
3
Assembly Language Fundamentals
This chapter is excerpted from Assembly Language for Intel-Based Computers, by Kip R. Irvine. Copyright Prentice-Hall Publishing,
2003. All rights reserved. You may print a copy of this chapter, but you may not extract or copy text or illustrations from this document to
use in any other publication.

3.1 Basic Elements of Assembly Language
3.1.1 Integer Constants
3.1.2 Integer Expressions
3.1.3 Real Number Constants
3.1.4 Character Constants
3.1.5 String Constants
3.1.6 Reserved Words
3.1.7 Identifiers
3.1.8 Directives
3.1.9 Instructions
3.1.10 Section Review

3.2 Example: Adding Three Integers
3.2.1 Program Listing
3.2.2 Program Output
3.2.3 Program Description
3.2.4 Program Template
3.2.5 Section Review

3.3 Assembling, Linking, and Running Programs
3.3.1 The Assemble-Link-Execute Cycle
3.3.2 Section Review

3.4 Defining Data
3.4.1 Intrinsic Data Types
3.4.2 Data Definition Statement
3.4.3 Defining BYTE and SBYTE Data
3.4.4 Defining WORD and SWORD Data
3.4.5 Defining DWORD and SDWORD Data
3.4.6 Defining QWORD Data
3.4.7 Defining TBYTE Data
3.4.8 Defining Real Number Data
3.4.9 Little Endian Order
3.4.10 Adding Variables to the AddSub Program
3.4.11 Declaring Uninitialized Data
3.4.12 Section Review

3.5 Symbolic Constants
3.5.1 Equal-Sign Directive
3.5.2 Calculating the Sizes of Arrays and Strings
3.5.3 EQU Directive

70 Chapter 3 • Assembly Language Fundamentals

3.5.4 TEXTEQU Directive
3.5.5 Section Review

3.6 Real-Address Mode Programming (Optional)
3.6.1 Basic Changes

3.7 Chapter Summary

3.8 Programming Exercises

3.1 Basic Elements of Assembly Language

Chapter 2 gave you some essential basics of computer hardware as well as specific knowledge of
the IA-32 architecture. Now it’s time to get practical and apply that knowledge. If you were a
cook, I would now be showing you around the kitchen, explaining how to use mixers, grinders,
knives, stoves, and saucepans. We’re going to take the ingredients of assembly language, mix
them together, and come up with working programs.

Assembly language programmers absolutely must first know their data backwards and for-
wards before writing executable code. Part of that goal was accomplished in Chapter 1, where
you learned about various number systems and the binary storage of integers and characters. In
this chapter, you will learn how to define and declare variables and constants, using Microsoft
Assembler (MASM) syntax. Then you will get to see a complete program, which we dissect line
by line. You can expand and modify the programs in this chapter as much as you wish, using the
new knowledge you’ve gained.

3.1.1 Integer Constants

An integer constant (or integer literal) is made up of an optional leading sign, one or more digits,
and an optional suffix character (called a radix) indicating the number’s base:

[{+ | −}] digits [radix]

The radix may be one of the following (uppercase or lowercase):

If no radix is given, the integer constant is assumed to be decimal. Here are some examples using

Microsoft syntax notation is used throughout this chapter. Elements within square brackets [..]
are optional, and elements within braces {..} require a choice of one of the enclosed elements
(separated by the | character). Elements in italics denote items which have known definitions or
descriptions.

h hexadecimal r encoded real

q/o octal t decimal (alternate)

d decimal y binary (alternate)

b binary

3.1 Basic Elements of Assembly Language 71

different radixes:

A hexadecimal constant beginning with a letter must have a leading zero to prevent the assem-
bler from interpreting it as an identifier.

3.1.2 Integer Expressions

An integer expression is a mathematical expression involving integer values and arithmetic oper-
ators. The expression must evaluate to an integer which can be stored in 32 bits (0 –
FFFFFFFFh). The arithmetic operators are listed in Table 3–1 according to their precedence
order, from highest (1) to lowest (4).

Precedence refers to the implied order of operations when an expression contains two or
more operators. The order of operations is shown for the following expressions:

26 decimal 42o octal

26d decimal 1Ah hexadecimal

11010011b binary 0A3h hexadecimal

42q octal

Table 3–1 Arithmetic Operators.

Operator Name Precedence Level

() parentheses 1

+,- unary plus, minus 2

*,/ multiply, divide 3

MOD modulus 3

+,- add, subtract 4

4 + 5 * 2 multiply, add

12 - 1 MOD 5 modulus, subtract

-5 + 2 unary minus, add

(4 + 2) * 6 add, multiply

72 Chapter 3 • Assembly Language Fundamentals

The following are examples of valid expressions and their values:

3.1.3 Real Number Constants

There are two types of real number constants: decimal reals and encoded (hexadecimal) reals. A
decimal real constant contains a sign followed by an integer, a decimal point, an integer that
expresses a fraction, and an exponent:

[sign]integer.[integer][exponent]

This is how we describe the sign and exponent:

sign {+,-}

exponent E[{+,-}]integer

The sign is optional, and the choices are + or −. Following are examples of valid real constants:

2.

+3.0

-44.2E+05

26.E5

At the very least, there must be a digit and a decimal point. Without the decimal point, it would
just be an integer constant.

Encoded Reals You can specify a real constant in hexadecimal as an encoded real if you
know the exact binary representation of the number. The following, for example, is the encoded
4-byte real representation of decimal +1.0:

3F800000r

(We will delay the discussion of IEEE real number formats until Chapter 17, stored on the
book’s CD-ROM.)

Expression Value

16 / 5 3

-(3 + 4) * (6 - 1) -35

-3 + 4 * 6 - 1 20

25 mod 3 1

It’s a good idea to use parentheses in expressions to clarify the order of operations. Then
you don’t have to remember the precedence rules.

3.1 Basic Elements of Assembly Language 73

3.1.4 Character Constants

A character constant is a single character enclosed in either single or double quotes. The assem-
bler converts it to the binary ASCII code matching the character. Examples are:

‘A’

"d"

A complete list of ASCII codes is printed on the inside back cover of this book.

3.1.5 String Constants

A string constant is a string of characters enclosed in either single or double quotes:

‘ABC’

‘X’
"Goodnight, Gracie"
‘4096’

Embedded quotes are permitted when used in the manner shown by the following examples:

"This isn’t a test"
‘Say "Goodnight," Gracie’

3.1.6 Reserved Words

Assembly language has a list of words called reserved words. These have special meaning and
can only be used in their correct context. Reserved words can be any of the following:

• Instruction mnemonics, such as MOV, ADD, or MUL, which correspond to built-in opera-
tions performed by Intel processors.

• Directives, which tell MASM how to assemble programs.
• Attributes, which provide size and usage information for variables and operands. Exam-

ples are BYTE and WORD.
• Operators, used in constant expressions.
• Predefined symbols, such as @data, which return constant integer values at assembly

time.

A complete list of MASM reserved words can be found in Appendix D.

3.1.7 Identifiers

An identifier is a programmer-chosen name. It might identify a variable, a constant, a procedure,
or a code label. Keep the following in mind when creating identifiers:

• They may contain between 1 and 247 characters.
• They are not case-sensitive.

74 Chapter 3 • Assembly Language Fundamentals

• The first character must be either a letter (A..Z, a..z), underscore (_), @ , or $. Subsequent
characters may also be digits.

• An identifier cannot be the same as an assembler reserved word.

Avoid using a single @ sign as the first character, because it is used extensively by the
assembler for predefined symbols. Here are some valid identifiers:

Common sense suggests that you should make identifier names descriptive and easy to under-
stand.

3.1.8 Directives

A directive is a command that is recognized and acted upon by the assembler as the program’s
source code is being assembled. Directives are used for defining logical segments, choosing a
memory model, defining variables, creating procedures, and so on.

Directives are part of the assembler’s syntax, but are not related to the Intel instruction set.
Various assemblers may generate identical machine code for the Intel processor, but their sets of
directives need not be the same.

Different capitalizations of the same directive are assumed to be equivalent. For example,
the assembler does not recognize any difference between .data, .DATA, and .Data.

Examples The .DATA directive identifies the area of a program that contains variables:

.data

The .CODE directive identifies the area of a program that contains instructions:

.code

The PROC directive identifes the beginning of a procedure. Name may be any identifier:

name PROC

It would take a very long time to learn all the directives in MASM, so we will necessarily
concentrate on the the few that are most essential. Appendix D contains a complete reference to
all MASM directives and operators.

You can make all keywords and identifiers case-sensitive by adding the −Cp command line
switch when running the assembler.

var1 Count $first

_main MAX open_file

@@myfile xVal _12345

3.1 Basic Elements of Assembly Language 75

3.1.9 Instructions

An instruction is a statement that is executed by the processor at runtime after the program has
been loaded into memory and started. An instruction contains four basic parts:

• Label (optional)

• Instruction mnemonic (required)

• Operand(s) (usually required)

• Comment (optional)

Aome source code lines may consist only of labels or comments. The following diagram shows
the standard format for instructions:

Let’s explore each part separately, starting with the label field, which is optional.

3.1.9.1 Label

A label is an identifier that acts as a place marker for either instructions or data. In the process of
scanning a source program, the assembler assigns a numeric address to each program statement.
A label placed just before an instruction implies the instruction’s address. Similarly, a label
placed just before a variable implies the variable’s address.

Why use labels at all? We could directly reference numeric addresses in our program code.
For example, the following instruction moves a 16-bit word from memory location 0020 to the
AX register:1

mov ax,[0020]

But when new variables are inserted in programs, the addresses of all subsequent variables auto-
matically change. A reference such as [0020] would have to be modified manually. Clearly, this
creates a headache for programmers, and is not worth the effort. Instead, if location 0020h is
assigned a label, the assembler automatically matches the label to the address. Now the same
MOV instruction could be written as:

mov ax,myVariable

Of course, we’re getting ahead a bit ahead of ourselves. Variable definitions will be explained in
Section 3.4.2, and the MOV instruction will be explained in Section 3.2.3.

Code Labels A label in the code area of a program (where instructions are located) must end
with a colon (:) character. In this context, labels are often used as targets of jumping and looping

1. Don’t try to assemble this instruction. It is only here for illustrative purposes.

Label : Mnemonic Operand(s) ; Comment

76 Chapter 3 • Assembly Language Fundamentals

instructions. For example, the following JMP (jump) instruction transfers control to the location
marked by the label named target, creating a loop:

target:
mov ax,bx
...
jmp target

A code label can share the same line with an instruction, or it can be on a line by itself:

target: mov ax,bx
target:

Data Labels If a label is used in the data area of a program (where variables are defined) , it
cannot end with a colon. Here is an example that defines a variable named first:

first BYTE 10

Label names are created using the rules for identifiers already shown in Section 3.1.7.
Data label names must be unique within the same source file. If, for example, you have a label
named first, then you cannot have another label named first anywhere in the same source code
file.

3.1.9.2 Instruction Mnemonic

An instruction mnenonic is a short word that identifies the operation carried out by an instruc-
tion. In the English dictionary, a mnemonic is generally described as a device that assists mem-
ory. That is why instruction mnemonics have useful names such as mov, add, sub, mul, jmp, and
call:

3.1.9.3 Operands

An assembly language instruction can have between zero and three operands, each of which can
be a register, memory operand, constant expression, or I/O port. We discussed register names in
Chapter 2, and we discussed constant expressions in Section 3.1.2. (We will leave the discussion
of I/O ports for a later chapter.) A memory operand is specified either by the name of a variable
or by a register that contains the address of a variable. A variable name implies the address of the
variable, and instructs the computer to reference the contents of memory at the given address, as

mov move (assign) one value to another

add add two values

sub subtract one value from another

mul multiply two values

jmp jump to a new location

call call a procedure

3.1 Basic Elements of Assembly Language 77

shown in the following table:

Following are some examples of assembly language instructions with various numbers of
operands. The STC instruction, for example, has no operands:

stc ; set Carry flag

The INC instruction has one operand:

inc ax ; add 1 to AX

The MOV instruction has two operands:

mov count,bx ; move BX to count

3.1.9.4 Comments

Comments, as you probably know, are an important way for the writer of a program to communi-
cate information about how the program works to a person reading the source code. The follow-
ing information is typically included at the top of a program listing:

• A short description of the program’s overall purpose.
• The name of the programmer(s) who has written and/or revised the program.
• The date the program was written, along with revision dates.

Comments can be specified in two ways:

• Single-line comments, beginning with a semicolon character (;). All characters following
the semicolon on the same line are ignored by the assembler and may be used to comment
the program.

• Block comments, beginning with the COMMENT directive and a user-specified symbol.
All subsequent lines of text are ignored by the assembler until the same user-specified
symbol appears. For example:

COMMENT !
This line is a comment.
This line is also a comment.

!

Example Operand Type

96 constant (immediate value)

2 + 4 constant expression

eax register

count variable name

78 Chapter 3 • Assembly Language Fundamentals

We can also use any other symbol:

COMMENT &

This line is a comment.

This line is also a comment.

&

3.1.10 Section Review

1. List the valid suffix characters that may be used in integer constants.

2. (Yes/No): Is A5h a valid hexadecimal constant?

3. (Yes/No): Does the multiply sign (*) have a higher precedence than the divide sign (/) in
integer expressions?

4. Write a constant expression that divides 10 by 3 and returns the integer remainder.

5. Show an example of a valid real number constant with an exponent.

6. (Yes/No): Must string constants be enclosed in single quotes?

7. Reserved words can be instruction mnemonics. attributes, operators, predefined symbols,
and __________.

8. What is the maximum length of an identifier?

9. (True/False): An identifier cannot begin with a numeric digit.

10. (True/False): Assembly language identifiers are (by default) case-insensitive.

11. (True/False): Assembler directives execute at run time.

12. (True/False): Assembler directives can be written in any combination of uppercase and low-
ercase letters.

13. Name the four basic parts of an assembly language instruction.

14. (True/False): MOV is an example of an instruction mnemonic.

15. (True/False): A code label is followed by a colon (:), but a data label does not have a colon.

16. Show an example of a block comment.

17. Why would it not be a good idea to use numeric addresses when writing instructions that
access variables?

3.2 Example: Adding Three Integers 79

3.2 Example: Adding Three Integers

3.2.1 Program Listing

Now it’s time to look at that first working program we promised you in the chapter introduction.
It’s really trivial—it just adds and subtracts three integers, using CPU registers. At the end, the
registers are displayed on the screen:

TITLE Add and Subtract (AddSub.asm)

; This program adds and subtracts 32-bit integers.

INCLUDE Irvine32.inc
.code
main PROC

mov eax,10000h ; EAX = 10000h
add eax,40000h ; EAX = 50000h
sub eax,20000h ; EAX = 30000h
call DumpRegs ; display registers

exit
main ENDP
END main

3.2.2 Program Output

The following is a snapshot of the the program’s output, generated by the call to the DumpRegs
procedure:

The first two rows show the hexadecimal values of the 32-bit general-purpose registers. Notice
that EAX equals 00030000h, the value produced by the ADD and SUB instructions in the pro-
gram. The third row shows the values of the EIP (extended instruction pointer) and EFL
(extended flags) registers, as well as the values of the Carry, Sign, Zero, and Overflow flags.

3.2.3 Program Description

Let’s go through the program line by line. In each case, the program code appears before its
explanation:

TITLE Add and Subtract (AddSub.asm)

EAX=00030000 EBX=7FFDF000 ECX=00000101 EDX=FFFFFFFF
ESI=00000000 EDI=00000000 EBP=0012FFF0 ESP=0012FFC4
EIP=00401024 EFL=00000206 CF=0 SF=0 ZF=0 OF=0

80 Chapter 3 • Assembly Language Fundamentals

The TITLE directive marks the entire line as a comment. You can put anything you want on this
line.

; This program adds and subtracts 32-bit integers.

All text to the right of a semicolon is ignored by the assembler, so we use it for comments.

INCLUDE Irvine32.inc

The INCLUDE directive copies necessary definitions and setup information from a text file
named Irvine32.inc, located in the assembler’s INCLUDE directory. (The file is described in
Chapter 5.)

.code

The .code directive marks the beginning of the code segment, where all executable statements in
a program are located.

main PROC

The PROC directive identifies the beginning of a procedure. The name chosen for the only pro-
cedure in our program is main.

mov eax,10000h ; EAX = 10000h

The MOV instruction moves (copies) the integer 10000h to the EAX register. The first operand
(EAX) is called the destination operand, and the second operand is called the source operand.

add eax,40000h ; EAX = 50000h

The ADD instruction adds 40000h to the EAX register.

sub eax,20000h ; EAX = 30000h

The SUB instruction subtracts 20000h from the EAX register.

call DumpRegs ; display registers

The CALL statement calls a procedure that displays the current values of the CPU registers. This
can be a useful way to verify that a program is working correctly.

exit
main ENDP

The exit statement (indirectly) calls a predefined MS-Windows function that halts the program.
The ENDP directive marks the end of the main procedure. Note that exit is not a MASM key-
word; instead, it’s a command defined in Irvine32.inc that provides a simple way to end a pro-
gram.

END main

The END directive marks the last line of the program to be assembled. It identifies the name of
the program’s startup procedure (the procedure that starts the program execution).

3.2 Example: Adding Three Integers 81

Segments Programs are organized around segments, which are usually named code, data, and
stack. The code segment contains all of a program’s executable instructions. Ordinarily, the code
segment contains one or more procedures, with one designated as the startup procedure. In the
AddSub program, the startup procedure is main. Another segment, the stack segment, holds
procedure parameters and local variables. The data segment holds variables.

Coding Styles You may be wondering at this point whether you should capitalize any particu-
lar keywords in assembly language programs. Because assembly language is case-insensitive,
you are free to decide how to capitalize your programs, unless your instructor has specific
requirements. Here are some varied approaches to capitalization that you can try:

• Capitalize nothing, except perhaps the initial letters of identifiers. C++ programmers often
feel comfortable with this approach, since all their keywords are in lowercase. This
approach makes the typing of source code lines fairly rapid.

• Capitalize everything: This approach was used in pre-1970 mainframe assembler pro-
grams, when computer terminals often did not support lowercase letters. It has the advan-
tage of overcoming the effects of poor-quality printers and less-than-perfect eyesight.

• Use capital letters for all assembler reserved words, including instruction mnemonics and
register names. This makes it easy to distinguish between user-defined names and assem-
bler reserved words.

• Capitalize assembly language directives and operators. Leave everything else in lower-
case. This is the approach used in the example programs throughout this book, except that
.code and .data are lowercase.

3.2.3.1 Alternative Version of AddSub

You may have looked at the AddSub program and wondered exactly what was inside the
Irvine32.inc file. To make your coding more convenient, we hide quite a few details that will be
covered later in the book. Understandably, you (or your instructor) may prefer to create pro-
grams that do not depend on include files. The following version of AddSub hides nothing:

TITLE Add and Subtract (AddSubAlt.asm)

; This program adds and subtracts 32-bit integers.

.386

.MODEL flat,stdcall

.STACK 4096
ExitProcess PROTO, dwExitCode:DWORD
DumpRegs PROTO

.code
main PROC

mov eax,10000h ; EAX = 10000h

82 Chapter 3 • Assembly Language Fundamentals

add eax,40000h ; EAX = 50000h
sub eax,20000h ; EAX = 30000h
call DumpRegs

INVOKE ExitProcess,0
main ENDP
END main

Several lines in the program are different from the original version. As before, we show
each line of code followed by its explanation:

.386

The .386 directive identifies the minimum CPU required for this program (Intel386).

.MODEL flat,stdcall

The .MODEL directive instructs the assembler to generate code for a Protected mode program,
and STDCALL enables the calling of MS-Windows functions.

ExitProcess PROTO, dwExitCode:DWORD
DumpRegs PROTO

Two PROTO directives declare procedures used by this program: ExitProcess is an MS-Win-
dows function that halts the current program (called a process), and DumpRegs is a procedure
from the Irvine32 link library that displays registers.

INVOKE ExitProcess,0

The program ends by calling the ExitProcess function, passing it a return code of zero.
INVOKE is an assembler directive that calls a procedure or function.

3.2.4 Program Template

Assembly language programs have a simple structure, with some small variations. When you
begin to write and assemble your own programs, it helps to start with an empty shell program
that has all the basic elements in place. You can avoid redundant typing by filling in the missing
parts and saving the file under a new name. The following Protected-mode program (Tem-
plate.asm) can easily be customized. Note that comments have been inserted, marking the points
where your own code should be added:

TITLE Program Template (Template.asm)

; Program Description:
; Author:
; Creation Date:
; Revisions:
; Date: Modified by:

3.3 Assembling, Linking, and Running Programs 83

INCLUDE Irvine32.inc
.data

; (insert variables here)

.code
main PROC

; (insert executable instructions here)

exit
main ENDP

; (insert additional procedures here)
END main

Use Comments Several comment fields have been inserted at the beginning of the program.
It’s a very good idea to include a program description, the name of the program’s author, cre-
ation date, and information about subsequent modifications.

Documentation of this kind is useful to anyone who reads the program listing (including
you, months or years from now). Many programmers have discovered, years after writing a pro-
gram, that they must become reacquainted with their own code before they can modify it. If
you’re taking a programming course, your instructor may insist on additional information.

3.2.5 Section Review

1. In the AddSub program (Section 3.2), what is the meaning of the INCLUDE directive?

2. In the AddSub program, what does the .CODE directive identify?

3. What are the names of the segments in the AddSub program?

4. In the AddSub program, how are the CPU registers displayed?

5. In the AddSub program, which statement halts the program?

6. Which directive begins a procedure?

7. Which directive ends a procedure?

8. What is the purpose of the identifier in the END statement?

9. What does the PROTO directive do?

3.3 Assembling, Linking, and Running Programs

In earlier chapters we saw examples of simple machine-language programs, so it is clear that a
source program written in assembly language cannot be executed directly on its target computer.
It must be translated, or assembled into executable code. In fact, an assembler is very similar to

84 Chapter 3 • Assembly Language Fundamentals

a compiler, the type of program you would use to translate a C++ or Java program into execut-
able code.

The assembler produces a file containing machine language called an object file. This file
isn’t quite ready to execute. It must be passed to another program called a linker, which in turn
produces an executable file. This file is ready to execute from the MS-DOS/Windows command
prompt.

3.3.1 The Assemble-Link-Execute Cycle

The process of editing, assembling, linking, and executing assembly language programs is sum-
marized in Figure 3–1. Following is a detailed description of each step:

Step 1: A programmer uses a text editor to create an ASCII text file named the source file.

Step 2: The assembler reads the source file and produces an object file, a machine-language
translation of the program. Optionally, it produces a listing file. If any errors occur, the program-
mer must return to Step 1 and fix the program.

Step 3: The linker reads the object file and checks to see if the program contains any calls to
procedures in a link library. The linker copies any required procedures from the link library,
combines them with the object file, and produces the executable file. Optionally, the linker can
produce a map file.

Step 4: The operating system loader utility reads the executable file into memory, branches the
CPU to the program’s starting address, and the program begins to execute.

Figure 3–1 Assemble-Link-Execute Cycle.

Assembling and Linking 32-Bit Programs To assemble and link a Protected mode assem-
bly language program, execute the following command at the MS-DOS prompt:

make32 progname

Progname is the base name of your assembly language source file, with no extension. For exam-
ple, the AddSub.asm program would be assembled and linked with the following command:

Source
File

Object
File

Listing
File

Link
Library

Executable
File

Map
File

Output

Step 1: text editor

Step 2:
assembler

Step 3:
linker

Step 4:
OS loader

3.3 Assembling, Linking, and Running Programs 85

make32 AddSub

Assembling and Linking 16-Bit Programs If you are programming in Real-address mode,
use the make16 command to assemble and link. Using the AddSub program as an example, the
command would be the following:

make16 AddSub

3.3.1.1 Listing File

A listing file contains a copy of the program’s source code, suitable for printing, with line num-
bers, offset addresses, translated machine code, and a symbol table. Let’s look at the listing file
for the AddSub program we created in Section 3.2:

Microsoft (R) Macro Assembler Version 6.15.8803 10/26/01 13:50:21
Add and Subtract (AddSub.asm) Page 1 - 1

TITLE Add and Subtract (AddSub.asm)

; This program adds and subtracts 32-bit integers.

INCLUDE Irvine32.inc
C ; Include file for Irvine32.lib (Irvine32.inc)
C INCLUDE SmallWin.inc

00000000 .code
00000000 main PROC

00000000 B8 00010000 mov eax,10000h ; EAX = 10000h
00000005 05 00040000 add eax,40000h ; EAX = 50000h
0000000A 2D 00020000 sub eax,20000h ; EAX = 30000h
0000000F E8 00000000E call DumpRegs

exit
0000001B main ENDP

END main

Structures and Unions: (omitted)

Segments and Groups:

N a m e Size Length Align Combine Class
FLAT GROUP
STACK 32 Bit 00001000 DWord Stack 'STACK'

The make32.bat file must be located either in the same directory as your ASM file or on
the system path. Consult your operating system’s documentation to find out how to add a
directory to the system path. Refer to Appendix A for instructions on setting up your
computer.

86 Chapter 3 • Assembly Language Fundamentals

_DATA 32 Bit 00000000 DWord Public 'DATA'

_TEXT 32 Bit 0000001B DWord Public 'CODE'

Procedures, parameters and locals (list abbreviated):

N a m e Type Value Attr

CloseHandle P Near 00000000 FLAT Length=00000000 External STDCALL

ClrScr P Near 00000000 FLAT Length=00000000 External STDCALL

.

.

main P Near 00000000 _TEXT Length=0000001B Public STDCALL

Symbols (list abbreviated):

N a m e Type Value Attr

@CodeSize Number 00000000h

@DataSize Number 00000000h

@Interface Number 00000003h

@Model Number 00000007h

@code Text _TEXT

@data Text FLAT

@fardata? Text FLAT

@fardata Text FLAT

@stack Text FLAT

.

.

exit Text INVOKE ExitProcess,0

 0 Warnings

 0 Errors

3.3.1.2 Files Created or Updated by the Linker

Map File A map file is a text file (extension MAP) that contains information about the seg-
ments contained in a program being linked. It contains the following information:

• The EXE module name, which is the base name of the file.
• The timestamp from the program file header (not from the file system).
• A list of segment groups in the program, with each group’s start address, length, group

name, and class.
• A list of public symbols, with each address, symbol name, flat address, and module where

the symbol is defined.
• The address of the program’s entry point.

Program Database File When you assemble a program with the −Zi option (debugging),
MASM creates a program database file (extension PDB). During the link step, the linker reads
the PDB file and updates it. Then, when you run your program using a debugger, the latter is

3.4 Defining Data 87

able to display the program’s source code and provide supplemental information about the pro-
gram.

3.3.2 Section Review

1. What types of files are produced by the assembler?

2. (True/False): The linker extracts copies of compiled procedures from the link library file.

3. (True/False): When a program’s source code is modified, it must be assembled and linked
again before it can be executed with the changes.

4. What is the name of the part of the operating system that reads the executable file and starts
its execution?

5. What types of files are produced by the linker?

Read Appendix A before answering the following questions:

6. What command line option tells the assembler to produce a listing file?

7. What command line option tells the assembler to add debugging information?

8. What does the linker’s /SUBSYSTEM:CONSOLE option signify?

9. Challenge: List the names of at least four functions in the kernel32.lib file.

10. Challenge: Which linker option lets you specify the program’s entry point?

3.4 Defining Data

3.4.1 Intrinsic Data Types

MASM defines various intrinsic data types, each of which describes a set of values that can be
assigned to variables and expressions of the given type. A DWORD variable, for example, can
hold any 32-bit integer value. Some types are slightly more restrictive, such as REAL4, which
can only be initialized by a real number constant. In Table 3–2, all data types pertain to integers
except the last three. In those, the notation "IEEE” refers to standard real number formats pub-
lished by the IEEE Computer Society.

Table 3–2 Intrinsic Data Types.

Type Usage

BYTE 8-bit unsigned integer

SBYTE 8-bit signed integer

88 Chapter 3 • Assembly Language Fundamentals

3.4.2 Data Definition Statement

A data definition statement sets aside storage in memory for a variable and may optionally
assign a name to the variable. We use data definition statements to create variables based on the
assembler’s intrinsic types (Table 3–2). Each data definition has the same syntax:

[name] directive initializer [,initializer]...

Initializers At least one initializer is required in a data definition, even if it is the ? expres-
sion, which does not assign a specific value to the data. Additional initializers, if any, are sepa-
rated by commas. For integer data types, initializer is an integer constant or expression that
matches the size implied by the type (BYTE,WORD, etc.) Integer constants and expressions
were explained in Section 3.1.1, and integer expressions were discussed in Section 3.1.2.

All initializers, regardless of their number format, are converted to binary data by the
assembler. That is why initializers such as 00110010b, 32h, and 50d all produce the same binary
value.

3.4.3 Defining BYTE and SBYTE Data

The BYTE (define byte) and SBYTE (define signed byte) directives, used in data definition
statements, allocate storage for one or more unsigned or signed values. Each initializer must be
an 8-bit integer expression or character constant. For example:

value1 BYTE 'A' ; character constant
value2 BYTE 0 ; smallest unsigned byte

WORD 16-bit unsigned integer (can also be a Near pointer in Real-address mode)

SWORD 16-bit signed integer

DWORD 32-bit unsigned integer (can also be a Near pointer in Protected mode)

SDWORD 32-bit signed integer

FWORD 48-bit integer (Far pointer in Protected mode)

QWORD 64-bit integer

TBYTE 80-bit (10 byte) integer

REAL4 32-bit (4 byte) IEEE short real

REAL8 64-bit (8 byte) IEEE long real

REAL10 80-bit (10 byte) IEEE extended real

Table 3–2 Intrinsic Data Types.

Type Usage

3.4 Defining Data 89

value3 BYTE 255 ; largest unsigned byte
value4 SBYTE −128 ; smallest signed byte
value5 SBYTE +127 ; largest signed byte

(We’re capitalizing the BYTE and SBYTE keywords here for emphasis, but you can just as eas-
ily code them in lowercase letters.)

A variable can be left uninitialized by using a question mark for the initializer. This
implies that the variable will be assigned a value at runtime by executable instructions:

value6 BYTE ?

Variable Name A variable name is a label that marks the offset of a variable from the begin-
ning of its enclosing segment. For example, suppose that value1 was located at offset 0 in the
data segment and consumed one byte of storage. Then value2 would be located at offset 1:

.data
value1 BYTE 10h
value2 BYTE 20h

DB Directive Earlier versions of the assembler used the DB directive to define byte data. You
can still use DB, but it permits no distinction between signed and unsigned data:

val1 DB 255 ; unsigned byte
val2 DB -128 ; signed byte

3.4.3.1 Multiple Initializers

If multiple initializers are used in the same data definition, its label refers only to the offset of the
first byte. In the following example, assume that the label list is at offset 0. If so, the value 10 is
at offset 0, 20 is at offset 1, 30 is at offset 2, and 40 is at offset 3:

.data
list BYTE 10,20,30,40

The following illustration shows list as a sequence of bytes, each with its own offset:

Not all data definitions require labels. If we wanted to continue the array of bytes begun
with list, for example, we could define additional bytes on the next lines:

list BYTE 10,20,30,40

100000:

20

30

40

0001:

0002:

0003:

Offset Value

90 Chapter 3 • Assembly Language Fundamentals

BYTE 50,60,70,80
BYTE 81,82,83,84

Within a single data definition, its initializers can use different radixes. Also, character and
string constants can be freely mixed. In the following example, list1 and list2 have the same
contents:

list1 BYTE 10, 32, 41h, 00100010b
list2 BYTE 0Ah,20h, ‘A’, 22h

3.4.3.2 Defining Strings

To create a string data definition, enclose a sequence of characters in quotation marks. The most
common type of string ends with a null byte, a byte containing the value 0. This type of string is
used by C/C++, by Java, and by Microsoft Windows functions:

greeting1 BYTE "Good afternoon",0

Each character uses a byte of storage. Strings are an exception to the rule that byte values must
be separated by commas. Without that exception, greeting1 would have to be defined as

greeting1 BYTE ’G’,’o’,’o’,’d’....etc.

which would be exceedingly tedious.

A string can be spread across multiple lines without the necessity of supplying a label for
each line, as the next example shows:

greeting1 BYTE "Welcome to the Encryption Demo program "
BYTE "created by Kip Irvine.",0dh,0ah,
BYTE "If you wish to modify this program, please "
BYTE "send me a copy.",0dh,0ah,0

As a reminder, the hexadecimal bytes 0Dh and 0Ah are called either CR/LF (explained in
Chapter 1) or end-of-line characters. When written to standard output, they move the cursor to
the left column of the line following the current line.

MASM’s line continuation character (\) may be used to concatenate two lines into a single
program statement. The \ symbol may only be placed at the end of a line. In other words, the fol-
lowing statements are equivalent:

greeting1 BYTE "Welcome to the Encryption Demo program "

and

greeting1 \
BYTE "Welcome to the Encryption Demo program "

3.4.3.3 Using the DUP Operator

The DUP operator generates a repeated storage allocation, using a constant expression as a

3.4 Defining Data 91

counter. It is particularly useful when allocating space for a string or array, and can be used with
both initialized and uninitialized data definitions:

BYTE 20 DUP(0) ; 20 bytes, all equal to zero
BYTE 20 DUP(?) ; 20 bytes, uninitialized
BYTE 4 DUP("STACK") ; 20 bytes: "STACKSTACKSTACKSTACK"

3.4.4 Defining WORD and SWORD Data

The WORD (define word) and SWORD (define signed word) directives create storage for one or
more 16-bit integers. Here are some examples:

word1 WORD 65535 ; largest unsigned value
word2 SWORD -32768 ; smallest signed value
word3 WORD ? ; uninitialized, unsigned

Older versions of the assembler used the DW directive to define both signed and unsigned
words. You can still use DW:

val1 DW 65535 ; unsigned
val2 DW -32768 ; signed

Array of Words You can create an array of word values either by explicitly initializing each
element or by using the DUP operator. Here is an array containing specific values:

myList WORD 1,2,3,4,5

Following is a diagram of the array in memory, if we assume that myList starts at offset 0.
Notice that the addresses increment by 2:

The DUP operator provides a convenient way to initialize multiple words:

array WORD 5 DUP(?) ; 5 values, uninitialized

3.4.5 Defining DWORD and SDWORD Data

The DWORD (define doubleword) and SDWORD (define signed doubleword) directives allo-
cate storage for one or more 32-bit integers. For example:

1

2

3

4

5

O ffs e t V a lu e

0 0 0 0 :

0 0 0 2 :

0 0 0 4 :

0 0 0 6 :

0 0 0 8 :

92 Chapter 3 • Assembly Language Fundamentals

val1 DWORD 12345678h ; unsigned

val2 SDWORD −2147483648 ; signed

val3 DWORD 20 DUP(?) ; unsigned array

Older versions of the assembler used the DD directive to define both unsigned and signed
doublewords. You can still use DD:

val1 DD 12345678h ; unsigned

val2 DD −2147483648 ; signed

Array of Doublewords You can create an array of doubleword values either by explicitly ini-
tializing each element or by using the DUP operator. Here is an array containing specific
unsigned values:

myList DWORD 1,2,3,4,5

Shown below is a diagram of the array in memory, assuming that myList starts at offset 0.
Notice that the offsets increment by 4:

3.4.6 Defining QWORD Data

The QWORD (define quadword) directive allocates storage for 64-bit (8 byte) values. Here is an
example:

quad1 QWORD 1234567812345678h

You can also use DQ, for compatibility with older assemblers:

quad1 DQ 1234567812345678h

3.4.7 Defining TBYTE Data

The TBYTE (define tenbyte) directive creates storage for 80-bit integers. This data type is pri-
marily for the storage of binary-coded decimal numbers. Manipulating these values requires spe-
cial instructions in the floating-point instruction set:

1

2

3

4

5

Offset Value

0000:

0004:

0008:

000C:

0010:

3.4 Defining Data 93

val1 TBYTE 1000000000123456789Ah

You can also use DT, for compatibility with older assemblers:

val1 DT 1000000000123456789Ah

3.4.8 Defining Real Number Data

REAL4 defines a 4-byte single-precision real variable. REAL8 defines an 8-byte double-preci-
sion real, and REAL10 defines a 10-byte double extended-precision real. Each requires one or
more real constant initializers that can fit into the assigned storage:

rVal1 REAL4 -1.2

rVal2 REAL8 3.2E-260

rVal3 REAL10 4.6E+4096

ShortArray REAL4 20 DUP(0.0)

The following table describes each of the standard real types in terms of their minimum
number of significant digits and approximate range:

Programs written under earlier versions of the assembler used DD, DQ, and DT to define
real numbers; these directives can still be used:

rVal1 DD -1.2

rVal2 DQ 3.2E-260

rVal3 DT 4.6E+4096

3.4.9 Little Endian Order

Intel processors store and retrieve data from memory using what is referred to as little endian
order. This means that the least significant byte of a variable is stored at the lowest address. The
remaining bytes are stored in the next consecutive memory positions.

Data Type
Significant

Digits Approximate Range

Short real 6 1.18 x 10-38 to 3.40 x 1038

Long real 15 2.23 x 10-308 to 1.79 x 10308

Extended-precision real 19 3.37 x 10-4932 to 1.18 x 104932

94 Chapter 3 • Assembly Language Fundamentals

Consider the doubleword 12345678h. If placed in memory at offset 0, 78h would be stored
in the first byte. 56h would be stored in the second byte, and the remaining bytes would be at off-
sets 3 and 4, as the following diagram shows:

Some other computer systems use big endian order (high to low). The following figure
shows an example of 12345678h stored in big endian order at offset 0:

3.4.10 Adding Variables to the AddSub Program

Let’s return for a moment to the AddSub program we wrote in Section 3.2. Using the informa-
tion we’ve developed regarding data definition directives, we can easily add a data segment con-
taining several variables. The revised program is named AddSub2:

TITLE Add and Subtract, Version 2 (AddSub2.asm)

; This program adds and subtracts 32-bit unsigned
; integers and stores the sum in a variable.

INCLUDE Irvine32.inc
.data
val1 DWORD 10000h
val2 DWORD 40000h
val3 DWORD 20000h
finalVal DWORD ?

.code
main PROC

mov eax,val1 ; start with 10000h
add eax,val2 ; add 40000h
sub eax,val3 ; subtract 20000h
mov finalVal,eax ; store the result (30000h)

780:

56

34

12

1:

2:

3:

Little endian

120:

34

56

78

1:

2:

3:

Big endian

3.4 Defining Data 95

call DumpRegs ; display the registers
exit

main ENDP
END main

How does it work? Firs,t the integer inside the variable val1 is moved to EAX:

mov eax,val1 ; start with 10000h

Next, the integer inside val2 is added to EAX:

add eax,val2 ; add 40000h

Next, the integer inside val3 is subtracted from EAX:

sub eax,val3 ; subtract 20000h

Finally, the integer in EAX is copied into the variable finalVal:

mov finalVal,eax ; store the result (30000h)

3.4.11 Declaring Uninitialized Data

The .DATA? directive can be used to declare uninitialized data. It is particularly useful for large
blocks of uninitialized data because it reduces the size of a compiled program. For example, the
following code is declared efficiently:

.data
smallArray DWORD 10 DUP(0) ; 40 bytes
.data?
bigArray DWORD 5000 DUP(?) ; 20000 bytes

The following code, on the other hand, produces a compiled program that is 20,000 bytes larger:

.data
smallArray DWORD 10 DUP(0) ; 40 bytes
bigArray DWORD 5000 DUP(?) ; 20000 bytes

Mixing Code and Data The assembler lets you switch back and forth between code and data
in your programs. This can be convenient when you want to declare a variable that will be used
only within a localized area of your program. In the following example, we create a variable
named temp by inserting it directly within our code:

.code
mov eax,ebx
.data
temp DWORD ?
.code
mov temp,eax
. . .

Although it appears as if temp would interrupt the flow of executable instructions in this exam-

96 Chapter 3 • Assembly Language Fundamentals

ple, it turns out that the assembler places temp in the data segment along with all the other vari-
ables. The variable temp has file scope, making it visible to every statement within the same
source code file.

3.4.12 Section Review

1. Create an uninitialized data declaration for a 16-bit signed integer.

2. Create an uninitialized data declaration for an 8-bit unsigned integer.

3. Create an uninitialized data declaration for an 8-bit signed integer.

4. Create an uninitialized data declaration for an 64-bit integer.

5. Which data type can hold a 32-bit signed integer?

6. Declare a 32-bit signed integer variable and initialize it with the smallest possible negative
decimal value. (Hint: refer to integer ranges in Chapter 1.)

7. Declare an unsigned 16-bit integer variable named wArray that uses three initializers.

8. Declare a string variable containing the name of your favorite color. Initialize it as a null-
terminated string.

9. Declare an uninitialized array of 50 unsigned doublewords named dArray.

10. Declare a string variable containing the word "TEST" repeated 500 times.

11. Declare an array of 20 unsigned bytes named bArray and initialize all elements to zero.

12. Show the order of individual bytes in memory (lowest to highest) for the following double-
word variable:

val1 DWORD 87654321h

3.5 Symbolic Constants

A symbolic constant (or symbol definition) is created by associating an identifier (a symbol) and
either an integer expression or some text. Unlike a variable definition, which reserves storage, a
symbolic constant does not use any storage. Symbols are used only during the assembly of a
program, so they cannot change at runtime. The following table summarizes their differences:

Symbol Variable

Uses storage? no yes

Value changes at run
time?

no yes

3.5 Symbolic Constants 97

In the next section, we will show how to use the equal-sign directive (=) to create symbols
that represent integer constants. After that, we will use the EQU and TEXTEQU directives to
create symbols that represent arbitrary text.

3.5.1 Equal-Sign Directive

The equal-sign directive associates a symbol name with an integer expression (see
Section 3.1.2). The syntax is:

name = expression

Ordinarily, expression is a 32-bit integer value. When a program is assembled, all occurrences of
name are replaced by expression during the assembler’s preprocessor step. For example, if the
assembler reads the following lines,

COUNT = 500
mov al,COUNT

it generates and assembles the following statement:

mov al,500

Why Use Symbols? We might have skipped the COUNT symbol entirely and simply coded
the MOV instruction with the literal 500, but experience has shown that programs are easier to
read and maintain if symbols are used. Suppose COUNT were used ten times throughout a pro-
gram. At a later time, it could be increased to 600 by altering only a single line of code:

 COUNT = 600

When the program was assembled again, all instances of the symbol COUNT would automati-
cally be replaced by 600. Without this symbol, the programmer would have to manually find and
replace every 500 with 600 in the program’s source code. What if one occurrence of 500 were
not actually related to all of the others? Then a bug would be caused by changing it to 600.

Keyboard Definitions Programs often define symbols for important keyboard characters. For
example, 27 is the ASCII code for the Esc key:

Esc_key = 27

Later in the same program, a statement is more self-describing if it uses the symbol rather than
an immediate value. Use this,

mov al,Esc_key ; good style

rather than this:

mov al,27 ; poor style

Using the DUP Operator Section 3.4.3.3 showed how to use the DUP operator to create
storage for arrays and strings. It is good coding style to combine a symbolic constant with DUP

98 Chapter 3 • Assembly Language Fundamentals

because it simplifies program maintenance. In the next example, if COUNT has already been
defined, it can be used in the following data definition:

array COUNT DUP(0)

Redefinitions A symbol defined with = can be redefined any number of times. The following
example shows how the assembler evaluates COUNT each time it changes value:

COUNT = 5
mov al,COUNT ; AL = 5
COUNT = 10
mov al,COUNT ; AL = 10
COUNT = 100
mov al,COUNT ; AL = 100

The changing value of a symbol such as COUNT has nothing to do with the runtime execution
order of statements. Instead, the symbol changes value according to the sequential processing of
your source code by the assembler.

3.5.2 Calculating the Sizes of Arrays and Strings

Often when using an array, we would like to know its size. In the following example, we create a
constant named ListSize and manually count the bytes in list:

list BYTE 10,20,30,40
ListSize = 4

But this is not good practice if this code must be later modified and maintained. If we were to
add more bytes to list, ListSize would also have to be corrected or a program bug would result.
A better way to handle this situation would be to let the assembler automatically calculate List-
Size for us. MASM uses the $ operator (current location counter) to return the offset associated
with the current program statement. In the following example, ListSize is calculated by subtract-
ing the offset of list from the current location counter ($):

list BYTE 10,20,30,40
ListSize = ($ - list)

It is important for ListSize to follow immediately after list. The following, for example,
would produce too large a value for ListSize because of the storage used by var2:

list BYTE 10,20,30,40
var2 BYTE 20 DUP(?)
ListSize = ($ - list)

String lengths are time consuming to calculate manually, so you can let the assembler do
the job for you:

myString BYTE "This is a long string, containing"
 BYTE "any number of characters"

3.5 Symbolic Constants 99

myString_len = ($ − myString)

Arrays of Words and DoubleWords If each element in an array contains a 16-bit word, the
array’s total size in bytes must be divided by 2 to produce the number of array elements:

list WORD 1000h,2000h,3000h,4000h
ListSize = ($ − list) / 2

Similarly, each element of an array of doublewords is 4 bytes long, so its overall length must be
divided by 4 to produce the number of array elements:

list DWORD 10000000h,20000000h,30000000h,40000000h
ListSize = ($ − list) / 4

3.5.3 EQU Directive

The EQU directive associates a symbolic name with either an integer expression or some arbi-
trary text. There are three formats:

name EQU expression
name EQU symbol
name EQU <text>

In the first format, expression must be a valid integer expression (see Section 3.1.2). In the sec-
ond format, symbol is an existing symbol name, already defined with = or EQU. In the third for-
mat, any text may appear within the brackets <. . . >. When the assembler encounters name later
in the program, it substitutes the integer value or text for the symbol.

EQU can be useful when defining any value that does not evaluate to an integer. A real
number constant, for example, can be defined using EQU:

PI EQU <3.1416>

Example We can associate a symbol with a character string. Then a variable can be created
using the symbol:

pressKey EQU <"Press any key to continue...",0>
.
.
.data
prompt BYTE pressKey

Example Suppose we would like to define a symbol that calculates the number of cells in a
10-by-10 integer matrix. We will define symbols two different ways, first as an integer expres-
sion, and second as a text expression. The two symbols are then used in data definitions:

matrix1 EQU 10 * 10
matrix2 EQU <10 * 10>
.data
M1 WORD matrix1

100 Chapter 3 • Assembly Language Fundamentals

M2 WORD matrix2

The assembler will produce different data definitions for M1 and M2. The integer expression in
matrix1 is evaluated and assigned to M1. On the other hand, the text in matrix2 is copied
directly into the data definition for M2:

M1 WORD 100

M2 WORD 10 * 10

No Redefinition Unlike the = directive, a symbol defined with EQU cannot be redefined in
the same source code file. This may be seen as a restriction, but it also prevents an existing sym-
bol from being inadvertently assigned a new value.

3.5.4 TEXTEQU Directive

The TEXTEQU directive, introduced in MASM Version 6, is very similar to EQU. It creates
what Microsoft calls a text macro. There are three different formats: the first assigns text; the
second assigns the contents of an existing text macro, and the third assigns a constant integer
expression:

name TEXTEQU <text>

name TEXTEQU textmacro

name TEXTEQU %constExpr

For example, the prompt1 variable uses the continueMsg text macro:

continueMsg TEXTEQU <"Do you wish to continue (Y/N)?">

.data

prompt1 BYTE continueMsg

Text macros can easily build on each other. In the next example, count is set to the value
of an integer expression involving rowSize. Next, the symbol move is defined as mov. Then set-
upAL incorporates the values of move and count:

rowSize = 5

count TEXTEQU %(rowSize * 2) ; same as: count TEXTEQU <10>

move TEXTEQU <mov>

setupAL TEXTEQU <move al,count>

; same as: setupAL TEXTEQU <mov al,10>

Unlike the EQU directive, a symbol defined with TEXTEQU can be redefined later in the pro-
gram.

Compatibility Note: TEXTEQU was first introduced in MASM version 6. If you’re
writing assembler code that must be compatible with various assemblers including
earlier versions of MASM, you should use EQU rather than TEXTEQU.

3.6 Real-Address Mode Programming (Optional) 101

3.5.5 Section Review

1. Declare a symbolic constant using the equal-sign directive that contains the ASCII code
(08h) for the Backspace key.

2. Declare a symbolic constant named SecondsInDay using the equal-sign directive and
assign it an arithmetic expression that calculates the number of seconds in a 24-hour period.

3. Show how to calculate the number of bytes in the following array and assign the value to a
symbolic constant named ArraySize:

myArray WORD 20 DUP(?)

4. Show how to calculate the number of elements in the following array and assign the value to
a symbolic constant named ArraySize:

myArray DWORD 30 DUP(?)

5. Use a TEXTEQU expression to redefine "PROC" as "PROCEDURE."

6. Use TEXTEQU to create a symbol named Sample for a string constant, and then use the
symbol when defining a string variable named MyString.

7. Use TEXTEQU to assign the symbol SetupESI to the following line of code:

mov esi,OFFSET myArray

3.6 Real-Address Mode Programming (Optional)

If you are programming for MS-DOS or for Linux’s DOS Emulation feature, you can easily
code your programs as 16-bit applications to run in Real-address mode. We will assume that you
are using an Intel386 or later processor. When we call this a 16-bit application, we refer to the
use of 16-bit segments, also known as Real-address mode segments.

3.6.1 Basic Changes

There are only a few changes you must make to the 32-bit programs presented in this chapter to
transform them into 16-bit programs:

• The INCLUDE directive references a different library:
INCLUDE Irvine16.inc

• Two additional instructions must be inserted at the beginning of the startup procedure
(main). They initialize the DS register to the starting location of the data segment, identi-
fied by the predefined MASM constant @data:

mov ax,@data
mov ds,ax

• The batch file that assembles and links your programs is named make16.bat (we will
show an example later).

102 Chapter 3 • Assembly Language Fundamentals

• Offsets (addresses) of data and code labels are 16 bits rather than 32 bits.

3.6.1.1 The AddSub2 Program

Here is a listing of the AddSub2.asm Program, revised to run in Real-address mode. New lines
are marked by comments:

TITLE Add and Subtract, Version 2 (AddSub2.asm)

; This program adds and subtracts 32-bit integers
; and stores the sum in a variable.
; Target: Real-address mode.

INCLUDE Irvine16.inc ; changed
.data
val1 DWORD 10000h
val2 DWORD 40000h
val3 DWORD 20000h
finalVal DWORD ?

.code
main PROC

mov ax,@data ; initialize DS
mov ds,ax

mov eax,val1 ; get first value
add eax,val2 ; add second value
sub eax,val3 ; subtract third value
mov finalVal,eax ; store the result
call DumpRegs ; display registers

exit
main ENDP
END main

3.7 Chapter Summary

An integer expression is a mathematical expression involving integer constants, symbolic con-
stants, and arithmetic operators. Precedence refers to the implied order of operations when an
expression contains two or more operators.

A character constant is a single character enclosed in either single or double quotes. The
assembler converts a character to the binary ASCII code matching the character. A string con-

You cannot move @data directly into DS and ES because the Intel instruction set does not
permit a constant to be moved directly to a segment register.

3.7 Chapter Summary 103

stant is a string of characters enclosed in either single or double quotation marks, possibly end-
ing with a Null character.

Assembly language has a list of reserved words, shown in Appendix D, that have special
meanings and can only be used in their correct contexts. An identifier is a programmer-chosen
name that can identify a variable, a symbolic constant, a procedure, or a code label. It cannot be
a reserved word.

A directive is a command that is recognized and acted upon by the assembler as the program's
source code is assembled. An instruction is a statement that is executed by the processor at runt-
ime. An instruction mnemonic is a short assembler keyword that identifies the operation carried
out by an instruction. A label is an identifier that acts as a place-marker for either instructions or
data.

An assembly language instruction can have between zero and three operands, each of
which can be a register, memory operand, constant expression, or I/O port.

Programs contain logical segments named code, data, and stack. The code segment con-
tains executable instructions. The stack segment holds procedure parameters, local variables,
and return addresses. The data segment holds variables.

A source file is a text file containing assembly language statements. A listing file contains
a copy of the program's source code, suitable for printing, with line numbers, offset addresses,
translated machine code, and a symbol table. A map file contains information about a program’s
segments. A source file is created with a text editor. The assembler (MASM) is a program that
reads the source file, producing both object and listing files. The linker reads the object file and
produces an executable file. The latter can be executed by the operating system.

MASM recognizes intrinsic data types, each of which describes a set of values that can be
assigned to variables and expressions of the given type:

• BYTE and SBYTE define 8-bit variables.

• WORD and SWORD define 16-bit variables.

• DWORD and SDWORD define32-bit variables.

• QWORD and TBYTE define 8-byte and 10-byte variables, respectively.

• REAL4, REAL8, and REAL10 define 4-byte, 8-byte, and 10-byte real number variables,
respectively.

A data definition statement sets aside storage in memory for a variable and may optionally
assign a name to the variable. If multiple initializers are used in the same data definition, its label
refers only to the offset of the first byte. To create a string data definition, enclose a sequence of
characters in quotation marks. The DUP operator generates a repeated storage allocation, using a
constant expression as a counter. The current location counter operator ($) can be used in an
expression that calculates the number of bytes in an array.

104 Chapter 3 • Assembly Language Fundamentals

Intel processors store and retrieve data from memory using little endian order. This means
that the least significant byte of a variable is stored at the lowest memory address.

A symbolic constant (or symbol definition) is created by associating an identifier (a sym-
bol) with an integer or text expression. There are three directives that create symbolic constants:

• The equal-sign directive associates a symbol name with an integer expression.

• The EQU and TEXTEQU directives associate a symbolic name with either an integer
expression or some arbitrary text.

It is easy to switch between writing 32-bit Protected mode and 16-bit Real mode pro-
grams, if you keep in mind a few differences. The book is supplied with two link libraries con-
taining the same procedure names for both types of programs.

3.8 Programming Exercises

The following exercises can be done in either Protected mode or Real-address mode.

1. Subtracting Three Integers

Using the AddSub program from Section 3.2 as a reference, write a program that subtracts three
16-bit integers using only registers. Insert a call DumpRegs statement to display the register
values.

2. Data Definitions

Write a program that contains a definition of each data type listed in Section 3.4. Initialize each
variable to a value that is consistent with its data type.

3. Symbolic Integer Constants

Write a program that defines symbolic constants for all of the days of the week. Create an array
variable that uses the symbols as initializers.

4. Symbolic Text Constants

Write a program that defines symbolic names for several string literals (characters between
quotes). Use each symbolic name in a variable definition.

	Assembly Language Fundamentals
	3.1 Basic Elements of Assembly Language
	3.1.1 Integer Constants
	3.1.2 Integer Expressions
	Table�3–1� Arithmetic Operators.

	3.1.3 Real Number Constants
	3.1.4 Character Constants
	3.1.5 String Constants
	3.1.6 Reserved Words
	3.1.7 Identifiers
	3.1.8 Directives
	3.1.9 Instructions
	3.1.9.1 Label
	3.1.9.2 Instruction Mnemonic
	3.1.9.3 Operands
	3.1.9.4 Comments

	3.1.10 Section Review

	3.2 Example: Adding Three Integers
	3.2.1 Program Listing
	3.2.2 Program Output
	3.2.3 Program Description
	3.2.3.1 Alternative Version of AddSub

	3.2.4 Program Template
	3.2.5 Section Review

	3.3 Assembling, Linking, and Running Programs
	3.3.1 The Assemble-Link-Execute Cycle
	Figure�3–1� Assemble-Link-Execute Cycle.
	3.3.1.1 Listing File
	3.3.1.2 Files Created or Updated by the Linker

	3.3.2 Section Review

	3.4 Defining Data
	3.4.1 Intrinsic Data Types
	Table�3–2� Intrinsic Data Types.

	3.4.2 Data Definition Statement
	3.4.3 Defining BYTE and SBYTE Data
	3.4.3.1 Multiple Initializers
	3.4.3.2 Defining Strings
	3.4.3.3 Using the DUP Operator

	3.4.4 Defining WORD and SWORD Data
	3.4.5 Defining DWORD and SDWORD Data
	3.4.6 Defining QWORD Data
	3.4.7 Defining TBYTE Data
	3.4.8 Defining Real Number Data
	3.4.9 Little Endian Order
	3.4.10 Adding Variables to the AddSub Program
	3.4.11 Declaring Uninitialized Data
	3.4.12 Section Review

	3.5 Symbolic Constants
	3.5.1 Equal-Sign Directive
	3.5.2 Calculating the Sizes of Arrays and Strings
	3.5.3 EQU Directive
	3.5.4 TEXTEQU Directive
	3.5.5 Section Review

	3.6 Real-Address Mode Programming (Optional)
	3.6.1 Basic Changes
	3.6.1.1 The AddSub2 Program

	3.7 Chapter Summary
	3.8 Programming Exercises

