
Preconditioned MHSS iteration methods for a class of block two-by-two linear
systems with applications to distributed control problems

ZHONG-ZHI BAI∗

State Key Laboratory of Scientific/Engineering Computing, Institute of Computational Mathematics
and Scientific/Engineering Computing, Academy of Mathematics and Systems Science,

Chinese Academy of Sciences, PO Box 2719, Beijing 100190, People’s Republic of China
∗Corresponding author: bzz@lsec.cc.ac.cn

MICHELE BENZI

Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA

benzi@mathcs.emory.edu

FANG CHEN

Key Laboratory of Environmental Mechanics, Institute of Mechanics, Chinese Academy of Sciences,
Beijing 100190, People’s Republic of China

chenfreesky@gmail.com

AND

ZENG-QI WANG

Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240,
People’s Republic of China

wangzengqi@sjtu.edu.cn

[Received on 9 January 2011; revised on 1 December 2011]

We construct a preconditioned modified Hermitian and skew-Hermitian splitting (PMHSS) iteration
scheme for solving and preconditioning a class of block two-by-two linear systems arising from the
Galerkin finite element discretizations of a class of distributed control problems. The convergence theory
of this class of PMHSS iteration methods is established and the spectral properties of the PMHSS-
preconditioned matrix are analysed. Numerical experiments show that the PMHSS preconditioners can
be quite competitive when used to precondition Krylov subspace iteration methods such as GMRES.
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1. Introduction

Consider block two-by-two systems of linear equations of the form

Ax ≡
(

W −T
T W

)(
y
z

)
=

(
p
q

)
≡ g, (1.1)

where W, T ∈ Rn×n are real, symmetric and positive semidefinite matrices with at least one of them,
e.g., W, being positive definite. This class of linear systems can be formally regarded as a special case of
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the generalized saddle point problem (Benzi & Golub, 2004; Benzi et al., 2005). It frequently arises from
finite element discretizations of elliptic partial differential equation (PDE)-constrained optimization
problems such as distributed control problems (Lions, 1968; Lass et al., 2009; Rees et al., 2010; Rees &
Stoll, 2010; Bai, 2011) and also from real equivalent formulations of complex symmetric linear systems
(Axelsson & Kucherov, 2000; Day & Heroux, 2001).

Based on the Hermitian and skew-Hermitian splitting (HSS)1

A = H + S

of the matrix A ∈ R2n×2n , with

H = 1

2
(A + A∗) =

(
W 0
0 W

)
and S = 1

2
(A − A∗) =

(
0 −T
T 0

)
being the Hermitian and skew-Hermitian parts and A∗ being the conjugate transpose of the matrix
A ∈ R

2n×2n , we can apply the HSS iteration method (Bai et al., 2003) or its preconditioned variant
PHSS (i.e., the preconditioned HSS; see Bai et al., 2004) to compute an approximate solution of the
block two-by-two linear system (1.1); see also Benzi & Golub (2004), Benzi et al. (2005) and Bai et
al. (2007). With this alternating splitting iteration approach, at each step we need to solve two linear
subsystems of the following forms:

(αVD + H)x = r(1) and (αVD + S)x = r(2),

where VD ∈ R
2n×2n is a given symmetric positive definite matrix of the block diagonal form VD =

Diag(V, V) with V ∈ R
n×n , α is a prescribed positive constant, and r( j), j = 1, 2, are two known

vectors. In matrix–vector form, the above linear subsystems can be equivalently written as(
αV + W 0

0 αV + W

)(
y
z

)
=

(
r(1)

a

r(1)
b

)
and

(
αV −T
T αV

)(
y
z

)
=

(
r(2)

a

r(2)
b

)
,

where

r( j) =
(

r( j)
a

r( j)
b

)
, with r( j)

a , r( j)
b ∈ Rn, j = 1, 2.

The matrix αV+W is symmetric positive definite, so the first linear subsystem may be effectively solved
either exactly by the Cholesky factorization or inexactly by some inner iterative scheme. The matrix(

αV −T
T αV

)
is nonsymmetric and positive definite. The second linear subsystem may be solved in principle through
Schur complement reduction (block triangular factorization) by first computing the solution subvector z
from

(α2V + TV−1T)z = αr(2)
b − TV−1r(2)

a ,

1In the real case this becomes the symmetric and skew-symmetric splitting. In this case we use (·)T to denote the transpose of
the corresponding matrix.
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and then computing another solution subvector y from

y = 1

α
V−1(Tz + r(2)

a ).

The problem with this approach is that in most cases the Schur complement α2V + TV−1T will be a
large dense matrix that cannot be easily managed.

The system of linear equations (1.1) may be solved by the preconditioned GMRES method, or it
may be first symmetrized and then solved by the preconditioned MINRES method; see Chen (2005)
and Saad (2003). If MINRES is used, a symmetric positive definite preconditioner is required. A typical
choice is to use a block diagonal preconditioner (Rees et al., 2010; Pearson & Wathen, 2010); such
preconditioners necessitate a good approximation to the Schur complement W ± TW−1T, which may
be difficult or expensive to construct (Bai & Ng , 2005). We return to this issue at the end of Section 3.

In this paper we develop a new approach to solving block linear systems of the form (1.1) that
avoids Schur complements. The new schemes are based on a class of methods for solving linear systems
with complex symmetric matrices introduced in Bai et al. (2010, 2011) and exploit the fact that real
systems of the form (1.1) are formally identical to linear systems with complex coefficient matrix Ac :=
W+iT ∈ Cn×n , where i = √−1 denotes the imaginary unit. The algorithm described in Bai et al. (2010)
is a modified Hermitian and skew-Hermitian splitting (MHSS) iteration method; the one introduced in
Bai et al. (2011) is a preconditioned variant of MHSS, called preconditioned modified Hermitian and
skew-Hermitian splitting (PMHSS).

In the following, we develop a PMHSS iterative method for solving the block two-by-two linear
system (1.1), establish its convergence theory and analyse the spectral properties of the corresponding
preconditioned matrix. The PMHSS iteration scheme is, in spirit, analogous to the preconditioned HSS
iteration methods discussed above (see also Benzi & Golub, 2004; Bai et al., 2004; Bertaccini et al.,
2005; Bai et al., 2007, for detailed treatments) for solving non-Hermitian positive definite linear systems.
Convergence analysis has shown that the PMHSS iteration method is convergent when both W and T
are symmetric positive semidefinite and at least one of them is positive definite. For certain special
cases of the PMHSS iteration method, this convergence condition can be weakened to the requirement
that both matrices W and T are symmetric positive semidefinite satisfying null(W) ∩ null(T) = {0},
where null(·) represents the null space of the corresponding matrix. Also, the PMHSS iteration method
naturally leads to a preconditioning matrix for the block two-by-two matrix A. For the above-mentioned
special PMHSS preconditioners, the eigenvalues of the preconditioned matrices are clustered within

complex disks centred at 1 with radii
√

α2+1
α+1 , where α > 0 is the iteration parameter, and the matrices

of the corresponding eigenvectors are unitary and hence have condition numbers equal to 1.
In this paper the PMHSS iteration method is applied to a class of KKT linear systems arising from

a finite element discretization of a class of distributed control problems (Lions, 1968; Lass et al., 2009;
Rees et al., 2010; Bai, 2011). In order to apply the method, we first eliminate the Lagrange multiplier
from the original KKT system to obtain a block two-by-two system, which is then diagonally scaled so
as to obtain linear systems of the form (1.1). The PMHSS iteration method for such a scaled block two-
by-two linear system is then transformed back to the original variables, resulting in the PMHSS iteration
method and, therefore, the PMHSS preconditioner, for the (nonscaled) block two-by-two linear system.
Numerical results in Section 4 show that PMHSS iteration methods, when used to precondition Krylov
subspace methods such as GMRES (Saad, 2003), lead to rapid convergence and tend to outperform the
constraint preconditioners proposed in Rees et al. (2010); see also Keller et al. (2000), Bai et al. (2009)
and the references therein for additional information on constraint preconditioning. Furthermore, our ex-
periments show that PMHSS compares favourably with MINRES with block diagonal preconditioning
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and different Schur complement approximations, such as those proposed in Pearson & Wathen (2010)
and Rees et al. (2010).

The organization of the paper is as follows. In Section 2 we establish the PMHSS iteration method
and analyse its convergence and preconditioning properties. In Section 3 we derive the PMHSS iteration
method for a class of block two-by-two linear systems arising from distributed control problems. Nu-
merical results are given in Section 4 to show the effectiveness of the PMHSS preconditioner, including
comparisons with a state-of-the-art constraint preconditioner. Finally, in Section 5 we end the paper with
some conclusions and remarks.

2. The PMHSS iteration method

The block two-by-two linear system (1.1) can be rewritten as a fixed point equation:(
αV + W 0

0 αV + W

)(
y
z

)
=

(
αV T
−T αV

)(
y
z

)
+

(
p
q

)
.

Alternatively, it can also be rewritten into another fixed point equation:(
αV + T 0

0 αV + T

)(
y
z

)
=

(
αV −W
W αV

)(
y
z

)
+

(
q

−p

)
.

Alternating between these two splittings leads to the (real) PMHSS iteration method for systems of the
form (1.1), described as follows. Here and in the sequel, we use (·)T to denote the transpose of either a
vector or a square matrix.

METHOD 2.1 (The PMHSS iteration method (real version)).
Let (y(0)T

, z(0)T
)T ∈ R2n be an arbitrary initial guess, with y(0), z(0) ∈ Rn . For k = 0, 1, 2, . . . , until the

sequence of iterates {(y(k)T
, z(k)T

)T}∞k=0 ⊂ R
2n converges, compute the next iterate (y(k+1)T

, z(k+1)T
)T

according to the following procedure:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
αV + W 0

0 αV + W

) (
y(k+ 1

2 )

z(k+ 1
2 )

)
=

(
αV T
−T αV

)(
y(k)

z(k)

)
+

(
p
q

)
,

(
αV + T 0

0 αV + T

)(
y(k+1)

z(k+1)

)
=

(
αV −W
W αV

) (
y(k+ 1

2 )

z(k+ 1
2 )

)
+

(
q

−p

)
,

(2.1)

where α is a given positive constant and V ∈ Rn×n is a prescribed symmetric positive definite matrix.

Let

x(k) =
(

y(k)

z(k)

)
and x(k+ 1

2 ) =
(

y(k+ 1
2 )

z(k+ 1
2 )

)
.

Then after straightforward derivations, we can reformulate the PMHSS iteration scheme (2.1) into the
standard form

x(k+1) = L(V; α)x(k) + R(V; α)g, k = 0, 1, 2, . . . ,
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where

L(V; α) =
(

αV + T 0
0 αV + T

)−1 (
αV −W
W αV

)(
αV + W 0

0 αV + W

)−1 (
αV T
−T αV

)
and

R(V; α) = α

(
αV + T 0

0 αV + T

)−1 (
V 0
0 V

)(
αV + W 0

0 αV + W

)−1 (
I I

−I I

)
,

with I ∈ Rn×n being the identity matrix. Note that L(V; α) is the iteration matrix of the PMHSS iteration
method (real version), i.e., Method 2.1.

By straightforward computations, we can also show that the spectral radius of L(V; α) is bounded
by a quantity σ(α), which only depends on the iteration parameter α. This fact is precisely stated in the
following theorem.

THEOREM 2.2 Let A ∈ R2n×2n be the block two-by-two matrix defined as in (1.1), with both W ∈ Rn×n

and T ∈ Rn×n being symmetric positive semidefinite matrices, and let α be a positive constant. Then
the following statements hold true:

(i) A is nonsingular if and only if null(W) ∩ null(T) = {0};
(ii) if W is symmetric positive definite, the spectral radius of the PMHSS iteration matrix L(V; α)

satisfies ρ(L(V; α)) � σ(α), with

σ(α) ≡ max
λ̃ j ∈sp(V−1W)

√
α2 + λ̃2

j

α + λ̃ j
· max
μ̃ j ∈sp(V−1T)

√
α2 + μ̃2

j

α + μ̃ j

� max
λ̃ j ∈sp(V−1W)

√
α2 + λ̃2

j

α + λ̃ j
< 1 ∀α > 0,

i.e., the PMHSS iteration, defined by Method 2.1, converges unconditionally to the unique so-
lution of the block two-by-two linear system (1.1) for any initial guess, where sp(·) denotes the
spectral set of the corresponding matrix;

(iii) for the choice α� = √
γ̃minγ̃max, with γ̃min and γ̃max being the smallest and the largest eigenvalues

of the matrix V−1W, it holds that

σ(α�) �
√

κ2(V−1W) + 1√
κ2(V−1W) + 1

.

Proof. We first prove (i).
Necessity: if there exists a nonzero vector y ∈ null(W) ∩ null(T), then it follows from Wy = 0 and

Ty = 0 that Ax = 0, where x = (yT, yT)T ∈ R2n is a nonzero vector. This obviously contradicts the
assumption that A ∈ R2n×2n is nonsingular. Hence, it must hold that null(W) ∩ null(T) = {0}.

Sufficiency: let x = (yT, zT)T ∈ R2n , with y, z ∈ Rn , such that Ax = 0, i.e.,

Wy − Tz = 0 and Ty + Wz = 0.
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Then we easily have

(W + T)y + (W − T)z = 0 and (T − W)y + (W + T)z = 0. (2.2)

Because W and T are symmetric positive semidefinite matrices and null(W) ∩ null(T) = {0}, we see
that W + T is a symmetric positive definite matrix. Therefore, by solving for y from the first equation
in (2.2), we get

y = (W + T)−1(T − W)z,

and by substituting it into the second equation in (2.2), we get

[(W + T) + (T − W)(W + T)−1(T − W)]z = 0.

Noting that the matrix [(W + T) + (T − W)(W + T)−1(T − W)] is symmetric positive definite, we
immediately obtain z = 0 and, thus, y = 0. This shows that A ∈ R2n×2n must be nonsingular.

To demonstrate (ii), we first introduce the notation

W̃ = V− 1
2 WV− 1

2 and T̃ = V− 1
2 TV− 1

2 .

Then there exist orthogonal matrices Q̃W, Q̃T ∈ R
n×n , a positive diagonal matrix Λ̃W =

diag(̃λ1, λ̃2, . . . , λ̃n) ∈ Rn×n and a non-negative diagonal matrix Λ̃T = diag(μ̃1, μ̃2, . . . , μ̃n) ∈ Rn×n

such that

W̃ = Q̃WΛ̃WQ̃T
W and T̃ = Q̃TΛ̃TQ̃T

T.

By block scaling and matrix similarity, we know that the PMHSS iteration matrix L(V; α) is similar to
the matrix

L̃(α) :=
(

αI −W̃
W̃ αI

)(
αI + W̃ 0

0 αI + W̃

)−1 (
αI T̃
−T̃ αI

)(
αI + T̃ 0

0 αI + T̃

)−1

.

So, it holds that ρ(L(V; α)) = ρ(L̃(α)). It follows from straightforward computations that

ρ(L̃(α))�
∥∥∥∥∥
(

αI −W̃
W̃ αI

)(
αI + W̃ 0

0 αI + W̃

)−1
∥∥∥∥∥

2

∥∥∥∥∥
(

αI T̃
−T̃ αI

)(
αI + T̃ 0

0 αI + T̃

)−1
∥∥∥∥∥

2

=
∥∥∥∥∥
(

αI −Λ̃W
Λ̃W αI

)(
αI + Λ̃W 0

0 αI + Λ̃W

)−1
∥∥∥∥∥

2

∥∥∥∥∥
(

αI Λ̃T
−Λ̃T αI

)(
αI + Λ̃T 0

0 αI + Λ̃T

)−1
∥∥∥∥∥

2

= max
λ̃ j ∈sp(W̃)

∣∣∣∣α ± i λ̃ j

α + λ̃ j

∣∣∣∣ · max
μ̃ j ∈sp(T̃)

∣∣∣∣α ± i μ̃ j

α + μ̃ j

∣∣∣∣
= max

λ̃ j ∈sp(V−1W)

√
α2 + λ̃2

j

α + λ̃ j
· max
μ̃ j ∈sp(V−1T)

√
α2 + μ̃2

j

α + μ̃ j

= σ(α).
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Here we have used the facts that sp(W̃) = sp(V−1W) and sp(T̃) = sp(V−1T). Noting that sp(V−1T)
⊆ [0, +∞), we see that for all μ̃ j ∈ sp(V−1T), j = 1, 2, . . . , n, the bounds√

α2 + μ̃2
j

α + μ̃ j
� 1, j = 1, 2, . . . , n,

are valid. Hence, it holds that

σ(α) � max
λ̃ j ∈sp(V−1W)

√
α2 + λ̃2

j

α + λ̃ j
< 1.

The validity of (iii) follows immediately from the estimate

σ(α) � max˜γmin�λ̃�˜γmax

√
α2 + λ̃2

α + λ̃
,

and the fact that this upper bound attains the minimum at α� = √
γ̃minγ̃max. By making use of this α�,

we get

σ(α�) �
√

γ̃min + γ̃max√
γ̃min + √

γ̃max
=

√
κ2(V−1W) + 1√
κ2(V−1W) + 1

.

. �
In addition, if we introduce matrices

F(V; α) = P(α)

(
αV + W 0

0 αV + W

)(
V−1 0

0 V−1

)(
αV + T 0

0 αV + T

)
(2.3)

and

G(V; α) = P(α)

(
αV −W
W αV

)(
V−1 0

0 V−1

)(
αV T
−T αV

)
,

with

P(α) = 1

2α

(
I −I
I I

)
, (2.4)

then it holds that

A = F(V; α) − G(V; α) and L(V; α) = F(V; α)−1G(V; α). (2.5)

Therefore, the PMHSS iteration scheme (2.1) is induced by the matrix splitting A = F(V; α)−G(V; α)
defined in (2.5). It follows that the splitting matrix F(V; α) given in (2.3) can be used as a precondi-
tioning matrix for the block two-by-two matrix A ∈ R2n×2n in (1.1), which will be referred to as the
PMHSS preconditioner.
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In actual implementations, the action of the preconditioning matrix F(V; α), when used to precon-
dition Krylov subspace methods, is often realized through solving a sequence of generalized residual
equations of the form

F(V; α)v = r,

where r = (rT
a , rT

b )T ∈ R
2n , with ra, rb ∈ R

n , represents the current residual vector, while v =
(vT

a , vT
b )T ∈ R

2n , with va, vb ∈ R
n , represents the generalized residual vector. By making use of the

concrete structures of the matrices F(V; α) in (2.3) and P(α) in (2.4), we obtain the following procedure
for computing the vector v:

(i) compute ṽa, ṽb ∈ Rn by solving the systems of linear equations{
(αV + W)̃va = α(ra + rb),

(αV + W)̃vb = α(−ra + rb);
(ii) compute v̂a, v̂b ∈ Rn by

v̂a = V ṽa and v̂b = V ṽb;
(iii) compute va, vb ∈ Rn by solving the systems of linear equations{

(αV + T)va = v̂a,

(αV + T)vb = v̂b.

Note that both matrices αV + W and αV + T are symmetric positive definite. Hence, the above
four systems of linear equations can be solved effectively either exactly by Cholesky factorizations or
inexactly by some conjugate gradient or multigrid scheme; see Bai et al. (2003, 2008).

In particular, when V = W, we have

L(α) := L(W; α) = 1

α + 1

(
αW + T 0

0 αW + T

)−1 (
αW T
−T αW

)(
αI −I
I αI

)
(2.6)

and

R(α) := R(W; α) = α

α + 1

(
αW + T 0

0 αW + T

)−1 (
I I

−I I

)
.

We note that the PMHSS iteration scheme in the real version is induced from the matrix splitting

A = F(α) − G(α),

where

F(α) := F(W; α) = (α + 1)P(α)

(
αW + T 0

0 αW + T

)
(2.7)

and

G(α) := G(W; α) = P(α)

(
αI −I

I αI

)(
αW T
−T αW

)
,

with P(α) being defined in (2.4).
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Moreover, it holds that

ρ(L(α)) �
√

α2 + 1

α + 1
∀α > 0;

see Theorem 2.2(ii). We can further prove the convergence of this PMHSS iteration method under
weaker conditions without imposing the restriction that the matrix W ∈ Rn×n is positive definite. This
result is precisely stated in the following theorem.

THEOREM 2.3 Let A ∈ R2n×2n be the block two-by-two matrix defined as in (1.1), with W ∈ Rn×n

and T ∈ R
n×n being symmetric positive semidefinite matrices satisfying null(W) ∩ null(T) = {0},

and let α be a positive constant. Then the spectral radius of the PMHSS iteration matrix L(α) satisfies
ρ(L(α)) � σ(α), with

σ(α) =
√

α2 + 1

α + 1
· max
μ(α)∈sp(Z̃(α))

√
1 + |μ(α)|2

2
,

where Z̃(α) = (αW + T)−1(αW − T). Therefore, it holds that

ρ(L(α)) � σ(α) �
√

α2 + 1

α + 1
∀α > 0;

i.e., the PMHSS iteration converges unconditionally to the unique solution of the block two-by-two
linear system (1.1) for any initial guess.

Proof. Because W and T are symmetric positive semidefinite matrices, null(W) ∩ null(T) = {0}, and
α > 0, we know that the matrix αW + T is symmetric positive definite. Based on the identities(

αW T
−T αW

)(
I −I
I I

)
=

(
αW + T T − αW
αW − T αW + T

)
and (

I −I
I I

)−1 (
αI −I
I αI

)
= 1

2

(
(α + 1)I (α − 1)I
(1 − α)I (α + 1)I

)
,

from (2.6) we immediately have

L(α) = 1

2

(
αW + T 0

0 αW + T

)−1 (
αW + T T − αW
αW − T αW + T

) (
I α−1

α+1 I
1−α
α+1 I I

)
,

which is similar to the matrix

L̂(α) = 1

2

(
I −Ẑ(α)

Ẑ(α) I

) (
I α−1

α+1 I
1−α
α+1 I I

)
,

with

Ẑ(α) = (αW + T)−
1
2 (αW − T)(αW + T)−

1
2 .
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By noting (
I −Ẑ(α)

Ẑ(α) I

)(
I −Ẑ(α)

Ẑ(α) I

)T

=
(

I + Ẑ(α)2
0

0 I + Ẑ(α)2

)

and (
I α−1

α+1 I
1−α
α+1 I I

)(
I α−1

α+1 I
1−α
α+1 I I

)T

= 2(α2 + 1)

(α + 1)2
I,

we obtain

L̂(α)L̂(α)T = α2 + 1

2(α + 1)2

(
I + Ẑ(α)2

0

0 I + Ẑ(α)2

)
.

In addition, straightforward computations show that L̂(α)L̂(α)T = L̂(α)TL̂(α), so L̂(α) is a normal
matrix. Therefore, it holds that

ρ(L̂(α)) = ‖L̂(α)‖2 =
√

ρ(L̂(α)L̂(α)T) =
√

α2 + 1

α + 1
·
√

1 + ρ(Ẑ(α))2

2
. (2.8)

As Ẑ(α) is similar to Z̃(α), we know that ρ(Ẑ(α)) = ρ(Z̃(α)). Hence, from (2.8) we further obtain

ρ(L(α)) = ρ(L̂(α)) =
√

α2 + 1

α + 1
· max
μ(α)∈sp(Z̃(α))

√
1 + |μ(α)|2

2
= σ(α).

For all μ(α) ∈ sp(Z̃(α)), it easily follows from sp(Z̃(α)) ⊆ [−1, 1] that 1
2 (1+|μ(α)|2) � 1 and, therefore,

σ(α) �
√

α2 + 1

α + 1
.

�

The spectral properties of the preconditioned matrix F(α)−1A are established in the following
theorem.

THEOREM 2.4 Let A ∈ R2n×2n be the block two-by-two matrix defined as in (1.1), with W ∈ Rn×n

and T ∈ R
n×n being symmetric positive semidefinite matrices satisfying null(W) ∩ null(T) = {0},

and let α be a positive constant. Define Z(α) = (αW + T)− 1
2 (W − αT)(αW + T)− 1

2 . Denote by
μ

(α)
1 , μ

(α)
2 , . . . , μ

(α)
n the eigenvalues of the symmetric matrix Z(α) ∈ Rn×n , and by q(α)

1 , q(α)
2 , . . . , q(α)

n

the corresponding (αW + T)−1-orthogonal eigenvectors. Then the eigenvalues of the matrix F(α)−1A
are

λ
(α, j)
± = α

α2 + 1

(
1 ± i

α − 1

α + 1

) (
1 ± iμ(α)

j

)
, j = 1, 2, . . . , n,
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and the corresponding eigenvectors are

x̃(α)
j = 1√

2

(
x(α)

j

i x(α)
j

)
, x̃(α)

n+ j = 1√
2

(
x(α)

j

−i x(α)
j

)
, j = 1, 2, . . . , n,

with x(α)
j = (αW + T)− 1

2 q(α)
j . Therefore, we have F(α)−1A = X̃(α)Λ(α)X̃(α)−1

, where

X̃(α) = 1√
2

(
X(α) X(α)

i X(α) −i X(α)

)
, X(α) = (

x(α)
1 , x(α)

2 , . . . , x(α)
n

) ∈ Rn×n,

and

Λ(α) =
(

Λ
(α)
+ 0
0 Λ

(α)
−

)
, Λ

(α)
± = diag

(
λ

(α,1)
± , λ

(α,2)
± , . . . , λ

(α,n)
±

) ∈ Cn×n .

Moreover, X(α) ∈ Rn×n is orthogonal and X̃(α) ∈ C2n×2n is unitary, so it holds that

κ2(X̃(α)) = κ2(X(α)) = 1,

where κ2(·) represents the condition number in the Euclidean norm.

Proof. Define matrices

Q(α) = (
q(α)

1 , q(α)
2 , . . . , q(α)

n

) ∈ Rn×n

and

Ξ(α) = diag
(
μ

(α)
1 , μ

(α)
2 , . . . , μ(α)

n

) ∈ Rn×n .

Then it holds that

Z(α)Q(α) = Q(α)Ξ(α) and X(α) = (αW + T)−
1
2 Q(α).

Because the inverse of the matrix P(α) defined in (2.4) is given by

P(α)−1 = α

(
I I

−I I

)
and the matrices (

W −T
T W

)
and

(
I I

−I I

)
commute, from (1.1) and (2.7) we easily get

F(α)−1A = α

α + 1

(
αW + T 0

0 αW + T

)−1 (
W −T
T W

)(
I I

−I I

)
. (2.9)

Based on the identities (
W −T
T W

)(
αI I
−I αI

)
=

(
αW + T W − αT
αT − W αW + T

)
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and (
αI I
−I αI

)−1 (
I I

−I I

)
= 1

α2 + 1

(
(α + 1)I (α − 1)I
(1 − α)I (α + 1)I

)
,

we further obtain from (2.9) that

F(α)−1A = α

α2 + 1

(
αW + T 0

0 αW + T

)−1 (
αW + T W − αT
αT − W αW + T

) (
I α−1

α+1 I

1−α
α+1 I I

)

= α

α2 + 1

(
αW + T 0

0 αW + T

)− 1
2
(

I Z(α)

−Z(α) I

)(
αW + T 0

0 αW + T

) 1
2

Ĵ(α)

= α

α2 + 1

(
X(α) 0

0 X(α)

)(
I Ξ(α)

−Ξ(α) I

)(
X(α) 0

0 X(α)

)−1

Ĵ(α)

= α

α2 + 1
X̂(α)Ψ̂ (α)X̂(α)−1

Ĵ(α)

= α

α2 + 1
X̂(α)Ψ̂ (α)̂J(α)X̂(α)−1

, (2.10)

where

X̂(α) =
(

X(α) 0
0 X(α)

)
, Ψ̂ (α) =

(
I Ξ(α)

−Ξ(α) I

)
and Ĵ(α) =

(
I α−1

α+1 I
1−α
α+1 I I

)
.

Let

U(α) = 1√
2

(
I I
i I −i I

)
.

Then by straightforward computation, we have

U(α)∗Ψ̂ (α)U(α) =
(

I + i Ξ(α) 0
0 I − i Ξ(α)

)
and

U(α)∗ Ĵ(α)U(α) =
(

(α+1)+(α−1)i
α+1 I 0

0 (α+1)−(α−1)i
α+1 I

)
.

Now it follows from (2.10) that

F(α)−1A = α

(α + 1)(α2 + 1)
X̂(α)U(α)

(
I + i Ξ(α) 0

0 I − i Ξ(α)

)
(

[(α + 1) + i(α − 1)]I 0
0 [(α + 1) − i(α − 1)]I

)
U(α)∗X̂(α)−1

= X̃(α)Λ(α)X̃(α)−1
,

where X̃(α) = X̂(α)U(α) and
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Λ
(α)
+ = α[(α + 1) + i(α − 1)]

(α + 1)(α2 + 1)
(I + i Ξ(α)), Λ

(α)
− = α[(α + 1) − i(α − 1)]

(α + 1)(α2 + 1)
(I − i Ξ(α)).

Moreover, as Q(α) ∈ Rn×n is (αW+T)−1-orthogonal and U(α) ∈ C2n×2n is unitary, we immediately
find that X(α) ∈ Rn×n and X̂(α) ∈ R2n×2n are orthogonal and, hence, X̃(α) ∈ C2n×2n is unitary. It then
follows that κ2(X̃(α)) = κ2(X(α)) = 1. �

REMARK 2.5 If α = 1, then Theorem 2.3 leads to σ(1) �
√

2
2 . This shows that when

F :=
(

I −I
I I

)(
W + T 0

0 W + T

)
is used to precondition the matrix A ∈ R2n×2n , the eigenvalues of the preconditioned matrix F−1A are

contained within the complex disk centred at 1 with radius
√

2
2 . Moreover, Theorem 2.4 indicates that the

matrix F−1A is diagonalizable, with the matrix X̃(1), formed by its eigenvectors, being unitary. Hence,
the preconditioned Krylov subspace iteration methods, when employed to solve the block two-by-two
linear system (1.1), can be expected to converge rapidly and independently of both problem data and
mesh size.

REMARK 2.6 For the PMHSS preconditioning matrix Fc(α) defined in (2.7) in Bai et al. (2011) for
complex symmetric linear systems of the form Acxc = bc, with Ac = W + iT ∈ C

n×n and bc ∈
C

n , in an analogous fashion to the proof of Theorem 2.4 we can also demonstrate that Fc(α)−1Ac is
diagonalizable by the orthogonal matrix X(α) ∈ Rn×n , where

X(α) = (
x(α)

1 , x(α)
2 , . . . , x(α)

n

)
, with x(α)

j = (αW + T)−
1
2 q(α)

j ,

and q(α)
1 , q(α)

2 , . . . , q(α)
n are the (αW + T)−1-orthogonal eigenvectors of the matrix Z(α) = (αW +

T)− 1
2 (W − αT)(αW + T)− 1

2 . Hence, the preconditioned Krylov subspace iteration methods such as
GMRES, when employed to solve the complex symmetric linear system Acxc = bc, can be expected to
converge very rapidly. This result improves Theorems 3.2 and 3.3 in Bai et al. (2011).

3. Applications to the numerical solution of distributed control problems

Consider the distributed control problem

min
u, f

1

2
‖u − u∗‖2

2 + β‖ f ‖2
2 (3.1)

subject to − ∇2u = f in Ω, (3.2)

with u = g on ∂Ω1 and
∂u

∂n
= g on ∂Ω2, (3.3)

where Ω is a domain in R2 or R3, ∂Ω is the boundary of Ω , and ∂Ω1 and ∂Ω2 are two parts of ∂Ω
satisfying ∂Ω1 ∪ ∂Ω2 = ∂Ω and ∂Ω1 ∩ ∂Ω2 = ∅. The parameter β > 0 in (3.1) is a regularization
parameter; some authors use β

2 instead of β, e.g., Pearson & Wathen (2010). Such problems, introduced
by Lions (1968), consist of a cost functional (3.1) to be minimized subject to a PDE problem (3.2–3.3)
posed on the domain Ω . Here the function u∗ (the ‘desired state’) is known, and we want to find u, which
satisfies the PDE problem and is as close to u∗ as possible in the L2-norm sense. For recent references
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on this topic, see, e.g., Ito & Kunisch (2008), Lass et al. (2009), Bai (2011), Takacs & Zulehner (2011)
and Tröltzsch (2010).

When the PDE-constrained optimization problem (3.1–3.3) is treated with the discretize-then-
optimize approach (Rees et al., 2010) through application of a Galerkin finite element method to its
weak formulation, we obtain a KKT system in the following saddle point form:⎛⎝2βM 0 −M

0 M K T

−M K 0

⎞⎠ ⎛⎝ f
u
λ

⎞⎠ =
⎛⎝0

b
d

⎞⎠ , (3.4)

where M ∈ Rm×m is the mass matrix, K ∈ Rm×m is the stiffness matrix (the discrete Laplacian), β > 0
is the regularization parameter, d ∈ R

m contains the terms coming from the boundary values of the
discrete solution and b ∈ Rm is the Galerkin projection of the discrete state u∗. In addition, λ is a vector
of Lagrange multipliers.

The saddle point linear system (3.4) can be equivalently rewritten in block element form as⎧⎪⎨⎪⎩
2βM f − Mλ = 0,

Mu + K Tλ = b,

−M f + K u = d.

(3.5)

From the first equation in (3.5) we easily get

λ = 2β f. (3.6)

By substituting this expression with respect to λ into the other two equations in (3.5), we obtain{
Mu + 2βK T f = b,

K u − M f = d,

or equivalently,

Ax ≡
( 1

2β M K T

−K M

)(
u
f

)
=

( 1
2β b
−d

)
≡ g. (3.7)

We remark that the block two-by-two linear system (3.7), together with (3.6), is equivalent to the saddle
point linear system (3.4); see also Simoncini (2011). Recall that M ∈ Rm×m is the mass matrix and is,
thus, symmetric positive definite. Therefore, the matrix A ∈ R2m×2m is positive real, i.e., its symmetric
part is positive definite.

In the remainder of this section, we assume that the stiffness matrix K is symmetric and positive
semidefinite; this assumption is slightly more general than needed for the treatment of the particular
distributed control problem (3.1–3.3), for which K is positive definite. Through symmetric block-scaling
by the diagonal matrix

D =
(−√

2β I 0
0 I

)
, (3.8)

where I ∈ Rm×m represents the identity matrix, we can reformulate the block two-by-two linear system
(3.7) into the form of (1.1), with

A = D AD =
(

M −√
2βK√

2βK M

)
, i.e., W = M and T = √

2βK , (3.9)
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and ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x = D−1x =

(
− 1√

2β
u

f

)
, i.e., y = − 1√

2β
u and z = f,

g = Dg =
(

− 1√
2β

b

−d

)
, i.e., p = − 1√

2β
b and q = −d.

(3.10)

Now first applying Method 2.1 directly to the block two-by-two linear system (1.1), and then trans-
forming the induced iteration scheme back to the original variables through (3.9) and (3.10), with the
notational replacement V = V , we obtain the PMHSS iteration method for solving the block two-by-two
linear system (3.7) as follows.

METHOD 3.1. (The PMHSS iteration method for (3.7)).
Let (u(0)T

, f (0)T
)T ∈ R

2m be an arbitrary initial guess, with u(0), f (0) ∈ R
m . For k = 0, 1, 2, . . .,

until the sequence of iterates {(u(k)T
, f (k)T

)T}∞k=0 ⊂ R
2m converges, compute the next iterate (u(k+1)T

,

f (k+1)T
)T according to the following procedure:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
αV + M 0

0 αV + M

) (
u(k+ 1

2 )

f (k+ 1
2 )

)
=

(
αV −2βK
K αV

)(
u(k)

f (k)

)
+

(
b

−d

)
,

(
αV + √

2βK 0
0 αV + √

2βK

)(
u(k+1)

f (k+1)

)
=

(
αV

√
2βM

− 1√
2β

M αV

)(
u(k+ 1

2 )

f (k+ 1
2 )

)
+

(√
2βd
1√
2β

b

)
,

where α is a given positive constant and V ∈ R
m×m is a prescribed symmetric positive definite

matrix.

We easily see that the convergence rate of the PMHSS iteration sequence generated by Method 3.1
is bounded by

σo(α) ≡ max
λ̃ j ∈sp(V −1 M)

√
α2 + λ̃2

j

α + λ̃ j
· max
μ̃ j ∈sp(V −1 K )

√
α2 + 2βμ̃2

j

α + √
2βμ̃ j

.

Moreover, the PMHSS preconditioner induced from Method 3.1 for the block two-by-two linear
system (3.7) is given by

F(V ; α) = D−1F(V; α)D−1

= P(α; β)

(
αV + M 0

0 αV + M

)(
V −1 0

0 V −1

)(
αV + √

2βK 0
0 αV + √

2βK

)
,

(3.11)

where

P(α; β) = D−1P(α)D−1 = 1

4αβ

(
I

√
2β I

−√
2β I 2β I

)
; (3.12)

see (2.3), (2.4) and (3.8) for the definitions of the matrices F(V; α), P(α) and D, respectively. Here we
have applied the relationships in (3.9).
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In actual implementations, the action of the preconditioning matrix F(V ; α), when used to precondi-
tion the Krylov subspace iteration methods, is often realized through solving a sequence of generalized
residual equations of the form

F(V ; α)v = r,

where r = (rT
a , rT

b )T ∈ R
2m , with ra, rb ∈ R

m , represents the current residual vector, while v =
(vT

a , vT
b )T ∈ R

2m , with va, vb ∈ R
m , represents the generalized residual vector. By making use of

the concrete structure of the matrix F(V ; α), we obtain the following procedure for computing the
vector v:

(i) compute ṽa, ṽb ∈ Rm by solving the systems of linear equations⎧⎨⎩(αV + M )̃va = 2αβ
(

ra − 1√
2β

rb

)
,

(αV + M )̃vb = α(
√

2βra + rb);
(ii) compute v̂a, v̂b ∈ Rm by

v̂a = V ṽa and v̂b = V ṽb;
(iii) compute va, vb ∈ Rm by solving the systems of linear equations{

(αV + √
2βK )va = v̂a,

(αV + √
2βK )vb = v̂b.

Note that both matrices αV + M and αV +√
2βK are symmetric positive definite. Hence, the above

four systems of linear equations can be solved effectively either exactly by Cholesky factorizations or
inexactly by some conjugate gradient or multigrid scheme; see Bai et al. (2003, 2008).

In particular, when V = M , the PMHSS preconditioning matrix F(V ; α) defined in (3.11–3.12)
reduces to

F(α) := F(M ; α) = (α + 1)P(α; β)

(
αM + √

2βK 0

0 αM + √
2βK

)
. (3.13)

If α = 1, then we further have

F := P

(
M + √

2βK 0

0 M + √
2βK

)
, (3.14)

where

P = 1

2β

(
I

√
2β I

−√
2β I 2β I

)
.

We stress that our solution approach is not limited to the special (and rather simple) model problem
(3.1–3.3), and that it can handle any kind of distributed control problem leading to KKT systems of
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the form (3.4) with K symmetric and positive (semi-)definite. Hence, a broad class of elliptic PDE
constraints can be accommodated besides Poisson’s equation.

Finally, the definition in (3.14) shows that up to the factor P , the preconditioner F is nothing but
a block diagonal preconditioner. Recently, different block diagonal preconditioners for optimal control
of Poisson’s equation have been developed by several authors; see, e.g., Rees et al. (2010), Pearson &
Wathen (2010) and Zulehner (2011). In Rees et al. (2010), it was found that various block diagonal
preconditioners for MINRES are robust with respect to h, but their performance deteriorates for de-
creasing values of β. Furthermore, the results in Rees et al. (2010) demonstrate that the preconditioned
projected conjugate gradient (PPCG) method with constraint preconditioning is systematically faster
than MINRES with block diagonal preconditioning in terms of solution times, often by a large mar-
gin. Other more robust preconditioners have been recently introduced in Zulehner (2011) and Pearson
& Wathen (2010). It is interesting to note that the diagonal blocks in these preconditioners are scalar
combinations of the mass matrix M and the stiffness matrix K , similar to the coefficient matrices in
(3.4) and (3.7), respectively. These preconditioners appear to be robust with respect to both h and β and
have costs comparable to the PMHSS preconditioner developed here. For instance, the block diagonal
preconditioner in Pearson & Wathen (2010) requires at each iteration the (approximate) solution of two
linear systems with coefficient matrix K + 1√

2β
M , in addition to three linear systems involving the

mass matrix. (Recall that our β corresponds to β/2 in Pearson & Wathen, 2010; hence, our K + 1√
2β

M

corresponds to the matrix K + 1√
β

M in Pearson & Wathen, 2010.) The PMHSS preconditioner (with

α = 1) requires the (approximate) solution of two linear systems with coefficient matrix M + √
2βK at

each iteration. Hence, apart from the (inexpensive) mass matrix solves, the two preconditioners require
almost identical computational effort.

4. Numerical results

In this section, we use the following example to examine the numerical behaviour of the PMHSS
preconditioning matrix and the corresponding preconditioned Krylov subspace iteration methods.

EXAMPLE 4.1 (Rees et al., 2010). Let Ω = [0, 1]2 be a unit square and consider the distributed
control problem (3.1–3.3) with ∂Ω2 = ∅, g = u∗ and

u∗ =
{

(2x − 1)2(2y − 1)2 if (x, y) ∈ [0, 1
2 ]2,

0 otherwise.

Our aim is to compare the PMHSS scheme with some of the best existing solvers for this problem.
To this end, we solve the system of linear equations (3.4) by the projected conjugate gradient method
preconditioned with the constraint preconditioning matrix PC and its approximation (inexact variant)
P(app)

C (see, e.g., Keller et al., 2000) and solve the system of linear equations (3.7) by the GMRES
method preconditioned with the PMHSS preconditioning matrices F(α) and F , defined by (3.13) and
(3.14), and their inexact variants F (app)(α) and F (app). Also, we solve the system of linear equations
(3.4) and its block two-by-two variant

As x ≡
( 1

2β M K T

K −M

)(
u
f

)
=

( 1
2β b
d

)
≡ gs (4.1)
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by the MINRES method preconditioned with the block diagonal preconditioning matrices

PD = Diag

(
2βM, M,

1

2β
M + K M−1 K

)
and PD2 = Diag

(
1

2β
M, M + 2βK M−1 K

)
,

respectively. We also consider the corresponding inexact variants of the block diagonal preconditioners

P(app)
D = Diag

(
2βM (app), M (app), K (app)M−1 K (app)

)
and

P(app)
D2 = Diag

(
1

2β
M (app), 2βK (app)M−1 K (app)

)
;

see Keller et al. (2000), Rees et al. (2010) and Bai (2011). Here, in applying the preconditioners P(app)
C ,

P(app)
D and P(app)

D2 , the approximation K (app) to the matrix K is implicitly defined by two algebraic
multigrid (AMG) V-cycles with two damped Jacobi pre- and post-smoothing steps obtained by the
amg operator in the software COMSOL Multiphysics.2 The approximation M (app) to the matrix M
is implicitly defined by 20 steps of Chebyshev semiiteration approximation; see Rees et al. (2010).
In computing the actions of the inverses of F (app)(α) and F (app), the inverses of the approximations
G(app)(α) and G(app) corresponding to the matrices G(α) := αM + √

2βK and G := M + √
2βK are

also implemented by 20 steps of Chebyshev semiiteration. This choice is justified later in this section.
In our implementations, all iteration processes are terminated once the Euclidean norms of the

current residuals are reduced by a factor of 104 from those of the initial residuals, and the iteration
parameters αopt adopted in the PMHSS preconditioners F(α) and F (app)(α) are the experimentally
found optimal ones that minimize the total iteration steps of the corresponding iteration processes;
see Table 1.

In Tables 2 and 3, we list the numbers of iteration steps and the computing times (in parentheses) with
respect to the constraint preconditioner, the PMHSS preconditioners and their inexact variants, which
are employed to precondition the projected CG and the GMRES methods, respectively. The optimal
iteration parameters αopt used in these two tables are those given in Table 1.

From Table 2 we see that the number of iteration steps of the PPCG method, with the constraint
preconditioner, is independent of the discretization mesh size h, with h = 1√

m+1
, when β = 10−2

and 10−4. It is mildly dependent on the discretization mesh size h when β = 10−6 and is strongly
dependent on h when β = 10−8. The number of iteration steps of the PMHSS-preconditioned GMRES
method, with the preconditioner F(αopt) or F , is roughly independent of the discretization mesh size h
for all tested values of β. In addition, as β decreases from 10−2 to 10−8, the number of iteration steps
of the PPCG method changes drastically, while that of the PMHSS-preconditioned GMRES method
remains nearly constant. These observations indicate that the PMHSS preconditioner shows h- and
β-independent convergence properties, whereas the constraint preconditioner does not.

For β ranging from 10−2 to 10−6, the computing times of the PMHSS-preconditioned GMRES
method are comparable with those of the PPCG method when h = 2− j , j = 2, 3, 4, 5; they are, how-
ever, one order of magnitude less than those of the PPCG method when h = 2−6. For β = 10−8,
the computing times of the PMHSS-preconditioned GMRES method are comparable with those of

2For more details about the COMSOL Multiphysics simulation software, we refer to the website http://www.comsol.com/.
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TABLE 1 Experimental optimal parameters for F(α)- and F (app)(α)-precondi-
tioned GMRES methods

β h αopt for F(α) αopt for F (app)(α)

2−2 [0.01, 1.00] [0.01, 1.00]
2−3 [0.15, 0.18] [0.14, 0.16]

10−2 2−4 [0.15, 0.18] [0.27, 0.30]
2−5 [0.15, 0.18] [0.01, 0.53]
2−6 [0.15, 0.19] [0.01, 1.00]

2−2 [0.83, 1.00] [0.83, 1.00]
2−3 [0.44, 0.83] [0.44, 0.83]

10−4 2−4 [0.21, 0.85] [0.16, 0.95]
2−5 [0.54, 0.84] [0.37, 0.40]
2−6 [0.55, 0.55] [0.01, 0.10]

2−2 [0.66, 0.85] [0.66, 0.85]
2−3 [0.85, 0.86] [0.85, 0.86]

10−6 2−4 [0.98, 1.00] [0.98, 1.00]
2−5 [0.94, 0.98] [0.94, 0.98]
2−6 [0.94, 1.00] [0.76, 0.76]

2−2 [0.92, 1.00] [0.96, 1.00]
2−3 [0.58, 0.85] [0.58, 0.85]

10−8 2−4 [0.85, 0.86] [0.85, 0.86]
2−5 [0.90, 1.00] [0.90, 1.00]
2−6 [0.96, 1.00] [0.96, 1.00]

the PPCG method when h = 2− j , j = 2, 3, 4; they are, however, one order of magnitude less than
those of the PPCG method when h = 2−5 and 2−6. This shows that the performance of the PMHSS-
preconditioned GMRES method is comparable to or better than that of the PPCG method.

Moreover, and importantly, the iteration steps and the computing times with respect to both pre-
conditioners F(αopt) and F are almost the same. This implies that in actual implementations of the
PMHSS preconditioning matrix, one should simply take the iteration parameter α to be 1, resulting in a
parameter-free method; see Figs 1 and 2.

Comparing the results in Tables 2 and 3, we observe that the inexact PMHSS preconditioner
F (app)(αopt) yields almost the same iteration steps and computing times as the exact PMHSS precon-
ditioner F(αopt) when β = 10−6 and 10−8. The same observation applies to the inexact and the exact

constraint preconditioners P(app)
C and PC when β = 10−2 and 10−4. On the other hand, the inexact

constraint preconditioner suffers a significant deterioration as h is decreased when β = 10−6 and 10−8,
and the inexact PMHSS preconditioner shows some deterioration as h is decreased when β = 10−2

and 10−4. The reason for the latter phenomenon is that for small values of β, the coefficient matrix
G(α) = αM + √

2βK , with α = αopt or α = 1, is dominated by the term involving the mass matrix
M , hence, it is well conditioned (independently of h) and 20 steps of Chebyshev semiiteration suffice
to approximate the action of its inverse. For larger values of β, however, the stiffness matrix K makes a
significant contribution and the conditioning of G(α), with α = αopt or α = 1, deteriorates as h → 0.
Hence, a fixed number of Chebyshev semiiteration is no longer sufficient to approximate the action of
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TABLE 2 Iteration counts and CPU timings (in seconds) for the constraint preconditioner and for the
PMHSS preconditioners with optimal α and with α = 1

β h PC F(αopt) F

2−2 3 (3.82 × 10−2) 9 (6.00 × 10−2) 9 (1.93 × 10−2)
2−3 3 (3.30 × 10−2) 9 (2.62 × 10−2) 11 (2.17 × 10−2)

10−2 2−4 3 (3.88 × 10−2) 9 (4.56 × 10−2) 11 (4.11 × 10−2)
2−5 3 (1.49 × 10−1) 9 (1.13 × 10−1) 11 (1.15 × 10−1)
2−6 3 (1.60) 9 (4.34 × 10−1) 11 (4.81 × 10−1)

2−2 5 (1.22 × 10−2) 9 (2.29 × 10−2) 9 (1.83 × 10−2)
2−3 5 (1.69 × 10−2) 12 (2.68 × 10−2) 13 (2.24 × 10−2)

10−4 2−4 5 (4.00 × 10−2) 14 (5.17 × 10−2) 16 (5.08 × 10−2)
2−5 5 (1.78 × 10−1) 14 (1.35 × 10−1) 16 (1.41 × 10−1)
2−6 5 (1.70) 14 (6.07 × 10−1) 18 (6.96 × 10−1)

2−2 6 (1.23 × 10−2) 11 (2.43 × 10−2) 12 (1.95 × 10−2)
2−3 11 (2.05 × 10−2) 13 (2.87 × 10−2) 16 (2.46 × 10−2)

10−6 2−4 14 (7.66 × 10−2) 14 (5.19 × 10−2) 14 (4.44 × 10−2)
2−5 14 (3.06 × 10−1) 13 (1.29 × 10−1) 14 (1.22 × 10−1)
2−6 14 (2.40) 14 (6.02 × 10−1) 14 (5.60 × 10−1)

2−2 6 (1.19 × 10−2) 8 (2.46 × 10−2) 8 (1.88 × 10−2)
2−3 15 (2.31 × 10−2) 11 (2.73 × 10−2) 12 (2.38 × 10−2)

10−8 2−4 25 (1.23 × 10−1) 13 (4.98 × 10−2) 14 (4.42 × 10−2)
2−5 37 (6.20 × 10−1) 14 (1.39 × 10−1) 14 (1.24 × 10−1)
2−6 47 (4.84) 14 (6.05 × 10−1) 14 (5.59 × 10−1)

G(αopt)
−1 or G−1 in such a way that the h-independent convergence of GMRES is preserved. This is

confirmed by the numerical experiments described in Table 4. Here, we report the errors ‖x (20) − x∗‖2
(and CPU times, in parentheses) after 20 Chebyshev semiiterations for α = 1 and for the optimal pa-
rameter α = αopt, with different h and β. In these experiments, the exact solution x∗ to G(α)x = b is
the vector of all ones and the initial guess is the zero vector. The results clearly show that the quality of
the approximation deteriorates as h decreases and β increases, as expected.

One way to avoid this difficulty is to approximate the action of G(αopt)
−1 or G−1 with one or more

AMG V-cycles. This approach, while yielding robustness with respect to both h and β, is however more
expensive in terms of CPU time than the nonoptimal Chebyshev-based approach, at least for the range
of h values considered here. It is expected that for finer grids and/or three-dimensional problems, the use
of AMG instead of Chebyshev semiiteration will be the recommended approach for larger values of β.

Next, from Table 3, we see that F (app) performs as well as F (app)(αopt), as both of them produce
nearly the same number of iterations and computing times. Therefore, in actual computations, we may
adopt the inexact preconditioning matrices rather than the exact ones to accelerate the PPCG and the
GMRES methods and, instead of the experimentally found optimal parameters αopt, we may simply take
α = 1 to obtain good performance and effectively eliminate the need for parameter tuning.

In Table 5, we show the results obtained with MINRES preconditioned with the block diagonal
preconditioners PD2, P(app)

D2 , PD and P(app)
D described earlier. From these results, we can see that P(app)

D2
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TABLE 3 Iteration counts and CPU timings (in seconds) for the inexact constraint preconditioner and
for the inexact PMHSS preconditioners with optimal α and with α = 1

β h P(app)
C F (app)(αopt) F (app)

2−2 3 (8.28 × 10−2) 9 (1.02 × 10−2) 9 (9.64 × 10−3)
2−3 3 (2.96 × 10−2) 9 (1.08 × 10−2) 11 (1.22 × 10−2)

10−2 2−4 3 (4.43 × 10−2) 11 (2.41 × 10−2) 13 (2.68 × 10−2)
2−5 4 (1.82 × 10−1) 21 (2.13 × 10−1) 23 (2.22 × 10−1)
2−6 7 (1.64) 48 (8.60 × 10−1) 48 (8.29 × 10−1)

2−2 5 (2.71 × 10−2) 9 (9.48 × 10−3) 9 (9.43 × 10−2)
2−3 5 (3.07 × 10−2) 12 (1.38 × 10−2) 13 (1.40 × 10−2)

10−4 2−4 6 (5.57 × 10−2) 14 (2.98 × 10−1) 16 (3.26 × 10−2)
2−5 6 (2.16 × 10−1) 15 (1.55 × 10−1) 19 (1.80 × 10−1)
2−6 6 (1.56) 31 (5.56 × 10−1) 34 (5.82 × 10−1)

2−2 7 (2.83 × 10−2) 11 (1.09 × 10−2) 12 (1.16 × 10−2)
2−3 14 (3.89 × 10−2) 13 (1.44 × 10−2) 16 (1.75 × 10−2)

10−6 2−4 34 (1.30 × 10−1) 14 (2.92 × 10−2) 14 (2.94 × 10−2)
2−5 38 (6.21 × 10−1) 13 (1.35 × 10−1) 14 (1.37 × 10−1)
2−6 41 (2.93) 13 (2.81 × 10−1) 18 (3.38 × 10−1)

2−2 6 (2.84 × 10−2) 8 (8.69 × 10−2) 8 (9.37 × 10−2)
2−3 22 (4.90 × 10−2) 11 (1.31 × 10−2) 12 (1.45 × 10−2)

10−8 2−4 88 (2.71 × 10−1) 13 (2.72 × 10−2) 14 (2.77 × 10−2)
2−5 283 (3.83) 14 (1.42 × 10−1) 14 (1.43 × 10−1)
2−6 178 (8.26) 14 (3.02 × 10−1) 14 (2.86 × 10−1)

FIG. 1. Pictures of IT versus α for F(α)-preconditioned GMRES when β = 10−2, 10−4, 10−6 and 10−8, with h = 2−3 (left)
and h = 2−4 (right).
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FIG. 2. Pictures of IT versus α for F(α)-preconditioned GMRES when β = 10−2, 10−4, 10−6 and 10−8, with h = 2−5 (left)
and h = 2−6 (right).

used with MINRES is competitive for β = 10−2 and h sufficiently small, while it is generally inferior
to inexact PMHSS and constraint preconditioning in virtually all the remaining cases. Also, MINRES
with the other block diagonal preconditioners is not competitive on this test problem. In particular, the
results show that while the exact preconditioners PD and, to a lesser extent, PD2 are very robust with
respect to regularization and discretization parameters, their cost is too high to make them competitive as
h → 0. Moreover, their inexact variants lack robustness and drastically deteriorate as the regularization
parameter is decreased, with no convergence within 1000 MINRES iterations in several cases (denoted
by a dash in Table 5).

These results confirm the findings in Pearson & Wathen (2010), namely, that approximating the in-
verse of K −1 M K −1 by replacing the exact inverse of the stiffness matrix K by a spectrally equivalent
multilevel preconditioner gives poor results. As shown in Pearson & Wathen (2010), more favourable
results can be expected by using the block diagonal preconditioner P̂1 based on the following approxi-
mation of the Schur complement:

S ≈ Ŝ =
(

K + 1√
2β

M

)
M−1

(
K + 1√

2β
M

)
;

see Pearson & Wathen (2010, (5) and (11)). In turn, the action of
(

K + 1√
2β

M
)−1

can be approximated

by a suitable iterative method.
In the application of the preconditioning matrix P̂(app)

1 , the inverse of M is again approximated
by 20 steps of Chebyshev semiiteration. As for the inverse of K + 1√

2β
M , we find that the AMG

implementation in COMSOL fails due to the fact that most off-diagonal entries are positive; in other
words, the matrix is too far from being an M-matrix and the construction of the preconditioner breaks
down in the coarsening phase. Similar problems were reported in Pearson & Wathen (2010) (which
uses a different code for AMG) for certain values of h and β. To circumvent this problem, we use two
different approximations. As before, we approximate the inverse of K + 1√

2β
M by 20 steps of Chebyshev
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TABLE 5 Iteration counts and CPU timings (in seconds) for block-diagonal preconditioned MINRES
methods applied to solving the linear systems (3.4) and (4.1)

β h PD2 P(app)
D2 PD P(app)

D

2−2 7 (5.32 × 10−2) 7 (1.13 × 10−1) 4 (2.07 × 10−2) 8 (1.17 × 10−2)
2−3 7 (2.98 × 10−2) 7 (2.51 × 10−2) 4 (2.02 × 10−2) 8 (1.34 × 10−2)

10−2 2−4 7 (1.30 × 10−1) 7 (4.38 × 10−2) 4 (5.05 × 10−2) 6 (2.65 × 10−2)
2−5 7 (5.96 × 10−1) 8 (1.29 × 10−1) 4 (5.39 × 10−1) 8 (1.55 × 10−1)
2−6 6 (1.67 × 101) 11 (5.41 × 10−1) 4 (1.61 × 101) 14 (1.29)

2−2 11 (2.50 × 10−2) 12 (2.30 × 10−2) 4 (1.72 × 10−2) 13 (1.46 × 10−2)
2−3 13 (3.61 × 10−2) 17 (3.66 × 10−2) 4 (2.02 × 10−2) 17 (2.29 × 10−2)

10−4 2−4 13 (8.35 × 10−2) 25 (1.01 × 10−1) 4 (4.60 × 10−2) 24 (7.65 × 10−2)
2−5 13 (7.24 × 10−1) — (1.21 × 101) 4 (5.44 × 10−1) 26 (3.87 × 10−1)
2−6 13 (2.01 × 101) 27 (1.26) 4 (1.61 × 101) 24 (1.66)

2−2 6 (2.58 × 10−2) 11 (2.41 × 10−2) 4 (1.78 × 10−2) 14 (1.66 × 10−2)
2−3 11 (3.13 × 10−2) 63 (8.74 × 10−2) 4 (2.00 × 10−2) 63 (7.19 × 10−2)

10−6 2−4 13 (8.04 × 10−2) 675 (2.18) 4 (4.60 × 10−2) 172 (4.94 × 10−1)
2−5 13 (7.24 × 10−1) — (1.21 × 101) 4 (5.30 × 10−1) — (1.26 × 101)
2−6 13 (2.01 × 101) — (4.45 × 101) 4 (1.62 × 101) 170 (7.31)

2−2 4 (2.43 × 10−2) 10 (2.24 × 10−2) 4 (1.77 × 10−2) 14 (1.55 × 10−2)
2−3 4 (2.63 × 10−2) 73 (9.90 × 10−2) 4 (2.03 × 10−2) 116 (1.32 × 10−1)

10−8 2−4 6 (6.01 × 10−2) 675 (2.20) 4 (4.65 × 10−2) 675 (1.90)
2−5 11 (6.80 × 10−1) — (1.21 × 101) 4 (5.33 × 10−1) — (1.27 × 101)
2−6 11 (1.91 × 101) — (4.47 × 101) 4 (1.62 × 101) — (3.93 × 101)

semiiteration (which works well for smaller values of β); alternatively, we replace the mass matrix in
K + 1√

2β
M by its diagonal, leading to a new approximation of the Schur complement, namely,

S ≈ S̃ =
(

K + 1√
2β

diag(M)

)
M−1

(
K + 1√

2β
diag(M)

)
.

The replacement of Ŝ by S̃ in P̂1 then leads to a preconditioner P̃1 for the coefficient matrix of the linear
system (3.4). As the number of positive off-diagonal elements of the matrix K + 1√

2β
diag(M) is small

relative to the number of nonpositive ones, we can use the algebraic multigrid method described earlier
to approximate the inverse of the matrix K + 1√

2β
diag(M). This results in an approximation P̃(app)

1

to the matrix P̃1. The numerical results for the block diagonal preconditioning matrices P̂1, P̂(app)
1 and

P̃(app)
1 applied to precondition the MINRES method for solving the linear system (3.4) are given in

Table 6. These results show fairly good robustness of the preconditioners P̂1 and P̃(app)
1 .

Comparing the results reported in Table 6 with those for the inexact PMHSS preconditioners
F (app)(αopt) and F (app) in Table 3, we find in nearly all cases that PMHSS results in faster convergence
and smaller CPU timings.
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TABLE 6 Iteration counts and CPU timings (in seconds) for block diagonal preconditioned MINRES
methods in Pearson & Wathen (2010) applied to solving the linear system (3.4)

β h P̂1 P̂(app)
1 P̃(app)

1

2−2 10 (3.22 × 10−2) 10 (1.65 × 10−2) 8 (2.87 × 10−1)
2−3 11 (3.30 × 10−2) 11 (2.01 × 10−2) 10 (5.57 × 10−2)

10−2 2−4 12 (7.39 × 10−2) 14 (5.33 × 10−2) 10 (7.85 × 10−2)
2−5 12 (1.80 × 10−1) 24 (3.69 × 10−1) 12 (2.64 × 10−1)
2−6 12 (1.48) 66 (2.19) 15 (1.44)

2−2 10 (2.89 × 10−2) 10 (1.63 × 10−2) 12 (5.59 × 10−2)
2−3 12 (3.59 × 10−2) 12 (2.34 × 10−2) 12 (5.71 × 10−2)

10−4 2−4 14 (7.48 × 10−2) 14 (4.68 × 10−2) 12 (8.20 × 10−2)
2−5 14 (2.06 × 10−1) 20 (3.13 × 10−1) 15 (2.99 × 10−1)
2−6 14 (1.59) 50 (1.87) 15 (1.41)

2−2 10 (2.82 × 10−2) 10 (1.66 × 10−2) 14 (5.81 × 10−2)
2−3 12 (3.38 × 10−2) 12 (2.35 × 10−2) 32 (8.12 × 10−2)

10−6 2−4 12 (6.92 × 10−2) 12 (4.42 × 10−2) 25 (1.19 × 10−1)
2−5 12 (1.82 × 10−1) 12 (2.17 × 10−1) 22 (3.83 × 10−1)
2−6 14 (1.58) 14 (1.04) 20 (1.61)

2−2 8 (3.05 × 10−2) 8 (1.44 × 10−2) 14 (5.89 × 10−2)
2−3 10 (3.25 × 10−2) 10 (1.87 × 10−2) 45 (9.47 × 10−2)

10−8 2−4 12 (6.86 × 10−2) 12 (4.09 × 10−2) 62 (2.23 × 10−1)
2−5 12 (1.77 × 10−1) 12 (2.20 × 10−1) 42 (6.23 × 10−1)
2−6 12 (1.47) 12 (1.01) 28 (1.90)

5. Concluding remarks

The PMHSS iteration method provides a fairly general framework for solving block two-by-two linear
systems arising from the discretization of a class of distributed control problems. For this class of linear
systems, choosing V = W (which is just a mass matrix) one can construct high-quality preconditioners
for which the eigenvalues of the preconditioned matrices are clustered within complex disks centred at 1

with radii δ(α) :=
√

α2+1
α+1 , and the matrices of the corresponding eigenvectors are unitary, where α > 0

is the iteration parameter. Note that when α = 1, it holds that δ(1) =
√

2
2 . In practice, the preconditioner

is applied inexactly and these bounds no longer hold. Nevertheless, numerical experiments on a stan-
dard test problem indicate that the proposed preconditioner compares favourably with some of the best
existing solvers, including constrained and block diagonal preconditioning.

In general, the PMHSS iteration method can be applied to solve a reasonably broad class of block
two-by-two linear systems, for which the symmetric matrices W and T are only required to satisfy the
conditions that each of them is either positive or negative semidefinite and that null(W)∩null(T) = {0}.
Under these conditions, we can analogously demonstrate that the block two-by-two matrix A ∈ R2n×2n

is nonsingular and the PMHSS iteration method is unconditionally convergent; moreover, for the special
case when V = W or V = T (or V = −W or V = −T) depending on whether W or T is positive (or
negative) semidefinite, we can demonstrate that the convergence factor of the PMHSS iteration method
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is at most
√

α2+1
α+1 , the eigenvalues of the PMHSS-preconditioned matrix are included in a complex disk

centred at 1 with radius
√

α2+1
α+1 and the matrix of eigenvectors of the PMHSS-preconditioned matrix is

unitary with condition number equal to 1. More generally, the block two-by-two matrix A ∈ R
2n×2n

is nonsingular and Theorem 2.4 holds true even when the matrix αW + T is symmetric and is either
positive or negative definite, which may allow the real symmetric matrix W or T to be indefinite. In fact,
if the matrix αW + T is symmetric negative definite, we may simply multiply −1 through both sides
of the linear system (1.1), obtaining a new block two-by-two linear system satisfying the requirement
that αW + T is a symmetric positive definite matrix. These observations equally apply to the PMHSS
iteration method introduced and discussed in Bai et al. (2011) for solving complex symmetric linear
systems of the form Acxc = bc, with Ac = W + i T ∈ Cn×n and bc = p + i q ∈ Cn .
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