling the problem. This is probably not a good
design for any program!

Producer/Consumer

In the producer/consumer model, the programmer can exert full control over the
number of threads with very little effort. The threads may be created at startup
time, and then be left to wait for work to appear on the queue. Should some of
the threads never run at all, there will be no great cost—probably immeasurable.
Should there be too many incoming requests, they can be placed on the queue
and handled when convenient.

Code Example 13-8 Producer/Consumer Socket Design

 for (i=0; i<N; i++)
PTHREAD_CREATE(&tid, &thr_attr, process_request, NULL);

 ...
 while(TRUE)
   {newsockfd = accept(sockfd,  &cli_addr, &clilen);
    add_to_queue(newsockfd);
   }

void *process_request()
{
 ...
 while(TRUE)
  {socfd = get_from_queue();
   read(socfd, data, LENGTH);
   result = process_data(data);
   write(socfd, result, LENGTH);
   close(socfd);
  }
}
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An important aspect of the work queue is that you can allow the queue to grow
to any length you deem appropriate. If your clients block, waiting for the results
of query 1 before issuing query 2, then allowing the length of the queue to grow
to the number of clients will assure you that requests will never be lost, and you
can maintain peak efficiency.

If clients are able to issue unlimited overlapping requests, then you have no
choice. At some point you must begin rejecting requests. However, as long as the
average rate of incoming requests is below what your server can handle, then by
allowing the queue to grow up to some modest limit, you can effectively buffer
burst traffic while retaining peak efficiency. This is the general design of NFS.

Dogpile

The dogpile2 (pigpile for those in the east) is the name for the same program as
above, only that each thread waits to do an accept itself. There is no single
producer thread which calls accept()  and puts work onto the queue for other
threads. All the threads take turns calling accept() , and then doing the work
directly. In the steady state situation, there should be no difference in efficiency
between the workpile and the dogpile. But where the work queue can neatly
handle burst traffic at user level, the dogpile would expect the kernel to queue
those requests for it—probably not a good thing.

2. This is the name of a favorite game for 8 year-old boys in California. We ran around in circles until somebody
yelled “Dogpile on Bil,” whereupon all the boys would pile on top of poor Bil. As soon as he had extricated
himself, it would be his turn to yell.

Code Example 13-9 Dogpile Design

 for (i=0; i<N; i++)
PTHREAD_CREATE(&tid, &thr_attr, process_request, NULL);

void *process_request()
{
 ...
 while(TRUE)
  {pthread_mutex_lock(&m);
   newsockfd = accept(sockfd,  &cli_addr, &clilen);
   pthread_mutex_unlock(&m);
   read(mysocfd, data, LENGTH);
   result = process_data(data);
   write(mysocfd, result, LENGTH);
   close(mysocfd);
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Pipeline

The pipeline model is based directly on the same work model that is used in
CPUs and on factory floors. Each processing element will do a certain amount of
the job, and then pass the partially completed task on to the next element. Here
the processing elements are threads of course, and each thread is going to do a
portion of the task, then pass the partial results on to the next thread.

We can certainly see where this would be valuable for simulations where what
you’re simulating is a pipeline. For other situations, it’s not so clear. In silicon and
on factory floors, specialization is important. One section of a chip can only

  }
}

Code Example 13-10 Pipeline Design

 PTHREAD_CREATE(&tid, &thr_attr, process_request_a, NULL);
 PTHREAD_CREATE(&tid, &thr_attr, process_request_b, NULL);

void *process_request_a()
{
 ...
 while(TRUE)
  {newsockfd = accept(sockfd, &cli_addr, &clilen)
   read(mysocfd, data, LENGTH);
   result_a = process_data_a(data);
   add_queue_b(result_a);
  }
}

void *process_request_b()
{
 ...
 while(TRUE)
  {result_a = get_from_queue_a();
   result_b = process_data_b(result_a);
   write(mysocfd, result_b, LENGTH);
   close(mysocfd);
  }
}

Code Example 13-9 Dogpile Design
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execute a single task (the instruction fetch unit can only fetch instructions, never
decode them), and it takes time for a workman to put down a wrench and pick
up a paint brush.

This is not so for threads. It is actually easier, faster, and the programming is
simpler for one thread to execute an entire operation than to do a little work,
package up the partial result and queue it for another thread. Although a number
of programs have been suggested which use this paradigm, it is not clear to us
that any of them are superior to using one of the other designs.

Client/Server (Thread per Client)

The final model is also somewhat questionable to us. In the this model, each
client will have a thread devoted to it, and that thread will remain inactive the
vast majority of the time. The advantage of having a thread devoted to an
individual client is that the thread could maintain state for that client implicitly
by what’s on the stack and in thread specific data. While this does save the
programmer the effort of encapsulating that data, it’s unclear that it’s worth it.
None the less, a number of database vendors are interested in this model and
they do have some pretty clever folks there.

 We’ll consider these last two as interesting, possible designs that need some
practical fleshing out.

Code Example 13-11 Thread per Client Design

while(TRUE)
 {newsockfd = accept(sockfd, &cli_addr, &clilen);

PTHREAD_CREATE(&tid, &thr_attr, process_requests, newsockfd);
 }

void *process_requests()
{
 ...
 while(TRUE)
  {read(mysocfd, data, LENGTH);
   if (done(data)) break;
   result = process_data(data);
   write(mysocfd, result, LENGTH);
  }
}
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Summary
Numerous trade-offs exist in the creation of MT-safe and MT-hot libraries. No one
locking design works best for all programs. The choice of how different threads
will interact, how they will be created and exit, is an open question. We offer a
few insights and some examples. The most important design issue is simplicity.
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In which the use of threads in various programming languages is
considered and a few minor notes about special features and
requirements are made. A number of public Pthreads libraries and some
commercial products exist and are noted.

C
The basic interface to all of the libraries is ANSI C. Function prototypes are
supplied for each of the functions and both the constants and datatypes are
defined in C.

C++
As far as threads are concerned, C++ adds only a few things to the picture. Some
limit your programming slightly, some ease your programming burden slightly,
and some simply reassure you that they aren’t problems.

Thing one is the compiler. Some C++ compilers make assumptions about global
data and use it in a non-thread-safe fashion. Such compilers cannot be used to
compile MT programs at all. These are generally the older compilers (e.g., Sun’s
1992 version of C++). The newer versions of those compilers (e.g., Sun’s 1994
version and onwards) do produce thread-safe code. Obviously you cannot mix
modules compiled with the older compiler with those from the newer. Ask your
compiler vendor.

Thing two is the library. Some public and commercial libraries are not thread-
safe, others are. There are no special issues here beyond what we’ve already
covered. If the library is not specifically listed as being thread-safe, you must
assume it is not.

Thing three concerns stack-allocated classes and their destructors. Obviously,
when you exit from a function normally, the destructors will be run. Less
obviously, when the thread exits, the destructors will also be run. This latter is a
compiler-dependent issue and it is possible that some compilers don’t ensure this,
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though the ones we’re aware, of do. So, if you call your thread-exit function (in
OS/2, Win32, or POSIX) the destructors should run. If you cancel a thread, the
destructors should also run. In Win32 and OS/2, the destructors will not run for
terminated threads.

Thing four is C++ exception handling. Basically, everything works just fine as
long as you don’t use cancellation. Catch and throw blocks are pretty much
independent of threads, so there are no issues there. For unhandled exceptions, it
is possible for you to install thread-specific versions of terminate()  and
unexpected()  which will cause only the one thread to exit. (The default
versions of these will exit the entire program.) Of course, if you are writing a
robust program, you’d better not have any unhandled exceptions!

Thing five is the function prototype the thread create functions use. They all
require a function which takes a single (void *)  argument. The function may
then cast that to anything you want. Both member functions and overloaded C++
functions need to know their argument type at compile time. Thus, you cannot
pass such functions to the thread create function. No big deal. Just write a
wrapper function taking a (void *)  which then calls the function you actually
want. Or use static functions.

Thing six concerns a few nice features of classes which allow you to build nice
encapsulations of thread functions. The most important of these is the monitor
(Monitors on page 133), where you create an instance of a monitor on the stack
(which just locks a mutex), knowing that when that function exits, the class
destructor will run (unlocking that mutex). The good thing about a monitor class
is that you can never forget to unlock a mutex from complex code. Moreover, the
generated code will be as fast as calling lock/unlock directly (assuming a
sufficiently intelligent compiler!). The one limitation is that a monitor can’t be
used to do chained lock/unlocks.

Thing seven concerns mixing exception handling and cancellation in POSIX. Can
you catch cancellation? No. What if you push a cleanup handler onto the stack
and then throw an exception? Unless that exception ends up exiting the thread,
the cleanup handler will not get called and your program will be in serious
trouble. Don’t do that. What if you throw an exception from inside a cleanup
handler? What if you get cancelled while in terminate() ? What if you have
interaction between a stack-allocated destructor and a cleanup handler? Don’t do
that!

Once again, most of these things are not part of any standard. They’re logical,
they’re the way the compilers we’re aware of work, but they are not required.
Ask your vendor.



Languages 245

14

Java
The paradigm of multithreading in Java is the same as in the other thread
libraries—a new thread is created to run a function. That thread then runs
independently, sharing access to all global data and resources. Synchronization
methods are defined to coordinate thread interactions. When the final thread
exits, the program also exits.

Overlaid on this is the object-oriented nature of Java. There is a class called
“Thread” and an arbitrary number of thread objects can be instantiated from this.
Each thread runs independently sharing access to class-level data.

The major distinctions between Java’s model and that of Pthreads, etc., is that
threads are a more integral part of the Java virtual machine. The Java VM even
has three threads of its own running at all times. Essentially, Java thread classes
constitute a base part of the language. Beyond this, the implementation is distinct,
being based on classes, and some of the details of the semantics are different.

Scheduling is handled by the Java VM which allows, but does not require, time-
slicing. A portable program must, therefore, work correctly with or without it.
Moreover, as Java is defined independently of any host OS threading model, Java
does not require the existence of multiple LWPs. On some implementations (e.g.,
the first Solaris implementation), Java threads were unable to take advantage of
either multiple processors, or overlapping, blocking I/O. Later releases of Java
can do so. Thus Java programs are multithreaded more for the sake of
programming clarity and simplicity than for any efficiency reasons.

Java defines two different ways of creating threads—both of which are essentially
the same. The programmer subclasses a base thread class, and then specializes a
run method. Instantiating a member of that subclass and calling its run method
gets a thread up and going. The run method is defined to take zero arguments, so
any necessary parameters must be passed to the thread object constructor, and
saved there for when the thread starts running.

Code Example 14-1 Starting a New Thread in Java

// The definition of the subclass MyThreads
class MyThread extends Thread
{public void run() {work(); } }

MyThread t1 = new MyThread();
...
t1.start(); // start() calls run() ...
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Java has two forms of synchronization which, with enough effort, map directly
onto the POSIX synchronization variables. Java monitors, defined by use of the
keyword synchronized, encapsulate data and locking into a single form. The
programmer calls a method to read or write the data, and the monitor class
ensures that a lock is taken and released correctly. The lock itself is part of a
specific Java object. By default, this will be the class instance. Optionally, you may
specify a different object to use. This makes simple programs easier to build, but
it lacks the fine grain of control that some programmers have come to expect,
making some thing more difficult to do1.

The second form of synchronization is the wait/notify construct which is Java’s
equivalent of condition variables. Defined only within the context of a monitor,
this construct allows the programmer to define arbitrary synchronization
methods. For example, counting semaphores (implemented below) can be used to
create POSIX-style mutex locks.

1. In their very fine book “Java threads”, one of the very first things Scott Oaks and Henry Wong do is to violate
the synchronization design by implementing (rather inefficient) mutex locks! Later they build a scheduler. One
hopes that the language will address these problems in a later release.

Code Example 14-2 Using a Monitor in Java

In Java:
class Counter
{static int counter = 0;

 public synchronized int count(int i)
 {counter += i;
  return(counter);
 }
}

...
Counter c1 = new Counter();
c = c1.count(10);

Code Example 14-3 Creating a Semaphore in Java

class Semaphore
{static int value = 0;

 public synchronized void semphore_wait()
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In summary, Java’s high-level thread constructs are designed to allow simple
programs to be built easily and safely. In this they succeed. Unfortunately, the
limitations of these constructs also make the building of complex programs less
efficient and slightly more difficult. None-the-less, Java threads are Turing-
equivalent to Pthreads, and anything you can do with one model, you can do
with the other.

Fortran
Along with the automatic threading compilers, it is possible to call threads
functions directly from Fortran. This is done by declaring an interface to the C
functions from Fortran in the appropriate fashion for the compiler which you are
using. One would expect that a program that did this would be very simple.
Fortran is not known as a terribly good language for general symbolic
computation.

Ada
Ada is really ahead of the other languages in this respect. Ada tasks can be
mapped directly onto the underlying threads library by the compiler. This allows
normal Ada programs to continue to work exactly as they have before, only now
they will take advantage of multiple processors and overlapping I/O without any
additional programming effort.

Ada does require the POSIX realtime scheduling for validation. Its
synchronization is also rather specialized and limited in a similar fashion to Java.

Pascal
www.sparc.spb.su/Oio/baobab/science/using_mt.txt

    {while (value == 0) wait();
     value--;
    }

 public synchronized void semphore_post()
    {value++;
     notify();
    }
}

Code Example 14-3 Creating a Semaphore in Java
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It is possible to call the threads functions directly from Pascal, merely linking in
the library. To do so, you’ll need appropriate “.h” files for Pascal. These are
included in the Sun Pascal distribution for an interface to UI threads as
thread_p.h  and synch_p.h . Some of Sun’s Pascal support is being done in
Russia and the above link points to a short page at the University of Saint
Petersburg which shows a few of the “Threads Primer” demonstration programs
done in Pascal. (This is the only MT Pascal we’re aware of.)

SmallTalk
Object Connect +33 558 82 84 72

www.objectconnect.com

This is a threaded version of Smalltalk which is based on Win32 threads and can
make use of all of the functionality of the Win32 Threads API. It is possible to
call Smalltalk objects which implement the functionality, or to call the various
functions directly via a foreign language interface. Smalltalk blocks can also be
called from other programs and all of the threads functions, synchronization, etc.
will work across both. It has the capability to build stand-alone EXEs and DLLs
callable from other languages, and support for building ActiveX components.

The Smalltalk MT system includes a graphical, interactive, multithreaded
debugger, and a garbage collector that runs in a background thread.

Lisp
http://ci.etl.go.jp/~matsui/eus/manual/manual.html

The Japanese Electrotechnical Laboratory has a project, EusLisp, which
implements threads inside of an (almost) Common Lisp language/environment.
It allows you to build threads in a POSIX style, run on multiple processors, and
use POSIX-like synchronization. It runs on Solaris 2 and is based on the
underlying UI threads library.

Eiffel
ISE Inc. (805) 685-1006

http://www.eiffel.com

Eiffel is a language designed and marketed by Bertram Meyer and his company
in France. It is a strict, object-oriented language with enforced static typing. In its
latest release (4.1, March 1997), Eiffel provides a threads library on Win32 and
Solaris (others to come) which maps directly onto the native threads libraries.
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Shared objects are implemented by using proxy objects which do all of the
synchronization for you (at a cost, of course). A different approach to threading
will be provided in a later release in which a language construct (Thread-SCOOP)
will do all of the synchronization for you. Eiffel is also a garbage collected
language and the GC has been extended to work with threads. Because objects
cannot be shared directly between different threads, Eiffel can use a per-thread
GC.

Commercial Products
There are a number of companies which write thread-oriented libraries for a
variety of purposes. You might find some of these useful.

ObjectSpace

www.objectspace.com (800) 625-3281

The ObjectSpace C++ Component Series provides a full set of features ranging
from a portable implementation of the C++ Standard Template Library to libraries
for systems programming and World Wide Web development. All libraries are
portable across popular hardware platforms, operating systems, and compilers,
and are safe for use in multithreaded environments. Full source portability for
threads and synchronization is available on a wide variety of platforms.

Thread<ToolKit> is one library in their C++ Component Series that specializes in
classes for multithreaded development, and includes a variety of classes useful
for creating and synchronizing threads. Synchronization objects include: critical
sections, simple mutexes, recursive mutexes, simple/recursive FIFO mutexes,
simple/recursive priority mutexes, event semaphores, sentinels, readers/writer
locks, barriers, and guard classes.

RogueWave

www.roguewave.com (800) 487-3217

The Threads.h++ provides C++ objects for thread functionality and handles the
low-level details of multithreading for you, portable across: Win NT, Win 95,
Solaris, HP-UX, AIX, Digital Unix, IRIX, and OS/2.

The runnable classes provide: simple synchronous classes that use existing
threads to perform their tasks, threaded classes that create their own threads to
accomplish their tasks, and runnable servers that accept other runnable objects
for execution in each server’s own thread or threads. The thread creation
paradigm uses functors (essentially an encapsulated object plus method) instead
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of function plus (void *)  argument. It also provides for lazy evaluation—the
ability to have a function return an IOU for a value whose calculation might take
a while to complete.

Synchronization objects include: critical sections, simple mutexes, FIFO mutexes,
recursive mutexes, condition variables, semaphores, readers-writer locks,
barriers, and guard classes.

Geodesic Systems, LLC

www.geodesic.com (800) 360-8388

Great Circle is both a conservative garbage collector that can be linked into
existing applications (no changes required), and a “smart” GC that can be
integrated into applications (hence changes required). It works with C and C++
programs and libraries, effectively eliminating the vast, vast majority of problems
of memory leaks. It also shadows calls to free()  and prevents premature
recycling of memory.

It works with multithreaded programs and runs on numerous platforms,
including Solaris, SunOS, HP-UX, and Windows NT/95; with more on the way.
Although somewhat difficult to do exact comparisons, the best estimations show
a GC’d version of X Windows system running 25% faster than the standard
version.

Garbage collection is a wonderful thing which vastly simplifies your
programming task, letting you concentrate your efforts on writing your program,
not trying to follow memory leaks. While we do not want to endorse any
particular product here, we do wish to endorse the concept.

Dakota Scientific Software

sales@scisoft.com (800) 641-8851

www.scisoft.com

Although not specifically a multithreading company, Dakota is notable for their
extensive use of threads in their products, high-performance numerical libraries
which are used in thousands of scientific programs. For this purpose, threads are
just one of many means towards the ultimate end of high-performance libraries.
Even their single-CPU LAPACK, LINPACK, and BLAS libraries run upwards of
an order of magnitude faster than naive implementations. Libraries are available
for Fortran, C, and C++.
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Dakota also has a series of coproducts called Performance Plus that accelerate
other mathematical products including Math.h++ and LAPACK.h++ from Rogue
Wave, POOMA from Los Alamos National Laboratory, IDL from Research
Systems, Inc., and others. Finally, Dakota does extensive consulting and contract
optimization using threads and other techniques.

Adaptive Communication Environment

www.cs.wustl.edu/~schmidt/ACE.html

The Adaptive Communication Environment (ACE) is an object-oriented toolkit
that implements fundamental design patterns for communication software. ACE
provides a rich set of reusable C++ wrappers and frameworks that perform
common communication software tasks across a range of operating system
platforms. The communication software tasks provided by ACE include event
demultiplexing and event handler dispatching, service initialization, interprocess
communication, shared memory management, message routing, dynamic
(re)configuration of distributed services, multithreading, and concurrency control.

ACE has been ported to a wide range of OS platforms including Win32 (i.e., Win
NT and Win95), most versions of UNIX (e.g., SunOS 4.x and 5.x, SGI IRIX,
DG/UX, HP-UX, OSF/1, AIX, Linux, UNIXware, Tandem, FreeBSD, and SCO),
VxWorks, MVS OpenEdition, and Tandem. It is currently used in commercial
products by dozens of companies. There are C++ and Java versions of ACE
available.

RT++ -- Higher Order Threads for C++

http://www.risc.uni-linz.ac.at/software/rt++

Wolfgang Schreiner et. al., at the Johannes Kepler University in Linz Austria,
have written RT++, a software package that provides higher-order threads in the
programming language C++. Its features include a type-safe functional thread
interface, lazy thread creation, garbage-collected types (lists, arrays, pointer
structures) and controlled non-determinism (thread bags). Threads are first-order
objects that can be used like any other objects and that are automatically
reclaimed when they are not referenced any more. The package has been ported
to numerous types of mono-processors and shared memory multiprocessors and
can be easily embedded into existing application frameworks.

Centerline

www.centerline.com (415) 943-2114
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C++ Expert is a tool that performs comprehensive error checking of C and C++
programs throughout the development cycle: at compile time, link time, and run
time. Its run time error detection works by analyzing the program source code
and generating error-checking instrumentation based on that analysis. The errors
it catches include: incorrect use of typed pointers (resulting from improper casts),
using freed pointers, freeing a pointer twice, array bounds checking, and memory
leaks. Furthermore, C++ Expert was carefully designed from scratch to be robust
in the presence of multithreaded applications.

GNU (via Cygnus)

www.cygnus.com (800) 294-6871

GDB, the GNU debugger, is being extended by Cygnus Support to support the
debugging of multithreaded programs.

Pure Atria

www.pureatria.com (408) 863-9900

Pure Atria has its Run-Time memory error checker, Purify, which has been
extended to work with multiple threads. It also has a performance monitoring
tool, Quantify, which will show performance data for multithreaded programs.

Purify comprehensively identifies memory-related software errors anywhere they
occur within a software application, including third-party libraries using the
Object Code Insertion technology. Purify automatically pinpoints memory access
violations and memory leaks and keeps tracks of all threads during the execution
of a program.

Quantify is a performance profiler tool which automatically identifies portions of
application code that slows down execution speed. In addition, Quantify
measures the execution speed of each thread in the application.

Public Pthreads Implementations

FSU Pthreads

http://www.informatik.hu-berlin.de/~mueller/pthreads

As part of the PART project (POSIX / Ada-Runtime Project) Florida State
University / Humboldt University Berlin have implemented a library package of
preemptive threads which is compliant with POSIX 1003.4a Draft 6. The
implementation runs under SunOS 4.1.x, Solaris 2.x, Linux, SCO, FreeBSD and
DOS.
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The current scheduling policies are strict priority scheduling (according to
POSIX.4a FIFO scheduling) which preempts when signals are caught or round-
robin (RR scheduling) which changes context to another thread of the same
priority after a time-slice of 20msec. Besides asynchronous delivery of signals,
context switches only occur where required by the priority policy, e.g. when
resources (mutexes) are locked etc.

MIT Portable Pthreads

www.mit.edu:8001/people/proven/pthreads.html

Christopher Angelo Provenzano heads a project which has written a Pthreads
library which is portable across NetBSD, FreeBSD, LInux, SunOS 4.1, Solaris,
Outrides, OSF/1, IRIX and HP-UX. It implements the full POSIX standard in a
Many-to-One model.

PCThreads

www.aa.net/~mtp/PCthreads.html

Michael T. Peterson has written a Pthreads library for Linux. It is a Many-to-One
model with a series of extensions in several of the system libraries to allow them
to run in a non-blocking mode. The various blocking system calls are wrapped by
“jacket” routines for the threads library. This allow several threads to make
blocking calls which are turned into their non-blocking equivalents, allowing yet
another thread to continue running. It is included in the current Linux release. It
is also available for FTP from the address above.

LinuxThreads

http://pauillac.inria.fr/~xleroy/linuxthreads

Xavier Leroy at INRIA (Paris, France), with input from Pavel Krauz, Richard
Henderson and others, has developed a Pthreads library which implements the
One-to-One model, allowing it to take advantage of multiple processors. It is
based on the new Linux system call, clone() 2. It runs on Linux 2.0 and up, on
Intel, Alpha, SPARC, m68k, and MIPS machines. One limitation is its non-
standard implementation of signal handling.

Pthread Debugger Project: SmartGDB

http://hegel.ittc.ukans.edu/projects/smartgdb

2. This is actually an interesting variation on how to create threads. It’s sort of a fork() call for threads. (See Linux
documentation for more detail.)
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A team at the University of Kansas has built a debugger atop GDB. It is designed
to allow the user to tailor it to his application environment. It supports MIT
Pthreads on Linux and allows extension to other thread packages. A tcl/tk
interpreter makes scripting possible.

Some of the unique aspects of this debugger include:

•     Checking for data races.

•     Monitoring the number of threads accessing a certain critical section.

•     Checking for deadlocks.

•     Forcing the program to follow a specific context switching sequence to

reproduce aberrant behavior.

•    Declaring thread-specific breakpoints.

Summary
We looked at the use of threads in various programming languages, comparing
them to how Pthreads works. Once again, the primary conclusion is that threads
work pretty much as expected and hoped for, with some few limitations. We also
pointed out a number of commercial products that might be useful.
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In which we consider the kinds of new tools that a reader would want
when writing a threaded program. An overview of the Solaris tool set is
given, as representative of what should be looked for.

Programming with threads adds new challenges to the development tools that
you use. “Normal” toolsets, in most cases, will not work well with threaded
programs, because they were designed with single-threaded programs in mind.
All of the vendors have some set of products to be used with multithreaded
programs—debuggers, code analyzers, and performance analysis programs.

This chapter focuses on some of the current tools that Sun Microsystems provides
for the development of multithreaded programs. Tool offerings from DEC, SGI,
etc. are fairly similar.

Static Lock Analyzer
LockLint is a lint type program for locks. It verifies consistent use of mutexes and
RWlocks in multithreaded ANSI C programs. LockLint performs a static analysis
of the program and looks for inconsistent or incorrect use of these locking
techniques. In looking for inconsistent use of locks, it detects the most common
causes of data races and deadlocks. LockLint can generate many different types of
reports:

• Locking side effects of functions (i.e., where a function locks a mutex but
doesn’t unlock it).

• Variables that were not consistently protected by a lock or that violate
assertions made about which locks are supposed to protect them.

• Cycles and inconsistent lock order acquisitions.

• Which locks were consistently used to protect which variables. This
information can assist in judging the appropriateness of the chosen
granularity of locks.
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LockLint is a static analyzer. You compile your program with the -Zll  flag. This
analyzes the program and builds a file of results (e.g., ll_exam.ll ). You then
use the LockLint analyzer to examine that file.

Using a Thread-Aware, Graphical Debugger
All of the different vendors have some version of a graphical debugger, all of
which have the same basic functionality. We’ll look at a few screen shots from
Sun’s Visual Workshop Debugger. Most of the UNIX debuggers are based on the
original UNIX debugger, dbx , and allow you to use the old command-line
interfaces also. To say the least, the value of a graphical debugger for
multithreaded programs is enormous.

This example uses the debugger to take a look at the code in An Example: Create
and Join on page 74. We started by loading the program into the debugger and
then setting a breakpoint in main() . Then we started the program, and let it hit
the breakpoint.

Figure 15-1 Sun’s Debugger (Program Stopped in main())
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When any thread hits a breakpoint, all threads will stop. (This is a good thing,
because you want things to stop while you try to figure them out.) Notice that the
Sun Pthreads implementation creates several threads for its own use, t@2, t@3 ,
and t@4. The first is the sigwaiter threads which captures all asynchronous
signals. The second is the reaper thread which cleans up after other threads. The
third is a special tools agent, created only for certain of the SunSoft tools (e.g., the
newest debugger, but not the previous debugger). They are managed by the
library and have no effect on your programing.

Also notice that the main thread is always t@1. This is a Solaris artifact. IRIX
starts numbering threads at 65535, AIX at 1, HP-UX, and Digital UNIX all have
their own, similar, systems. You can see from the thread pane that t@1 is stopped
at a breakpoint in main() . The stack pane will show the entire call stack for the
selected thread.

In the figure below, we select t@7 from the process inspector. Both the source
code window and the stack inspector will display the state of that thread. We
select our function, sub_d() , in the process inspector, to see where in our code
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the thread is. (As there is no source code available for system functions, the code
window will show nothing for __lwp_cond_wait() . Not surprisingly
(considering the program), t@7 is in the middle of sleep() .

Figure 15-2 Sun’s Debugger (Program Stopped at Breakpoint)

Also note the b next to the thread ID. That informs us that the thread is bound on
an LWP. The letter a indicates that those threads are locally scheduled and active
(have an LWP). Thus, the main thread is unbound, but active, while t@3 is
unbound and not active, and all the others are bound (hence active).

It is possible to single step an individual thread, to continue one thread, or to
continue all threads. No other options exist. Some caution must be exercised, as
the first two options can get you into trouble. If you step into a call to
pthread_mutex_lock() , and that mutex is locked, the program will hang and
the debugger will wait for it, ignoring any desperate calls from you. In that case
you must kill the program (not the debugger!) from another window. If you kill
the debugger, the program will continue to exist, and may even spin, eating up
CPU cycles. Don’t do that.
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Debug Mutexes
Even in the best designed programs, it is common to have problems getting
critical sections to work exactly the way you want. When you do run into
problems, it can be extremely time consuming to find the information you need in
order to fix them. The POSIX definition of mutexes does not allow you to find out
which thread owns them, nor is it a simple matter even to get an inventory of all
the mutexes in your program. POSIX does allow mutexes to detect self-deadlock
situations, but this is an optional portion of the spec which many vendors don’t
implement.

Part of the reason for this dearth of information is that it’s only useful during the
debugging phase of the programming—you would never use this information in
a shipping program. It would slow the program down and it wouldn’t be useful.
What is really needed is a mutex which will give out this information during
debugging, but not burden you with it later. If your vendor supplies such a
mutex, great! If not, there’s a debug mutex in our extensions library that may
prove to be a useful debugging tool.

The dmutex module implements a mutex which

• records its owner.

• records all the threads sleeping on it.

• detects self-deadlock and non-owner unlock.

• is placed on a list so you can see all mutexes with a single command.

• records the number of times it has been locked and the number of failed
wakeups.

To use this module, it is sufficient to do a global replace of “_mutex_ ” with
“_dmutex_ ” in your code. In order to be placed on the list of mutexes used by
print_mutexes() , you have to dynamically initialize all your mutexes.

You can tell the debugger to run the print_dmutexes()  function:

Code Example 15-1 Using the Debugger to Look at All dmutexes

(debugger) call print_dmutexes()

&lock3 T@12 Locked:   6.  Failed:   6.  Sleepers: ( T@11 )
&lock2 ---- Locked:   0.  Failed:   0.  Sleepers: ( )
&lock1 T@5  Locked:   6.  Failed:  10.  Sleepers: ( T@6 T@7 T@8 T@9 )



260 Threads Primer

15

From the debugger you can display a dmutex in the data inspector and see
something like this (below) which will tell you everything about the dmutex in
question. In this example, dmutex &lock3  was locked once, is currently owned
by t@10, has had two threads try to lock it and fail. Both of those threads (t@11
and t@12) are still waiting.

Figure 15-3 Using the Data Display to Examine a dmutex

Once you have your program debugged, optimized, and working properly, you
should go back to normal mutexes.
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Proctool
For Solaris 2 systems, there is a very nice system status display tool which is
freely available via FTP (see Freeware Tools on page 322). It will show you all of
the system statistics on your program, including the details for each individual
LWP. This can be useful when you want to know how your threads are behaving
with respect to system calls.

Figure 15-4 Proctool, Main Display Window

In the main display window you see the complete status line for each process
(you get to select what to display). Selecting one of those, you can look at detailed
information about that process. In the display below, you see the detailed
statistics for each LWP. (This is one of the places where it’s nice to have bound
threads, because you get to see what each individual thread is doing.)



262 Threads Primer

15

Figure 15-5 Proctool, LWP Display Window

TNFview
Many of the new, multithreaded kernels have internal instrumentation in both the
kernel and standard libraries. In Solaris, this instrumentation takes the form of a
TNF (Trace Normal Form) probe. The basic idea for all these types of
instrumentation is that probes are included in various important routines. These
probes write information about their position in the code and, optionally, details
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of the current program state (i.e., some variable values) into a file, along with the
exact time of the call. The probes are normally turned off, but can be enabled
when timing data is desired.

Figure 15-6 Data Collection for TNF

In the example above, we see calls to TNF_PROBE_N()  (N is the number of data
values that the probe will write out) in the pthread library code, in the UNIX
kernel, and even calls that we included in our own code. When we run the
program with tracing enabled, the probes will write their information out into a
file1. The timing information is based on the high-resolution clock which is part of
all new (post 1992) Sun hardware. That clock can be read directly (no system call
required) with a resolution of 10µs.

1. Actually, it’s a bit more complicated than we show, as there is an intermediate, binary format between the probe
and the human-readable file. Kernel probes write out to an internal buffer instead of a file, so that must be
merged into the final output.

libpthread.so a.out

pthread_mutex_lock()
{TNF_PROBE_0(...);
...
}

plan_vacation()
{TNF_PROBE_1(...);
...
}

vmunix

read()
{TNF_PROBE_0(...);
...
}

write()
{TNF_PROBE_0(...);
...
}

a.tnf

probe_1 1:12
probe_2 1:13
probe_3 1:16
probe_1 1:16
probe_3 1:21
probe_1 1:22
probe_4 1:23
probe_4 1:24
probe_4 1:24
probe_4 1:24
probe_1 1:33
probe_2 1:35
probe_1 1:36
probe_3 1:37
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Once that data is collected, all that’s left is to make sense of it. While you could
simply read the file itself, that would probably prove to be rather
difficult—there’s just too much data to read from a printout. A better method is to
use a special viewer, TNFview (also available via FTP), which condenses that data
into graphical form and produces a series of histograms and plots.

Figure 15-7 Main Data Display Window for TNF
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In the figure above, the one thing to keep in mind is that the beginning of a
colored section is the time the event occurred. The color that extends beyond it is
just there for looks and has no particular meaning attached.

Figure 15-8 Histogram Display Window for TNF

Summary
Using the Solaris toolset as an example, a brief overview of what you can expect
from MT tools was given, along with a few hints about what to look for and what
to look out for.
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Performance 16

In which we make things faster, look at general performance issues,
political performance issues, and thread specific performance issues. We
conclude with a discussion of the actual performance of multithreaded
NFS.

Optimization: Objectives and Objections
Performance is an incredibly wide topic which means different things to different
people. It is often referred to broadly and vaguely as an obvious requirement for
all programs, without ever defining exactly what it is. We are not aware of any
truly good and comprehensive texts on the subject1. In one short chapter, about
all we can do is point out the things you probably already know.

Before you begin optimizing your program, you must answer the fundamental
question: “What do you really want?” We’re not being silly. This is not an easy
question. Major factors surrounding performance tuning include:

• Time to Market

• Available Human Resources and Programming Costs

• Portability

• User Perception

• Competition

• Targeted Machine Configuration

• Algorithm

• CPU Time, I/O Time, Contention, Etc.

1. There are a number of books discussing kernel tuning, many discussing algorithmic issues for general
programs, and numerous texts and papers do detailed analyses of theoretical limits.These are all fundamental
and important places to start, but they are all weak on many important aspects of actual implementation.
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In general your customers’ only objective is going to be “Do my work for the least
cost.” They really do not (well, should not) care about any of the details. They
have their job to do and that’s the sole value of your software to them. Many of
us engineering types have a tendency to skip over all this touchy-feely stuff and
jump straight into the code. Let us resist for a moment and consider these details
which affect our pay cheques so much. We may not like this, but it really is vitally
important.

Time to Market

Most of the optimization issues are ultimately marketing issues. These marketing
aspects are important and have to be hashed out with management. It’s no use
having a program that runs twice as fast if your company’s out of business. We’ll
get to the techniques in a moment, but we wish to emphasize this point. The
amount of optimization to do on a program is a marketing issue.

Related to this is correctness. Correctness is more important than either
performance or time to market. Minor bugs and occasional crashes can be traded
off against time to market, but fundamental correctness is essential.
Unfortunately, this is a major battle which is fought between engineering and
marketing all the time.

Available Human Resources and Programming Costs

If you can speed your program up by 50%, but it takes 60 programmers two years
to do it, is it worth it? Maybe yes, maybe no. It’s up to you and you should be
thinking in these terms when you begin the optimization efforts.

Portability

Some of the techniques we’re going to be discussing will require customizing to a
particular platform, or even a particular configuration. Is such specialization
worthwhile to you? Maybe yes, maybe no. Sunsoft does a PSR (Platform Specific
Release) of Solaris for each different machine (one for the SS1, another for the SS2,
a third for the SS10, etc.). Ninety-nine percent of the code will be shared, but
things like byte copy will be optimized for the exact CPU, memory bus, and cache
configuration.

It is highly unlikely you would ever go as far in your own code. The normal thing
is to optimize for a specific configuration (typically the highest performance one),
and admit that the others will be a bit suboptimal. Would you want to write and
maintain upwards of 20 PSRs just for Sun machines? And another 20 for SGI,
DEC, etc.?
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User Perception

Yes, you might be able to optimize an editor to process keystrokes twice as fast.
The user wouldn’t care, because the user can’t tell the difference between 1ms
and 2ms response time anyway. Don’t waste your time on useless optimization.

Easier said than done, of course. Especially as the world is rife with inappropriate
benchmarks which people do base their buying decisions upon. Sorry.

Competition

Being 10% faster means nothing to the user. It looks great on the data sheets, but
that’s about it2. Your program is not a commodity, don’t sell it as if it were. Of
course, if your program runs 50% slower than the competition, you may need to
speed it up significantly. Make sure you get the time and support you need.

Targeted Machine Configuration

You have to select your primary target machine and you have to declare some
configurations inadequate. If you can’t get your desired performance on a x286,
then don’t sell on a x2863. Next year machines will be twice as fast anyway.

Sometimes, “throwing money at the problem” is the right answer.

Algorithm

There are three vitally important aspects of performance optimization: algorithm,
algorithm, and algorithm. Seriously. Forget all of this other stuff until you have
settled on the very best possible algorithm. We can show you programs that will
run faster on an uniprocessor VAX 780 than a 64-way, 500 MHz, Alpha Server,
simply due to algorithm choice.

You can multithread bubblesort, and it will run twice as fast, but...

CPU Time, I/O Time, Contention, Etc.
That should be enough moralizing on the practicalities of dealing with the real
world. Now let’s get serious—you’re an ISV and you really want to get the best
performance you can (for some “reasonable” programming cost). First let’s look
at the overall system design and define our true objectives.

2. Yes, performance numbers on data sheets are important sometimes because people do make decisions based
upon a 1% difference in a published benchmark (dumb, but real). None the less, given a choice between
releasing 5% slower then the competition today and 5% faster next year, we’d opt for today.

3. At one of Bil’s first software division meetings (back when everyone fit into the cafeteria!), there was a big
debate concerning the poor performance of SunOS on a 4 MB machine. Some of management wanted to restrict
all developers to 4 MB machines so we would be more motivated to control code inflation. The final resolution
was to make 8 MB the minimum shippable configuration.
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The primary components are the CPU, the cache, the main memory bus, main
memory, the I/O bus, and the peripherals (disks, tapes, possibly displays,
networks, etc.), all of which can be viewed generically as resources. There is a
tendency to view the CPU as unique and we often speak of maximizing CPU
usage before considering any other subsystems. However, that’s not really what
we want We really want our program to run in minimal wall clock time. Let’s
consider these subsystems.

CPU

Some programs are completely CPU-bound. They don’t make great demands
upon the peripherals and have a small enough working set to be largely cache-
resident. A huge number of programs are partially CPU-bound. To optimize such
programs, our primary technique will be to reduce the number of instructions
executed, and our primary method of doing so will be by choosing the best
algorithms.

Our secondary method will be to examine our code very carefully to see if there
are places where loops can be made tighter. Sometimes we will even examine
assembly code to verify the tightness of the complied code. In all cases, we will
first analyze our program, then focus our efforts on those sections which consume
the most time.

Clever usage of registers, optimal instruction scheduling, and the like we will
leave to the compiler. Only in the rarest of circumstances will we ever “bum”
code (write assembly code). Byte copy can be written in a single line of C code. On
Sun machines, the actual library call occupies roughly 500 lines of carefully hand-
optimized assembly code. It is specialized for each of the different byte
alignments and a different version is written for each PSR. The programmer
counts the instructions, spreads data across numerous registers to maximize
pipelining and multiple instruction issues, etc. It runs upwards of ten times as
fast as the one line of C.

The chances of you doing anything similar is quite small. It takes a lot of effort, is
valuable for only a few very tight, very intensively used loops. The hassle of
maintaining “bummed” code is also quite significant. Don’t do this at home!

Memory Latency

The speed at which the main memory system can fill cache requests is a major
factor on the CPU side of performance. It is not at all unusual for memory latency
to occupy 50% of total CPU time. Memory latency is difficult to identify as
separate from CPU time because there are no standard tools for measuring the
amount of time it takes. As far as the OS is concerned, the entire CPU/cache
system is a single entity, and is lumped into a single number—CPU time.
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No measurements of cache activity are recorded, so the only means of
distinguishing cache from CPU are (a) counting instructions, (b) comparing target
code to known code, and (c) using simulators. Simulators are not generally
available4. We’ll focus on a and b. Once we determine the cache behavior of our
program, we may be able to reorganize data access to improve performance. (See
Reducing Cache Misses on page 301.)

Memory Bandwidth

No single CPU can come vaguely close to saturating a main memory bus. At the
insane rate of one memory access per cycle, a 200 MHz Ultra could demand
nearly 100 MB/sec—one twelfth of the UPA bus’ bandwidth. Of course the CPU
wouldn’t have any time to do anything. Realistic programs demand data rates
closer to 50 MB/sec, and 95% or more of that is serviced by the cache. Main
memory bus rates of 5 MB/sec per CPU are normal for actual programs. A UPA
bus can sustain data rates of over 1GB/sec.

It is true that a maximally configured ES10000 with 64 CPUs can easily saturate
the 100 MHz UPA cross-bar switch. We don’t have any clever techniques for
minimizing it.

I/O Latency

Making a disk request takes a long time, around 20ms. During this time, a thread
will typically go to sleep, letting others run. Depending upon the details of the
access pattern, there are a couple of things we can do to either reduce the number
of requests or pipeline them. In the case where the working set is just a bit larger
than main memory, we can simply buy more memory.

In the case where the working set is really enormous, we can duplicate the
techniques that we’ll use for optimizing memory access (see Reducing Cache
Misses on page 301). Disk accesses are easier to deal with than cache misses
because the OS does collect statistics on them and because the CPU is able to run
other threads while waiting.

Other types of I/O must simply be endured. There really is no way to optimize
for asynchronous network requests.

4. They’re too complex to use easily, so there’s no reasonable way for vendors to market them. If you are willing to
go through a lot of pain and spend big bucks for one, tell your vendor. Vendors will do anything for money.
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Contention

Sometimes one CPU will hold a lock which another CPU needs. This is normal
and unavoidable, but it may be possible to reduce the frequency. In some
programs, contention can be a major factor in reducing the amount of parallelism
achieved. Contention is only an issue for multithreaded (or multi-process)
programs, and primarily only on MP machines. Although threaded programs on
uniprocessors do experience contention, the most important cause of the
contention is the speed of other components of the system (e.g., you’re holding a
lock, waiting for the disk to spin). Reducing contention is always a good thing,
and is often worth a lot of extra work.

Throughput vs. Latency

Given these resources, we next must refine our definition of performance—do we
want to minimize latency for individual subsystems, such as having an NFS
server respond to individual requests as fast as possible, or do we want to
maximize the number of requests per second which the server can handle? This is
a serious consideration and we cannot blithely answer “both.”

Consider the NFS graph below5. We get to select the point on the graph where we
wish to operate. For some programs (e.g., numerical calculations), this latency vs.
throughput issue is non-existent, for others (e.g., NFS), it is paramount. The

5. Program data and graphs from Hennessy & Patterson “Computer Architecture”, 2nd Edition
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answer to the question is almost always “Maximize thoughput with ‘reasonable’
latency.” For NFS this means that everyone designs their servers to give
maximum throughput at 40ms average latency6.

Figure 16-1 NFS Throughput vs. Latency on Some SGI Machines

The question now becomes “For my individual application, which of these
subsystems is the limiting factor, and how much can I accelerate that before
another subsystem becomes saturated?”

Limits on Speedup
A naive view of multiprocessing says that we should expect a 2 CPU machine to
do twice as much work as a 1 CPU machine. Empirically, this is not at all the case.
Indeed, it is not unusual to hear reports of people who see very little
improvement at all. The truth is that it all depends upon what you are doing. We
can cite examples of programs that get near-linear speedup, a few that show
super-linear speedups, a large majority that show some speed up, and even a few
that slow down.

One basic fact should be acknowledged up front: There is always a limit. For
every program or system load that you can imagine, there is an optional number
of CPUs to run it on. Adding more CPUs to the machine will slow it down.

6. 40ms is also the limit chosen for the maximum allowable latency for the SPEC Laddis benchmark.
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You could, if you wanted, build a one million CPU SMP machine. It just wouldn’t
be very efficient. And while we can invent programs that would make good use
of all million CPUs (e.g., analyze all 20 move chess games), they would be highly
contrived. Most “normal” programs can make use of only a small number of
CPUs (typically 2 - 20).

Let’s start by looking at some data from some simple programs. These are
numerically intensive programs which run entirely in memory. Because there is
no I/O involved, and because the amount of shared data is often quite limited, all
of these programs show a superb scaling up to 16 CPUs.

Figure 16-2 Parallel Speedup on Several Numerical Programs

Fast Fourrier Transforms are performed by a set of matrix manipulations. It is
characterized by largely independent operations with significant inter-thread
communication only in one section. The next three programs all have largely
constant amounts of inter-thread communications. LU factorization is dense matrix
factorization, and also performed by a set of matrix manipulations. Barnes-Hut is
an N-body simulation for solving a problem in galaxy evolution. Ocean simulates
the effects of certain currents on large-scale flow in the ocean.

Notice that all of these program do show a fall off in performance for each
additional CPU. At some point, that fall off will drop below zero and begin to
slow the total throughput. Why? Well, let’s take a look at where these programs
are spending their time. As you can see from the figure below, the amount of time
the CPUs actually spend working on the problem drops as the number of CPUs
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increases, the requirement for synchronization taking up more and more of the
time. Extrapolating out to just 128 CPUs we can infer that performance would be
dismal indeed.

Figure 16-3 Program Behavior for Parallelized Benchmarks

Superlinear Speedup

In a very small number of programs such as Ocean on two and four CPUs
(Figure 16-2), it is possible to see speedups slightly better than linear. This is a
result of having more cache and possibly reducing overhead because of fewer
context switches. It’s nice if you get it, but don’t expect it.

Timing Threaded and Non-Threaded Programs

In our measurements, we compare the runtime of identical code that creates
different numbers of threads, appropriate to the available CPUs. This isn’t really
fair, because we’re including the synchronization overhead (and possibly a less
efficient algorithm) for the one CPU case, which doesn’t need that
synchronization.

Unfortunately, for any real program, it’s far too complex to implement, optimize,
and maintain two different programs (the PSR argument again). Most ISVs ship a
single binary and simply run suboptimally on uniprocessors. Library writers will
ship a single library module, running the stub code when the threads library is
not linked in. You may console yourself (and your marketing department) by
noting that you can probably find more performance improvement in the
techniques mentioned above than you can in writing a uniprocessor-only version.
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Amdahl’s Law

Amdahl’s law states: “If a program has one section which is parallelizable, and
another section which must run serially, then the program execution time will
asymptomatically approach the time for the serial section as more CPUs are
added.”

Figure 16-4 Amdahl’s Law: Time(total) = Time(serial) + Time(parallel) / Number_of_CPUs

Although obviously true, this fact is of no interest to many programs. Most
programs that we have worked with (client/server, and I/O intensive) see other
limitations long before they ever hit this one. Even numerically intensive
programs often come up against limited memory bandwidth sooner than they hit
Amdahl’s limit. Very large numeric programs with little synchronization will
approach it. So, don’t hold Amdahl’s law up as the expected goal. It might not be
possible.

Client/Server programs often show a lot of contention for shared data and make
great demands upon the I/O subsystem. Consider the TCP-C numbers below.
Irrespective of how representative you think TPC-C is of actual database activity

T(total)

CPUs

T(serial)

T(parallel)
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(there’s lots of debate here), it is very definitely a benchmark which vendors put
enormous effort into optimizing. So it is notable that on a benchmark as
important as this, the limit of system size is down around 20 CPUs.

Figure 16-5 TPC-C Performance of a Sun UE6000

So, what does this mean for you? That there are limitations. The primary limiting
factor might be synchronization overhead, it may be main memory access, it
might be the I/O subsystem. As you design and write your system, you should
analyze the nature of your program and put your optimization efforts towards
these limits. And you should be testing your programs along the way.

Performance Bottlenecks

Wherever your program spends its time, that’s the bottleneck. We can expect that
the bottleneck for a typical program will vary from subsystem to subsystem quite
often during the life of the program. “Bottleneck” is a somewhat prejorative term
which isn’t really fair. After all, which ever subsystem is the bottleneck is the one
that’s doing your work! There is also a general tendency to want to “balance out”
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the work across the different subsystems, keeping them all busy all the time.
Once again, that’s a bit inaccurate. It’s only useful if it helps your program run
faster.

Figure 16-6 Performance Bottlenecks and Capacities of Programs

In the above figure we show a representation of where a program is spending its
time and where the bottleneck is with respect to CPU, cache latency, and I/O
latency. Each block represents how busy that subsystem is during some period of
time (say, 10µs).

Black indicates a subsystem is being used at full capacity, white indicates zero
usage. A black CPU is never stalled for anything, the other subsystems are
waiting for it to make requests. A black cache indicates that the CPU is stalled,
waiting for data at least some of the time, ditto for I/O. Depending upon system
design, it may or may not actually be possible for CPU and cache to be busy
simultaneously. (We show a system where there is overlap.) The solid white
sections for CPU 1 and 2 indicate that they are suffering contention, waiting for
CPU 0 to release a lock.

Typically we expect CPU and cache to take turns being the bottleneck, alternating
very rapidly. When I/O is the bottleneck, it will be so for extended periods of
time (the latency on a disk read runs on the order of 20ms).
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By definition, there must be a line of solid black from one end of our graph to the
other. In some sense, the more solid black in the CPU section, the more work is
getting done. A typical sub-goal will be to maximize the amount of time all the
CPUs are actually working. (The primary goal is to make the program run fast.
Normally you expect that making more CPUs do more work will have that
effect.) Eliminating contention is a major factor in doing so.

Benchmarks and Repeatable Testing
Before you get into the details of optimizing your code, you need to be very clear
on what your starting point is, and what your objective is. Your overall objective
is to make the entire system run faster. Perhaps you have a specific target (you
need 13.5% improvement to beat the competition), perhaps you just want to
spend six months and get as much improvement as you can. Your starting point
will be a specific release of your program, a specific machine to run it on, and a
very well-defined set of input data. You absolutely must have an unambiguous,
repeatable test case that you know the statistics for.

Things you may have to control for include other activity on the test machine,
unanticipated network traffic, file layout on your disk(!), etc.

Once you have all of that, you will generally find that most of your time is used
by a few small loops. Once you’re convinced that these loops really are the right
ones, you’ll separate them out into their own little testbeds and verify that you
can produce the same behavior there. Finally, you will apply your efforts to these
testbeds, investigating them in great detail and experimenting with the different
techniques below.

Once you feel confident that you’ve done your best with them, you’ll compare the
before and after statistics in the testbeds, then integrate the changes and repeat
the tests in the original system. It is vitally important that you repeat the test in
both original version and in the new version. Far, far too many times people have
discovered that “something changed” and the original program now completes
the test faster than before and the extensive optimizations they performed didn’t
actually make any improvement at all.

Doing this stuff well is not at all obvious and doing it wrong is all too common.

General Performance Optimizations

By far, the most important optimizations will not be specific to threaded
programs, but rather the general optimizations you do for non-thread programs.
We’ll mention these optimizations, but leave the specifics to you. First, you
choose the best algorithm. Second, you select the correct compiler optimization.
Third, you buy enough RAM to avoid excessive paging. Fourth, you minimize
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I/O. Fifth, you minimize cache misses. Sixth, you do any other loop
optimizations which the compiler was unable to do. Finally you can do the thread
specific optimizations.

Best Algorithm

That’s your problem.

Compiler Optimization

This is not necessarily obvious and is highly dependent upon the individual
compiler.

You need to select the individual machine to compile for. For example, Sun
supports SS1s and SS2 (both SPARC version 7 machines, which trap to the kernel
to handle the integer multiply instruction), SS10s, SS20, SS1000s, and SC2000s (all
SPARC version 8 machines, which have hardware integer multiply); and Ultras
(SPARC version 9 machines, which have 64-bit registers and 64-bit operations).
Optimizing for an Ultra might produce lousy code for an SS1. Optimizing for an
SS1 will produce OK code for an SS10 or Ultra. (This is a marketing decision of
course.)

You need to choose the optimization level for your program. You may choose
different levels for different modules! Sun compilers, for example provide five
levels of optimization. Level -xO2  is the normal good optimization level,
producing fairly tight code, highly reliable and highly correct. Levels 3, 4 and 5
produce extremely fast code (it may be larger) which is much faster than -xO2  in
some cases, and possibly slower in others. They are much more likely to fail (i.e.,
not compile at all).

Thus, expect to compile and test your program at -xO2  (default). Compile and
profile it at -xO2 . Separate out the high time functions and recompile them at
higher levels. If they work and are faster, great. If not, too bad.

Buy Enough RAM

Test the program with different amounts of memory and select the best
price/performance level.

Minimize I/O

Organize your data so that when you do read a disk block, you make maximum
use of it, and you don’t have to read it again. One obvious thing is to use the
mmap()  calls to map files into the address space instead of calling read(). This
eliminates an extra kernel memory copy and allows you to give access pattern
hints to the OS.
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Minimize Cache Misses

Organize your data so that when you do load a cache line, you make maximum
use of it, and you don’t have to load it again (see Reducing Cache Misses on
page 301).

Any Other Loop Optimizations

There are all sorts of things that you might be able to do to assist the compiler in
performing optimizations that it can’t do for some reason: inlining functions, loop
unrolling, loop interchange, loop fusion, etc. Generally these things are done by
the optimizer. We will look at the assembly code for very tight loops just to verify
our expectations. Your vendor documentation will help here.

Thread-Specific Performance Optimizations

Now that we have wildly emphasized the importance of doing all the normal
performance work first, let’s take a look at the stuff that’s specific to
multithreaded programs. There are just a couple of performance areas specific to
MT: reducing contention, minimizing overhead, and creating the right number of
threads.

Reducing Contention

Clearly we do not want to have lots of CPUs waiting around idle because they
can’t get a mutex which they need. Equally obviously, we cannot neglect proper
locking to avoid this contention. Your options for dealing with this situation are
limited by what you’re doing.

In some circumstances, you will be able to divide your global data into smaller
groups, with more locks. Then a thread which needs to use item 1 will not block
other threads which need item 2. This will only work if the two items are not
used together all the time. This is fine-grained locking. There is a trade-off
between grain size and overhead.

Other times you’ll be able to substitute readers/writer locks for mutexes.

In those rare cases where you have tiny critical sections which are used very, very
often, spin locks are a possible solution. Be aware that if you’re in this situation,
you’re already very close to the performance limit of your algorithm. Don’t
expect this to solve all your problems.

Minimizing MT Overhead

There are a few different threads functions that you might call often enough to
make a significant impact upon performance. The first case is the fine-grained vs.
course-grained locking trade-off. In cases where different data items are used
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together, making the locking finer-grained will increase the overhead due to
locking, slowing the total performance, even though contention may be reduced.
In the Friends/Enemies program (Manipulating Lists on page 226), it is possible
for us to lock every single list node individually. This will increase the parallelism
of the program over the global mutex design, but total run time will be many
times worse.

What is the right granularity? It will be obvious in most cases, but sometimes the
only solution is to experiment. The debug mutex (see Debug Mutexes on page 132)
provides statistics which will help you refine the granularity.

The other case of overhead concerns cancellation and signal handling. If you have
a tight loop which is pushing and popping cancellation handlers regularly, or
where you are enabling/disabling cancellation or changing signal masks, you
may be suffering enormous overhead. If we remove the delays (the simulated
work) in A Cancellation Example on page 161, then that code would spend more
time manipulating the cancellation handlers than doing the work. So, don’t do this.

The probable solution to this problem is to remove these calls from inner loops.
Perhaps you can move them completely out of the loop, running the entire loop
with cancellation or signal handling turned off. If time constraints prohibit this,
you may be able to check for cancellation or signals only once every thousand
iterations. These problems you can generally find by inspection of long-running
functions.

Reducing Paging

In most cases, overlapping I/O and computation can be accomplished without
threads. Most operating systems have some sort of asynchronous I/O that allows
you to issue an I/O request, then go back to what you were doing without
waiting for it to complete. When it does complete, a signal will be sent to your
process and you will then ask the operating system which request it was that
completed, and deal with it as you please.

This asynchronous I/O can be awkward to deal with, but it will do the job. Using
threads instead of asynchronous I/O is much easier to program and equally fast.
The one place where async I/O will not work is with page faults. When a non-
threaded program takes a page fault, it waits. Threaded programs can finesse this,
because there is no problem with thread 4 continuing to run while thread 1 is
waiting for a page fault. This yields a nice performance improvement for many
programs, even on uniprocessor machines.
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Figure 16-7 Using Threads to Optimize Paging

Communications Bandwidth

Sometimes the amount of data that needs to be exchanged between threads for a
program is very low compared to the total computing time. For example, a chess
position can be encoded into a dozen or so bytes, while the time to compute the
best move might be hours. Such a problem, which also requires only a tiny
amount of synchronization, can be very productively spread across thousands of
very distant processors that don’t even share memory7. Distributed parallel
systems such as PVM are well suited to such problems.

When the data/computation ratio is higher, or when more synchronization is
required, distributing across a network is not feasible, as the communications
costs would exceed the CPU time to execute the entire computation locally. Most
image processing programs fit into this category. Dithering a 1,000 x 1,000 image
might take one second on one CPU and require very little synchronization.
Executing this on 1,000 CPUs would only take 1ms of computation time, yet
moving that 1meg image out and back across a network would take far longer.
Executing this on a 10 CPU shared-memory multiprocessor would make far more
sense, taking more like 100ms total.

7. In one of the big computer chess tournaments back in the late 80’s, one of the contestants managed to convince
several thousand of us to run a networked chess program over the weekend.
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Right Number of Threads

You want to have enough threads to keep all of the CPUs busy all of the time (if
possible), but not so many that the CPUs are doing unnecessary context
switching. Determining exactly the right number is ultimately an empirical
experiment. We give rough estimates in How Many LWPs? on page 96.

Short-Lived Threads

Thread creation and synchronization time is quite low (about 80µs on an 167
MHz Ultra 1), making it reasonable to dispatch relatively small tasks to different
threads. How small can that task be? Obviously it must be significantly larger
than the thread overhead.

Something like a 10 x 10 matrix multiply (requiring about: 2000 FP Ops @ 100
MFLOPS = 20µs) would be much too small to thread. By contrast, a 100 x 100
matrix multiply (2M FP Ops @ 100 MFLOPS = 20ms) can be threaded very
effectively. If you were writing a matrix routine, your code would check the size
of the matrices and run the threaded code for larger multiplies, and run the
simple multiply in the calling thread for smaller multiplies. The exact dividing
point will be about 100µs. You can determine this empirically, and it is not
terribly important to hit exactly.

One ISV we worked with was doing an EDA simulation, containing millions of
10µs tasks. To say the least, threading this code did not produce favorable results
(it ran much slower!). They later figured out a way of grouping the microtasks
into larger tasks and threading those.

The opposite case is something like NFS, which contains hundreds of 40ms tasks.
Threading NFS works quite well.

The Lessons of NFS
One practical problem in evaluating the performance of threaded programs is the
lack of available data. There are simply no good analyses of real threaded
programs that we can look at. (There are analyses of strictly computational
parallel programs, but not of mixed usage programs; client/server, etc.) Nobody’s
done it yet! Probably the best data we have comes from NFS, which we shall now
look at.

The standard metric for evaluating NFS performance is the SPEC LADDIS
benchmark, which uses a predefined mix of file operations intended to reflect
realistic usage (lots of small file information requests, some file reads, and a few
file writes). As the NFS performance goes up, LADDIS spreads the file operations
over a larger number of files on more disks to eliminate trivial, single-disk
bottlenecks.
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An NFS server is very demanding on all subsystems and as the hardware in one
area improves, NFS performance will edge up until it hits a bottleneck in another.
Below are configurations and performance results for a variety of different
systems. Notably, all of these systems are configured below their maximum size.
Adding disks, controllers, or CPUs will not improve the performance. They do
not use the maximum throughput of either I/O or memory busses.

Figure 16-8 NFS Throughput on a Series of Sun UE Machines.

In all of these maximum performance configurations, the bottleneck is contention
and memory latency. One CPU will be working on some portion of a file system
and will have locked inodes, allocation tables, etc. that another CPU requires.
Once these locks are released, the other CPUs may have to context switch to the
appropriate thread. It will certainly have to take a lot of cache-misses in order to
load those newly changed tables. Additional CPUs will not improve the situation,
but higher performance CPUs will. This is because one CPU can now do more
work, hence the data in cache will be used more, reducing both the number of
misses and the amount of contention.

NFS is not a “typical” client/server application in one particular aspect: NFS is
started as a typical user-level process, but all that process does is to make a single
call into the kernel. For the rest of its lifetime, NFS remains in the kernel,
spawning threads there as it deems necessary. Thus, NFS does not have to do any
context switching for I/O as normal user-level programs must do, and it can
avoid the extra step of copying data from kernel buffer to user space8.
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NFS could have been written as a user-level program, but the context switching
would have killed performance. It was never tried9.

A 24-way ES6000 can sustain ~21,000 NFS operations / second (about 900
ops/CPU) with a latency of about 40ms. A one-way machine gets about 2,000
ops. This implies a requirement of 500µs on the CPU per NFS op and thus 80
outstanding requests (waiting for the disks) at any one time. The limiting factor is
CPU power plus locking contention. There is plenty of room for more or faster
disks, and more network cards, but they wouldn’t help.

Actual data transfers are accomplished via DMA from/to disks and the network.
The data is brought into the CPU only to perform checksums, it is never written
by the CPU. Checksums have horrible data locality—they load lots of data, but
only use that data once, and only for a single addition. This means that the CPU
will spend an inordinate amount of time stalled, waiting for cache loads, but that
it will do virtually no writes. (Some folks are building checksumming hardware
for exactly this purpose.)

Normal programs spend more time using the data once loaded into cache, do
more writes, and generally spend less time stalled on cache misses.

NFS is constructed as a producer/consumer program. The master/slave design
was rejected as being inappropriate because of the nature of interrupt handling.
When a network card gets a packet, it issues an interrupt to one of the CPUs
(interrupts are distributed in a round robin fashion on Sun’s UE series). That CPU
then runs its interrupt handler thread.

For an NFS request, the interrupt handler thread acts as the producer, building an
NFS request structure and putting that onto a list. It is important for the interrupt
handler thread to complete very quickly (as other interrupts will be blocked
while it’s running), thus it is not possible for that thread to do any appreciable
amount of work (such as processing the request or creating a new thread). The
consumers pull requests off the queue (exactly like our P/C example) and process
them as appropriate. Sometimes the required information will be in memory,
usually a disk request will be required. This means that most requests will require
a context switch.

8. Most programs would not benefit from the “optimization” of executing entirely in the kernel. Outside of the
horrible complexity of trying to build and maintain a patched kernel using constantly changing internal kernel
interfaces, very few programs spend so much time in system calls and so little time in their own code. NFS
spends about 45% of its time in the transport layer, 45% in the filesystem, and 10% in actual NFS code. Even
DBMSs which are known for their enormous I/O demands pale in comparison to NFS. The distinction is that
DBMSs are going to use much of the data they load, as opposed to just pushing it across the network like NFS.

9. There is one example of precisely this being done, but it was never optimized to any degree, so we can’t validly
compare the (abysmal) results.
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Many of the original algorithms used in single-threaded NFS proved to be
inappropriate for a threaded program. They worked correctly, but suffered from
excessive contention when appropriate locking was added. A major amount of
the work on multithreaded NFS was to write new algorithms that would be less
contentious.

The results? An implementation that scales extremely well on upwards of 24
CPUs.

Summary
Performance tuning is a very complex issue which has numerous trade-offs to be
considered. Once a performance objective and level of effort has been established,
you can start looking at the computer science issues. Even then the major issues
will not be threading issues. Only after you’ve done a great deal of normal
optimization work, will you turn your eyes towards threads. We give a cursory
overview of the areas you need to consider, and wish you the best of luck.
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In which we look at the various designs for SMP machines (cache
architectures, interconnect topologies, atomic instructions, invalidation
techniques) and consider how those designs affect our programming
decisions. Some optimization possibilities are looked at.

Types of Multiprocessors
In dealing with MT as we have described it here, we are also making some
assumptions about the hardware we are going to be using. Everything we
discussed is based on our using shared-memory, symmetric multiprocessor (SMP)
machines. There are several other types of multiprocessor machines such as
distributed shared-memory multiprocessors (Cray T3D, etc.) and massively
parallel multiprocessors (CM-1, etc.), but these require very different
programming techniques.

Shared-Memory, Symmetric Multiprocessors

The fundamental design of this machine requires that all processors see all of
main memory in an identical fashion. Even though a memory bank might be
physically located closer to one CPU than another, there is no programming-level
distinction in how that memory is accessed. (Hardware designers can do all sorts
of clever things to optimize memory access behind our backs, as long as we are
never aware of them.)

The other distinguishing aspect of this machine is that all CPUs have full access
to all resources (kernel, disks, networks, interrupts, etc.) and are treated as peers
by the operating system. Any CPU can run kernel code at any time (respecting
locked regions, of course) to do anything. Any CPU can write out to any disk,
network device, etc., at any time. Hardware interrupts may be delivered to any
CPU, though this is a weaker requirement and is not always followed1.

1. In practice, interrupts are generally distributed to CPUs in a round robin fashion.
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All of the multiprocessors in the PC, workstation, and server realms are shared-
memory symmetric multiprocessors: the 2-way Compaq machines, all of the Sun,
SGI, HP, DEC, HAL, and IBM RISC machines. (IBM also builds the SP-2, a large,
distributed memory machine—basically a cluster of PowerServers.) Obviously all
manufacturers have their own internal designs and optimizations, but for our
purposes, they have essentially the same architecture.

The CPU

All of the CPUs have the same basic design. There’s the CPU proper (registers,
instruction set, fetch, decode, execution units, etc.), and there’s the interface to the
memory system. There are two components of the memory interface which are of
particular interest to us. First there’s an internal cache (I$—typically 20 - 32kb),
then an external cache (E$—typically 0.5 - 16 mb)2, and finally there’s a store buffer.
The I$ holds all of the most recently accessed words and provides single-cycle
access for the CPU. Should the I$ in CPU 0 contain a word which CPU 1 changes,
there has to be some way for CPU 0 to realize this. E$ access is about 5 cycles,
with the same coherency issue. Problem #1.

The store buffer is a small, specialized cache which holds words which the CPU is
writing out to memory. The idea is that instead of requiring the CPU to stall while
a write is going on (it takes 30 - 100 cycles), the word will be placed into the store
buffer, which will then arrange to write the word out to main memory when it
sees fit. This way the CPU can run at full speed, not worrying about exactly when
a word arrives in main memory.

Of course the store buffer must be closely coupled with the I$ and memory fetch
unit to ensure that the CPU has a coherent view of memory. It wouldn’t do for
CPU 0 to write x1234545F  into location x00000010 , then load x00000010  and
not see x1234545F . Hardware architects take care of that, so we don’t have to
bother. The other issue with using a store buffer is that of determining when
writes arrive in main memory. CPU 0 might write out dozens of words, placing
them in the store buffer, while CPU 1, which then accesses those words, wouldn’t
see the changes, because the store buffer hasn’t written them out yet. Problem #2.

Just to further complicate the hardware picture, it is possible for the hardware
designers to give the store buffer more latitude in its choice of which words to
write out when. Total Store Order refers to a design which requires the store buffer
to write words to main memory in the same order as the instruction stream. It can
be more efficient for the store buffer to write words out in a different order
(perhaps it can write a series of contiguous words out together, perhaps it can

2. The distinction between unified caches and divided caches (one section for instructions, a different section for
data) is not particularly interesting for what we’re doing.
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write a word to memory bank 1, then memory bank 2). There are a variety of
schemes for this out-of-order writing (Partial Store Order, Weak Order, etc.). The
importance to us is that we must not rely on write order! Problem #3.

One more complication is that CPUs might do out-of-order execution too. If a
CPU has to wait for a cache fill before executing instruction #1, it is allowed to
look at instruction #2. If there is no dependency on #1, then the CPU may proceed
to execute #2 first. This is a wonderful thing for hardware architects, as it gives
them enormous leeway in their designs, allowing the CPU to run at maximum
possible speeds. It also complicates CPU design, ensuring full employment for
hardware designers. For us software types, it means that we cannot rely on order
of execution3. Also problem #3.

The System

A typical SMP system looks like this:

Figure 17-1 SMP System Architecture

Each CPU has its own on-chip I$ and store buffer. It also has a much larger, off-
chip E$. All external communication is done over a single memory bus. Part of
the memory bus protocol for all these machines is that each CPU will do bus
snooping. Every memory transaction will be observed by every bus snooper and

3. There are some fancy algorithms such as Decker’s algorithm, which avoid using mutexes by depending upon
the write order of CPUs. These techniques will not work on modern SMP machines.
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every time CPU 0 writes a word out to main memory, every other bus snooper
will see it and invalidate4 that entry in their own caches (both E$ and I$). The
next time CPU 1 wants to use that word, it will look in its own cache, see that the
entry has been marked invalid, and go out to main memory to get the correct
value.

What if CPU 1 also wants to write out the same word? What if CPU 1’s store
buffer is waiting to write it out? No answer. It would never happen, because that
would mean that two different threads were manipulating the same data at the
same time without a mutex and that’s not proper. Problem #1 solved.

What if a global variable is in a register so the CPU doesn’t see the invalidated
word in cache? This also won’t happen because the compiler is not allowed to
keep non-local data in registers across function calls (e.g.,
pthread_mutex_lock() !).

Problems #2 and #3 are solved with the same mechanism—store barriers. A store
barrier is a machine instruction which says “flush the store buffer.” The CPU will
then stall until the store buffer has been written out to main memory. On a
SPARC machine, this is the instruction stbar .

Now then, when should we flush the store buffer? Whenever a CPU has changed
some data which it wants other CPUs to see. That would be shared data, of
course, and shared data may be used by other CPUs only after the first CPU has
released the lock protecting it. And that’s when stbar  is called—when a mutex is
being released. This is done by all the synchronization variable functions, so you
will never call it yourself.

Thus, the short answer to all of the problems above is “Protect shared data with a
mutex.”

Bus Architectures
The design of the main memory bus does not have much affect on how we write
MT programs specifically, but it does have enormous influence over how fast our
programs run, and for high performance programs we must pay it respect.
Depending upon the specific program, anywhere from 25% to 90% of the runtime
will be devoted to waiting for the memory bus. (You can find programs which
run entirely in cache and have 0% bus waits, but they are the exceptions.)

There are two primary bus designs in use in SMP machines. There is the simple,
direct-switched bus such as the MBus which was used in Sun’s early SMP machines
and the SPARCstation 10s and 20s. Then there is the more expensive, more

4. There are other schemes for dealing with this problem, such as cache broadcast which simply sends out the
updated value immediately, but this won’t change our programming decisions.
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complex, packet-switched bus (aka split-transaction bus) such as is used in all of the
server machines from all the manufacturers (Sun’s SPARCservers, Sun’s Ultra
series, SGI’s Challenge series, HP’s PA-RISC, IBM’s POWERservers, DEC’s Alpha
servers, HAL’s Mercury series, Cray’s S6400 series, etc.). In addition to these,
there are also crossbar switches which allow several CPUs to access several
different memory banks simultaneously (Sun’s Ultra servers, and SGI’s Origin
servers).

Direct-Switched Busses

In a direct-switched bus (below), memory access is very simple. When CPU 0
wants to read a word from main memory, it asserts bus ownership, makes the
request, and waits until the data is loaded.

Figure 17-2 Direct-Switched Memory Bus

The sequence is:

1. CPU 0 takes a cache miss. E$ must now go out to main memory to load an
entire cache-line (typically 8 words).

2. CPU 0 asserts bus ownership (perhaps waiting for a current owner to
release).

3. It loads the desired address onto the bus address lines, then strobes out that
address on the address strobe line.

4. Memory sees the strobe, looks at the address, finds the proper memory bank
then starts looking for the data. DRAM is fairly slow and takes roughly a
microsecond5 to find the desired data.
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5. Once found, memory puts the first set of words onto the bus’ data lines and
strobes it into the E$. It then loads the next set of words, strobes that out,
and continues until the entire cache-line request has been satisfied.

The total bus transaction latency, from initial request to final transfer, is on the
order of one microsecond for all machines. It simply takes DRAM that long to
find the data. Once found, DRAM can deliver the data quite rapidly, upwards of
60ns per access, but the initial lookup is quite slow.

On a direct-switched bus, the total memory bandwidth is quite small, not because
of limited bus speeds, but because each transaction occupies the bus for so long,
most of the time just waiting. Obviously, this is not an optimal situation. Sun’s
MBus was designed to accommodate up to four CPUs. In practice, it was found
that four CPUs generated too much bus traffic in most programs and the vast
majority of MBus machines were shipped with just two CPUs.

Packet-Switched Busses

In a packet-switched bus (below), the transaction is split between the CPU’s
request and the memory’s reply. The objective of this design is to overcome the
enormous periods of dead time which the direct-switched busses suffer. In this
design, the CPU will release bus ownership while memory is busy looking up the
address, hence freeing it for use by other CPUs.

Figure 17-3 Packet-Switched Memory Bus
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The sequence is:

1. CPU 0 takes a cache miss. E$ must now go out to main memory to load an
entire cache-line (typically 8 words).

2. CPU 0 asserts bus ownership (perhaps waiting for a current owner to
release).

3. It loads the desired address onto the bus address lines, then strobes out that
address on an address strobe line.

4. Memory sees the strobe, looks at the address, finds the proper memory bank
then starts looking for the data.

5. At this point, CPU 0 releases bus ownership.

6. Once found, memory reasserts bus ownership.

7. It then strobes the data into CPU 0’s E$.

Total latency for a packet-switched bus is no shorter than for a direct-switched
bus, but because the bus is now free for use by other CPUs, the total throughput
is much, much higher. Sun’s UE10000 can run productively with upwards of 64
CPUs on a single bus.

Crossbar Switches

A crossbar is a routing switch which allows any one element on one axis to
communicate directly with any one element on the other axis. This does not
impact the ability of other elements on the first axis to communicate with other
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elements on the second. Contention occurs only when two elements on one axis
want to communicate with the same element on the second. Crossbar switches are
much faster than busses. And more expensive.

Figure 17-4 A Cluster Using a Crossbar Switch

The practical limit on cross bar switches right now (1997) seems to be about 4x4.
This is the size of both the Sun and SGI designs. To build machines larger than 4
CPUs, some additional interconnect is required. On the larger Sun Ultra
machines, a centerplane bus is used which can accommodate up to 16 quad CPU
boards. On the larger SGI machines, an entirely different approach is used.

Hierarchical Interconnects

The practical (and legal6) limit to bus length is around 16 boards. Beyond that,
you have horrendous problems with signal propagation. The “obvious” solution
to this is to build a hierarchical machine with clusters of busses communicating
with other clusters of busses, ad. infinitum. In its simplest form, this is no big
deal. Want some more CPUs? Just add a new cluster! Sure, you’ll see longer
communication latencies as you access more distant clusters, but that’s just the
way things are.

6. 186,000 miles/second. It’s not just a good idea, it’s the law!
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There is one aspect of SMP design that makes a mess of this simple model—cache
memory. We need to use caches to avoid saturating the interconnect, but at the
same time caches need to be kept coherent and that’s tricky. If the cache for CPU
169 contains an entry for address x31415926 , and CPU 0 writes into that
address, how is cache 169 going to get invalidated? Propagating every invalidate
across the entire interconnect would quickly saturate it. The object now becomes
finding a method to propagate invalidates only to those caches that need them.

Figure 17-5 Hierarchical Design of the SGI Origin Series

Built along the designs of Stanford’s DASH project, the SGI Origin uses a small
crossbar for its clusters, and an expandable, hierarchical lattice instead of a bus.
Embedded in each cluster is an invalidation directory, which keeps track of which
other clusters have cached copies of its local memory. When main memory is
written to, the directory knows which clusters to send invalidations to. The result
of this is that the basic machine can be expanded well past the 16 board limit of
bus-based machines, at a cost of about 150ns extra latency for each hop across the
lattice. The Origin is spec’d to expand out to 4096 CPUs. Now the only problem is
writing programs that can use 4096 CPUs...

Packet-Switched Busses and ldstub

There is one place where we care about the bus design very directly. Remember
ldstub , the mutex instruction? Well the definition of ldstub  says that it must
perform its work atomically. For a packet-switched bus, this means that it must

Interconnect
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retain bus ownership throughout the entire operation, first fetching the byte in
question, then writing all ones out to it. In other words, using ldstub  completely
defeats the packet-switched nature of a packet-switched bus!

Figure 17-6 Packet-Switched Memory Bus Running ldstub

There is no way around the fundamental problem, as ldstub  must be atomic. It
must occupy the bus for the duration. What we can do is simply not call it too
often. In particular, this means modifying our definition of spin locks. Whereas
our first definition of spin locks resulted in our calling ldstub  on every iteration
of the loop (thus flooding the bus), our better definition will avoid calling
ldstub  unless we’re fairly sure it will succeed. What we’ll do is spin in a loop,
looking at the value of the ownership byte. As long as it’s owned, we’ll just keep
spinning, looking at the value in cache, not generating any bus traffic at all.

When the lock is released, the owner CPU will write out zero, which our bus
snooper will see, invalidating our copy of the byte. On our next iteration we’ll get
a cache-miss, reload from main memory, and see the new value. We’ll call trylock
(hence ldstub ) and if we’re lucky, it will succeed and we’ll get lock ownership.
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On the off-chance that some other CPU sneaks in there at exactly the right
nanosecond, our ldstub  will fail, and we’ll go back to spinning. Generally, you
should expect spin locks to be provided by your vendor.

The Thundering Herds

This is as far as we’re going to go with spin locks. This covers 99.9% of all
programs that need spin locks. For that final 0.1%, where there is enormous
contention for a single spin lock, even this scheme will suffer. If there are 10 CPUs
all spinning on this lock, then the moment it’s released, all ten of them will take
cache misses, flooding the bus first with cache load requests, then ldstub
requests. This is known as the thundering herds problem and is discussed in more
detail in Hennessy & Patterson. Suffice it to say, if you’re suffering from this
problem, you have real problems. The best thing you can do is find another
algorithm which doesn’t have so much contention.

LoadLocked/StoreConditional and Compare and Swap

We mentioned that there are other types of atomic instructions which are a bit
more versatile. On SPARC v9 there is the Compare and Swap if Equal instruction.
On the Alpha, there is a different approach to the same issue, using two
instructions, known as Load Locked and Store Conditional.

The Alpha instructions require a tiny bit more hardware, but reward the designer
with an atomic instruction that doesn’t lock the memory bus. (Especially nice for
spin locks!) Along side of the bus snooper hardware is one more register. When a
LoadLocked  instruction is issued, the data is fetched directly from main memory
and that address is recorded in the register. Should some other CPU write to that

Code Example 17-1 Spin Locks Done Better

/* Implementation dependent. This is valid only for Solaris 2.5 */
void spin_lock(mutex_t *m)
{int i;

 for (i = 0; i < SPIN_COUNT; i++)
   {if (m->lock.owner64 == 0) /* Check w/o ldstub */

if (pthread_mutex_trylock(m) != EBUSY)
return; /* Got it! */

/* Didn’t get it, continue the loop */
   }

 pthread_mutex_lock(m); /* Give up and block */
}
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address, the register notices it. Later the program will issue a
StoreConditional  instruction. This instruction looks at the register before
doing the store. If the register says the address is unchanged, then the store
proceeds. If the address has been written to already, then the store doesn’t take
place. After StoreConditional  is finished, the programmer must check to see
if the store took place. If so, then all is well. If not, then go back and repeat.

Building a mutex with these instructions is simple. Of more interest are the other
types of synchronization we can do, such as atomic increment/decrement, and
atomic list insertion. In effect we will be implicitly locking the word in question,
updating it, and releasing the implicit lock. The important distinction is that we
can now execute these operations with no possibility of the lock owner going to
sleep.

In the code above, we assume that memory location address_1  will not change
between the time we read it and the time we execute the StoreConditional . If
it does change, we simply loop back and try it again. This is equivalent to
acquiring a lock, incrementing the word, and releasing the lock, with the
exception that it is impossible to go to sleep while holding the lock. We cannot
mix use of these instructions and normal mutex locks.

The advantage to these is that they run roughly twice as fast as mutex-protected
code and there is no danger of being context switched in the middle of execution.
The disadvantage is that the operations you can perform are very simple and may
not be sufficient to our purposes. Inserting an element onto the front of a list is
simple, but inserting elsewhere in the list is impossible. (Yes, we can correctly
change the next pointer of item_n , but item_n  might have been removed from
the list while we were reading the next pointer!) For more general usage, we need
mutex locks.

The tricky part is that you can use them to atomically increment or decrement a
variable, but you can’t make any decisions based on “current” value, because its
value may change before you make your decision. In normal code, you would
make a decision based on the value of a variable while in a critical section, so that
the variable couldn’t change.

Code Example 17-2 Atomic Increment Using LoadLocked and StoreConditional

try_again:LoadLocked address_1 -> register_1
add register_1, 1 -> register_2
StoreConditional register_2 -> address_1
Compare register_2, 0
branch_not_equal try_again
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You will sometimes see this referred to as lock-free synchronization.

Lock-Free Semaphores and Reference Counting

Semaphores need to know if a decrement attempt succeeded or not. If successful,
there is nothing else for the semaphore to do. It’s done (this will be our “fast
path”—the most common case). Should the semaphore value already be zero,
then a bit of careful programming will allow the thread to go to sleep, confident
that the next sem_post()  will wake it up. This means that sem_wait()  can
execute in a single instruction (we don’t even have to block out signals, because
no lock is being held)! Calls to sem_post()  will be somewhat more complex
(they have to look for sleepers), but still very fast.

Reference counting is one of the few other things that you can use such atomic
instructions for, because the only decision you make in reference counting is
when the count hits zero. Once zero, the reference count cannot be changed (there
are no pointers left to the item to copy), hence you can rely on this value.

Memory Systems
The memory system in modern SMP machines is designed to be ignored. You
shouldn’t have to spend any time thinking about it, it should just work. And it
succeeds in this, to a degree. As long as you are writing a program which is
reasonably well-behaved and which doesn’t have overwhelming needs for
absolute maximum performance, then you can skip over this section. Probably
95% of all programs fit into this category. As for the other 5%...

In 1980, memory speeds were about the same as CPU speeds and a machine
could access main memory in a single cycle. Since then, DRAM speeds have
improved by an order of magnitude and CPU speeds by almost four. Direct main
memory access now costs between 30 and 100 CPU cycles. It is not at all unusual
for a CPU to spend over half its time stalled, waiting for memory. To the degree
to which you can reduce the number of main memory accesses (i.e., cache
misses), you will be hansomely paid in program performance. (NB: There is
nothing unique to MP machines or MT programs here.)

Reducing Cache Misses

So, how to reduce cache misses? There are a couple of generalities which we can
point to, but not much more. Happily these generalities do cover a lot of
programs.
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1. Write your program so that you never have to load a cache line more times
than is absolutely necessary.

2. Organize your data so that when you do load a cache line, you are able to
make use of all of the data.

3. Keep data used regularly by different threads out of the same cache line.

Depending upon your particular program, it may or may not be reasonable to
apply these. For well-behaved programs that reuse the data in cache many times,
a great deal can be done just covering these three. We can show a factor of ten
difference between a naive matrix multiply and the most highly optimized
implementation, all due to better cache management. For programs with very
poor data locality, such as NFS or databases, which spend a lot of time bringing
in new data and looking at it only once, it is almost impossible to do anything at
all.

Cache Blocking

For something like matrix manipulation or image processing, a naive algorithm
might load and reload a cache line numerous times. The same operation can be
performed much faster in a more clever algorithm which does cache
blocking—arranging to load a subset of the data and use it many times before
loading a new block.

A naive multiply algorithm would multiply all of row 1 by column 1. Then row 1
by column 2, column 3, etc. Next row 2 would be multiplied with each column,
etc. For a 1,024x1,024 matrix, each row would be loaded only once, but the
columns would be reloaded 1,024 times! Assuming 64-bit floats and 64-byte cache
lines, that adds up to a total of 128k cache loads.

A cache-blocked program would multiply rows 1 - 64 with columns 1 - 64, then
columns 65 - 128, then 129 - 192, etc. Each of those sets will fit completely in a two
meg E$, so the total number of cache loads will be reduced to a mere 16k column
loads plus 1k row loads.

That’s the basics of cache blocking. There’s plenty more that can be done. For
example, you can optimize I$ blocking on top of the E$ blocking. You can take
into account the writing scheme (does the CPU write back via the cache, write
through the cache, or write around it?). You can recall that E$ is physically
mapped, hence it requires a TLB translation. (The translation lookaside buffer
performs high-speed virtual-to-physical mappings.) Of course TLBs are very
small. The Sun TLB for the large SC2000 server holds a translation for only 0.5
meg, so if you can avoid referencing data in cache beyond the current contents of
the TLB, you can avoid extraneous TLB misses. Then you may also wish to
consider which data is coming from which memory bank...
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We really don’t expect you to deal with these fine-grained optimizations. We
don’t. They involve a lot of careful estimation and painstaking verification, and
they have to be tailored to individual machines. But this kind of thing is possible,
it does yield impressive improvements for some programs, and the truly high
performance obsessive types do it. (Dakota Scientific’s numerical libraries take all
of these parameters into account and get impressive results. See Dakota Scientific
Software on page 250.)

Data Reorganization

What if you had a large number of records about people—names, ages, salaries,
addresses, favorite programming languages, etc. To calculate the average salary
for these folks, you would have to bring in the cache block with the first person’s
salary in it (along with seven other words), add that to the total, then bring in the
next person’s salary, etc. Each cache miss would bring in exactly one piece of
useful data and every salary would require a cache miss.

If you organized the data differently, placing all of the salaries into one array, all
of the names in another, etc., then you would be able to make much better use of
each cache load. Instead of one salary being loaded with each miss, you’d get
eight, significantly reducing cache wait times.

This is not something you’d do for a casual program. When you have this kind of
program design and data usage, and you are desperate for optimal performance,
that’s when you do this kind of thing. (See Portability on page 268.)

False Sharing

A cache memory is divided up into cache lines (typically 8 words) which are
loaded and tracked as a unit. If one word in the line is required, all 8 are loaded.
If one word is written out by another CPU, the entire line is invalidated. Cache
lines are based on the idea that if one word was accessed, it’s very likely that the
next word will be also. Normally this works quite well and yields excellent
performance. Sometimes it can work against you.

If eight integers happened to be located contiguously at a line boundary, and if
eight different threads on eight different CPUs happened to use those (unshared)
integers extensively, then we could run into a problem. CPU 0 would write a[0] .
This would of course cause the a[0]  cache line to be invalidated on all the other
CPUs. CPU 1 now wishes to read a[1] . Even though it actually has a valid copy
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of a[1]  in cache, the line has been marked invalid, so CPU 1 must reload that
cache line. And when CPU 1 writes a[1] , CPU 0 will invalidate its cache line.
Etc., etc.

This is what is called false sharing. On an 8-way, 244 MHz UE4000, the program
above runs in 100 seconds when the integers are adjacent (SEPARATION == 1 ),
and in 10 seconds when the integers are distant (SEPARATION == 16 ). It is an
unlikely problem (it is seen though), one that you wouldn’t even look for unless
you did some careful performance tuning and noticed extensive CPU stalls.
Without specialized memory tools, the only way you could do this is by counting
instructions and dividing by CPU speed. If there is a large discrepancy, you can
infer memory system stalls. (See Memory Latency on page 270.)

Summary
There are numerous machine designs, most of which will not affect our
programming decisions. There are a lot of issues concerning memory coherency,
all of which are solved by using proper locking. For very high performance
programs, clever, semi-portable cache blocking schemes and data organization
can have enormous impact.

Code Example 17-3 False Sharing

int a[128];

void *foo((void *) index)
{
 while (MANY_INTERATIONS)
  a[index]++;
}

...
for (i=0; i<8 ;i++)
   PTHREAD_CREATE(NULL, NULL, foo, (void *) i * SEPARATION);
...
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In which several complete programs are presented. The details and
issues surrounding the way they use threads are discussed and
references to other programs on the net are made.

This chapter contains several examples that use the POSIX threads library. The
examples use threads to demonstrate different concepts from previous chapters.
All the example code has been compiled and run on Solaris 2.5, IRIX 6.2 Digital
UNIX 4.0D, and HP-UX 10.30.

Please use this code in whatever manner you choose; many of the concepts
demonstrated in the examples can be reworked to be used in your applications.
Of course, there are some bugs in the code somewhere... All the source code used
in this book is available on the web (see Code Examples on page 321).

Threads and Windows
This example uses threads in conjunction with X11 and Motif®. As most of us
program only in high-level window toolkits (such as CDE Motif), it doesn’t make
much difference if X11 is MT safe or not. The toolkits are not, so we must write
our programs with that in mind.

In a “normal” windowing application, when a button is pressed, some task is
executed and then control in the program is returned to the window. This is fine
if the time required to execute the task is minimal. If the time required for the task
is not minimal, then the window freezes or the clock icon is displayed while the
task is executing. This behavior, in most cases, is not desirable, because the
graphical interface should always be active for the user to select other actions.

This example demonstrates how we can get around the freezing problem. A
simple window is created and filled with push-button widgets. When a button is
pushed, the program simulates some processing (i.e., sleep(6) ) that would
normally cause the interface to freeze. In this example the work is performed in
separate threads. This way, when a button is pressed, a thread is created to do the
work, and the window can return to its event processing for the user.
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When you run this example, you will see that when a button is pressed, it
changes colors and is deactivated while the work is being done. However, you
can press as many buttons as you like, one right after the other without waiting
for the first to complete.

This program is exactly what was described in Are Libraries Safe? on page 217. The
main thread opens a pipe and creates a callback for it (WorkComplete() ). It then
enters the event-loop and waits for input. When you push a button, the callback
ButtonPushed()  runs, deactivates the button, changes its colors, and
(optionally) creates a new thread (T2) to run the work function (DoWork() ).

The main thread then returns to the event-loop. You press another button and the
cycle repeats. In the meantime (back at the ranch), the new thread has started up
and begun running . With our second push, a third thread (T3) started up, just
like T2. After a few seconds, T2 completes its work and writes to the pipe.

The main thread reads from that pipe, runs the pipe callback, WorkComplete() .
That function sets the button back to the original colors and reactivates the
button. Now only T3 is running. Soon it shall complete and repeat the actions of
T2. In this fashion, the event-loop is always active and the Motif and X11 calls are
made only from the main thread.

This example uses a command-line argument that can enable or disable the
threads in the process, so you can see how the program behaves with and without
threads.

> ThreadWin MT

Figure 18-1 Threaded Window Example
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The X11 programming libraries will not be thread safe until release 6 (X11R6).
This example was originally written for use on X11R6; however, it may run just
fine on nonsafe X11 libraries. If you run this program and it fails, it’s likely you
are not running a thread-safe X11 library.

Code Example 18-1 Using a Pipe to Communicate with X11, (ThreadWin.c)

/*
Simple window program that inverts the colour of each button for
  6 seconds.

  In the non-spawning version, it hangs for 6 seconds with the GUI
  inactive (tho events are queued).  In the MT version, it spawns off
  a new thread to do that long “calculation”, hence the GUI remains
  active.  Upon completion, the thread writes to a pipe.  The X
  notifier reads from that pipe and inverts the colour back to the
  original colour.
*/
/*
cc -o ThreadWin ThreadWin.c -L. -R. -g -lpthread -lthread

-lthread_extensions -lposix4 -I/usr/dt/include
-I/usr/openwin/include -L/usr/openwin/lib -L/usr/dt/lib
-R/usr/openwin/lib -R/usr/dt/lib -lXm -lXt -lX11 -lm

*/

#define _POSIX_C_SOURCE 199506L
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <math.h>
#include <X11/Intrinsic.h>
#include <X11/X.h>
#include <X11/StringDefs.h>
#include <Xm/Xm.h>
#include <Xm/RowColumn.h>
#include <Xm/PushB.h>
#include <pthread.h>
#include “thread_extensions.h”

#define READ 0
#define WRITE 1

/* function prototypes */
int ButtonPushed(Widget, XtPointer);
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void *DoWork(void *);
XtAppContext _XtDefaultAppContext();
XtInputCallbackProc WorkComplete();
static int message[2];
pthread_attr_t attr;

void *killer(void *arg)
{
  sleep(30);/* Don’t run forever, these are demos! */
  exit(NULL);
}

main(int argc, char **argv)
{Widget toplevel, base, button[200];
 Arg wargs[10];
 int i, MT=0, N_BUTTONS=25;
 char but_label[5];
 XEvent event, fake;
 Display *disp;
 Window win;
 XtAppContextapp;
 pthread_t tid;

 /* check arguments */
 if (argc > 2)
   printf(“Usage: %s [MT]\n”, argv[0]), exit(0);

 if (argc == 2 && strcmp(argv[1], “MT”) == 0) MT = 1;

 if (pipe(message) < 0)
   {fprintf(stderr, “Can’t open pipe\n”);
    exit(1);
  }
 PTHREAD_ATTR_INIT(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);
 PTHREAD_CREATE(&tid, &attr, killer, NULL);

 /* setup our main window */
 toplevel=XtInitialize(argv[0], “ThreadWin”, NULL, 0, &argc, argv);

 /* set some arguments for our Row/Column Widget */

Code Example 18-1 Using a Pipe to Communicate with X11, (ThreadWin.c)
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 XtSetArg(wargs[0], XmNorientation, XmHORIZONTAL);
 XtSetArg(wargs[1], XmNentryAlignment, XmALIGNMENT_CENTER);
 XtSetArg(wargs[2], XmNisAligned, True);
 XtSetArg(wargs[3], XmNnumColumns,

(int)floor(sqrt((double)N_BUTTONS)));
 XtSetArg(wargs[4], XmNpacking, XmPACK_COLUMN);

 /* create the Row/Column Widget */
 base=XtCreateManagedWidget(“base”, xmRowColumnWidgetClass,

    toplevel, wargs, 5);

 /* create the button widgets with the button number as it label */
 for (i=0;i<N_BUTTONS;i++)
   {sprintf(but_label, “ %d “, i);
    XtSetArg(wargs[0], XmNlabelString,

     XmStringCreate(but_label, XmSTRING_DEFAULT_CHARSET));
    button[i] = XmCreatePushButton(base, “button”, wargs, 1);

    /* tell the button to call ButtonPushed() when pushed */
    XtAddCallback(button[i], XmNactivateCallback,

  (XtCallbackProc) ButtonPushed, (void *)MT);
  }

 /* manage the buttons and go into the X event loop */
 XtManageChildren(button, N_BUTTONS);
 XtRealizeWidget(toplevel);
 app = _XtDefaultAppContext();
 XtAppAddInput(app, message[READ], (void *)XtInputReadMask,

       (XtInputCallbackProc)WorkComplete, NULL);
 XtMainLoop();
}

XtInputCallbackProc WorkComplete()
{Pixel fg, bg;
 Arg warg[2];
 Widget w;

 if (read(message[READ], &w, sizeof(w)) != sizeof(w))
   {fprintf(stderr, “Read error\n”);

exit(1);
 }

 /* get the buttons foreground and background colors */

Code Example 18-1 Using a Pipe to Communicate with X11, (ThreadWin.c)
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 XtSetArg(warg[0], XmNforeground, &fg);
 XtSetArg(warg[1], XmNbackground, &bg);
 XtGetValues(w, warg, 2);

 /* swap the buttons foreground and background colors */
 XtSetArg(warg[0], XmNforeground, bg);
 XtSetArg(warg[1], XmNbackground, fg);
 XtSetValues(w, warg, 2);

 XtSetSensitive(w, True);
 return((XtInputCallbackProc)0);
}

/*
Button callback routine -- Called when a button is pushed

*/

int ButtonPushed(Widget w, XtPointer MT)
{int mt = (int) MT;
 Pixel fg, bg;
 Arg warg[2];
 pthread_t tid;

 XtSetSensitive(w, False);

 /* get the buttons foreground and background colors */
 XtSetArg(warg[0], XmNforeground, &fg);
 XtSetArg(warg[1], XmNbackground, &bg);
 XtGetValues(w, warg, 2);

 /* swap the buttons foreground and background colors */
 XtSetArg(warg[0], XmNforeground, bg);
 XtSetArg(warg[1], XmNbackground, fg);
 XtSetValues(w, warg, 2);

 if (MT)
   PTHREAD_CREATE(&tid, &attr, DoWork, (void *)w);
 else
   DoWork((void *)w);

 return(0);
}

Code Example 18-1 Using a Pipe to Communicate with X11, (ThreadWin.c)
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Socket Server (Master/Slave Version)
The socket server example uses threads to implement a “standard” socket port
server. The example shows how you can use pthread_create()  calls in the
place of fork()  calls in existing programs.

A standard socket server listens on a socket port and, when a message arrives,
forks a process to service the request. Since a fork()  system call would be used
in a nonthreaded program, any communication between the parent and child
would have to be done through some sort of interprocess communication,
something our program avoids.

The server program first sets up all the needed socket information. The server
then enters a loop, waiting to service a socket port. When a message is sent to the
socket port, the server creates a new thread to handle the requests on this file
descriptor.

The newly created listener thread then receives requests on this file descriptor in
the function producer()  until the string “End”  comes across. For each request,
the listener thread creates a new thread to handle it. That worker thread then
processes the request in process_request() , which sleeps for a bit (simulating
disk I/O), then sends a reply back across the file descriptor.

The client side of the example (not shown) sends 10,000 requests to the server for
each file descriptor you request on the command line (default 1). It waits for each
reply and exits when the server returns “End” . This client code can also be run
from different machines by multiple users.

void *DoWork(void *arg)
{Widget w = (Widget) arg;
 pthread_t tid = pthread_self();
 char *name = thread_name(tid);

 printf(“Thread %s: Start Processing...\n”, name);
 sleep(6);
 printf(“Thread %s: Processing done...\n”, name);

 if (write(message[WRITE], &w, sizeof(w)) != sizeof(w))
   {fprintf(stderr, “Write error\n”);
    exit(1);
  }
 return((void *)0);
}

Code Example 18-1 Using a Pipe to Communicate with X11, (ThreadWin.c)
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The code is a little bit artificial because we wrote it to look as much as possible
like our producer/consumer example. We also added a bit of instrumentation to
it, so that it will count the number of threads created and running. One notable
artifice is that we accept 10,000 request from each socket, where you might have
expected us to accept one request from each of 10,000 sockets. Our design gives
the program a two-level structure, with the main thread waiting for new socket
requests (in the accept()  call). The main thread creates a new thread to handle
each new socket, and that new thread then waits for the 10,000 requests,
spawning 10,000 additional threads, one per request.

Code Example 18-2 Thread per Request Socket Server from server_ms.c

/*
A simple server program.  It sets up a TCP port for the client
  program to connect to.

  This version creates lots and lots of threads without bound.
  Maybe even too many threads (when the delay is long).  Scope
  is PROCESS local to emphasize how bad it can get.

cc -o server_ms server_ms.c -L. -R. -g -lpthread -lthread
-lthread_extensions -lposix4 -lnsl -lsocket

*/

#define _POSIX_C_SOURCE 199506L

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <string.h>
#include <sys/uio.h>
#include <unistd.h>
#include <pthread.h>
#include <semaphore.h>
#include <time.h>
#include “thread_extensions.h”

struct request_struct
{int socket_fd;
 char *buf;
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 pthread_t tid;
 struct request_struct *next;
};
typedef struct request_struct request_t;

pthread_attr_t attr;
int TCP_PORT = 6500;
int SLEEP = 10;
int SPIN = 0;
int SPAWN = 1;

void count_threads(int i) /* Note the encapsulation
{static int count=0, old_count=0, max_count = 0;
 static pthread_mutex_t count_lock = PTHREAD_MUTEX_INITIALIZER;

 pthread_mutex_lock(&count_lock);
 count += i;
 if (i == 0) printf(“Max thread count: %d\n”, max_count);
 if (abs(count - old_count) > 9)
   {printf(“%d threads running\n”, count);
    old_count = count;}
 if (count > max_count)
   max_count = count;
 pthread_mutex_unlock(&count_lock);
}

void count_requests(int i) /* Note the encapsulation
{static int count=0, old_count=0, max_count = 0;
 static pthread_mutex_t count_lock = PTHREAD_MUTEX_INITIALIZER;

 pthread_mutex_lock(&count_lock);
 count += i;
 if (i == 0) printf(“Max thread count: %d\n”, max_count);
 if (abs(count - old_count) > 999)
   {printf(“Processed %d requests.\n”, count);
    old_count = count;}
 if (count > max_count)
   max_count = count;
 pthread_mutex_unlock(&count_lock);
}

Code Example 18-2 Thread per Request Socket Server from server_ms.c
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void *process_request(void *arg)
{char obuf[100];
 request_t *request = (request_t *) arg;
 pthread_t tid = pthread_self();

 DEBUG(printf(“[%s] received: \”%s\”\n”, thread_name(tid),
request->buf));

 delay(SLEEP, SPIN);

 /* Typical msg: “Server[T@9] “DATA SEGMENT 693 [T@4]” */
 sprintf(obuf, “Server[%s] %s”, thread_name(tid), request->buf);
 write(request->socket_fd, obuf, 50);
 free(request->buf);
 free(request);
}

void *process_request_thr(void *arg)/* Just a wrapper function */
{
  process_request(arg);
  count_threads(-1);
  pthread_exit(NULL);
}

request_t *get_request(int socket_fd)
{request_t *request;
 char ibuf[100];

 read(socket_fd, ibuf, 50);
 if (strcmp(ibuf, “End”) == 0) return(NULL);

 request = (request_t *) malloc(sizeof(request_t));
 request->socket_fd = socket_fd;
 request->buf = (char *) malloc(strlen(ibuf)+1);
 strcpy(request->buf, ibuf);
 count_requests(1);
 return(request);
}

void producer(int socket_fd)
{request_t *request;

Code Example 18-2 Thread per Request Socket Server from server_ms.c
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  pthread_t tid;

 while (1)
   {request = get_request(socket_fd);
    if (request == NULL) return;
    if (SPAWN == 0)
      process_request(request); /* Don’t create new thread
    else
      {PTHREAD_CREATE(&tid, &attr, process_request_thr,

(void *)request);
       count_threads(1);}
  }
}

void *accept_requests(void *arg) /* Expect 10,000 msgs per socket */
{int socket_fd = (int) arg;
 char ibuf[100], obuf[100];
 int i, j;
 pthread_t tid = pthread_self();
 char *name = thread_name(tid);

 printf(“[%s] Accepting on socket: %d\n”, name, socket_fd);

 producer(socket_fd);
 write(socket_fd, “End”, 4);
 close(socket_fd);
 count_threads(-1);
 printf(“[%s] Done Processing.    “, thread_name(tid));
 count_threads(0);
 pthread_exit(NULL);
}

void *killer(void *arg)
{
  sleep(30);
  exit(NULL);
}

main(int argc, char **argv)
{int i, sockfd, newsockfd, clilen;
 struct sockaddr_in cli_addr, serv_addr;
 pthread_t tid;

Code Example 18-2 Thread per Request Socket Server from server_ms.c
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 if (argc >= 2) TCP_PORT = atoi(argv[1]);
 if (argc >= 3) SLEEP = atoi(argv[2]);
 if (argc >= 4) SPIN = atoi(argv[3]);
 if (argc >= 4) SPAWN = atoi(argv[4]);
 printf(“TCP_PORT = %d SLEEP (ms) = %d SPIN (us) = %d SPAWN = %d\n”,

TCP_PORT, SLEEP, SPIN, SPAWN);

 if((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
   fprintf(stderr,”server: can’t open stream socket\n”), exit(0);
 memset((char *) &serv_addr, 0, sizeof(serv_addr));
 serv_addr.sin_family = AF_INET;
 serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);
 serv_addr.sin_port = htons(TCP_PORT);

 if(bind(sockfd, (struct sockaddr *)
&serv_addr,sizeof(serv_addr)) < 0)

   fprintf(stderr,”server: can’t bind local address\n”), exit(0);

 PTHREAD_ATTR_INIT(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
/* pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM); Why?-Try!*/
 PTHREAD_CREATE(&tid, &attr, killer, NULL);

 listen(sockfd, 5);

 while (1)
   {clilen = sizeof(cli_addr);
    newsockfd = accept(sockfd,

 (struct sockaddr *)&cli_addr,&clilen);
    if(newsockfd < 0)
      fprintf(stderr,”server: accept error\n”), exit(0);

    /* A new socket!  Expect 10,000 msgs */
    PTHREAD_CREATE(&tid, &attr, accept_requests,

 (void *)newsockfd);
    count_threads(1);
  }
}

Code Example 18-2 Thread per Request Socket Server from server_ms.c
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Socket Server (Producer/Consumer Version)
Run the master/slave code on a fast enough machine and you will discover that
it creates so many threads that it runs out of memory! This is not a good thing.
One solution to this is to keep careful track of how many threads you have
created and how many have exited. A better solution would be to redesign the
program to be a producer/consumer model. This way you will be able to control
the number of threads with no problem and you will be able to use the list of
outstanding requests as a buffer for when the number of requests exceeds the
ability of the program to handle them.

Of course, if the rate of incoming requests exceeds the ability to reply for too
long, then you will eventually have to simply reject the requests. You could have
the producer thread send explicit rejections to the client programs, or it could
simply refuse to call accept()  until there is room on the list. In this case, the
kernel will queue up a few requests, then simply refuse to acknowledge any more
requests.

Most of the code for the producer/consumer version is identical to that above.
The relevant changes are shown below. You will notice that most of the code is
stolen directly from Code Example 6-7 on page 114. Both the producer()  and
consumer()  functions are identical. Really all we’re doing is redirecting the
producer above, from creating new threads for each request, to placing those
requests onto a queue and letting the consumers worry about them.

Code Example 18-3 From server_pc.c

void producer(int socket_fd)
{request_t *request;

 while (1)
   {request = get_request(socket_fd);
    if (request == NULL) return;
    SEM_WAIT(&requests_slots);
    add_request(request);
    sem_post(&requests_length);  }
}

void *accept_requests(void *arg)
{int socket_fd = (int) arg;
 char ibuf[100], obuf[100];
 int i, j;
 pthread_t tid = pthread_self();
 char *name = thread_name(tid);
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Now a little problem we’ve glossed over... You may have noticed that our
program has no way to tell if it has sent out all of the pending replies before the
“end” request comes across. It is possible that the client program takes care of
this, though ours doesn’t. Obviously, this must be done to have a properly
running program. Lots of techniques are possible, none of which are uniquely
outstanding. We leave it as an exercise for the reader.

Other Programs on the Web
There are a small series of other programs on the web page which may be of some
interest. Each of them has points of interest, but none of them are sufficiently
interesting for us to print in their entirety. You may well find them helpful in
clarifying details about how to write code for specific situations, and for how to

 printf(“[%s] Accepting on socket: %d\n”, name, socket_fd);

 producer(socket_fd);
 write(socket_fd, “End”, 4);
 close(socket_fd);
 count_threads(-1);
 printf(“[%s] Done Processing.    “, name));
 count_threads(0);
 pthread_exit(NULL);
}

main()
{
...

 for (i=0; i<N_THREADS; i++)
    PTHREAD_CREATE(&tid, &attr, consumer, NULL);

PTHREAD_CREATE(&tid, &attr, stopper, NULL);

 while (1)
   {newsockfd=accept(sockfd,(struct sockaddr *)&cli_addr, &clilen);
    if(newsockfd < 0)
      fprintf(stderr,”server: accept error\n”), exit(0);
    PTHREAD_CREATE(&tid, &attr, accept_requests,(void *)newsockfd);

  }
}

Code Example 18-3 From server_pc.c
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use the APIs. Several are variations of the programs in previous chapters, several
are simple test programs which illustrate how some of the fancier extension
functions work, such as FIFO mutexes, recursive mutexes, mutexes with timeouts,
an “atfork” alternative. The program ipc.c  is the producer/consumer program
running in shared memory across two processes.

Summary
Several POSIX programs were shown, each with a certain point to elucidate. As
with all of the example programs, translation to Win32 or OS/2 is (supposed to
be) straight forward and left as an exercise for the reader.
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Internet A

Threads Newsgroup

For discussion, questions and answers, and just general debate about threading
issues, there is a newsgroup on the Internet (started by Bil). The issues discussed
are not confined to any one vendor, implementation, standard, or specification.

comp.programming.threads

There are two FAQs for the newsgroup, the first high-level and general
(maintained by Brian), the other very low-level and specific (maintained by Bil):

http://www.serpentine.com/~bos/threads-faq

http://www.LambdaCS.com

Code Examples

All the code examples in this book are available via the Web:

http://www.LambdaCS.com

Vendor’s Threads Pages

The SunSoft web page (designed by Marianne, maintained by Dan) includes an
FAQ on UI threads, performance data, case studies, and demonstration programs.
It also has a lot of pointers to other pages on it.

http://www.sun.com/sunsoft/Products/Developer-products/sig/threads/index.html

The IBM threads page includes a short exposition on POSIX threads
programming and IBM’s implementation:

http://developer.austin.ibm.com/sdp/library/ref/about4.1/df4threa.html

On DEC’s documentatin pages, they include a “Guide to DECthreads.”

http://redhawk.nis.newscorp.com:8000/unix40docs/Digital_UNIX_Bookshelf.html
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Threads Research

There is a bibliography of several hundred papers related to threading (created
and maintained by Torsten). The papers are largely theoretical, exploring the
outer limits of threading and concurrency:

http://liinwww.ira.uka.de/bibliography/Os/threads.html

The SPILT Package for UI/POSIX Compatibility

In order to make it easier to move UI threads code over to POSIX, the folks at
OPCOM (Sun Canada) have written a package that maps the missing parts of UI
into POSIX. Readers/writer locks, for example, are included in the SPILT
package.

http://www.sun.com/sunsoft/Products/Developer-products/sig/threads/index.html

Freeware Tools

Two useful tools are available as unsupported from Sun. TNFview (by Bonnie’s
group) allows you to look at the exact timing of different events in a program.
Proctool (Morgan’s brainchild) gives you a view of the high-level operations of
processes and LWPs on Solaris.

http://opcom.sun.ca/toolpages/tnftool.html

ftp://sunsite.unc.edu/pub/sun-info/mde/proctool

Other Pointers

You can see the “Single UNIX® Specification” at:

http://www.rdg.opengroup.org/unix/online.html

To see all the details on performance measurements, the SPEC homepage is:

http://www.specbench.org

For about $140, you can get the actual POSIX threads spec (IEEE 1003.1) from
IEEE. It is a specification, more intended for implementors than programmers, so it
is very likely not what you want. But, if you do...

http://www.ieee.org customer.service@ieee.org
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The Authors on the Net

If you would like to contact the authors directly, you can send mail to
Daniel.Berg@Sun.COM and Bil@LambdaCS.COM. We would like to hear from you
about what you liked or disliked about the book, and what we may be able to
improve.

Daniel is currently an SE at Sun, Houston, focusing on Java issues.

Bil recently left Sun, and is currently running his own company, Lambda
Computer Science, teaching and consulting on multithreaded programming.
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Books B

Threads Books

These are the other books in publication to date. Some of the examples,
explanations, figures, etc. in them will be better than those here. Some of them
will simply explain things better for you. We have read each of them carefully,
and have our own preferences. All of them are sufficient to their purposes.

Programming with Threads, Kleiman, Shah, Smaalders; SunSoft Press, Feb. '96 (534
pages, source on web). It covers POSIX threads, concentrating on the Solaris
implementation. It has a small, but adequate introduction, then concentrates on
more advanced programming issues. The examples are good because they are
very realistic and show you what to expect. They are bad because they are very
realistic and obscure the main points in the text.

Effective Multithreading with OS/2, Len Dorfman, Marc J Neuberger; McGraw Hill,
Nov. '95 (280 pages, source on diskette). It gives a brief introduction, then focuses
the rest of the discussion on the API and examples. It covers the OS/2 API.

Programming with UNIX Threads, Charles J Northrup, John Wiley & Sons, Inc.,
March '96 (400 pages, source via FTP). It covers the UI threads library, focusing on
the UNIXware implementation. The presentation is oriented around the API and
contains numerous examples.

Multithreaded Programming with Windows NT, Thuan Q Pham, Pankaj K Garg;
Prentice Hall, Jan. ‘96 (220 pages, source on diskette). It focuses on the NT library,
and gives some comparison with other libraries. It describes concepts and designs
well, but lacks many of the practical details and glosses over problems.

Pthreads Programming, Bradford Nichols, Dick Buttlar, and Jacqueline Proulx
Farrell, O'Reilly & Associates, Inc., Nov. '96 (268 pages, source via FTP).
Concentrates on the Digital implementation of POSIX. It gives a good explanation
of the concepts, but is a little too condensed to do them justice. Includes a major
section comparing the final standard to draft 4, DCE.



326 Threads Primer

B

ThreadTime, Scott J. Norton, Mark D. Dipasquale; HP Professional Books, Dec. '96
(530 pages, source on diskette). Describes POSIX threads with concentration on
the HP-UX implementation. Excellent introduction, computer science
descriptions, and standards discussion

Programming with POSIX Threads, Dave Butenhof; Addison Wesley, May ‘97 (380
pages, source on web). Concentrates more on architecture than any specific
implementation of POSIX threads. Lucid exposition of concepts and discussion of
standards from one of the guys on the committee.

Multithreading Applications in Win32, Jim Beveridge and Robert Wiener; Addison-
Wesley, Jan ‘97 (368 pages, source on diskette). It describes Win32 threads (NT
and Win95). Includes some comparison to POSIX. Excellent discussion of the
practical aspects of programming Win32. Many insightful comments on both the
good parts and the more problematic parts.

Multithreading Programming Techniques, Shashi Prasad; McGraw-Hill, Jan. ‘97 (410
pages, source on diskette and web). Describes and contrasts the multithreading
libraries of POSIX, UI, Mach, Win32, and OS/2. Each library has its own chapters
and its own code examples. This means that the introduction and presentation of
concepts is lighter, but the examples are ported across the different platforms,
making this a good reference for porting.

Threads Primer, Bil Lewis and Dan Berg; SunSoft Press, Oct. ‘95 (320 pages, source
on web). This is the first edition of the primer which covers UI threads. It lacks
the depth of many of the other books, but gives more extensive explanation of the
fundamentals. Japanese translation available.

Concurrent Programming in Java, Doug Lea; Addison Wesley, ‘97 (240 pages, source
on web). Describes how to write multithreaded programs in Java, using design
patterns. Well-written from a computer science point-of-view, though perhaps
overwhelming for the hacker-oriented. Familiarity with design patterns is a
necessity.

Java Threads, Scott Oaks and Henry Wong; O’Reilly, 97 (252 pages, source on web).
Describes how to write multithreaded programs in Java in a more conventional,
programmer-oriented style. Explanations are clear, though often simplistic. The
programs illustrate the points well, yet tend to gloss over problem areas in Java.

Using Multi-C: A Portable Multithreaded C Programming Library. Prentice Hall PTR,
‘94. This book describes the API and use of the MIX Multi-C library, which is a
proprietary library providing similar kinds of functionality to POSIX threads.
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Related Books

Advanced Windows NT: The Developer’s Guide to the Win32 Application Programming
Interface. Jeffrey Richter; Microsoft Press, ‘94. This book contains about 200 pages
that cover the NT threads API and its usage. It covers the API well, contains a
good amount of code, very little on the concepts.

Multithreaded Computer Architecture: A Summary of the State of the Art. Edited by
Robert A. Iannucci; Kluwer Academic Publishers, ‘94. This book is a collection of
papers dealing with hardware design considerations for building specialized
machines that can support multithreaded programs.

Real-World Programming for OS/2 2.1. Derrel R. Blain, Kurt R. Delimon, and Jeff
English; Sams Publishing/Prentice Hall PTR, ‘93. This book contains about 50
pages that cover the OS/2 threads API and its usage. It covers the API well,
contains one nice example but is very short.

Solaris Multithreaded Programming Guide. SunSoft Press, ‘95. This is the
documentation that comes with Solaris 2.4 and contains the UI API. It is also
available as part of the Solaris AnswerBook® and on the web (see Vendor’s
Threads Pages on page 321).

Computer Architecture, a Quantitative Approach (second edition), John L Hennessy &
David A Patterson; Morgan Kaufman, Inc., ‘96 (800 pages). This is the definitive
text on computer design—CPU, Memory System, and Multiprocessors. Not about
threads pre-se, but everything underneath. Superb research and exposition!

Scalable Shared-Memory Multiprocessing, Daniel E Lenoski & Wolf-Dietrich Weber;
Morgan Kaufman, Inc., ‘95 (340 pages). This takes up in great detail what
Hennessy & Patterson describe in mere passing detail. It describes the state of
SMP research as it led to the Stanford DASH machine, and now the SGI Origin
series and HAL Mercury. Superb research and exposition!
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Timings C

The choice of which synchronization variable to use depends partially on its
execution speed. This is particularly applicable when choosing between using a
mutex lock and a readers/writer lock. The design of programs calling Pthreads
functions in tight loops will also depend upon these numbers for optimizations.
For the most part, however, all of these times are short enough that they may be
ignored.

Because of the dependence of these test upon several unusual instructions
(ldstub  and stbar  on SPARC), machines with different cache or bus designs
will exhibit nonuniform scaling (meaning that a context switch may be twice as
fast on a 20 MHz processor as it is on a 10 MHz processor, but locking a mutex
might take the same amount of time).

Execution times on other platforms may also differ significantly, but probably in
roughly the same ratios (e.g., creating a thread will be a couple of orders of
magnitude faster than creating a process). The one obvious exception to this is the
semaphore, which should be almost as fast as mutexes on machines with the
more complex atomic instructions.

The major conclusions you should draw from these numbers are:

• Mutexes are faster than RWlocks.

• Changing the signal mask is moderately fast.

• Testing for, and disabling cancellation is very fast.

• Processes are more expensive than threads.

• TSD is fast (but global references are faster).

• pthread_once()  is fast, but testing first is faster. (Static initialization is

best!)
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The programs we ran to get these numbers are available on the web under the
names listed.

The tests are respectively:

Mutex Lock/Unlock time_lock.c
Acquire, then release, a mutex with no contention. (It’s the same
operation, whether in the same process or across processes.)

Table C-1 Timings of Various Thread-Related Functions on Two SPARC Machines

Function
110 MHz

µs
SS4

Ratio
167 MHz

µs
Ultra 1

Ratio

Mutex Lock/Unlock 1.8 1 0.7 1

Mutex Trylock 1.3 0.7 0.3 0.4

Reader Lock/Unlock 4.5 2.5 2.3 3.3

Writer Lock/Unlock 4.5 2.5 2.6 3.7

Semaphore Post/Wait 4.3 2.4 3.7 5.2

Context Switch (Unbound Threads) 89 1 21 1

Context Switch (Bound Threads) 42 0.5 18 0.9

Context Switch (Processes) 54 0.6 20 1

Change Signal Mask 18.1 4.1

Cancellation Disable/Enable 0.6 0.6

Test for Deferred Cancellation 0.25 0.15

Create an Unbound Thread 330 1 80 1

Create a Bound Thread 720 2.2 170 2.1

Create a Process 45,000 136 9,500 120

Reference a Global Variable 0.02 1 0.006 1

Reference Thread-Specific Data 0.59 15 0.45 75

if (!done) pthread_once() 0.07 1 0.03 1

pthread_once() 0.9 13 0.9 30
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Mutex Trylock time_trylock.c
Call pthread_mutex_trylock()  on a held lock.

Reader Lock/Unlock time_reader.c
Acquire, then release, a readers/writer lock as a reader with no
contention.

Writer Lock/Unlock time_writer.c
Acquire, then release, a readers/writer lock as a writer with no
contention.

Semaphore Post/Wait time_sema.c
Increment an unnamed semaphore, then decrement it. (It’s the
same operation, whether in the same process or across processes.)
On machines with LoadLocked instructions, this should be about
the same speed as a simple mutex lock/unlock.

Local Context Switch (unbound) time_cs_unbound.c
Call sched_yield()  once from each of two unbound threads.
(This number is much higher than expected, much slower than
seen on an SS10.)

Local Context Switch (bound) time_cs_bound.c
Call sched_yield()  once from each of two bound threads.

Process Context Switch time_cs_process.c
Call sched_yield()  once from each of two processes.

Change Signal Mask time_sigmask.c
Call pthread_sigmask()  twice.

Cancellation Disable/Enable time_cancel_enable.c
Call pthread_setcancelstate(DISABLE)  then ENABLE.

Test for Deferred Cancellation time_testcancel.c
Call pthread_testcancel()  once.

Reference a Global Variable time_global.c
Load a single word into a register.

Reference Thread-Specific Data time_getspecific.c
Call pthread_getspecific() . (A call to
pthread_setspecific()  takes the same amount of time.)
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if (!done) pthread_once() time_once.c
Test a global variable, find out that it’s zero, and then do nothing.

pthread_once() time_once.c
Call pthread_once()  on an initialized variable, and then do
nothing.
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Mistakes D

For a year, Bil was the person who got to answer customers’ questions on threads.
This is a list of the most common mistakes that he saw people making.

Failure to Check Return Values for Errors

Many of the thread library functions can legitimately return error codes instead of
succeeding.

Using errno Without Checking the Return Value

This isn’t a threads programming bug per-se, but it’s very common anyway. It is
legal for errno  to contain any old crazy value until a system call returns an error
code.

Not Joining on Nondetached Threads

If you are not going to join a thread, you must create it as a detached thread. (See
That’s Not a Bug, That’s a Feature! on page 72.)

Failure to Verify that Library Calls Are MT Safe

This really ought to be done for you by lint . Until it is, you have to do it
yourself. Third-party libraries are a common problem. If they don’t say “MT Safe”
on them, they probably aren’t.

Code Example 18-4 Checking errno

Good Programmer Bad Programmer!

err = system_call(); system_call()
if (err) if (errno)

printf(“Bug: %d”, errno); printf(“Bug: %d”, errno);
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Falling off the Bottom of main()

This is another silly bug, but one that we’ve gotten lots of calls about. If you don’t
intend to exit your program after main()  is done, then you’ve got to call
pthread_exit()  so that only the main thread exits, not the entire program.

Forgetting to Include the POSIX_C_SOURCE Flag

This negligence is sort of nasty, as you won’t notice a thing until you try to check
errno  or get weird synchronization errors from getc() . Compile all libraries
with the flag. You’ll be much happier two years from now when you suddenly
decide that you need that library in an MT program.

As an option, you can also include the line below in your files as we do.

#define _POSIX_C_SOURCE=199506L

Using Spin Locks

You practically never need these things! If you really want to use ‘em, prove that
they are working for you first. (See Spin Locks on page 135.)

Depending upon Scheduling Order

Write your MT programs to depend upon synchronization. While trying to
improve the start-up time of Openwindows, Bart was disappointed to see no
improvement on the new, high-speed SS10. Investigating the code more closely,
he found this line:

sleep(5); /* Enough time for the manager to start. */

Don’t do that.

Using errno for Threads Library Functions

All of the functions in the POSIX threads library return error codes directly and
do not set errno . You cannot use errno , or perror() , unless the manual page
for the function in question specifically states that it will be set (this goes for all
library calls, not just threads). The error codes returned from threads functions
are listed in errno.h , so strerror()  will return an appropriate error string. In
POSIX, semaphores are not part of the threads library, and they do use errno .

One particularly sneaky aspect of this situation is that it may appear that errno
is being set in some cases. This has fooled more than one programmer (e.g., the
authors). A call to pthread_create()  may legally fail, returning the error
value EAGAIN—not enough resources. To find out that there weren’t enough
resources, pthread_create()  had to make a system call. That system call
returned an error and set errno  to EAGAIN. It was the system call that set errno ,
not pthread_create()  itself.
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Not Recognizing Shared Data

It is not unusual for a programmer to fail to protect some piece of data because it
wasn’t obvious that it needed protection. This is especially true for complex
structures such as lists, where you might protect part of the data without
realizing that you’ve left another part unprotected. Consider this structure, where
the programmer has carefully provided a lock for each element of a list.

What does the mutex protect? The programmer intended it to protect the entire
node, which is perfectly acceptable. However, he also expected one thread to be
able to do a search down the list at the same time that another thread was
changing the order of the nodes. (“As long as I hold the mutex for node 1, I can
reposition it in the list without disturbing the rest of the list. And the other
threads can do searches, just as long as they don’t try to change node 1.” He
thought.)

Nope. To be able to change the order of the list, the programmer would have to
obtain both the lock for the current node and the lock for the previous node. To be
able to search the list at the same time, the programmer would have to obtain,
then release, each lock as the thread moved down the list. This would work, but
it would be very expensive (see: Manipulating Lists on page 226).

Assuming Bit, Byte or Word Stores are Atomic

Maybe they are, and maybe they aren’t. Any shared data that you change has to
be protected by a mutex. That’s all there is to it.

Not Blocking Signals When Using sigwait()

If you use sigwait()  to deal with signals as we have suggested, it’s important
to avoid having that signal delivered asynchronously to a different thread by
surprise. Any signal you are sigwaiting for, you must prevent from calling a
signal handler (see Per-Thread Alarms on page 181).

Mutex

Data

Mutex

Data

Mutex

Data

Mutex

Data
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Passing Pointers to Data on the Stack to Another Thread

If you pass an object pointer to a thread (when you’re creating it, or by using a
shared variable), the lifetime of the object which the pointer references must be at
least as long as the receiving thread needs it. Although it is physically possible to
ensure this with stack-allocated data, it isn’t worth the hassle.

Code Example 18-5 Passing Data on the Stack

Good Programmer Bad Programmer!

foo() foo()
{my_struct *s; {my_struct s;
... ...
s = (my_struct *) malloc(...); ...
s->data = get_data(); s.data = get_data();
pthread_create(... s, ...); pthread_create(... &s, ...);
pthread_exit(); pthread_exit();
} }
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This appendix contains a very brief description of the POSIX threads API (POSIX
1003.1c). We refer you to your vendor documentation for more detail.

Function Descriptions
In the sample entry below, the interface name comes first. If the interface is one of
the optional portions of POSIX, the constant which tells you if it is supported is
shown across from it. Next, the interface and argument list (sometimes there’ll be
two functions shown, should they be very closely related). A short paragraph
describing the basic operation follows (it may well leave out some details).
Should there be a choice of constants, the default will be shown in bold (not all
such functions have defaults). Next a reference to the most applicable portion of
the text. Then the errors which the function is allowed to return (if listed as
“Errors” as below), or the setting of errno  (if listed as “errno”).. Errors which the
function is required to detect are in bold, the others need not be detected. Finally,
any comments that seem appropriate.

============================================================
pthread_mutexattr_setprotocol _POSIX_THREAD_PRIO_PROTECT

int pthread_mutexattr_setprotocol(pthread_mutexattr_t * attr,
int protocol);

int pthread_mutexattr_getprotocol (const
pthread_mutexattr_t * attr, int * protocol);

This sets (gets) the protocol for priority mutexes of attr (in) to protocol,
which must be one of PTHREAD_PRIO_NONE, PTHREAD_PRIO_INHERIT,
or PTHREAD_PRIO_PROTECT.

References: Priority Inheritance Mutexes on page 129.
Errors: EINVAL attr or protocol is invalid.

ENOSYS Priority mutexes are not supported.
ENOTSUP The value of protocol is unsupported.
EPERM No privilege to perform the operation.

Comment: Threads using these must be realtime.
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Pthread Functions
============================================================
pthread_t tid;

This is the thread ID datatype. It is an opaque structure of
implementation-dependent size.

============================================================
pthread_create

int pthread_create(pthread_t * thread, const pthread_attr_t
* attr, void * (* start_routine)(void *), void * arg);

This creates a new thread, with attributes specified by attr If attr is NULL,
then the default thread attributes are used. Upon successful completion, it
stores the ID of the created thread into thread. The thread is created by
executing start_routine with arg as its sole argument. The signal mask is
inherited from the creating thread and the set of signals pending for the
new thread is empty.

References: Chapter 4, Lifecycle.
Errors: EAGAIN Not enough resources.

EINVAL The value specified by attr is invalid.
EPERM No permission to create this thread.

============================================================
pthread_equal

int pthread_equal(pthread_t t1, pthread_t t2);

This compares the thread IDs t1 and t2 and returns a non-zero value if
they are equal; otherwise, it returns zero.

References: POSIX Thread IDs on page 191.

============================================================
pthread_exit

void pthread_exit(void * status);

This terminates the calling thread, returning status. Any cancellation
cleanup handlers are popped and then executed. Next, any TSD
destructor functions will be called in an unspecified order.
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An implicit call to pthread_exit()  is made when a thread (other than
the main thread) returns from its start routine. The function’s return value
serves as the thread’s exit status. When the last thread in a process exits,
exit(0)  will be called.

References: Chapter 4, Lifecycle.

============================================================
pthread_join

int pthread_join(pthread_t thread, void ** status);

This blocks the calling thread until thread terminates. If status is not null,
the status from pthread_exit()  will be placed there.

References: Chapter 4, Lifecycle.
Errors: ESRCH thread does not exist (already exited?).

EINVAL thread is not joinable.
EDEADLK A deadlock was detected.

============================================================
pthread_detach

int pthread_detach();

This turns the current thread into a detached thread.

References: Cancellation in pthread_join() on page 170.
Errors: ESRCH thread does not exist (already exited?).

EINVAL thread is not joinable.
Comment: Write programs that don’t use this.

============================================================
pthread_once_t once_control = PTHREAD_ONCE_INIT;

This is the once datatype. It is an opaque structure of implementation-
dependent size. It must be statically initialized with
PTHREAD_ONCE_INIT.

============================================================
pthread_once

int pthread_once(pthread_once_t * once_control, void
(* init_routine)(void));

The first call to pthread_once()  by any thread in a process with a given
once_control will call the init_routine() with no arguments. Subsequent
calls of pthread_once()  with the same once_control will not call the
init_routine(). On return from pthread_once() , it is guaranteed that
init_routine() has completed.

References: Initializing Your Data: pthread_once() on page 193.
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Errors: EINVAL Either once_control or init_routine is invalid.
Comment: Do load-time initialization if at all possible.

============================================================
pthread_self

pthread_t pthread_self(void);

This returns the thread ID of the calling thread.

References: POSIX Thread IDs on page 191.

============================================================
sched_yield

void sched_yield(void);

This causes a thread to yield its execution in favor of another thread with
the same priority.

References: Process Contention Scope on page 88.
Errors: ENOSYS This function is not supported.

============================================================
pthread_atfork

void pthread_atfork(void (* prepare) (void), void (* parent)
(void), void (* child) (void));

This pushes fork handlers onto a stack. When fork()  is called,
prepare()  will be run before the actual fork occurs. In the child process,
the function child()  will be run after fork()  returns, and parent()
will be run in the parent process.

References: Fork Safety and pthread_atfork() on page 216.
Errors: ENOMEM No memory.

Pthread Attributes Objects
============================================================
pthread_attr_t attr;

This is the pthread attributes object type. It must be initialized
dynamically.

============================================================
pthread_attr_init

int pthread_attr_init(pthread_attr_t * attr);

This initializes attr with the default values for all of the individual
attributes. It may malloc extra memory.
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References: Thread Attribute Objects on page 186.
Errors: ENOMEM Insufficient memory.

EINVAL The value of attr is not valid.

============================================================
pthread_attr_destroy

int pthread_attr_destroy(pthread_attr_t * attr);

This destroys the attributes object, making it unusable in any form. The
memory the programmer allocated for the attributes object is not freed,
but any memory pthread_attr_init()  allocated will be.

References: Thread Attribute Objects on page 186.
Errors: EINVAL The value of attr is not valid.

============================================================
pthread_attr_getdetachstate

int pthread_attr_getdetachstate(const pthread_attr_t * attr,
int * detachstate);

int pthread_attr_setdetachstate(pthread_attr_t * attr, int
detachstate);

This sets (gets) the detachstate attribute of attr (in) to detachstate. The
value of detachstate is PTHREAD_CREATE_DETACHED or
PTHREAD_CREATE_JOINABLE.

References: Thread Attribute Objects on page 186.
Errors: EINVAL attr or detachstate is not valid.

Table E-1 Default Settings for Thread Attributes Objects

Attribute Default Setting Our Preference

Scope Unspecified by POSIX System Scope

Detach State Joinable Detached

Stack Address Unspecified by POSIX Implementation Default

Stack Size Unspecified by POSIX Implementation Default

Sched Policy Unspecified by POSIX Implementation Default

Sched Parameter Unspecified by POSIX Implementation Default

Inherit Unspecified by POSIX Explicit



342 Threads Primer

E

============================================================
pthread_attr_getstackaddr _POSIX_THREAD_ATTR_STACKADDR

int pthread_attr_getstackaddr(const pthread_attr_t * attr,
void ** stackaddr);

int pthread_attr_setstackaddr(pthread_attr_t * attr, void
* stackaddr);

This sets (gets) the stack address of attr (in) to stackaddr.

References: Thread Attribute Objects on page 186.
Errors: EINVAL attr is not valid.

ENOSYS This function is not supported.
Comment: It is quite unusual to allocate the stack yourself.

============================================================
pthread_attr_getstacksize _POSIX_THREAD_ATTR_STACKSIZE

int pthread_attr_getstacksize(const pthread_attr_t * attr,
size_t * stacksize);

int pthread_attr_setstacksize(pthread_attr_t * attr, size_t
stacksize);

This sets (gets) the stack size (in bytes) of attr (in) to stacksize.

References: Thread Attribute Objects on page 186.
Errors: EINVAL stacksize is less than PTHREAD_STACK_MIN

or exceeds system limit.
EINVAL attr or stacksize is not valid.
ENOSYS This function is not supported.

POSIX Realtime Scheduling
============================================================
pthread_getschedparam

int pthread_getschedparam(pthread_t thread, int * policy,
struct sched_param * param);

int pthread_setschedparam(pthread_t thread, int policy, const
struct sched_param * param);

This function sets (gets) the scheduling policy and parameters for thread
(in) to policy and param, respectively. For the policies SCHED_FIFO,
SCHED_RR, and SCHED_OTHER, the only required member of the
sched_param  structure is the priority, sched_priority .

References: Realtime LWPs on page 97.
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Errors: ESRCH thread does not refer to a existing thread.
EINVAL Either policy or one of the scheduling

parameters is invalid.
ENOTSUP The implementation does not support policy.
ENOSYS These functions are not supported.

============================================================
pthread_attr_getinheritsched_POSIX_THREAD_PRIORITY_SCHEDULNG

int pthread_attr_getinheritsched(const pthread_attr_t * attr,
int * inheritsched);

int pthread_attr_setinheritsched(pthread_attr_t * attr, int
inheritsched);

This sets (gets) the inheritsched attribute of attr (in) to inheritsched. The
value of inheritsched is either PTHREAD_INHERIT_SCHED (scheduling to
be inherited from the creating thread) or PTHREAD_EXPLICIT_SCHED
(scheduling to be set from this attributes object).

References: Realtime LWPs on page 97.
Errors: EINVAL attr is not valid.

ENOTSUP inheritsched is not supported.
ENOSYS This function is not supported.

Comment: Normally use PTHREAD_EXPLICIT_SCHED.

============================================================
pthread_attr_getschedparam _POSIX_THREAD_PRIORITY_SCHEDULING

int pthread_attr_getschedparam(const pthread_attr_t * attr,
struct sched_param * param);

int pthread_attr_setschedparam(pthread_attr_t * attr, const
struct sched_param * param);

This sets (gets) the scheduling parameter attribute of attr (in) to param.
For the SCHED_OTHER, SCHED_FIFO, and SCHED_RR policies, the only
required member of the param structure is sched_priority .

References: Realtime LWPs on page 97.
Errors: EINVAL The value of attr or param is not valid.

ENOTSUP The value of param is unsupported.
ENOSYS This function is not supported.
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============================================================
pthread_attr_setschedpolicy _POSIX_THREAD_PRIORITY_SCHEDULING

int pthread_attr_setschedpolicy(pthread_attr_t * attr, int
policy);

int pthread_attr_getschedpolicy(const pthread_attr_t * attr,
int * policy);

This sets (gets) the scheduling policy of attr (in) to policy. The value of
policy is either SCHED_FIFO, SCHED_RR, or SCHED_OTHER.

References: Realtime LWPs on page 97.
Errors: EINVAL The value of attr is not valid or policy is

NULL.
ENOTSUP The value of policy is unsupported.
ENOSYS This function is not supported.

============================================================
pthread_attr_getscope _POSIX_THREAD_PRIORITY_SCHEDULING

int pthread_attr_getscope(const pthread_attr_t * attr, int
* contentionscope);

int pthread_attr_setscope(pthread_attr_t * attr, int
contentionscope);

This sets (gets) the contention scope of attr (in) to contentionscope. The
value of contentionscope is either PTHREAD_SCOPE_SYSTEM or
PTHREAD_SCOPE_PROCESS.

References: Thread Scheduling on page 86.
Errors: ENOTSUP The value of contentionscope is unsupported.

EINVAL attr or contentionscope is not valid.
ENOSYS This function is not supported.

============================================================
sched_get_priority_max

int sched_get_priority_max(int policy);

int sched_get_priority_min(int policy);

This returns the maximum (minimum) allowable priority value for policy.

References: Specifying Scope, Policy, Priority, and Inheritance on page 99.
Errors: ENOSYS This function is not supported.

EINVAL policy  is invalid.
Comment: Values are completely implementation-defined. You will

need to calculate something like (max + min) / 2.
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Mutexes
============================================================
pthread_mutex_t mutex [= PTHREAD_MUTEX_INITIALIZER];

This is the mutex type. Initialization of statically allocated mutexes to
default values can be done with this macro, otherwise they must be
initialized dynamically.

============================================================
pthread_mutex_init

int pthread_mutex_init(pthread_mutex_t * mutex, const
pthread_mutexattr_t * attr);

This initializes mutex with attr. If attr is NULL, then the default values are
used.

References: Mutexes on page 106.
Errors: EINVAL The value specified by attr is invalid.

EBUSY Attempt to initialize a locked mutex.
ENOMEM Insufficient memory.
EAGAIN Insufficient resources.
EPERM No privilege (non-root requesting realtime?)

============================================================
pthread_mutex_destroy

int pthread_mutex_destroy(pthread_mutex_t * mutex);

This destroys the mutex, making it unusable in any form. The memory
the programmer allocated for the mutex is not freed, but any memory
pthread_mutex_init()  allocated will be.

References: Mutexes on page 106.
Errors: EINVAL mutex is invalid.

EBUSY Attempt to destroy a locked mutex.

============================================================
pthread_mutex_lock

int pthread_mutex_lock(pthread_mutex_t * mutex);

This locks the mutex. If the mutex is already locked, the calling thread
blocks until the mutex is unlocked. If a signal is delivered to a thread
waiting for a mutex, upon return from the signal handler the thread
resumes waiting for the mutex as if it had not been interrupted.

References: Mutexes on page 106.
Errors: EINVAL mutex is invalid.
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EINVAL Attempt to destroy a locked mutex.
EDEADLOCKCaller already owns mutex.
EFAULT mutex points to an illegal address.

============================================================
pthread_mutex_trylock

int pthread_mutex_trylock(pthread_mutex_t * mutex);

This is identical to pthread_mutex_lock() , except that if the mutex is
currently locked, the call returns immediately with EBUSY.

References: Mutexes on page 106.
Errors: EINVAL The caller’s priority is higher than the ceiling

of this realtime mutex.
EINVAL mutex is invalid.
EDEADLOCKCaller already owns mutex.
EFAULT mutex points to an illegal address.
EBUSY mutex is already locked.

============================================================
pthread_mutex_unlock

int pthread_mutex_unlock(pthread_mutex_t * mutex);

This unlocks mutex and wakes up the first thread sleeping on it.

References: Mutexes on page 106.
Errors: EINVAL mutex is invalid.

EPERM The caller is not the owner.

============================================================
pthread_mutex_getprioceiling

int pthread_mutex_getprioceiling (const pthread_mutex_t
* mutex, int * prioceiling);

int pthread_mutex_setprioceiling(pthread_mutex_t * mutex,
int prioceiling, int * old_ceiling);

The set function locks mutex, changes its priority ceiling to prioceiling and
releases the mutex. The previous value of the priority ceiling is returned
in old_ceiling. The get function simply gets the current priority ceiling.

References: Priority Inheritance Mutexes on page 129.
Errors: ENOTSUP prioceiling mutexes are not supported.

EINVAL prioceiling is out of range.
EPERM No privilege.
ENOSYS prioceiling mutexes are not supported.
EFAULT mutex points to an illegal address.
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Mutex Attributes Objects
============================================================
pthread_mutexattr_t attr;

This is the mutex attributes object type. It must be initialized dynamically.

============================================================
pthread_mutexattr_init

int pthread_mutexattr_init(pthread_mutexattr_t * attr);

This initializes a mutex attributes object with the default values
PTHREAD_PRIO_NONE and PTHREAD_PROCESS_PRIVATE.

References: Mutex Attribute Objects on page 190.
Errors: ENOMEM Insufficient memory to initialize the object.

============================================================
pthread_mutexattr_destroy

int pthread_mutexattr_destroy(pthread_mutexattr_t * attr);

This destroys the attributes object, making it unusable in any form. The
memory the programmer allocated for the object is not freed, but any
memory pthread_mutexattr_init()  allocated will be.

References: Mutex Attribute Objects on page 190.
Errors: EINVAL attr is invalid.

============================================================
pthread_mutexattr_getprioceiling _POSIX_THREAD_PRIO_PROTECT

int pthread_mutexattr_getprioceiling (const
pthread_mutexattr_t * attr, int * prioceiling);

int pthread_mutexattr_setprioceiling (pthread_mutexattr_t
* attr, int prioceiling);

This sets (gets) the prioceiling attribute of attr (in) to prioceiling, which
must be within the maximum range of priorities defined by SCHED_FIFO.

References: Priority Inheritance Mutexes on page 129.
Errors: EINVAL attr or prioceiling is invalid.

ENOSYS Priority mutexes are not supported.
EPERM No privilege to perform the operation.
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============================================================
pthread_mutexattr_setprotocol _POSIX_THREAD_PRIO_PROTECT

int pthread_mutexattr_setprotocol(pthread_mutexattr_t * attr,
int protocol);

int pthread_mutexattr_getprotocol (const
pthread_mutexattr_t * attr, int * protocol);

This sets (gets) the protocol for priority mutexes of attr (in) to protocol,
which must be one of PTHREAD_PRIO_NONE, PTHREAD_PRIO_INHERIT,
or PTHREAD_PRIO_PROTECT.

References: Priority Inheritance Mutexes on page 129.
Errors: EINVAL attr or protocol is invalid.

ENOSYS Priority mutexes are not supported.
ENOTSUP The value of protocol is unsupported.
EPERM No privilege to perform the operation.

============================================================
pthread_mutexattr_getpshared _POSIX_THREAD_PROCESS_SHARED

int pthread_mutexattr_getpshared (const
pthread_mutexattr_t * attr, int * pshared);

int pthread_mutexattr_setpshared(pthread_mutexattr_t * attr,
int pshared);

This sets (gets) the shared attribute of attr (in) to pshared, which is either
PTHREAD_PROCESS_SHARED (any mutex initialized with this attribute
may be used from different processes), PTHREAD_PROCESS_PRIVATE
(only threads in the same process can use it).

References: Cross-Process Synchronization Variables on page 141.
Errors: EINVAL Either attr or pshared is invalid.

ENOSYS Shared memory mutexes not supported.
Comment: Obviously a shared mutex must be in shared memory!

Condition Variables
============================================================
pthread_cond_t cond [= PTHREAD_COND_INITIALIZER];

This is the condition variable type. Initialization of statically allocated
condition variables to default values can be with this macro, otherwise
they must be initialized dynamically.
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============================================================
pthread_cond_init

int pthread_cond_init(pthread_cond_t * cond, const
pthread_condattr_t * attr);

This initializes cond with attr. If attr is NULL, then the default values are
used (PTHREAD_PROCESS_PRIVATE).

References: Condition Variables on page 117.
Errors: EINVAL attr is invalid.

EFAULT cond or attr points to an illegal address.
ENOMEM Insufficient memory.
EAGAIN Insufficient resources.

============================================================
pthread_cond_destroy

int pthread_cond_destroy(pthread_cond_t * cond);

This destroys the condition variable, making it unusable in any form. The
memory the programmer allocated for the object is not freed, but any
memory pthread_cond_init()  allocated will be.

References: Condition Variables on page 117.
Errors: EINVAL cond isn’t a condition variable.

EBUSY There are waiters for the condition variable.

============================================================
pthread_cond_wait

int pthread_cond_wait(pthread_cond_t * cond, pthread_mutex_t
* mutex);

This atomically releases mutex and causes the calling thread to block on
cond. Upon successful return, the mutex will be reacquired. Spurious
wakeups may occur. This is also a cancellation point. When cancelled, the
mutex will be reacquired before calling the first cancellation cleanup
handler.

References: Condition Variables on page 117.
Errors: EINVAL cond or mutex not valid, or not owner.

EPERM mutex not owned by the calling thread.
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============================================================
pthread_cond_timedwait

int pthread_cond_timedwait(pthread_cond_t * cond,
pthread_mutex_t * mutex, const struct timespec
* abstime);

This is the same as pthread_cond_wait() , except that ETIMEDOUT is
returned if the absolute time specified by abstime passes before the
condition cond is signaled or broadcast. Even after a time-outs occur, the
mutex will be reacquired.

References: Condition Variables on page 117.
Errors: EPERM mutex not owned by the calling thread.

EINVAL cond, abstime, or mutex invalid.
ETIMEDOUT The time specified by abstime has passed.

============================================================
pthread_cond_signal

int pthread_cond_signal(pthread_cond_t * cond);

This unblocks the first thread (if any) blocked on a condition variable.
When that thread returns from pthread_cond_wait() , it will own the
associated mutex.

References: Condition Variables on page 117.
Errors: EINVAL cond is invalid.

============================================================
pthread_cond_broadcast

int pthread_cond_broadcast(pthread_cond_t * cond);

This unblocks all threads blocked on a condition variable. You do not
know the order in which they awake. Each thread returning from
pthread_cond_wait() , will own the associated mutex.

References: Condition Variables on page 117.
Errors: EINVAL cond is invalid.

Condition Variable Attributes Objects
============================================================
pthread_condattr_t attr;

This is the condition variable attributes object type. It must be initialized
dynamically.
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============================================================
pthread_condattr_init

int pthread_condattr_init(pthread_condattr_t * attr);

This initializes attr with the default value PTHREAD_PROCESS_PRIVATE.

References: Condition Variable Attribute Objects on page 190.
Errors: ENOMEM Insufficient memory.

EAGAIN Insufficient resources.

============================================================
pthread_condattr_destroy

pthread_condattr_destroy(pthread_condattr_t * attr);

This destroys the condition variable attributes object, making it unusable
in any form. The memory the programmer allocated for the object is not
freed, but any memory pthread_condattr_init()  allocated will be.

References: Condition Variable Attribute Objects on page 190.
Errors: EINVAL attr is invalid.

============================================================
pthread_condattr_setpshared _POSIX_THREAD_PROCESS_SHARED

int pthread_condattr_setpshared(pthread_condattr_t * attr,
int pshared);

int pthread_condattr_getp shared (const pthread_condattr_t
*attr, int *pshared);

This sets (gets) the value of pshared. If pshared is
PTHREAD_PROCESS_SHARED then any condition variable initialized with
this attribute may be used from different processes. If it is
PTHREAD_PROCESS_PRIVATE, then only threads in the same process can
use it.

References: Cross-Process Synchronization Variables on page 141.
Errors: ENOSYS Shared condition variables not supported.

EINVAL Either attr or pshared of is not legal.
Comment: Obviously a shared mutex must be in shared memory!



352 Threads Primer

E

Cancellation Functions
============================================================
pthread_cancel

int pthread_cancel(pthread_t thread);

This function requests that thread be cancelled. The target thread’s
cancellability state and type determines when the cancellation takes
effect. When the cancellation is acted on, the cancellation cleanup
handlers for thread are called. Next, the thread-specific data destructor
functions are called for thread. When the last destructor function returns,
thread is terminated.

References: Chapter 9, Cancellation.
Errors: ESRCH thread does not exist (exited already?).

============================================================
pthread_cleanup_push

void pthread_cleanup_push(void (* routine)(void *), void * arg);

This pushes the handler routine and argument onto the calling thread’s
cancellation cleanup stack.

References: Cancellation Cleanup Handlers on page 159.

============================================================
pthread_cleanup_pop

void pthread_cleanup_pop(int execute);

This removes the routine at the top of the calling thread’s cancellation
cleanup stack and invokes it if execute is non-zero.

References: Cancellation Cleanup Handlers on page 159.

============================================================
pthread_setcanceltype

pthread_setcancelstate

int pthread_setcanceltype(int type, int * oldtype);

int pthread_setcancelstate(int state, int * oldstate);

This function both sets the calling thread’s cancellability type/state to
type/state and returns the previous value in oldtype/oldstate. Legal values
for type are PTHREAD_CANCEL_DEFERRED and
PTHREAD_CANCEL_ASYNCHRONOUS. Legal values for state are
PTHREAD_CANCEL_ENABLED and PTHREAD_CANCEL_DISABLED.

References: What Cancellation is on page 157.
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Errors: EINVAL The specified type/state is not valid.

============================================================
pthread_testcancel

void pthread_testcancel(void);

This is a cancellation point. If the cancel state is disabled, it just returns. If
there are no outstanding cancellation requests, then it will also return.
Otherwise it will not return and the thread will be cancelled.

References: What Cancellation is on page 157.

Thread-Specific Data Functions
============================================================
pthread_setspecific

int pthread_setspecific(pthread_key_t key, const void
* value);

This sets the TSD value of key to value.

References: Chapter 8, TSD.
Errors: ENOMEM Insufficient memory.

EINVAL The key value is invalid.

============================================================
pthread_getspecific

void *pthread_getspecific(pthread_key_t);

This returns the TSD value associated with key in the calling thread. If key
is not valid, the results are undefined. Don’t do this.

References: Chapter 8, TSD.

============================================================
pthread_key_create

int pthread_key_create(pthread_key_t * key, void
(* destructor(void *)));

This function initializes a thread-specific data key. The initial value for
TSD items is NULL. An optional destructor function may be associated
with each key. At thread exit time, the destructor will be called with the
TSD value as its sole argument (if non-null).

References: Chapter 8, TSD.
Errors: EAGAIN Insufficient resources (PTHREAD_KEYS_MAX

exceeded?)
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ENOMEM Insufficient memory exists to create the key.

============================================================
pthread_key_delete

int pthread_key_delete(pthread_key_t key);

This deletes a thread-specific data key. It is the responsibility of the
application to free any storage or perform any cleanup actions for data
structures related to the deleted key. No destructor functions are invoked
by pthread_key_delete() .

References: Chapter 8, TSD.
Errors: EINVAL The key value is invalid.
Comment: This seems like a good function not to use.

Semaphores
============================================================
sem_t sem; _POSIX_SEMAPHORES

This is the semaphore type. It must be initialized dynamically. (Do not
confuse these unnamed semaphores with system V semaphores!) There are
two varients of semaphores, the named semaphores (which have system-
wide names, accessible by any process, and are initialized with
sem_open() ) and the unnamed semaphores (which are what we’ve
described, they do not have names and must be accessed only by direct
reference).

============================================================
sem_init _POSIX_SEMAPHORES

int sem_init(sem_t * sem, int pshared, unsigned int value);

sem_init()  initializes the semaphore to value. If pshared is non-zero,
then the semaphore will be sharable among processes.

References: Chapter 6, Synchronization.
errno : EINVAL value exceeds SEM_VALUE_MAX.

ENOSPC Resource exhausted (SEM_NSEMS_MAX
exceeded?)

ENOSYS Not supported by this implementation.
EPERM No privileges to initialize the semaphore.

Comment: Obviously a shared mutex must be in shared memory!



APIs 355

E

============================================================
sem_destroy _POSIX_SEMAPHORES

int sem_destroy(sem_t * sem);

This destroys the semaphore. The memory the programmer allocated for
the object is not freed (but any memory sem_init()  allocated will be
freed).

References: Chapter 6, Synchronization.
errno : EINVAL sem is not a valid semaphore.

ENOSYS Not supported by this implementation.
EBUSY Other processes or threads blocked on sem.

============================================================
sem_post _POSIX_SEMAPHORES

int sem_post(sem_t * sem);

This function increments the value of the semaphore. If other processes or
threads were waiting for the semaphore, then one of them will be woken
up. It is signal-safe and may be invoked from a signal handler.

References: Chapter 6, Synchronization.
errno : EINVAL sem does not refer to a valid semaphore.

ENOTSUP Not supported by this implementation.

============================================================
sem_wait _POSIX_SEMAPHORES

int sem_trywait(sem_t * sem);

int sem_wait(sem_t * sem);

This decrements the value of sem by one. If the semaphore’s value is zero,
sem_wait()  blocks, waiting for the semaphore to be incremented by
another process or thread, while sem_trywait()  will return
immediately.

sem_wait()  can be interrupted by a signal, which will result in its
premature return without decrementing the value.

References: Chapter 6, Synchronization.
errno : EINVAL sem does not refer to a valid semaphore.

EINTR Interrupted by a signal.
ENOSYS Not supported by this implementation.
EDEADLK A deadlock condition was detected.
EAGAIN The value of sem was zero when

sem_trywait()  was called. (Bug in Solaris
2.5 which returns EBUSY.)
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============================================================
sem_getvalue _POSIX_SEMAPHORES

int sem_getvalue(sem_t * sem, int * sval);

This sets sval to the current value of the semaphore. (The value may
change before you get to use it of course, making this function difficult to
use.)

References: Chapter 6, Synchronization.
errno : EINVAL sem does not refer to a valid semaphore.

ENOSYS      Not supported by this implementation.

============================================================
sem_open _POSIX_SEMAPHORES

sem_t *sem_open(char * name, int oflag, ... );

Thi s returns a pointer to the semaphore name. All processes which call
this on the same name will get the same semaphore pointer. It may be
used as a normal semaphore, save that it must be closed with either
sem_close()  or sem_unlink() , not sem_destroy() .

If oflag is O_CREAT a new kernel object will be created if name doesn’t
exist. If oflag is O_CREAT | O_EXCL , the call will fail if name does exist.

References: None.
errno : EACESS No permission to access/create semaphore.

EEXIST O_EXCL is set, but name already exists.
EINTR Interrupted by a signal.
EINVAL Not supported.
EMFILE Too many semaphores/files in process.
ENAMETOOLONG (no room to describe error here!)
ENFILE Too many semaphores in system.
ENOENT O_CREAT not set and name doesn’t exist.
ENOSPC No space for new semaphore.
ENOSYS Not supported by this implementation.

Comment: For named semaphores only!

============================================================
sem_close _POSIX_SEMAPHORES

int sem_close(sem_t * sem);

This closes the named semaphore for this process. If the semaphore has
been unlinked and this is the final referrant to it, the semaphore will be
deleted from the system.

References: None.
errno : EINVAL sem is not a semaphore.
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ENOSYS Not supported by this implementation.
Comment: For named semaphores only!

============================================================
sem_unlink _POSIX_SEMAPHORES

int sem_unlink(char * name);

This removes name from the system. Any future calls to
sem_open( name)  will return a different semaphore. If this is the only
referrant to the semaphore, it shall be destroyed.

References: None.
errno : EACESS No permission to access/create semaphore.

ENAMETOOLONG (no room to describe error here!)
ENOENT name doesn’t exist.
ENOSYS Not supported by this implementation.

Comment: For named semaphores only!

Signal Functions
============================================================
pthread_kill

int pthread_kill(pthread_t thread, int signal);

This sends the signal, to thread. If signal is zero, then error checking is
performed but no signal is actually sent; this can be used to check if thread
exists.

References: Signals in UNIX on page 175.
Errors: ESRCH thread does not exist (already exited?).

EINVAL The value of signal is invalid.

============================================================
pthread_sigmask

int pthread_sigmask(int how, const sigset_t * set, sigset_t
* oset);

This examines and/or changes the calling thread’s signal mask. If the
value of the argument set is not NULL, then it points to a set of signals to
be used to change the currently blocked set. The value of the argument
how determines the manner in which the set is changed. how may have
one of the following values:

SIG_BLOCK The signals in set are added to the current signal mask.

SIG_UNBLOCK The signals in set are deleted from the current signal mask.
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SIG_SETMASK The current signal mask is replaced by set.

If the value of oset is not NULL, then it points to the space where the
previous signal mask is stored. If the value of set is NULL, the value of how
is not significant and the thread’s signal mask is unchanged. If a pending
signal is unblocked, it will be delivered before this returns.

References: Signals in UNIX on page 175.
Errors: EINVAL set is not NULL and how is not defined.

EFAULT set or oset is not a valid address.

============================================================
sigwait

int sigwait(const sigset_t *set, int *signal);

Wait for one of the signals in set to be sent. Returns with the signal in
signal.

References: Don’t Use Signal Handlers! on page 180.
errno : EINVAL set contains an invalid signal.

============================================================
sigtimedwait _POSIX_REALTIME_SIGNALS

int sigtimedwait(const sigset_t *set, siginfo_t *info, const
struct timespec *timeout);

Wait for one of the signals in set to be sent. Returns with the signal in the
si_signo  member of info and the cause in the si_code  member. Any
queued value is returned in the si_value  member. If timeout passes, it
will return with EAGAIN.

References: Don’t Use Signal Handlers! on page 180.
errno : EINVAL set contains an invalid signal or bad timeout.

EAGAIN The timeout passed.
ENOSYS Not supported.

============================================================
sigwaitinfo _POSIX_REALTIME_SIGNALS

int sigwaitinfo(const sigset_t *set, siginfo_t *info);

This is the same as sigtimedwait  without the timeout.

References: Don’t Use Signal Handlers! on page 180.
errno : EINVAL set contains an invalid signal.

ENOSYS Realtime signals are not supported.
EINTR Interrupted by a signal.
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Stdio
============================================================
flockfile

int flockfile(FILE * file);

This locks a recursive mutex associated with file, sleeping if another
thread owns it.

Comment: Use this to ensure that a series of writes occur in sequence.

============================================================
ftrylockfile

int ftrylockfile(FILE * file);

This locks a recursive mutex associated with file, or returns nonzero to
indicate the lock is currently held by another thread.

============================================================
funlockfile

int funlockfile(FILE * file);

This unlocks a recursive mutex associated with file. If the recursive count
was greater than one, it is simply decremented.

============================================================
getc_unlocked

int getc_unlocked(FILE * file);

This returns a single character from file. It is not thread-safe, but it is fast.

References: Are Libraries Safe? on page 208.
Comment: Use this in place of getc()  when you know only one

thread will be accessing file, or is locked with
flockfile() .

============================================================
getchar_unlocked

int getchar_unlocked(FILE * file);

This returns a single character from file. It is not thread-safe, but it is fast.

References: Are Libraries Safe? on page 208.
Comment: See getc_unlocked ().
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============================================================
putc_unlocked

int putc_unlocked(FILE * file);

This places a single character into file. It is not thread-safe, but it is fast.

References: Are Libraries Safe? on page 208.
Comment: See getc_unlocked ().

============================================================
putchar_unlocked

int putchar_unlocked(FILE * file);

This places a single character into file. It is not thread-safe, but it is fast.

References: Are Libraries Safe? on page 208.
Comment: See getc_unlocked ().
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API
The set of function calls in a library, along with their arguments,
and their semantics. APIs are published so programmers can
always know which interface a vendor supports.

asynchronous signal
A signal that is sent to a process independently of what the
process happens to be doing. An asynchronous signal can arrive
at any time whatsoever, with no relation to what the program
happens to be doing (cf: synchronous signal).

async I/O
An abbreviation for Asynchronous Input/Output—Normally, I/O
calls block in the kernel while waiting for data to come off of a
disk, a tape, or some other “slow” device. But async I/O calls are
designed not to block. Such calls return immediately, so the user
can continue to work. Whenever the data comes off the disk, the
process will be sent a signal to let it know the call has completed.

atomic operation
An operation that is guaranteed to take place “at a single time.”
No other operation can do anything in the middle of an atomic
operation that would change the result.

blocking system call
A system call that blocks in the kernel while it waits for
something to happen. Disk reads and reading from a terminal are
typically blocking calls.

cache memory
A section of very fast (and expensive) memory that is located
very close to the CPU. It is an extra layer in the storage hierarchy
and helps “well-behaved” programs run much faster.
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CDE
An abbreviation for Common Desktop Environment—The
specification for the look and feel that the major UNIX vendors
have adopted. CDE includes a set of desktop tools.

CDE is the major result of the Cose agreement. It is a set of tools
and window toolkits (Motif 1.2.3), along with supporting cross-
process communications software (ToolTalk®), which will form
the basis of the window offerings of all major UNIX vendors.
Each vendor will productize CDE in their own fashion, and
ultimately maintain separate source bases, doing their own value-
add and their own bug fixing.

coarse-grained locking
See fine-grained locking.

context switch
The process of moving one process (or LWP or thread) off a CPU
and another one on.

critical section
A section of code that must not be interrupted. If it doesn’t
complete atomically, then some data or resource may be left in an
inconsistent state.

daemon
A process or a thread that works in the background. The pager is
a daemon process in UNIX.

DCE
An abbreviation for Distributed Computing Environment—A set of
functions that were deemed sufficient to write network programs.
It was settled upon and implemented by the original OSF (Open
Software Foundation). DCE is the environment of choice of a
number of vendors including DEC and HP, while Sun has stayed
with ONC+™. As part of the Cose agreement, all of the vendors
will support both DCE and ONC+.

deadlock
A situation where two things are stuck, each waiting for the other
to do something first. More things could be stuck in a ring,
waiting for each other, and even one thing could be stuck, waiting
for itself.
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device driver
A program that controls a physical device. The driver is always
run as part of the kernel, with full kernel permissions. Device
drivers may be threaded, but they would use the kernel threads
library, not the library discussed in this book.

dynamic library
A library of routines that a user program can load into core
“dynamically.” That is, the library is not linked in as part of the
user’s executable image but is loaded in only when the user
program is run.

errno
An integer variable that is defined for all ANSI C programs (PCs
running DOS as well as workstations running UNIX). It is the
place where the operating system puts the return status for
system calls when they return error codes.

external cache
Cache memory that is not physically located on the same chip as
the CPU. External cache (aka “E$”) is slower than internal cache
(typically around five cycles versus one) but faster than main
memory (upwards of 100 cycles, depending upon architecture).

FIFO
An abbreviation for first in, first out—A kind of a queue. Contrast
to last in, first out, which is a stack.

file descriptor
An element in the process structure that describes the state of a
file in use by that process. The actual file descriptor is in kernel
space, but the user program also has a file descriptor that refers to
this kernel structure.

fine-grained locking
The concept of putting lots of locks around tiny fragments of
code. It’s good because it means that there’s less contention for
the individual locks. It’s bad because it means that the program
must spend a lot of time obtaining locks. Coarse-grained locking
is the opposite concept and has exactly the opposite qualities.
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internal cache
Cache memory (aka I$) that is located on the same chip as the
CPU, hence is very fast.

interrupt
An external signal that interrupts the CPU. Typically, when an
external device wants to get the CPU’s attention, it asserts a
voltage level on one of the CPU pins. This causes the CPU to stop
what it’s doing and run an interrupt handler.

interrupt handler
A section of code in the kernel that is called when an interrupt
comes in. Different interrupts will run different handlers.

kernel mode
A mode of operation for a CPU where all instructions are allowed
(cf: user mode).

kernel space
The portion of memory that the kernel uses for itself. User
programs cannot access it (cf: user space).

kernel stack
A stack in kernel space that the kernel uses when running system
calls on behalf of a user program. All LWPs must have a kernel
stack.

kernel threads
Threads that are used to write the operating system (“the
kernel”). The various kernel threads libraries may be similar to
the user threads library (e.g., Solaris), or may be totally different
(e.g., Digital UNIX).

LADDIS
A standardized set of calls used to benchmark NFS performance.
It was created by and is monitored by SPEC.

library
A collection of routines that many different programs may wish
to use. Similar routines are grouped together into a single file and
called a library.

library call
One of the routines in a library.
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LWP
An abbreviation for LightWeight Process—A kernel schedulable
entity.

memory management unit
See MMU.

memory-mapped file
A file that has been “mapped” into core. This is just like loading
the file into core, except that any changes will be written back to
the file itself. Because of this, that area of memory does not need
any “backing store” for paging. It is also much faster than doing
reads and writes because the kernel does not need to copy the
kernel buffer.

MMU
An abbreviation for Memory Management Unit—The part of the
computer that figures out which physical page of memory
corresponds to which virtual page and takes care of keeping
everything straight.

Motif
A description of what windows should look like, how mouse
buttons work, etc. Motif is the GUI that is the basis for CDE. The
word Motif is also used as the name of the libraries that
implement the Motif look and feel.

multitasking OS
An operating system that can run one process for a while, then
switch to another one, return to the first, etc. UNIX, VMS, MVS,
TOPS, etc., are all multitasking systems. DOS and Microsoft®
Windows™ are single-tasking operating systems. (Although MS-
Windows™ can have more than one program active on the
desktop, it does not do any kind of preemptive context-switching
between them.)

NFS
An abbreviation for Network File System—A kernel program that
makes it possible to access files across the network without the
user ever knowing that the network was involved.
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page fault
The process of bringing in a page from disk when it is not
memory-resident. When a program accesses a word in virtual
memory, the MMU must translate that virtual address into a
physical one. If that block of memory is currently out on disk, the
MMU must load that page in.

page table
A table used by the MMU to show which virtual pages map to
which physical pages.

POSIX
An acronym for Portable Operating System Interface. This refers
to a set of committees in the IEEE that are concerned with
creating an API that can be common to all UNIX systems. There is
a committee in POSIX that is concerned with creating a standard
for writing multithreaded programs.

preemption
The act of forcing a thread to stop running.

preemptive scheduling
Scheduling that uses preemption. Time-slicing is preemptive, but
preemption does not imply time-slicing.

process
A running program and all the state associated with it.

process structure
A kernel structure that describes all of the relevant aspects of a
process.

program counter
A register in the CPU that defines which instruction will be
executed next.

race condition
A situation in which the outcome of a program depends upon the
luck of the draw—which thread happens to run first.

realtime
Anything that is timed by a wall clock. Typically this is used by
external devices that require servicing within some period of
time, such as raster printers and aircraft autopilots. Real time
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does not mean any particular amount of time, but is almost
always used to refer to sub 100 millisecond (and often sub 1
millisecond) response time.

Reentrant
A function is reentrant when it is possible for it to be called at the
same time by more than one thread. This implies that any global
state be protected by mutexes. Note that this term is not used
uniformly and is sometimes used to mean either recursive or
signal-safe. These three issues are orthogonal.

shared memory
Memory that is shared by more than one process. Any process
may write into this memory, and the others will see the change.

SIGLWP
A signal that is implemented in Solaris and used to preempt a
thread.

signal
A mechanism that UNIX systems use to allow a process to be
notified of some event, typically asynchronous and external. It is
a software analog to hardware interrupts.

signal mask
A mask that tells the kernel (or threads library) which signals will
be accepted and which must be put onto a “pending” queue.

SIGSEGV
A signal that is generated by UNIX systems when a user program
attempts to access an address that it has not mapped into its
address space.

SIGWAITING
A signal that is implemented in Solaris and used to tell a threaded
process that it should consider creating a new LWP.

SPEC
An organization that creates benchmark programs and monitors
their use.
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store buffer
A buffer in a CPU that caches writes to main memory, allowing
the CPU to run without waiting for main memory. It is a special
case of cache memory.

SVR4
An abbreviation for System Five, Release 4—The merger of several
different flavors of UNIX that was done by Sun and AT&T. SPEC
1170 merges SVR4, POSIX, and BSD—the main UNIX “flavors—to
specify a common base for all future UNIX implementations.

synchronous signal
A signal that is sent to a process “synchronously.” This means
that it is the direct result of something that process did, such as
dividing by zero. Should a program do a divide-by-zero, the CPU
will immediately trap into a kernel routine, which in turn will
send a signal to the process (cf: asynchronous signal).

system call
A function that sets up its arguments, then traps into the kernel in
order to have the kernel do something for it. This is the only
means a user program has for communication with the kernel.

time-sliced scheduling
An algorithm that allocates a set amount of time for a process (or
LWP or thread) to run before it is preempted from the CPU and
another one is given time to run.

trap
An instruction that causes the CPU to stop what it is doing and
jump to a special routine in the kernel (cf: system call).

user mode
An operating mode for a CPU in which certain instructions are
not allowed. A user program runs in user mode (cf: kernel mode).

user space
That area of memory devoted to user programs. The kernel sets
up this space but generally never looks inside (cf: kernel space).
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virtual memory
The memory space that a program thinks it is using. It is mapped
into physical memory by the MMU. Virtual memory allows a
program to behave as if it had 100 Mbytes, even though the
system only has 32 Mbytes.

XView
A library of routines that draws and operates Openlook GUI
components on a screen. It is based on the SunView™ library of
the mid-80s and has been superseded by CDE Motif.



370 Threads Primer


