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Abstract

A number of recently proposed preconditioning techniques based on sparse approximate inverses are considered.
A description of the preconditioners is given, and the results of an experimental comparison performed on one
processor of a Cray C98 vector computer using sparse matrices from a variety of applications are presented.
A comparison with more standard preconditioning techniques, such as incomplete factorizations, is also included.
Robustness, convergence rates, and implementation issues are discussed. 1999 Elsevier Science B.V. and
IMACS. All rights reserved.
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1. Introduction

One of the most important problems in scientific computing is the development of efficient parallel
iterative solvers for large, sparse systems of linear equationsAx = b. Krylov subspace methods,
which require at each iteration matrix–vector products and a few vector operations (dot products,
vector updates), can be efficiently implemented on high-performance computers, but they necessitate
preconditioning in order to be effective. Many of the most popular general-purpose preconditioners, such
as those based on incomplete factorizations ofA, are fairly robust and result in good convergence rates,
but are highly sequential and it is difficult to implement them efficiently on parallel computers, especially
for unstructured problems. Thus, preconditioning is currently the main stumbling block precluding high
performance in the solution of large, sparse linear systems.
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Since the early days of vector and parallel processing, a great amount of work has been devoted to the
problem of extracting as much inherent parallelism as possible from the best serial preconditioners, such
as SSOR and incomplete factorization methods. As a result, good performance is possible for certain
classes of problems (e.g., highly structured matrices arising from the discretization of PDEs on regular
grids). On the other hand, it is still very difficult to solve general linear systems with an irregular sparsity
pattern efficiently on vector and parallel computers.

Another line of research consists in developing alternative preconditioning methods which have natural
parallelism. Among the first techniques of this type we mention polynomial preconditioners, which
are based on approximating the inverse of the coefficient matrixA with a low-degree polynomial in
the matrix. These methods have a long history (see, e.g., [20,24]), but came into vogue only after the
first vector processors had become available [38,58]. Polynomial preconditioners only require matrix–
vector products withA and therefore have excellent potential for parallelization, but they are not as
effective as incomplete factorization methods at reducing the number of iterations. With polynomial
preconditioning, the reduction in the number of iterations tends to be compensated by the additional
matrix–vector products to be performed at each iteration. More precisely, it was shown by Axelsson [4]
that the cost per iteration increases linearly with the numberm+1 of terms in the polynomial, whereas the
number of iterations decreases more slowly than O(1/(m+ 1)). Therefore, polynomial preconditioners
cannot be very effective, especially on serial and shared memory computers. For distributed memory
parallel machines they are slightly more attractive, due to the reduced number of dot products and matrix
accesses. Another attractive feature is that polynomial preconditioners require almost no additional
storage besides that needed for the coefficient matrixA and have very small set-up times. Also, they can
be used in a matrix-free context, and they are easily combined with other preconditioners. On the other
hand, polynomial preconditioners have serious difficulties handling the case of matrices with general
complex spectra (i.e., with eigenvalues on both sides of the imaginary axis). In summary, it is fair to
say that polynomial preconditioning is unlikely to yield a satisfactory solution to the problem of high-
performance preconditioning for general sparse matrices.

In recent years there has been a growing interest in yet another class of algebraic preconditioners—
sparse approximate inverses. These methods are based on approximating the inverse matrix directly,
as in polynomial preconditioning. However, with polynomial preconditioning the approximate inverse
is available only implicitly in the form of a polynomial in the coefficient matrixA; in contrast, with
sparse approximate inverse preconditioning a matrixM ≈ A−1 is explicitly computed and stored. The
preconditioning operation reduces to a matrix–vector product withM. Methods of this kind were first
proposed in the early 1970s (see [10,48]), but they received little attention, due to the lack of effective
strategies for automatically determining a good nonzero pattern for the sparse approximate inverse.
Several such strategies have recently been developed, thus spurring renewed interest in this class of
preconditioners.

While parallel processing has been the main motivation driving the development of approximate
inverse techniques, there has been at least one other influence. It is well known that incomplete
factorization techniques can fail on matrices which are strongly nonsymmetric and/or indefinite. The
failure is usually due to some form of instability, either in the incomplete factorization itself (zero or very
small pivots), or in the back substitution phase, or both; see [30]. Most approximate inverse techniques
are largely immune from these problems, and therefore constitute an important complement to more
standard preconditioning methods even on serial computers.
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We remark that approximate inverse techniques rely on the tacit assumption that for a given sparse
matrix A, it is possible to find a sparse matrixM which is a good approximation ofA−1. However,
this is not at all obvious, since the inverse of a sparse matrix is usually dense. More precisely, it can be
proved that the inverse of an irreducible sparse matrix is structurally dense. This means that for a given
irreducible sparsity pattern, it is always possible to assign numerical values to the nonzeros in such a way
that all entries of the inverse will be nonzero; see [40]. Nevertheless, it is often the case that many of the
entries in the inverse of a sparse matrix are small in absolute value, thus making the approximation of
A−1 with a sparse matrix possible. Recently, much research has been devoted to the difficult problem of
capturing the “important” entries ofA−1 automatically.

There exist currently several alternative proposals for constructing sparse approximate inverse
preconditioners, a few of which have been compared with standard incomplete factorization methods.
However, a direct comparison between different approximate inverse techniques on a broad range of
problems is still lacking. The present paper attempts to fill this gap. Our main contribution consists in a
systematic computational study aimed at assessing the effectiveness of the various methods for different
types of problems. While we refrain from ranking the various methods in some linear ordering, which
would make little sense in a subject like preconditioning for general sparse matrices, we are able to
draw some tentative conclusions about the various methods and to provide some guidelines for their
use. In addition, we compare the approximate inverse techniques with various incomplete factorization
strategies, showing that under appropriate circumstances approximate inverse preconditioning can indeed
be superior to more established methods.

The paper is organized as follows. In Section 2 we give an overview of sparse approximate inverse
techniques. In Section 3 we provide some information on how these techniques were implemented for
our experiments. The results of numerical experiments, carried out on a Cray C98 vector computer, are
presented and discussed in Section 4. The main results of this study are summarized in Section 5. An
extensive list of references completes the paper.

2. Overview of approximate inverse methods

In this section we give an overview of approximate inverse techniques and some of their features.
Because the emphasis is on the practical use of these methods, we do not give a detailed description
of their theoretical properties, for which the interested reader is referred to the original papers. See
also the overviews in [5,29,71]. It is convenient to group the different methods into three categories.
First, we consider approximate inverse methods based on Frobenius norm minimization. Second, we
describe factorized sparse approximate inverses. Finally, we consider preconditioning methods which
consist of an incomplete factorization followed by an approximate inversion of the incomplete factors.
The approximate inversion can be achieved in many ways, each leading to a different preconditioner.
Throughout this section we shall be concerned with linear systems of the formAx = b whereA is a real
n× n matrix andb is a given realn-vector. The extension to the complex case is straightforward.

2.1. Methods based on Frobenius norm minimization

We begin with this class of approximate inverse techniques because they were historically the first to be
proposed, and because they are among the best known approximate inverse methods. Also, the methods
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in this subsection have the highest potential for parallelism. The basic idea is to compute a sparse matrix
M ≈A−1 as the solution of the following constrained minimization problem:

min
M∈S
‖I −AM‖F ,

whereS is a set of sparse matrices and‖ · ‖F denotes the Frobenius norm of a matrix. Since

‖I −AM‖2F =
n∑
j=1

‖ej −Amj‖22,

where ej denotes thej th column of the identity matrix, the computation ofM reduces to solving
n independent linear least squares problems, subject to sparsity constraints. This approach was first
proposed by Benson [10]. Other early papers include [11,12], and [48].

Notice that the above approach produces a right approximate inverse. A left approximate inverse can
be computed by solving a constrained minimization problem for‖I −MA‖F = ‖I − ATMT‖F . This
amounts to computing a right approximate inverse forAT, and taking the transpose of the resulting
matrix. In the case of nonsymmetric matrices, the distinction between left and right approximate inverses
can be important. Indeed, there are situations where it is difficult to compute a good right approximate
inverse, but it is easy to find a good left approximate inverse. Furthermore, whenA is nonsymmetric and
ill-conditioned, a matrixM ≈A−1 may be a poor right approximate inverse, but a good left approximate
inverse; see [65,66]. In the following discussion, we shall assume that a right approximate inverse is
being computed.

In early papers, the constraint setS , consisting of matrices with a given sparsity pattern, was
prescribed at the outset. OnceS is given, the computation ofM is straightforward, and it is possible
to implement such computation efficiently on a parallel computer. In a distributed memory environment,
the coefficient matrixA can be distributed among the processors before the computation begins, and the
construction ofM is a local process which can be done with little communication among processors
(such communication could be completely eliminated at the price of duplicating some of the columns
of A).

When the sparsity pattern is fixed in advance, the construction of the preconditioner can be
accomplished as follows. The nonzero pattern is a subsetG ⊆ {(i, j) | 16 i, j 6 n} such thatmij = 0
if (i, j) /∈ G. Thus, the constraint setS is simply the set of all realn× n matrices with nonzero pattern
contained inG. Denote bymj the j th column ofM (1 6 j 6 n). For a fixedj , consider the set
J = {i | (i, j) ∈ G}, which specifies the nonzero pattern ofmj . Clearly, the only columns ofA that enter
the definition ofmj are those whose index is inJ . LetA(:,J ) be the submatrix ofA formed from such
columns, and letI be the set of indices of nonzero rows ofA(:,J ). Then we can restrict our attention to
the matrixÂ=A(I,J ), to the unknown vector̂mj =mj(J ) and to the right-hand sidêej = ej (I). The
nonzero entries inmj can be computed by solving the (small) unconstrained least squares problem∥∥êj − Âm̂j∥∥2=min.

This least squares problem can be solved, for instance, by means of the QR factorization ofÂ. Clearly,
each columnmj can be computed, at least in principle, independently of the other columns ofM. Note
that due to the sparsity ofA, the submatrixÂ will contain only a few nonzero rows and columns, so each
least squares problem has small size and can be solved efficiently by dense matrix techniques.

The role of the constraint setS is to preserve sparsity by somehow filtering out those entries ofA−1

which contribute little to the quality of the preconditioner. For instance, one might want to ignore those
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entries that are small in absolute value, while retaining the large ones.3 Unfortunately, for a general
sparse matrix it is not usually known where the large entries of the inverse are located, and this makes
the a priori choice of a nonzero sparsity pattern for the approximate inverse very difficult. A possible
exception is the case whereA is a banded symmetric positive definite (SPD) matrix. In this case, the
entries ofA−1 are bounded in an exponentially decaying manner along each row or column; see [36].
Specifically, there exist 0<ρ < 1 and a constantC such that for alli, j∣∣(A−1)

ij

∣∣6 Cρ|i−j |.
The numbersρ andC depend on the bandwidth and on the spectral condition number ofA. For matrices
having a large bandwidth and/or a high condition number,C can be very large andρ very close to one,
so that the decay could actually be so slow to be virtually imperceptible. On the other hand, if the entries
of A−1 can be shown to decay rapidly, then a bandedM would be a good approximation toA−1. In this
case,S would just be the set of matrices with a prescribed bandwidth.

For matrices with a general sparsity pattern, the situation is far more difficult. A common choice
is to chooseS to be the set of matrices with the same sparsity structure as the coefficient matrixA.
This choice is motivated by the empirical observation that entries in the inverse of a sparse matrix
A = (aij ) which are located at positions(i, j) for which aij 6= 0 tend to be relatively large. However,
this simple approach is not robust for general sparse problems, as there may be large entries of
A−1 in positions outside the nonzero pattern ofA. Another common approach consists in taking the
sparsity pattern of the approximate inverse to be that ofAk wherek is a positive integer,k > 2. This
approach can be justified in terms of the Neumann series expansion ofA−1. While the approximate
inverses corresponding to higher powers ofA are often better than the one corresponding tok =
1, there is still no guarantee that they will result in satisfactory preconditioners. Furthermore, the
costs for computing, storing and applying the preconditioner grow rapidly withk. Slightly more
sophisticated strategies have been recently examined by Huckle [57], but more evidence is needed
before these techniques can be considered effective. We mention here that some simple heuristics for
prescribing a sparsity pattern have been successfully used for constructing sparse approximate inverse
preconditioners for dense linear systems arising in the numerical solution of integral equations [1,
60].

Because for general sparse matrices it is difficult to prescribe a good nonzero pattern forM, several
authors have developed adaptive strategies which start with a simple initial guess (for example, a diagonal
matrix) and successively augment this pattern until a criterion of the type‖ej −Amj‖2 < ε is satisfied
for a givenε > 0 (for eachj ), or a maximum number of nonzeros inmj has been reached. Such an
approach was first proposed by Cosgrove et al. [33]. Slightly different strategies were also considered by
Grote and Huckle [54] and by Gould and Scott [52].

The most successful of these approaches is the one proposed by Grote and Huckle, hereafter referred
to as the SPAI preconditioner [54]. The algorithm runs as follows.

Algorithm 1. SPAI algorithm
For every columnmj of M:
(1) Choose an initial sparsityJ .

3 Note, however, that there is no guarantee that this will result in a good preconditioner; see [7].
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(2) Determine the row indicesI of the corresponding nonzero entries and the QR decomposition of
Â = A(I,J ). Then compute the solution̂mj of the least squares problem‖êj − Âm̂j‖2 =min
and its residualr = êj − Âm̂j .

While ‖r‖2> ε:
(3) SetL equal to the set of indices̀for which r(`) 6= 0.
(4) SetJ̃ equal to the set of all new column indices ofA that appear in allL rows but not inJ .
(5) For eachk ∈ J̃ compute the normρk of the new residual via the formula

ρ2
k = ‖r‖22− (rTAek)

2/‖Aek‖22
and delete fromJ̃ all but the most profitable indices.

(6) Determine the new indices̃I and update the QR factorization of the submatrixA(I ∪ Ĩ,J ∪ J̃ ).
Then solve the new least squares problem, compute the new residualr = ej − Amj , and set
I = I ∪ Ĩ andJ =J ∪ J̃ .

This algorithm requires the user to provide an initial sparsity pattern, and several parameters. These
parameters are: the toleranceε on the residuals, the maximum number of new nonzero entries actually
retained at each iteration (that is, how many of the most profitable indices are kept at step (5)), and also
the maximum number of iterations for the loop (3)–(6). The latter two parameters together determine
the maximum number of nonzeros allowed in each column of the approximate inverse. More detailed
information on the implementation of this algorithm is given in Section 3.

As we shall see, the serial cost of computing the SPAI preconditioner can be very high, and the
storage requirements rather stringent. In an attempt to alleviate these problems, Chow and Saad [27]
proposed to use a few steps of an iterative method to reduce the residuals corresponding to each column
of the approximate inverse. In other words, starting from a sparse initial guess, then independent linear
subproblems

Amj = ej , j = 1,2, . . . , n,

are approximately solved with a few steps of a minimal residual-type method. For a small number of
iterations, the approximate inverse columnsmj will remain sparse; elements that contribute little to the
quality of the preconditioner can be removed. Simple dropping based on a drop tolerance is known to
give poor results; a more effective strategy for removing the less profitable nonzeros is described in [27].

The basic algorithm, taken from [27], is called the Minimal Residual (MR) algorithm and runs as
follows.

Algorithm 2. MR algorithm
(1) Choose an initial guessM =M0= [m1,m2, . . . ,mn].
(2) For each columnmj , j = 1,2, . . . , n, do
(3) Fori = 1,2, . . . , ni do
(4) rj = ej −Amj
(5) αj = rT

j Arj /((Arj )
T(Arj ))

(6) mj =mj + αj rj
(7) Apply numerical dropping tomj
(8) End do
(9) End do
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Hereni denotes the number of iterations. At each step, this algorithm computes the current residual
rj and then performs a one-dimensional minimization of the residual norm‖ej −Amj‖2 in the direction
rj with respect toα. In Algorithm 2, dropping is performed inmj after the update, but other options
are possible; see [27]. For efficiency, it is imperative that all the matrix–vector products, saxpy, and
dot product kernels be performed in sparse–sparse mode. Besides the number of iterationsni and the
dropping criterion, the user is required to supply an upper bound on the number of nonzeros to be retained
in each column ofM. Another user-defined parameter is the initial guessM0. Possible choices areM0= 0
or else a multiple of the identity matrix,M0= αI , whereα is chosen so as to minimize‖I − αA‖F . In
some cases it may be useful to letM0 be a multiple ofAT; see [27].

The iterative solution of the linear systemsAmj = ej could be improved by the use of a preconditioner.
A natural idea is to use the already computed columns to precondition each linear system. This is referred
to asself-preconditioningin [27]. There are at least two ways to perform self-preconditioning. The first
is to run Algorithm 2 for a given numberni of “inner” steps, then use the resulting approximate inverse
M as a preconditioner for another sweep ofni iterations, updateM, and repeat this for a given number
no of “outer” iterations. The preconditionerM is not updated until a whole sweep of all the columns
has been completed. This is similar in spirit to the Jacobi iteration. The second way is to update thej th
column ofM right away, similar to a Gauss–Seidel iteration. Sometimes the second strategy results in
a better approximate inverse, but this is not always the case, and, furthermore, the construction of the
approximate inverse looses its inherent parallelism. As suggested in [27], a reasonable compromise is to
process blocks of columns simultaneously, i.e., in a block Gauss–Seidel fashion.

Algorithm 3 below implements the MR iteration with self-preconditioning.

Algorithm 3. Self-preconditioned MR algorithm
(1) Choose an initial guessM =M0= [m1,m2, . . . ,mn].
(2) Fori = 1,2, . . . , no do
(3) For each columnmj , j = 1,2, . . . , n, do
(4) Let s =mj
(5) Fori = 1,2, . . . , ni do
(6) r = ej −As
(7) z=Mr
(8) q =Az
(9) αj = rTq/(qTq)

(10) s = s + αjz
(11) Apply numerical dropping tos
(12) End do
(13) Updatej th column ofM: mj = s
(14) End do
(15) End do

Notice that the user is required to provide the following parameters: the initial guessM0, the number
of inner and outer iterationsni andno, the dropping criterion, and the bound on the number of nonzeros
allowed in each column ofM.

Because of the high number of user-defined parameters needed in input, the SPAI and MR algorithms
are not easy to use, especially in an automated setting. Another drawback is that it is generally not
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possible to ensure the nonsingularity ofM, although in practice it is unlikely that an approximate
inverse computed with these algorithms will be exactly singular. A more serious limitation of this type of
preconditioners is that they cannot be used with the conjugate gradient method to solve SPD problems,
since in generalM will neither be symmetric nor positive definite, even ifA is. Furthermore, the serial
cost of MR is still relatively high, especially when self-preconditioning is used. Finally, because of the
adaptive and irregular nature of the computations, the parallelism inherent in the construction of these
preconditioners is not easily exploited in practice.

On the positive side, these methods have a good deal of flexibility. For instance, one can attempt to
improve their quality simply by rerunning Algorithms 1–3 withM as an initial guess. This is especially
true of the MR preconditioners, for which the only storage needed is that forM. Additional advantages
of these approaches are their possible use to improve a given preconditioner and, for the MR methods,
the fact that the coefficient matrixA is needed only in the form of matrix–vector products, which can be
advantageous in some cases [27]. Also, MR may be used with iterative methods which can accommodate
variations in the preconditioner, like FGMRES [71].

Another issue that deserves to be mentioned is the sensitivity of these preconditioners to reorderings. It
is well known that incomplete factorization preconditioners are very sensitive to reorderings; see [16,43].
On the other hand, the SPAI and MR preconditioners are scarcely sensitive to reorderings. This is, at the
same time, good and bad. The advantage is thatA can be partitioned and reordered in whichever way is
more convenient in practice, for instance to better suite the needs of a distributed implementation (e.g.,
load balancing) without having to worry about the impact on the convergence rate. The disadvantage is
that reorderings cannot be used to reduce fill-in and/or improve the quality of the approximate inverse. For
instance, ifA−1 has no small entries, methods like SPAI will face serious difficulties, and no permutation
of A will change this, since the inverse of a permutation ofA is just a permutation ofA−1. This is not the
case for the preconditioners described in the next two subsections.

Practical experience has shown that SPAI and MR preconditioners can solve very hard problems for
which more standard techniques, like ILU, fail (see, e.g., [70]). In this sense, they provide a useful
complement to more established techniques. Furthermore, these methods are potentially very useful for
solving large problems on distributed memory machines, since bothA andM can be distributed across
the memories local to processors. Summarizing, in spite of some disadvantages, the techniques discussed
in this section have several attractive features, and deserve serious consideration.

2.2. Factorized sparse approximate inverses

In this subsection we consider preconditioners based on incomplete inverse factorizations, that is,
on incomplete factorizations ofA−1. If A admits the factorizationA = LDU whereL is unit lower
triangular,4 D is diagonal, andU is unit upper triangular, thenA−1 can be factorized asA−1 =
U−1D−1L−1 = ZD−1WT whereZ = U−1 andW = L−T are unit upper triangular matrices. Note that
in general, the inverse factorsZ andW will be rather dense. For instance, ifA is an irreducible band
matrix, they will be completely filled above the main diagonal. Factorized sparse approximate inverse
preconditioners can be constructed by computing sparse approximationsZ ≈ Z andW ≈ W . The
factorized approximate inverse is then

M =ZD−1
W

T ≈A−1,

4 A unit triangular matrix is a triangular matrix with ones on the diagonal.
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whereD is a nonsingular diagonal matrix,D ≈D.
There are several approaches available for computing approximate inverse factors of a nonsingular

matrixA. A first class of methods, described in this subsection, does not require any information about
the triangular factors ofA: the factorized approximate inverse preconditioner is constructed directly from
A. Methods in this class include the FSAI preconditioner introduced by Kolotilina and Yeremin [61],
a related method due to Kaporin [59], incomplete (bi)conjugation schemes [15,18], and bordering
strategies [71]. Another class of methods first compute an incomplete triangular factorization ofA

using standard techniques, and then obtain a factorized sparse approximate inverse by computing sparse
approximations to the inverses of the incomplete triangular factors ofA. We shall discuss such two-stage
methods in the next subsection.

The FSAI method, proposed by Kolotilina and Yeremin [61], can be briefly described as follows.
Assume thatA is SPD, and letSL be a prescribed lower triangular sparsity pattern which includes the
main diagonal. Then a lower triangular matrix̂GL is computed by solving the matrix equation(

AĜL

)
ij
= δij , (i, j) ∈ SL.

Here ĜL is computed by columns: each column requires the solution of a small “local” SPD linear
system, the size of which is equal to the number of nonzeros allowed in that column. The diagonal
entries ofĜL are all positive. DefinêD = (diag(ĜL))

−1 andGL = D̂1/2ĜL, then the preconditioned
matrixGLAG

T
L is SPD and has diagonal entries all equal to 1. A common choice for the sparsity pattern

is to allow nonzeros inGL only in positions corresponding to nonzeros in the lower triangular part ofA.
A slightly more sophisticated (but also more costly) choice is to consider the sparsity pattern of the lower
triangle ofAk wherek is a small positive integer, e.g.,k = 2 or k = 3; see [59].

The approximate inverse factor computed by the FSAI method can be shown to minimize‖I −XL‖F
whereL is the Cholesky factor ofA, subject to the sparsity constraintX ∈ SL. Note, however, that it
is not necessary to knowL in order to computeGL. The matrixGL also minimizes, w.r.t.X ∈ SL, the
Kaporin condition number ofXAXT:

1

n
tr
(
XAXT)/det

(
XAXT)1/n,

wheren is the problem size and tr(B) denotes the trace of matrixB; see [59].
The extension of FSAI to the nonsymmetric case is straightforward; however, the solvability of the

local linear systems and the nonsingularity of the approximate inverse is no longer guaranteed unless
all leading principal minors ofA are nonzero, and some kind of safeguarding may be required. The
FSAI preconditioner can be efficiently implemented in parallel, and has been successfully applied to
the solution of difficult problems in the finite element analysis of structures; see [45,62]. Its main
disadvantage is the need to prescribe the sparsity pattern of the approximate inverse factors in advance.
Using the sparsity pattern of the lower triangular part ofA is a simple solution, but it is often ineffective
when solving general sparse problems; see the results in Section 4.2. Different choices of the sparsity
pattern for SPD matrices arising in finite element analyses are described in [62]; see also the experiments
in [82].

Another method of computing a factorized approximate inverse is the one based on incomplete
(bi)conjugation, first proposed in [13]. This approach, hereafter referred to as the AINV method, is
described in detail in [15] and [18]. The AINV method does not require that the sparsity pattern be
known in advance, and is applicable to matrices with general sparsity patterns. The construction of the
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AINV preconditioner is based on an algorithm which computes two sets of vectors{zi}ni=1, {wi}ni=1,
which areA-biconjugate, i.e., such thatwT

i Azj = 0 if and only if i 6= j . Given a nonsingular matrix
A ∈ Rn×n, there is a close relationship between the problem of invertingA and that of computing two
sets ofA-biconjugate vectors{zi}ni=1 and{wi}ni=1. If

Z = [z1, z2, . . . , zn]
is the matrix whoseith column iszi and

W = [w1, w2, . . . ,wn]
is the matrix whoseith column iswi , then

WTAZ =D =


p1 0 . . . 0
0 p2 . . . 0
...

...
. . .

...

0 0 . . . pn

 ,
wherepi =wT

i Azi 6= 0. It follows thatW andZ are necessarily nonsingular and

A−1=ZD−1WT =
n∑
i=1

ziw
T
i

pi
.

Hence, the inverse ofA is known if two complete sets ofA-biconjugate vectors are known. Note that
there are infinitely many such sets. MatricesW andZ whose columns areA-biconjugate can be explicitly
computed by means of a biconjugation process applied to the columns of any two nonsingular matrices
W(0),Z(0) ∈ Rn×n. A computationally convenient choice is to letW(0) = Z(0) = I : the biconjugation
process is applied to the unit basis vectors. In order to describe the procedure, letaT

i andcT
i denote the

ith row ofA andAT, respectively (i.e.,ci is theith column ofA). The basicA-biconjugation procedure
can be written as follows.

Algorithm 4. Biconjugation algorithm
(1) Letw(0)i = z(0)i = ei (16 i 6 n).
(2) Fori = 1,2, . . . , n do
(3) Forj = i, i + 1, . . . , n do
(4) p

(i−1)
j := aT

i z
(i−1)
j ; q(i−1)

j := cT
i w

(i−1)
j

(5) End do
(6) If i = n go to (11)
(7) Forj = i + 1, . . . , n do
(8) z

(i)
j := z(i−1)

j − (p(i−1)
j /p

(i−1)
i )z

(i−1)
i ; w(i)j :=w(i−1)

j − (q(i−1)
j /q

(i−1)
i )w

(i−1)
i

(9) End do
(10) End do
(11) Letzi := z(i−1)

i , wi :=w(i−1)
i andpi := p(i−1)

i , for 16 i 6 n. Return
Z = [z1, z2, . . . , zn],W = [w1, w2, . . . ,wn] andD = diag(p1,p2, . . . , pn).

This algorithm can be interpreted as a (two-sided) generalized Gram–Schmidt orthogonalization
process with respect to the bilinear form associated withA. Some references on this kind of algorithm
are [21,31,46,47]. IfA is SPD, only the process forZ need to be carried out (since in this caseW =Z),
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and the algorithm is just a conjugate Gram–Schmidt process, i.e., orthogonalization of the unit vectors
with respect to the “energy” inner product〈x, y〉 := xTAy.

It is easy to see that, in exact arithmetic, the above process can be completed without divisions by
zero if and only if all the leading principal minors ofA are nonzeros or, equivalently, if and only ifA
has an LU factorization [18]. In this case, ifA=LDU is the decomposition ofA as a product of a unit
lower triangular matrixL, a diagonal matrixD, and a unit upper triangular matrixU , it is easily checked
thatZ = U−1 andW = L−T (D being exactly the same matrix in both factorizations). Because of the
initialization chosen (step (1) in Algorithm 4), thez- andw-vectors are initially very sparse; however,
the updates in step (8) cause them to fill-in rapidly. See [18] for a graph-theoretical characterization
of fill-in in Algorithm 4. Sparsity in the inverse factors is preserved by carrying out the biconjugation
process incompletely, similar to ILU-type methods. Incompleteness can be enforced either on the basis
of position, allowing the vectorszi andwi to have nonzero entries only in prescribed locations, or
on the basis of a drop tolerance, whereby new fill-ins are removed if their magnitude is less than a
prescribed thresholdTol> 0. Unsurprisingly, the second strategy is much more robust and effective,
particularly for unstructured problems. Because of incompleteness, the question arises of whether the
preconditioner construction can be performed without breakdowns (divisions by zero): in [15] it is proved
that a sufficient condition is thatA be an H-matrix, similar to ILU [63,64]. In the general case, diagonal
modifications may be necessary.

A third approach that can be used to compute a factorized sparse approximate inverse preconditioner
directly from the input matrixA is the one based on bordering. Actually, several schemes are possible.
The method we describe here is a modification of one first proposed by Saad in [71, p. 308]. LetAk
denote the principal leadingk× k submatrix ofA. Consider the following bordering scheme:(

WT
k 0

wT
k 1

)(
Ak vk
yT
k αk+1

)(
Zk zk
0 1

)
=
(
Dk 0
0 δk+1

)
,

wherezk =−ZkD−1
k W

T
k vk ,wk =−WkD

−1
k Z

T
k yk andδk+1= αk+1+wT

k Akzk+yT
k zk+wT

k vk.HereWk,Zk
are unit upper triangular matrices of orderk,wk , vk , yk andzk arek-vectors andαk+1 andδk+1 are scalars,
with αk+1≡ ak+1,k+1. Starting fromk = 1, this scheme suggests an obvious algorithm for computing the
inverse factors ofA (assumingA has an LU factorization). When this scheme is carried out incompletely,
an approximate factorization ofA−1 is obtained. Sparsity can be preserved by dropping elements in the
vectorswk andzk after they are computed, for instance by means of a drop tolerance, as in the AINV
process. The resulting factorized sparse approximate inverse preconditioner will be referred to as AIB,
for Approximate Inverse via Bordering. Besides a matrix–vector product withAk , the construction of the
AIB preconditioner requires four sparse matrix–vector products involvingWk , Zk and their transposes at
each stepk, which account for most of the work. It is important that these operations be performed in
sparse–sparse mode.

Note that the computations for the inverse factorsZ andW are tightly coupled, in contrast to the
biconjugation Algorithm 4, where the two factors can be computed independently. As usual, ifA is
symmetric,W =Z and work is halved. Furthermore, ifA is SPD, then it can be shown [71] that, in exact
arithmetic,δk > 0 for all k. Therefore, the AIB preconditioner is always well-defined in the SPD case. In
the general case, diagonal modifications may be required in order to complete the process.

Factorized sparse approximate inverses are free from some of the problems that limit the effectiveness
of other approaches. Unlike the methods described in the previous subsection, they can be used as
preconditioners for the conjugate gradient method for solving SPD problems. Indeed, ifA is SPD, then
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Z =W and the preconditionerM =ZD−1
Z

T
is SPD as long as the diagonal entries ofD are all positive.

It is also clear that the nonsingularity ofM is trivial to check whenM is expressed in factorized form.
Following [26] (and contrary to what stated in [23, p. 109]), it can be argued that factorized forms provide
better approximations toA−1, for the same amount of storage, than nonfactorized ones, because they can
express denser matrices than the total number of nonzeros in their factors. As our experiments show,
this intuitive observation almost always translates in better convergence rates for the same number of
nonzeros. In addition, factorized forms are less expensive to compute, and in most cases they require
less user-defined parameters than the techniques in the previous subsection. Finally, factorized forms are
sensitive to reorderings of the coefficient matrix, a fact which can be exploited to reduce fill-in in the
inverse factors and/or to improve the rate of convergence; see [18,19,22].

On the other hand, factorized forms have problems of their own. Being incomplete (inverse)
factorization methods, they can fail due to breakdowns during the incomplete factorization process, like
ILU. While diagonal shifts [63] or diagonal compensation strategies [6] can be used to safeguard the
computation, there is no guarantee that the resulting preconditioner will be effective, especially when
large and/or numerous shifts are needed. The FSAI method requires to prescribe the nonzero structure
of the factors in advance, which makes it difficult to use on problems with general sparsity patterns.
Other methods, like AINV, offer limited opportunity for parallelization of the preconditioner construction
phase. In its current formulation, AINV appears to be difficult to implement on distributed memory
machines. Also, the parallelism in the application of factorized approximate inverses is somewhat less
than that for nonfactorized forms, since it is now necessary to perform two matrix–vector multiplies with
the factors, in sequence.

2.3. Inverse ILU techniques

Several authors have proposed to construct factorized sparse approximate inverse preconditioners
based on the following two-stage process: first an incomplete LU factorizationA ≈ LU is computed
using standard techniques, and then the incomplete factorsL andU are approximately inverted; see [2,34,
75,76,80]. There are various possibilities for computing approximate inverses ofL andU , each leading
to a different preconditioner. Here we give only a very brief description, referring the interested reader to
the original papers for more information (see also Section 3.3).

Assuming that incomplete factorsL andU are available, approximate inverse factors can be computed
by inexactly solving the 2n triangular linear systems

Lxi = ei, Uyi = ei (16 i 6 n).
Notice that these linear systems can all be solved independently; hence, a good deal of parallelism is
available, at least in principle. The linear systems are solved approximately to reduce costs and, of course,
because sparsity must be preserved in the columns of the approximate inverse factors.

One possibility is to prescribe sparsity patternsSL andSU for the approximate inverses ofL andU .
Sparse approximations can then be computed using a Frobenius norm-type approach. In alternative, the
adaptive SPAI method could be used to approximately invertL andU , without the need to prescribe the
sparsity patterns. Some tests were conducted in [80], where it was concluded that this approach is not
recommended.

A better approach consists in solving the 2n triangular systems for the columns ofL
−1

andU
−1

by
forward and back substitution, respectively. Sparsity is preserved by dropping in the solution vectors,
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either on the basis of position (more generally, using a level-of-fill scheme) or on the basis of a drop
tolerance. Several such schemes have been described in detail in [34,76,80]. Some authors have proposed
to drop inxi = L−1

ei andyi = U−1
ei once the exact solution has been computed, but a more practical

scheme is to drop during the substitution process, rather than after [80].
The preconditioners in this class share some of the advantages of factorized approximate inverse

methods, but suffer from certain disadvantages that the preconditioners described in the previous
subsections do not have. These disadvantages all stem from the assumption that an ILU factorization has
already been computed. This implies that these methods are not even applicable if an ILU factorization
does not exist, or if it is unstable, as is sometimes the case for highly nonsymmetric, indefinite
problems [30,44]. Clearly, this assumption also limits the parallel efficiency of this class of methods,
since the preconditioner construction phase is not entirely parallelizable (computing an ILU factorization
is a highly sequential process).

Another disadvantage is that the computation of the preconditioner involves two levels of incomplete-
ness, rather than just one, as is the case for the other approximate inverse methods considered in this
paper. For some problems this could lead to a significant degradation in the quality of the preconditioner.
Perhaps more importantly, the presence of two levels of incompleteness makes these methods difficult to
use in practice, owing to the necessity to choose a large number of user-defined parameters. For instance,
if an ILUT-like dual threshold approach is used [69], then the user is required to choose the values of
four parameters, two for the ILUT factorization and other two for the approximate inversion of the ILUT
factors. Notice that the values of the parameters will generally be very different for the two phases, in
particular the drop tolerance is typically much larger in the approximate inverse phase than in the ILUT
phase. In our experience, inverse ILU methods are much more difficult to use than the factorized precon-
ditioners described in Section 2.2.

We conclude this overview of approximate inverse preconditioners with a brief discussion of inverse
ILU methods based on truncated Neumann expansions. Strictly speaking, these are not approximate
inverse methods; rather, they can be regarded as a hybrid of ILU and polynomial preconditioning
techniques. However, they are similar to the other methods in this subsection in that they are based
on an ILU factorization in which the incomplete factors are inverted inexactly by applying some kind of
truncation. In particular, the forward and back substitutions are replaced by matrix–vector products with
sparse triangular matrices. This idea goes back to van der Vorst [78], and has been recently applied to
the SSOR preconditioner, which can be seen as a kind of incomplete factorization, by Gustafsson and
Lindskog [55]. The truncated Neumann SSOR preconditioner for a symmetric matrixA is defined as
follows. LetA=E+D+ET be the splitting ofA into its strictly lower triangular, diagonal, and strictly
upper triangular part. Consider the SSOR preconditioner

M = (ω−1D+E)(ω−1D
)−1(

ω−1D+ET),
where 0<ω< 2 is a relaxation parameter. LetL= ωED−1 andD̂ = ω−1D, then

M = (I +L)D̂(I +L)T

so that

M−1= (I +L)−TD̂−1(I +L)−1.
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Notice that

(I +L)−1=
n−1∑
k=0

(−1)kLk.

For some matrices, i.e., diagonally dominant ones,‖Lk‖ decreases rapidly ask increases, and the sum
can be approximated with a polynomial of low degree (say, 1 or 2) inL. For example, to first order,

G= (I −LT)D̂−1(I −L)≈M−1≈A−1

can be regarded as a factorized sparse approximate inverse ofA.
Because the SSOR preconditioner does not require any actual computation (except possibly for the

estimation ofω), this is a virtually free preconditioner. It is also very easy to implement. On the
other hand, the effectiveness of this method is restricted to problems for which the standard SSOR
preconditioner works well, and this is not a very general class of problems. Furthermore, truncation
of the Neumann expansion to a polynomial of low degree may result in a serious degradation of the
rate of convergence, particularly for problems which are far from being diagonally dominant. The idea
of truncated Neumann expansions can be also applied to incomplete Cholesky and, more generally,
incomplete LU factorization preconditioning. While this approach seems to be somewhat more robust
than the one based on SSOR, all the caveats concerning the drawbacks of inverse ILU methods apply.

3. Notes on implementation

This section is devoted to practicalities concerning the implementation of the preconditioners
considered in this paper. Our main goal here is to give an idea of the programming effort,
storage requirements, and type of data structures needed for implementing each algorithm. These are
important aspects that should be taken into account when comparing different methods. Although our
implementation was written for a uniprocessor, we also comment on certain aspects relevant for parallel
computation.

3.1. Implementation of Frobenius norm-based methods

We begin with the SPAI preconditioner (Algorithm 1). Our implementation is as close as possible
to the description of the algorithm given in [54]. Input data structures include the original matrixA

stored by columns (that is,A is stored in CSC, or Harwell–Boeing format) and the matrix structure
stored by rows. This means that in all we store five arrays: the arrayval of numerical values, and the
arrays of integersrowind, colptr, colind androwptr (see [9, Section 4.3]). Explicit storage
of the additional row information contained in the vectorscolind androwptr is necessary in order
to efficiently perform searches on the submatricesÂ determined by sets of row and column indices. In
step (1) of Algorithm 1 we used a diagonal sparsity pattern as the initial guess. The SPAI algorithm needs
to solve a set of dense least squares problems in each of then outer steps required to compute individual
columns of the preconditioner. These calculations are based on incremental QR factorizations of dense
submatrices; thus, additional workspace is needed to store the factorsQ andR. We used LAPACK level 3
BLAS routines [3] for this task. Computed columns of the preconditionerM are stored in a static data
structure in CSC format.
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As noted in [54], a nice feature of SPAI is that the computation of each column of the preconditioner
can be regarded as an iterative process. If the iterative solver preconditioned with SPAI does not converge,
it is possible to improve the preconditioner by performing additional steps of Algorithm 1 on at least
some of the columns ofM, without having to recompute an approximate inverse from scratch. However,
there are two difficulties with this incremental approach. First, if the (dense) QR factors of the individual
submatrices are not stored, the recomputation will take a nontrivial time. Hence, the storage requirements
could be very stringent. Second, it is not clear that the columns corresponding to the largest least-squares
residuals should be precisely the ones to be recomputed (as was suggested in [54]), since in general it
is not clear what is the relation, if any, between the size of the least-squares residuals and the rate of
convergence of the preconditioned iteration.

The need to access the matrix structure both by rows and by columns in a dynamic and impredictable
way is the main reason why a parallel implementation of SPAI is nontrivial, especially in a distributed
memory environment. If we assume some initial distribution of the matrix among the processors, then
the processors which compute different columns need to communicate matrix elements during the course
of the computation. For a sophisticated solution to this problem using MPI, see [7,8].

Our implementation of Chow and Saad’s MR preconditioner (with or without self-preconditioning) is
based on the descriptions in [27]. The storage requirements for the basic MR technique (Algorithm 2)
are very limited. The input matrixA is stored by columns, and apart from some auxiliary vectors, no
additional workspace is needed. Recall that the key ingredient is the use of matrix–vector products
performed in sparse–sparse mode. These can be performed efficiently whenA is stored by columns.
In output, the preconditionerM is stored in a static data structure, also in CSC format. The initial guess
used was a scaled identity matrix,M0 = αI (usingM0 = αAT gave poorer results). This is consistent
with the initial guess in SPAI and also in AINV, where we start from the identity matrixI . Dropping
during the iterative MR process is based on the local strategy described in [27]. Elements in a candidate
column ofM are dropped after the update at each MR iteration. We did not apply dropping in the search
direction. In the candidate column of the approximate inverse we keep only those entries that give the
strongest estimated decrease of the column residual norm. The number of elements which are kept in each
candidate column after this dropping is bounded by an input parameterlfill , similarly to the dual threshold
strategy in the ILUT preconditioner. We did not use a drop tolerance to restrict the set of positions which
are tested for this decrease (as suggested in [27]) because we found that this causes a deterioration in the
quality of the preconditioner.

For the numerical experiments with the self-preconditioned MR iteration (Algorithm 3) we chose to
update the preconditioning matrix after each outer iteration. That is, we opted for a Jacobi-type approach
rather than for a Gauss–Seidel-type one. The reason is that we tried both strategies and, somewhat
surprisingly, we found that the former approach is more effective than the latter. The implementation
of self-preconditioned MR is more demanding in terms of storage, since at the end of each outer iteration
a new approximation of the preconditioner must be stored, requiring an additional space of the size of
the preconditioner.

To our knowledge, no parallel implementation of MR preconditioning has been developed yet. How-
ever, similar remarks as for SPAI apply concerning the computation of any of the MR preconditioners
in a parallel environment. The nonzero structure of each column of the approximate inverse changes dy-
namically in the course of the MR iteration, thus requiring interprocessor communication to perform the
sparse matrix–vector products. Again, the memory access patterns are not known in advance.
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3.2. Implementation of factorized approximate inverses

We discuss here the implementation of factorized approximate inverse techniques. These precondi-
tioners are applicable to symmetric and nonsymmetric problems as well. The symmetric codes require
roughly half the operations and space needed in the nonsymmetric case.

Computing the FSAI preconditioner with sparsity pattern equal to that ofA is very simple. For
extracting the dense submatrices we only needA, stored in a static data structure. The preconditioner
is computed in place and therefore is held in a static data structure as well. In addition, we need enough
workspace to hold the dense submatrix of maximal dimension arising during the computation of any
column of the preconditioner. Dense factorizations are based on level 3 BLAS routines from LAPACK.
Unlike the SPAI and MR preconditioners, which were applied only to nonsymmetric problems, the
FSAI preconditioner can also be used on SPD problems with the conjugate gradient method. Thus,
implementations of FSAI were developed both for symmetric and nonsymmetric problems.

The construction of the AINV preconditioner has many similarities with the computation of standard
incomplete Cholesky (IC) or ILU preconditioners, only slightly more complicated. This complication is
mostly caused by the more general rules governing the generation of fill-in. The input matrixA is stored
by rows. Note that even ifA is symmetric we store both its lower and upper triangular parts, since AINV
needs to perform dot products with the rows ofA, and we want this operation to be performed efficiently.
For very large problems, however, it may be undesirable or even impossible to store all ofA. In this case,
efficiency may be retained by a careful choice of the data structure holdingA; a possible solution has
been proposed in the LINSOL package [73].

If A is nonsymmetric, besidesA stored by rows, we storeA by columns, since in this case AINV
performs dot products also with the columns ofA. However, it should be kept in mind that the two
processes (the one forZ and the one forW ) are completely uncoupled, therefore it is not necessary to
haveA stored both by rows and by columns at the same time. On the other hand, on a computer with at
least two processors, whereZ andW can be computed concurrently, one may want to haveA stored both
by rows and columns. Notice that this is also the case for certain iterative methods (like Bi-CG or QMR)
which perform matrix–vector products with bothA andAT. An alternative might be to adopt the strategy
used in LINSOL, where a matrix–vector product of the formu=ATv is computed asuT = vTA: again, a
careful choice of data structures is required for efficient execution of this operation on vector and parallel
machines; see [73]. However, we have not tried this strategy within our codes.

The approximate inverse factorZ can be computed based on the right-looking Algorithm 4. Obviously,
the computation of the approximate inverse factorW , which is needed in the nonsymmetric case, is
identical to that ofZ, only with AT replacingA. With the right-looking process, fill-in at stepi of
Algorithm 4 is introduced into the submatrix formed by columnsi + 1, . . . , n of the upper triangular
matrix Z. Sparsity inZ is preserved by removing fill, either on the basis of position or on the basis
of value using a drop tolerance. If a sparsity pattern is prescribed, the computation is straightforward
and it can be carried out using static data structures only, as for FSAI. Indeed, the computation consists
exclusively of vector updates (saxpy’s) and dot products. For general sparse problems, however, this
approach is not recommended, due to the difficulty of guessing a good sparsity pattern. Experiments
performed using the same sparsity pattern as the coefficient matrixA indicated that this is not a robust
strategy. Numerical dropping based on a drop tolerance is far more effective, although more complicated
to implement. While structural predictions of fill-in could be used in principle to set up static working
data structures as in the case of Cholesky factorization, these predictions are often too pessimistic to be
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useful. Therefore,Z is stored by columns using dynamic data structures, similar to standard right-looking
implementations of sparse unsymmetric Gaussian elimination; see, e.g., [39,83]. Nonzero entries of each
column are stored consecutively as a segment of a larger workspace. During the AINV algorithm the
length of the individual segments grows as a result of new fill-in or, temporarily, shrinks due to dropping
of some entries. If a column segment needs more consecutive positions to store the new entries than
it has free space available around, it is moved to some other part of the workspace. The workspace
is periodically shrunk to decrease its fragmentation into small parts. This process is called agarbage
collection. The number of garbage collections is reduced if enoughelbow room, which is an additional
free space forZ, is provided. Providing sufficient elbow room can speed up the computation of the
preconditioner significantly, especially for problems with a relatively large fraction of nonzero entries.
For the larger test problems, elbow room was approximately two times the anticipated storage for the
preconditioner. To ensure efficiency of the right-looking approach, we use additional information about
the factors storing their structure also by rows. This row structure is needed to efficiently perform the
sparse vector updates in Algorithm 4. At stepi, the row structure information forZ is used and then
updated.

Similar to ILUT, it is possible to limit the number of nonzeros allowed in a column ofZ, so that the
storage requirements can be predicted. However, based on a limited number of experiments, we noticed
that this strategy is rather restrictive in some cases. The reason is that for some problems there are certain
columns ofZ (andW ), usually the last few, which contain a large proportion of nonnegligible entries.
As already observed in [15], the work in AINV is distributed over algorithmic steps less uniformly than
in the case of sparse Gaussian elimination. Hence, limiting the number of nonzeros to a same prescribed
small number for all columns ofZ may result in relatively poor preconditioner performance. This also
explains, at least in part, why preserving sparsity based on position does not work very well.

Before the AINV process, the coefficient matrixA and the right-hand sideb are rescaled by dividing
them by max16i,j6n |aij |. Thus, all matrix entries lie in the interval[−1,1]. This global scaling has no
effect on the spectral properties ofA, but it helps in the choice of the value for the drop tolerance,
typically a number 0< Tol< 1. In our experience,Tol= 0.1 is usually a good guess, producing in many
cases an approximate inverse with sparsity comparable to that ofA. For consistency, the same scaling
was used for all the preconditioners which use a drop tolerance. Another option available in our code is
the possibility of using a relative drop tolerance. The value ofTol can be dynamically adjusted at each
step, taking into account the size of the elements involved in the updates at that step. However, compared
to the simpler strategy based on a constant value ofTol, we did not see in our tests a significant difference
in the behavior of the preconditioner.

The AINV algorithm needs to be safeguarded against the risk of breakdowns or near-breakdowns.
Diagonal elementspi were modified (shifted) if they were found to be too small. Each time a diagonal
elementpi was found to be smaller than an approximate machine precision (10−15) in absolute value, we
changed its value to 10−1 for SPD problems, and to sgn(pi) · 10−1 for nonsymmetric ones. The choice
of the constant 10−1 was arbitrary; the results did not change significantly when other values were tried.
It should be mentioned that for the test matrices used in this paper, diagonal modifications were seldom
needed.

Concerning the implementation of the AIB preconditioner, it has already been noted that most of
the work in the algorithm is concentrated in the four matrix–vector products withZk , Wk and their
transposes. For efficiency, it is important that such products be computed in sparse matrix–sparse vector
mode. Therefore, a careful choice of data structures for the partial factors of the approximate inverse
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is needed. If a sparse matrix is stored by rows, matrix–vector products with it will necessarily require
a number of operations proportional to the number of nonzeros in the matrix. On the other hand, if
the matrix is stored by columns, the number of operations required for a sparse matrix–sparse vector
product will be proportional to the total number of nonzeros in the columns determined by the sparsity
structure of the vector. Therefore, an efficient implementation of the bordering scheme requires to store
the approximate inverse factors twice: by columns and by rows. Note that it could be possible to store the
numerical values of the factors only once. In this case, however, the number of operations for a matrix–
vector multiply with the matrix stored by rows and its structural pattern stored also by columns would
increase by a count proportional to the number of nonzeros in rows of the matrix determined by the
sparsity pattern of the resulting product. In some cases this strategy may significantly increase the time
for the preconditioner computation.

A dual threshold dropping strategy was used to preserve sparsity in the AIB preconditioner. Imposing
a bound on the number of nonzeros in columns of the approximate inverse factorsZ andW enables the
efficient construction of these factors throughout the algorithm. Consider the case ofZ. Once we have
computed a column ofZ containinglfill entries at most, we update the rows ofZ using the loose bound
of 2 · lfill on the number of entries in the updated rows. Not imposing a bound could result in a much
less efficient computation. Note that AINV does not need such restriction which, as we mentioned, can
sometimes result in a preconditioner of lesser quality. Diagonal elements are modified if considered too
small, according to the same rule as for the AINV algorithm. This safeguarding was also used for the
SPD case, since in inexact arithmetic breakdowns are possible.

3.3. Implementation of inverse ILU methods

In this subsection we provide some information on the implementation of preconditioners based on the
approximate inversion of some given IC or ILU factors. These factors may be obtained either by a level-
of-fill incomplete factorization ILU(k), or by a dual threshold (ILUT) approach, or by the equivalent
incomplete Cholesky factorizations in the SPD case. We omit the details of the implementations of these
factorizations, which are standard (see [71]).

We begin with an implementation based on the algorithms in [80]. It is sufficient to describe the
inverse IC/ILU process for a lower triangular matrixL. From the point of view of storage, besides that
for L we need some working vectors and static data structures to store, in output, the columns of the
approximate inverse factor. More specifically, to compute a sparse approximation to theith column of
L
−1

, it is necessary to have access to the submatrix comprising the lastn − i + 1 rows and columns
of L. To see this, it is sufficient to consider the back substitution for solvingLx = ei . This shows
that, while the columns of the approximate inverse ofL can in principle be computed independently,
a parallel distributed memory implementation of this approach would be nontrivial, due to the need of
taking into account communication and load balancing. Another drawback, of course, is the fact that an
ILU factorization must be previously computed, and this is a highly sequential task, in general.

First, a search of the structure of the columns ofL is performed. This search sequentially determines
which of those columns contribute to a given column ofL

−1
. Every time a column ofL is found which

updates theith column ofL
−1

, the structure of theith column ofL
−1

is recomputed to reflect the situation
after this update and then its numerical values are actually computed. The computation of each update
contributing to a given column ofL

−1
is therefore performed interleaving two phases, a symbolic and a
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numeric one. Sparsity in the columns of the inverse ofL can be preserved on the basis of position (more
generally, using a level-of-fill mechanism) or on the basis of value using drop tolerances. In all cases,
dropping is done after each update.

A somewhat different approach was used in [2,34]. There the dropping was performed after computing
the exact columns ofL

−1
. Although this strategy may result in more accurate preconditioners than the

previously described one, it is not a practical one. This can be seen, for instance, considering the case of
matrices with a band structure, for which the inverse triangular factorL

−1
is completely filled below the

main diagonal.

3.4. Further notes on implementations

In addition to the previously described algorithms, several other techniques were implemented,
including diagonal scaling, different versions of IC and ILU factorizations and, for SPD problems only, a
least-squares polynomial preconditioner with Jacobi weight function and parametersµ= 1

2, ν =−1
2. For

the latter, we estimated the end points of the spectrum using Gerschgorin circles, and Horner’s scheme
was used to compute the action of the polynomial preconditioner on a vector; see [67,71] for details.
Horner’s scheme was also used with the truncated Neumann expansion methods.

Because all the test matrices used in this study have a zero-free diagonal, the simple preconditioner
based on diagonal scaling is always well-defined. The reciprocals of the diagonal entries are computed
and stored in a vector before the iteration begins; applying the preconditioner requiresn multiplications
at each step, wheren is the problem size. For matrices which have zero entries on the main diagonal,
nonsymmetric permutations can be used to produce a zero-free diagonal [41], as was done in [18].

The implementation of the Krylov subspace accelerators (conjugate gradients, GMRES, etc.) was
fairly standard. All the matrix–vector products with the coefficient matrixA and with each of the
(possibly factorized) approximate inverse preconditioners are vectorizable operations. To this end, after
the approximate inverse preconditioners have been computed, they are transformed into the JAD, or
jagged diagonal, format (see [56,68]). The same is done with the coefficient matrixA. Although the
matrix–vector products still involve indirect addressing, using the JAD format results in good, if not
outstanding, vector performance. For execution on multivector computers, there exists a blocked variant
of the JAD format which can be used to take advantage of multiple vector processing units; see [56].
We remark that the use of the JAD format in matrix–vector multiplications involves a permutation of the
product vector at each iteration in all cases except for factorized approximate inverses applied to SPD
problems, since in this case the permutations ofZ andZ

T
cancel each other out. Transformation to JAD

format was also used to vectorize the inverse IC/ILU preconditioners based on approximate inversion and
truncated Neumann expansions. A vectorizable version of the SSOR preconditioner based on truncated
Neumann expansions was also coded. Due to the difficulty of determining a good value of the relaxation
parameterω for all the test problems, in our experiments we usedω= 1. Thus, the SSOR preconditioner
is really a Symmetric Gauss–Seidel (SGS) one. Only for the IC/ILU preconditioners the factors were not
transformed into JAD data structures. No attempt was done to vectorize the triangular solves, and this
part of the computation runs at scalar speed on the Cray C98, at least for the test problems considered
here, which are quite sparse. Vector performance can be obtained in some cases if the incomplete factors
are sufficiently dense; see, e.g., [14].

It is worth mentioning that the matrix–vector products with the factorized approximate inverse
preconditioners achieve better performance in the nonsymmetric case than in the symmetric case. The
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reason is that in the symmetric case, onlyZ is explicitly stored. Thus, matrix–vector products withZ
T

do
not vectorize as well as matrix–vector products withZ. This problem does not occur in the nonsymmetric
case, where bothZ andW must be explicitly stored. The performance in the symmetric case can be
significantly enhanced at the price of storingZ

T
explicitly.

We conclude this section on implementation with a brief discussion of issues related to cache
reuse (possibly with different cache levels), which is important given the fast-growing popularity of
SMP architectures and of distributed memory machines based on microprocessors. On machines with
hierarchical memories, it is important to design algorithms that reuse data in the top level of the memory
hierarchy as much as possible. If we look at the preconditioner construction phase, two of the methods
discussed here have a better chance of allowing cache reuse than all the remaining ones, and these
are SPAI and FSAI. The reason is that these are the only two algorithms which make use of level 3
BLAS. Some remarks on latency hiding and cache reuse issues within SPAI can be found in [7,8].
In principle, blocking in the dense matrix operations required by these two algorithms can be used to
obtain performance; see [37,50]. The other algorithms suffer from such disadvantages as the nonlocal
character of the computations and, in some cases, a high proportion of non-floating-point operations. As
an example, consider the construction of the AINV preconditioner (Algorithm 4; similar considerations
apply to other methods as well). The work with both the row and column lists in each step of the outer
loop is rather irregular. For larger problems, most operations are scattered around the memory and are
out-of-cache. As a consequence, it is difficult to achieve high efficiency with the code, and any attempt
to parallelize the computation of the preconditioner in this form will face serious problems (see [83] for
similar comments in the context of sparse unsymmetric Gaussian elimination).

In an attempt to mitigate these problems, an alternative implementation of the AINV algorithm
was considered in [18]. This left-looking, delayed update version of the biconjugation algorithm can
be implemented using static data structures only, at the price of increasing the number of floating-
point operations. This increase in arithmetic complexity is more or less pronounced, depending on
the problem and on the density of the preconditioner. On the other hand, this formulation greatly
decreases the amount of irregular data structure manipulations. It also appears better suited to parallel
implementation, as discussed in [18]. The question arises whether the increased operation count is
so great as to offset the advantages of a more regular arrangement of the computations. Numerical
experiments performed on a SGI Crimson workstation with RISC processor R4000 indicate that the
left-looking implementation is beneficial for problems of small size. For larger problems, on the other
hand, the alternative implementation is actually slower than the original one; see [18]. However, more
work is needed before definite conclusions can be drawn.

Concerning the application of approximate inverse preconditioners at each step of an iterative method,
this amounts to performing matrix–vector products involving a sparse matrix and a dense vector. For a
discussion of the problem of cache reuse in sparse matrix–vector products, see [74].

4. Numerical experiments

In this section we present the results of numerical experiments carried out on one processor of a Cray
C98 vector computer (located at Météo France in Toulouse). Although the main interest of approximate
inverse techniques lies in their potential for parallelization, we think that results on a vector processor
are also relevant and can give some idea of the advantages afforded by this class of preconditioners. The
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Table 1
SPD test problems information

Matrix n nnz Application

NOS3 960 8402 Biharmonic equation

NOS7 729 2673 Diffusion equation

685BUS 685 1967 Power system network

1138BUS 1138 2596 Power system network

NASA2146 2146 37198 Structural analysis

NASA2910 2910 88603 Structural analysis

BCSSTK21 3600 15100 Structural analysis

BCSSTK23 3134 24156 Structural analysis

FDM1 6050 18028 Diffusion equation

FDM2 32010 95738 Diffusion equation

various algorithms were tested on a selection of sparse matrices representative of a variety of different
applications: finite difference and finite element discretizations of partial differential equations, power
systems networks, circuit analysis, etc. We group these test problems in two classes: SPD problems
and general (nonsymmetric, possibly indefinite) problems. The preconditioned conjugate gradient (PCG)
method [51] is used for solving the problems in the first class. For the problems in the second class,
three popular Krylov subspace methods were tested: restarted GMRES [72], Bi-CGSTAB [79], and
TFQMR [49]. Good general references on iterative methods are [53] and [71]; see also [9] for a concise
introduction.

All codes developed for the tests5 were written in Fortran 77 and compiled using the optimization
option −Zv. In the experiments, convergence is considered attained when the 2-norm of the
(unpreconditioned) residual is reduced to less than 10−9. The initial guess is alwaysx0= 0, and the right-
hand side is chosen so that the solution of the linear system is the vector of all ones; other choices for
the right-hand side and different stopping criteria (e.g., relative ones) were also tried, without significant
differences in the results. For the nonsymmetric problems, right preconditioning was always used. All
timings reported are CPU times in seconds.

4.1. Experiments with SPD problems

Here we summarize the results of numerical experiments with a set of ten sparse symmetric positive
definite matrices arising in various applications. Table 1 gives, for each matrix, the ordern, the number
of nonzeros in the lower triangular partnnz, and the application in which the matrix arises.

Matrices NOS∗, ∗BUS, and BCSSTK∗ are extracted from the Harwell–Boeing collection [42]; the
NASA∗ matrices are extracted from Tim Davis’ collection [35], and the FDM∗ matrices were kindly
provided by Carsten Ullrich of CERFACS. Matrices NOS3, NASA∗ and BCSSTK∗ arise from finite

5 These codes can be obtained from the authors for research purposes.
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element modeling, matrices NOS7 and FDM∗ from finite difference modeling. Problem FDM1 is a five-
point stencil discretization of a diffusion equation with Dirichlet boundary conditions on a uniform mesh;
problem FDM2 represents the same equation, but on a locally refined mesh. The most difficult problems
in this set are the ones from structural analysis, especially NASA2910 and BCSSTK23. Although this
is not a very large data set, it is sufficiently representative of the large number of matrices that we have
experimented with over the last few years.

The following preconditioners were tested:
• Diagonal scaling, DS;
• No-fill incomplete Cholesky, IC(0);
• Drop tolerance-based incomplete Cholesky, IC(Tol);
• Least-squares Jacobi polynomial preconditioning of degree`, JP(̀ );
• Kolotilina and Yeremin’s factorized sparse approximate inverse, FSAI;
• Drop tolerance-based incomplete conjugation, AINV(Tol);
• Dual threshold factorized approximate inverse by bordering, AIB(Tol, lfill );
• Various inverse IC methods based on level-of-fill or drop tolerances, IIC(∗);
• Truncated Neumann Symmetric Gauss–Seidel of degree`, TNSGS(̀ );
• Truncated Neumann IC(∗) of degreè , TNIC(∗, `).
For the FSAI preconditioner, the sparsity pattern of the lower triangular part ofA was imposed on the

approximate inverse factor. In addition, the conjugate gradient method without preconditioning was also
tested. The nonfactorized approximate inverse preconditioners based on Frobenius norm minimization
cannot be used with the conjugate gradient method and were not included.

The DS, IC(0), and FSAI preconditioners are parameter-free: they are easy to implement and use,
but cannot be tuned. The preconditioners which use a drop tolerance, like AINV and the dual threshold
versions of IC and AIB are relatively easy to use, and can be tuned to cope with difficult problems, usually
by allowing more nonzeros in the preconditioner. Likewise, the truncated Neumann SGS preconditioner
contains one parameter, the degree`. Normally, increasing̀ will result in faster convergence, but
usually not in faster execution due to the additional work required at each PCG iteration. The hardest
preconditioners to use are the ones that require the highest number of user-defined parameters, namely,
the various forms of inverse IC methods. For the preconditioners which use a drop tolerance, we tried
preconditioners with different amount of nonzeros, typically between half and twice the number of
nonzeros in the original matrix. In most cases, increasing the amount of nonzeros in the preconditioner
results in faster convergence, as measured by the number of iterations. Again, this does not always
translate in smaller solution times, since the cost of constructing and applying the preconditioner grows
with the number of nonzeros. In the majority of cases, the fastest execution times were obtained with
preconditioners having approximately the same number of nonzeros as the coefficient matrixA.

Given the number of methods considered, it would be impractical to present tables with the results of
all the runs performed. Instead, we will try to synthesize what we have learned based on these runs.

First, we look at the robustness of the various methods. All iterations were stopped when the prescribed
reduction of the residual norm was achieved, or a maximum numbermaxitof iterations was reached. This
maximum was different for different problems and preconditioners: for no preconditioning or diagonal
scaling, we setmaxit= n, wheren is the dimension of the problem. For the other preconditioners, we
setmaxit=min{n,1000}. In the following, we say that a preconditionerfails if the PCG iteration with
that preconditioner did not converge inmaxit iterations or less. Failures are invariably associated with
stagnating residual norms.
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The most robust preconditioner is IC with a drop tolerance. With this preconditioner, it was possible to
solve all ten problems, using at most twice the number of nonzeros as in the original matrix. In particular,
matrix BCSSTK23 could be solved only with this type of preconditioner. The following preconditioners
were able to solve all problems except for BCSSTK23: DS, FSAI, and AIB. The AINV preconditioner
was able to solve eight problems; it failed on NASA2910 and BCSSTK23, due to the occurrence of a large
number of diagonal modifications prompted by small pivots. Of the various inverse IC preconditioners
tried, the best results were obtained with IIC(Tol,0), which is constructed from an IC factorization
with a drop toleranceTol followed by approximate inversion of the incomplete Cholesky factorL with
sparsity pattern equal to that ofL. This preconditioner also solved eight problems, and again it failed on
NASA2910 and BCSSTK23. The other inverse IC preconditioners were less robust or were extremely
costly to compute. The no-fill IC preconditioner and the truncated Neumann SGS methods failed on
three problems: besides NASA2910 and BCSSTK23, IC(0) failed on BCSSTK21, and TNSGS failed on
NASA2146. Truncated Neumann versions of IC factorizations based on a drop tolerance failed on the
same three problems as TNSGS, while truncated Neumann versions of IC(0) failed on all four structural
analysis problems. The conjugate gradient method without preconditioning failed in five cases, and the
polynomial preconditioner JP(`) was, with six failures, the least robust method of all. Concerning this
method, it was noticed that it worked really well only for the simple model problem FDM1 (a diffusion
equation with Dirichlet boundary conditions on a square), where it was in fact the fastest solver overall.
This, incidentally, shows the perils of testing algorithms only on simple model problems. The fact that,
apart from direct solvers, only IC preconditioning seems to be able to handle very ill-conditioned linear
systems arising from finite element modeling in structural engineering was also observed in [14].

The drop tolerance-based IC methods were also the most effective at reducing the number of PCG
iterations, although this did not always result in the shortest time to solution, due to the inefficiency of the
triangular solves. The AINV and AIB preconditioners are less effective than IC, but more effective than
both FSAI and the truncated Neumann techniques. Diagonal scaling, no preconditioning and polynomial
preconditioning resulted in the slowest convergence rates.

When looking at efficiency, in terms of time to solution, it is convenient to break the total solution
time into the time for computing the preconditioner and the time for the PCG iteration. This is of interest
in the common situation where a sequence of several linear systems with the same coefficient matrix
(or a slowly varying one) and different right-hand sides have to be solved, for in this case the cost of
constructing the preconditioner becomes less important. In this case, costly preconditioners may become
attractive if they are very effective at reducing the number of iterations.

If efficiency is defined as the shortest time to solution including the time for constructing the
preconditioner, then the most efficient method overall is IC(Tol), which was fastest in four cases.
However, this is in part due to the fact that this preconditioner was the only one that never failed. The
simple DS preconditioner, which failed in one case, was fastest on three problems, and TNSGS(1) was
fastest on two. It should be remembered, however, that TNSGS failed on three problems. JP was fastest
on one problem. We found that using̀> 1 in JP(̀ ) and in the truncated Neumann methods almost
always resulted in higher computing times, as predicted by the result of Axelsson mentioned in the
Introduction. The approximate inverse preconditioners are not very efficient, at least in a uniprocessor
implementation, due to the high cost of the set-up phase. DS, TNSGS, IC(0) and TNIC(0, `) are the least
expensive preconditioners to compute, followed by IC(Tol) and TNIC(Tol, `). Next come FSAI, AINV
and AIB, which have comparable cost, while the inverse IC preconditioners based on drop tolerances are,
on average, the most expensive to compute. These methods are most expensive when applied to matrices
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with a regular banded structure, since in this caseL
−1

is completely filled below the main diagonal. Of
the various possible implementations, the one proposed in [80] is the only practical one, the one in [34]
being prohibitively expensive. The cheapest inverse IC methods are the ones where a sparsity pattern
equal to that ofL is used for the approximate inverse ofL. Of all the preconditioners, FSAI is the only
one which benefits from vectorization in the set-up phase, due to the use of level 3 BLAS.

If we look at the time for the iterative part only, then approximate inverse techniques become attractive,
even on a uniprocessor, because of the impact of vectorization on the matrix–vector products and the
relatively good convergence rates. However, the fastest method overall is still IC(Tol) (four problems).
AINV was fastest on three problems, TNSGS(1) on two, and AIB on one problem. The performance
of AIB is very close to that of AINV, with very small differences in the timings. As for FSAI, it is
almost always outperformed by both AINV and AIB, due to somewhat slower convergence. In a parallel
implementation the approximate inverse methods would be even more attractive, particularly AIB and
AINV, but also FSAI due to the fact that this method is completely parallelizable and relatively easy to
implement on a distributed memory machine.

In Table 2 we present results for a few selected preconditioners applied to the largest problem
in our data set, matrix FDM2. We report the time for computing the preconditioner (P-time), the
time for the iterative part only (It-time), and the number of iterations (Its). For the drop tolerance-
based preconditioners IC, AINV and AIB we give results for two cases, the first corresponding to a
preconditioner with approximately the same number of nonzeros as the coefficient matrix, and the second
with about twice as many nonzeros.

From this table, it appears that the AIB preconditioner with approximately the same number of
nonzeros as the original matrix becomes attractive, provided that it can be reused a sufficient number of
times. Assuming each right-hand side takes the same It-time, it can be estimated that AIB preconditioning
is the fastest method if at least 35 right-hand sides are present, otherwise DS is fastest. Matrix FDM2

Table 2
Results for problem FDM2

Precond. P-time It-time Its

None – 10.22 3359

DS 0.08 2.55 804

IC(0) 0.21 15.02 209

IC(2 · 10−3) 0.43 13.29 183

IC(10−4) 0.76 6.57 87

FSAI 5.24 3.07 548

AINV(0.25) 3.52 2.74 422

AINV(0.1) 3.77 2.82 298

AIB(0.2,3) 3.48 2.45 393

AIB(0.08,5) 3.79 2.67 282
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arises in an application which requires a very large number of solves with the same coefficient matrix
and different right-hand sides, so AIB can be recommended in this case. It should be mentioned that the
time for the iterative part of the FSAI, AINV and AIB preconditioners can be reduced by about 25% if
the transpose approximate inverse factorZ

T
is explicitly stored (in JAD format).

For completeness, we mention that additional experiments were conducted with AINV preconditioning
with a prescribed sparsity pattern, equal to that ofA. This preconditioner is not robust: it failed on the
four structural analysis problems and also on 1138BUS. Hence, it is much less robust than FSAI, which
also uses the nonzero structure ofA. On the other hand, it is interesting to observe that for the three
problems from finite difference modelling (NOS7, FDM∗) the static AINV preconditioner resulted in
better convergence rates than the “optimal” FSAI preconditioner. In the case of NOS7, this difference
was particularly marked: static AINV required 33 iterations, as compared to 89 for FSAI. Hence, for
a fixed sparsity pattern, optimality in the sense of Frobenius norm minimization does not necessarily
guarantee optimal, or even near-optimal, convergence behavior.

Based on our experiments, we can draw the following main conclusions concerning preconditioning
of SPD problems:
• Drop tolerance-based IC is the most robust method among those tested;
• On a single processor, IC(Tol) is also the fastest method overall;
• FSAI and AIB are the most robust among approximate inverse methods;
• DS is a simple and viable option for problems with only one or few right-hand sides;
• TNSGS sometimes performs quite well, but it lacks robustness;
• For problems with several right-hand sides, AINV and AIB can be efficient even on a single (vector)

processor;
• The inverse IC methods are not competitive with the other factorized approximate inverse methods;
• The various inverse and truncated Neumann IC methods and the polynomial preconditioner JP are

not competitive with the other preconditioners.
Hence, for parallel preconditioning of the conjugate gradient method, the approximate inverse
preconditioners AIB, AINV and FSAI should all be considered, although they may fail on very difficult
problems. These techniques performed quite well on the finite difference and power systems problems,
not so well on the problems from finite element modelling. We emphasize that the performance of FSAI
may be further improved by a more sophisticated choice of the sparsity pattern; see [62,82].

4.2. Experiments with nonsymmetric problems

Here we summarize the results of numerical experiments with a set of twenty sparse nonsymmetric
matrices arising in various applications. Table 3 gives, for each matrix, the ordern, the number of
nonzerosnnz, and the application in which the matrix arises.

All the matrices from oil reservoir simulations are extracted from the Harwell–Boeing collection. The
matrices from circuit modelling and semiconductor device simulation are from Tim Davis’ collection.
Matrix 3DCD comes from a seven-point discretization on a 20× 20× 20 grid of a convection–diffusion
operator on the unit cube with homogeneous Dirichlet boundary conditions. Matrix ALE3D was made
available by Steve Barnard of NASA Ames (see [8]). This matrix was permuted as to have a zero-free
diagonal. Although most matrices come from the same field of petroleum engineering, this data set
represents a broad collection of problems which are quite diverse, both structurally and numerically.
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Table 3
Nonsymmetric test problems information

Matrix n nnz Application

3DCD 8000 53600 Convection–diffusion equation

ALE3D 1590 45090 Metal forming simulation

ORSREG1 2205 14133 Oil reservoir simulation

ORSIRR1 1030 6858 Oil reservoir simulation

ORSIRR2 886 5970 Oil reservoir simulation

SAYLR3 1000 3750 Oil reservoir simulation

SAYLR4 3564 22316 Oil reservoir simulation

ADD32 4960 23884 Circuit modelling

ADD20 2395 17319 Circuit modelling

MEMPLUS 17758 99147 Circuit modelling

SWANG1 3169 20841 Semiconductor device simulation

SHERMAN1 1000 3750 Oil reservoir simulation

SHERMAN2 1080 23094 Oil reservoir simulation

SHERMAN3 5005 20033 Oil reservoir simulation

SHERMAN4 1104 3786 Oil reservoir simulation

SHERMAN5 3312 20793 Oil reservoir simulation

PORES2 1224 9613 Oil reservoir simulation

PORES3 532 3474 Oil reservoir simulation

WATT1 1856 11360 Oil reservoir simulation

WATT2 1856 11550 Oil reservoir simulation

Again, our experience encompasses a much larger set of problems; the present collection is chosen
because it is sufficiently representative.

The following preconditioners were tested:
• Diagonal scaling, DS;
• No-fill incomplete LU, ILU(0);
• Dual threshold incomplete ILU, ILUT(Tol, lfill );
• Grote and Huckle’s preconditioner, SPAI;
• Chow and Saad’s preconditioner, MR;
• MR with self-preconditioning, MRP;
• Drop tolerance-based incomplete biconjugation, AINV(Tol);
• Dual threshold factorized approximate inverse by bordering, AIB(Tol, lfill );
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• Various inverse ILU methods based on level-of-fill or drop tolerances, IILU(∗);
• Truncated Neumann Symmetric Gauss–Seidel of degree`, TNSGS(̀ );
• Truncated Neumann ILU(0) and ILUT of degree`.

For the preconditioners which use a drop tolerance, we tuned the parameters so as to allow a number of
nonzeros between about half and twice that of the coefficient matrix. Again, the best results were often
obtained for preconditioners of approximately the same density as the coefficient matrix. In addition,
we conducted experiments with a nonsymmetric version of FSAI and with a static version of AINV (in
both cases imposing the sparsity pattern of the coefficient matrixA), and also with a dual threshold
incomplete Gauss–Jordan (IGJ) preconditioner [32,81]. These approximate inverse methods are not
robust: FSAI failed on seven problems, static AINV on twelve, and IGJ on thirteen. Moreover, when these
preconditioners succeeded, convergence was generally slow. Therefore, these preconditioners cannot be
recommended. A similar conclusion with respect to IGJ preconditioning was reached by Weiss in [81,
p. 172].

Although we experimented with three accelerators (GMRES(20), Bi-CGSTAB, and TFQMR), here we
will report results for Bi-CGSTAB only. On average, this method appeared to be superior to the other two
solvers, if only slightly. It can be said with some confidence that the preconditioner is more important
than the iterative solver, in the sense that the convergence rate usually depends on the quality of the
preconditioner, almost independently of the underlying Krylov subspace method used.

For this set of problems, we allow a maximum ofmaxit= n iterations for no preconditioning or
diagonal scaling, andmaxit= 500 for all the other preconditioners. Bi-CGSTAB with no preconditioning
fails on six problems, while DS fails on two problems. The most robust preconditioners are ILU(0) and
ILUT, which never failed. AINV and truncated Neumann versions of ILU(0) and ILUT failed on one
problem, SHERMAN2. No approximate inverse method was able to solve SHERMAN2, at least within
the sparsity constraints we imposed (at most twice the number of nonzeros as the coefficient matrix).
The failure of AINV on SHERMAN2 was not due to the occurrence of small pivots, but to the difficulty
of finding good sparse approximations to the inverse factors. An inverse ILUT method where a dual
threshold strategy was used in both stages of the preconditioner computation failed on two problems
(SHERMAN2 and SHERMAN3). SPAI, AIB and truncated Neumann SGS failed on three problems.
However, SPAI can be made to succeed on one of these problems by computing a left approximate
inverse, and on another one by allowing considerably more fill-in. The MR preconditioner failed on
four problems. The self-preconditioned version MRP of MR is not robust: it failed on eight problems.
This is probably due to the fact that self-preconditioning with a poor approximate inverse can spoil the
convergence of the MR iteration; see [27]. Indeed, we found that self-preconditioning improved the MR
preconditioner in nine cases, but made things worse in eight cases (it did not have an appreciable impact
in three cases). Although self-preconditioning might be useful, especially for difficult problems, it is
difficult to decide in advance when it should be used. Finally, inverse ILU preconditioners based on
levels of fill, with ten failures, are not robust.

Again, ILU techniques do a better job than approximate inverse ones at reducing the number
of iterations, at least on average. But this does not usually translate in the fastest execution, due
to the inefficiency of the triangular solves. The fastest methods, including the set-up times for the
preconditioner, are truncated Neumann versions of ILUT and SGS: each of these resulted in the shortest
times to solution in six cases. Truncated Neumann ILU(0) was fastest in two cases, as were ILUT and
no preconditioning. DS and ILU(0) were fastest on one problem each. It should also be mentioned that
TNSGS was among the three fastest methods in twelve cases, TNILU(0) in ten cases, and TNILUT
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in nine cases. Thus, for the case of a single (or a few) right-hand sides, truncated Neumann techniques
deserve attention. We note that TNILU(0) was faster than ILU(0) in sixteen cases, and TNILUT was faster
than ILUT in fifteen. This means that in a majority of cases, the degradation in the rate of convergence due
to the truncation in the Neumann expansion was more than compensated by the impact of vectorization
on the application of the preconditioner.

Sparse approximate inverse methods, which are not competitive (on one processor) if only one
or very few right-hand sides are present, become much more attractive in the case of many right-
hand sides. If we look at the time for the iterative part only, we find that AINV was fastest in nine
cases, and IILUT in seven. SPAI, MRP, ILUT and no preconditioning were fastest on one problem
each. Perhaps more indicatively, AINV was among the three fastest methods in eighteen cases, SPAI
in thirteen, IILUT in ten, and AIB in eight cases. AINV was the approximate inverse method that
resulted in the fastest convergence. As expected, factorized approximate inverse methods delivered
(on average) faster convergence rates than SPAI or MR, for the same number of nonzeros in the
preconditioner. From our experiments, SPAI appears to be more effective than MR. SPAI is more
robust than MR and, in nearly all problems, SPAI resulted in faster convergence than MR. Also,
we did not find MR less expensive to compute than SPAI, on average (and certainly not when
self-preconditioning is used). This is in part due to the fact that SPAI takes advantage, albeit in a
limited way, of vectorization in the calculations involving level 3 BLAS. On a scalar processor, MR
would be somewhat faster to compute than SPAI (for a comparable density in the preconditioner). An
advantage of MR over SPAI appears to be the fact that it requires less storage than SPAI, except when
self-preconditioning is used. The truncated Neumann techniques resulted in slower convergence than
the sparse approximate inverse preconditioners; the ILU-type methods, on the other hand, produced
better convergence rates, but higher timings due to the triangular solves. Thus, sparse approximate
inverse methods are the most efficient when several right-hand sides are present, even on a single
(vector) processor. These techniques are even more attractive on multiprocessors. It is interesting to
observe that approximate inverse techniques were particularly effective on the problems from circuit
modelling.

Clearly, the minimum number of right-hand sides that must be present before approximate inverse
techniques become viable depends on the time it takes to construct the preconditioner, and on the rate
of convergence. On one processor, the least expensive approximate inverse preconditioner was found
to be AIB, which required the shortest set-up time in sixteen cases (among the approximate inverse
techniques only, of course). AINV was a close second. Indeed, AINV was among the three fastest
approximate inverse preconditioners to compute on all test problems. The inverse ILU methods are more
expensive than AINV or AIB, but less expensive than SPAI, MRP and MR. Of course, the situation
could be different in a parallel implementation, since the SPAI and MR-type preconditioners have higher
potential for parallelization than AINV, AIB and the inverse ILU methods. We note that SPAI was the
only preconditioner to benefit from vectorization in the set-up phase, a consequence of the fact that this
method is the only one that makes use of level 3 BLAS.

In Table 4 we illustrate the performance of Bi-CGSTAB with a few selected preconditioners on
two matrices with completely different features, namely, the convection–diffusion problem 3DCD and
the circuit problem MEMPLUS. For the drop tolerance-based methods ILUT, AINV, AIB, MR and
SPAI, two preconditioners were computed. For 3DCD, the first preconditioner contained about the same
number of nonzeros as the coefficient matrix, and the second one about twice as many. For MEMPLUS,
the first preconditioner contained roughly half the number of nonzeros as the coefficient matrix, and
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Table 4
Results for problems 3DCD and MEMPLUS

Matrix Precond. P-time It-time Its

3DCD DS 0.02 0.25 156

ILU(0) 0.06 0.55 15

ILUT(0.1,0) 0.22 0.55 15

ILUT(0.01,5) 0.64 0.29 7

TNILU(0,1) 0.06 0.10 31

TNSGS(1) 0.02 0.41 131

AINV(0.17) 1.88 0.07 25

AINV(0.1) 2.52 0.09 22

AIB(0.25,5) 1.55 0.09 32

AIB(0.065,6) 2.14 0.08 22

MR(0.1,7,5) 11.9 0.14 51

MR(0.01,14,5) 17.5 0.17 43

SPAI(0.43,6,5) 10.6 0.11 40

SPAI(0.31,5,5) 30.5 0.14 32

MEMPLUS DS 0.03 6.71 730

ILU(0) 1.91 16.4 224

ILUT(0.05,4) 0.31 6.53 108

ILUT(0.002,9) 0.71 3.15 40

TNILU(0,5) 1.91 8.55 243

TNSGS(1) 0.03 1.86 151

AINV(0.1) 4.60 2.85 430

AINV(0.02) 9.17 0.27 29

AIB(0.2,2) 3.10 2.40 387

AIB(10−7,5) 4.91 3.29 378

MR(0.5,5,5) 220 1.65 223

MR(0.1,10,5) 536 1.69 180

SPAI(0.5,10,5) 129 1.01 140

SPAI(0.3,10,5) 354 0.94 117
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the second one had approximately the same density as MEMPLUS. Here MR(ε,m,ni ) stands for the
MR preconditioner (Algorithm 2) corresponding to a drop toleranceε, a maximum ofm nonzeros per
column, andni iterations. Similarly, SPAI(ε,m,ni) is the SPAI preconditioner (Algorithm 1) with residual
toleranceε, a maximum ofm new candidates added at each step, andni steps.

The fastest methods overall are TNILU(0) for 3DCD, and TNSGS for MEMPLUS. However, if we
look at the time for the iterative part only, we see that AINV is the fastest method. Both SPAI and MR
result in slower convergence than AINV, and they are far more expensive to compute. We mention that
a detailed comparison between ILU(0), AINV and SPAI, with timings for all twenty test matrices used
here, can be found in [17].

Based on our experiments, we can draw the following main conclusions concerning preconditioning
of nonsymmetric problems:
• ILU-type preconditioners are the most robust methods among those tested;
• For one or few right-hand sides, the most efficient schemes overall are truncated Neumann versions

of SGS and ILU (but robustness could be a problem);
• AINV is the most robust and effective of the approximate inverse methods;
• The inverse ILU methods are not competitive with the other factorized approximate inverse

methods;
• Factorized approximate inverses are more effective than nonfactorized ones (for the same number

of nonzeros in the preconditioner);
• On a single processor, factorized approximate inverses are much less expensive to construct than

nonfactorized ones;
• SPAI is more robust and effective than MR;
• For problems with several right-hand sides, approximate inverse techniques can be competitive even

on a single (vector) processor.
We see that the conclusions are to a large extent similar in the SPD and in the nonsymmetric case. One
difference is that in the SPD case the best factorized approximate inverse method is AIB, whereas in
the nonsymmetric case AINV seems to be better. Hovewer, these two methods performed similarly on
most test problems. It should also be kept in mind that AIB requires almost twice the storage required
by AINV. Another difference is that factorized approximate inverses were somewhat more efficient in
the nonsymmetric case than in the SPD case. This was due in part to the fact that in the symmetric case,
matrix–vector products with the transpose inverse factorZ

T
, which is not explicitly available, vectorize

less well than matrix–vector products withZ. Finally, we note that diagonal scaling, which performed
quite well on SPD problems, is much less effective in the nonsymmetric case.

5. Conclusions and perspectives

In this paper, a comprehensive study of sparse approximate inverse preconditioners was presented.
Virtually all the methods described in the literature were surveyed, and their implementation on a vector
computer was described. Extensive numerical tests on matrices from a variety of applications were
performed, with the goal of assessing the effectiveness and efficiency of the various techniques. We
also compared these new techniques with well-established preconditioning strategies, like incomplete
factorization methods.
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Incomplete factorization preconditioners have been vigorously developed over the course of several
decades, and constitute a mature technology. In contrast, approximate inverse methods have received
attention only in recent years. Thus, it is not surprising that the incomplete factorization methods were
found to be somewhat more robust than approximate inverse ones. In particular, approximate inverse
preconditioners seem to have some trouble solving some of the very ill-conditioned linear systems arising
in structural engineering, which incomplete factorization methods are able to solve. We think that this is
due to the fact that the entries in the inverses of these matrices decay very slowly away from the main
diagonal. Hence, it is inherently difficult to approximate the inverse with a sparse matrix.

On the other hand, approximate inverse techniques were found to perform well on network problems,
and were more effective than ILU methods on circuit problems. The matrices from these application
areas appear to have an inverse which can be approximated well by a sparse matrix. Our experiments
also show that, generally speaking, approximate inverse techniques work quite well on matrices arising
from finite difference discretizations of boundary value problems, and less well on matrices arising from
finite element modelling. This is probably due to the fact that finite difference matrices tend to be “more
diagonally dominant” than finite element ones, a property which results in faster decay of the entries
of A−1.

Our experiments also show that factorized approximate inverses are more effective and less expensive
to construct than the other approximate inverse methods. The approximate inverse based on bordering
was found to be especially effective for symmetric positive definite problems, and the one based on
incomplete biconjugation showed good performance for general nonsymmetric, indefinite problems.
The main drawback of these methods is that, in their present formulation, they cannot be efficiently
constructed in parallel, especially on distributed memory architectures. For these types of architectures,
the Frobenius norm-based methods FSAI (for SPD problems) and SPAI (for the nonsymmetric case)
deserve special attention.

Other preconditioners, like MR or the inverse IC/ILU techniques, were found to be less robust and
effective than the other methods; however, they may very well be useful for special problems. For
instance, MR has proved valuable in the solution of very difficult incompressible fluid flow problems
for which ILU preconditioning failed [26,70]. These techniques could be a useful complement to the
other methods; therefore, it is desirable that software packages for general-purpose preconditioning of
sparse linear systems include as many different methods as possible.

Truncated Neumann techniques offer an inexpensive way to introduce parallelism in standard serial
preconditioners, and our experiments show that these methods can be quite efficient, particularly when
the preconditioner cannot be reused a number of times. On the other hand, sparse approximate inverse
preconditioners, which are more expensive to construct, are generally more robust and result in faster
convergence. Therefore, approximate inverses should be preferred whenever the cost of forming the
preconditioner can be considered as negligible, that is, when the same preconditioner can be used in
solving a sequence of linear systems. Based on these considerations, we think that the highest potential
for approximate inverse techniques lies in their use as part of sophisticated solving environments for
nonlinear and time-dependent problems.

The performance of sparse approximate inverse preconditioners can be further enhanced in a number of
ways, the exploration of which has just begun. Among possible improvements, we mention here the use of
wavelet compression techniques for PDE problems [25], the combination of sparse approximate inverse
methods with approximate Schur complement and other block partitioning schemes [28], and the use of
reorderings for reducing fill-in and improving the quality of factorized approximate inverses [19,22].
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We also mention that very recently, parallelizable adaptive algorithms for constructing factorized
approximate inverses have been suggested in [26], although it is not clear at this time whether these
algorithms will result in effective preconditioners.

One drawback of sparse approximate inverse preconditioners is that they are usually far from being
optimal, in the following sense. Consider the discretization (by finite differences or finite elements)
of a partial differential equation. As the discretization is refined, the number of iterations for an
iterative method preconditioned by a sparse approximate inverse preconditioner increases, so that the
amount of work per grid point grows with problem size. This drawback is shared by other purely
algebraic techniques, like diagonal scaling and standard ILU preconditioners (an interesting exception,
at least for certain problems, seems to be the NGILU method [77]). As the problem size increases,
all these preconditioners behave qualitatively in the same manner. In contrast, multigrid methods are
optimal in the sense that the amount of work per grid point remains constant (independent of problem
size). However, multigrid methods are applicable only to rather special classes of problems, whereas
algebraic preconditioners can be applied to virtually any linear systemAx = b. Algebraic multilevel
methods, which are currently the object of intense study, attempt to achieve (near) grid-independent
convergence by using information from the coefficient matrix only. Often these techniques require
the computation of sparse approximate Schur complements, and this is a natural application of sparse
approximate inverses, which has been explored in, e.g., [28] and [26]. While some of the parallelism
is lost, the combination of a multilevel approach with sparse approximate inverse techniques seems to
produce robust preconditioners which are “less far from optimal” than the approximate inverse alone.
Furthermore, sparse approximate inverses can be used as parallel smoothers in connection with multigrid.
These are interesting developments which warrant further study. Similar considerations motivated the
idea of combining discrete wavelet transforms with sparse approximate inverses [25], which results in a
technique closely related to the hierarchical basis preconditioner.

In conclusion, we believe that approximate inverse techniques will play an increasingly important role
for high-performance preconditioning of large-scale linear systems.
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