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Abstract. We consider several iterative methods for solving a class of linear systems with
double saddle point structure. Both Uzawa-type stationary methods and block preconditioned Krylov
subspace methods are discussed. We present convergence results and eigenvalue bounds together with
illustrative numerical experiments using test problems from two different applications.
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1. Introduction. In this paper we consider iterative methods for solving large,
sparse linear systems of equations of the form

(1.1) A u ≡

 A BT CT

B 0 0
C 0 −D

 x
y
z

 =

 b1
b2
b3

 ≡ b,
where A ∈ Rn×n is symmetric positive definite (SPD), B ∈ Rm×n, C ∈ Rp×n, and
D ∈ Rp×p is symmetric positive semidefinite (SPS) and possibly zero. Throughout
the paper we assume that n ≥ m+ p.

Linear systems of the form (1.1) arise frequently from mixed and mixed-hybrid
formulations of second-order elliptic equations [5, Sect. 7.2],[10] and elasticity [5,
Sect. 9.3.1] problems. Numerical methods in constrained optimization [11, 12] and
liquid crystal modeling [15] also lead to sequences of linear systems of the type (1.1).
We further mention that finite element models of certain incompressible flow problems
arising in the analysis of non-Newtonian fluids and in geophysics lead to large linear
systems with coefficient matrices of the form

B =

 A CT BT

C −D 0
B 0 0

 and C =

 −D C 0
CT A BT

0 B 0

 ;

see, e.g., [1] and [6], respectively. It is easy to see that both B and C can be brought
into the same form as matrix A in (1.1) by means of symmetric permutations (row
and column interchanges).

It is important to observe that matrix A can be regarded as a 2× 2 block matrix
in two different ways, according to which of the following partitioning strategies is
used:

(1.2) A =

 A BT CT

B 0 0
C 0 −D

 or A =

 A BT CT

B 0 0
C 0 −D

 .
The first partitioning highlights the fact that problem (1.1) can in principle be treated
as a “standard” saddle point problem, possibly stabilized (or regularized) when D 6= 0;
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see, e.g., [4]. On the other hand, the second partitioning shows that (1.1) can also be
regarded as having a double saddle point structure, since the (1,1) block is itself the
coefficient matrix of a saddle point problem; see, e.g., [15]. While in this paper we
will make use of both partitionings, we are especially interested in studying solvers
and preconditioners that make explicit use of the 3× 3 block structure of A .

The paper is orgnaized as follows. In section 2 we give a detailed discussion of
conditions that ensure the unique solvability of (1.1). Section 3 is devoted to analyzing
Uzawa-type stationary iterations for problem (1.1) based on the two partitionings
(1.2). Block preconditioners for Krylov-type methods are discussed and analyzed in
section 4. Illustrative numerical experiments are presented in section 5. Section 6
contains brief concluding remarks.

2. Solvability conditions. In this section we investigate the solvability of (1.1)
under various assumptions on the blocks A, B, C and D. Invertibility conditions for
the coefficient matrix A in (1.1) under different assumptions on the blocks can be
found scattered in the literature; see, for instance, [4], [5, Chapter 3], as well as [2]
and [8] for eigenvalue bounds. While our results overlap in part with known ones, we
find it useful to collect all the needed statements with complete proofs here, also in
order to make the paper self-contained. In the following, for a real square matrix A
we write A � 0 (A < 0) if A is SPD (respectively, SPS) and A � B (A � B) if A and
B are real symmetric matrices such that A−B is SPD (respectively, SPS). Moreover,
we write (x; y; z) to denote the vector (xT , yT , zT )T .

The following theorem provides a necessary and sufficient condition for the in-
vertibility of the matrix A in the case that the (1, 1) and (3, 3) blocks are both SPD.

Proposition 2.1. Assume that A � 0 and D � 0. Then matrix A is invertible
if and only if BT has full column rank.

Proof. Let BT have full column rank and assume that A u = 0 for u = (x; y; z),
i.e.,

Ax+BT y + CT z = 0,(2.1)
Bx = 0,(2.2)
Cx −Dz = 0.(2.3)

If x = 0, then (2.3) implies z = 0 (since D � 0) and thus from (2.1) we conclude that
y = 0, since BT has full column rank. Hence, u = 0. If z = 0, then from (2.1) and
(2.2) we obtain 0 = Bx = −BA−1BT y and thus y = 0 since BA−1BT is SPD. Hence,
x = 0 and thus again it must be u = 0. Let us assume now that both of the vectors
x and z are nonzero. Multiplying (2.1) by xT from the left, we find

(2.4) xTAx+ xTBT y + xTCT z = 0.

From (2.3), it can be seen that zTCx = zTDz. Substituting zTCx = zTDz and (2.2)
into (2.4), we have

(2.5) xTAx = −zTDz.

In view of the positive definiteness of A and D, the preceding equality implies that
x = 0 and z = 0 which shows that u = 0.

Conversely, suppose that A is nonsingular. Let y ∈ Rm be such that BT y = 0.
Setting u = (0; y; 0), we obtain A u = 0. In view of the invertibility of A , we conclude
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that y = 0. This completes the proof.

Next, we consider relaxing the assumptions of Proposition 2.1 so that either A < 0
or D < 0. In the following theorem we establish sufficient conditions which guarantee
the nonsingularity of A . We further show that some of these conditions are also
necessary.

Theorem 2.2. Let A and D 6= 0 be SPS matrices. Assume that at least one of
them is positive definite and BT has full column rank. Then the following statements
hold:
Case 1. Suppose that A � 0 and D < 0.

• If ker(CT ) ∩ ker(D) = {0} and range(BT ) ∩ range(CT ) = {0}, then A
is nonsingular.
• If A is nonsingular then ker(CT ) ∩ ker(D) = {0}.

Case 2. Suppose that A < 0 and D � 0.
• If ker(A) ∩ ker(B) ∩ ker(C) = {0} and range(BT ) ∩ range(CT ) = {0},

then A is nonsingular.
• If A is nonsingular then ker(A) ∩ ker(B) ∩ ker(C) = {0}.

Proof. For clarity we divide the proof into two steps. In the first step we show the
validity of the stated sufficient conditions for the invertibility of A for both cases. In
the second step, it is proved that in each case one of the conditions is also necessary.
Step I. Let u = (x; y; z) be an arbitrary vector such that A u = 0. We recall from
the proof of Proposition 2.1 that relation (2.5) must hold true.

Let us first consider the case that A � 0. From (2.5), it can be seen that x = 0,
hence Dz = 0 from (2.3). Note that BT y + CT z = 0 together with the assumption
range(BT ) ∩ range(CT ) = {0} imply that CT z = 0 and BT y = 0. Since BT has
full column rank, BT y = 0 implies y = 0. From z ∈ ker(CT ) and Dz = 0, we may
immediately conclude from the assumption that z = 0, hence u = 0 and thus A is
nonsingular.

For the second case, assume that D � 0. From (2.5), we can see that z = 0 since
A � 0. In addition xTAx = 0 which implies that Ax = 0, i.e., x ∈ ker(A). Since
A u = 0, we have Bx = 0 and Cx = 0, i.e., x ∈ ker(B) and x ∈ ker(C). Consequently,
we deduce that x = 0 and therefore y = 0 in view of the fact that BT has full column
rank. Hence, u = (x; y; z) is the zero vector, which shows the invertibility of A .
Step II. Suppose that A is a nonsingular matrix.

Consider the case that A � 0. Assume there exists a nonzero vector z ∈ ker(CT )∩
ker(D). Then letting u = (0; 0; z), we get A u = 0, which is a contradiction. Hence
ker(CT ) ∩ ker(D) = {0} is a necessary condition for the invertibility of A .

Finally, let us consider Case 2 and show that ker(A) ∩ ker(B) ∩ ker(C) = {0}
is a necessary condition for the invertibility of A . If there exists a nonzero vector
x ∈ ker(A) ∩ ker(B) ∩ ker(C), then for u = (x; 0; 0), we have A u = 0, which is again
a contradiction. Therefore ker(A) ∩ ker(B) ∩ ker(C) = {0}.

It is worth noting that the sufficient condition range(BT )∩range(CT ) = {0} given
in Theorem 2.2 is not a necessary condition for A to be invertible in the case that
D 6= 0. We illustrate this fact with the following two simple examples in which A is
nonsingular and range(BT ) ∩ range(CT ) 6= {0}:
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• For the case that A � 0 and D < 0 is a nonzero singular matrix, consider the
8× 8 matrix

A =

 I4 BT CT

B 0 0
C 0 −D

 ,
where In stands for the n× n identity matrix, and the matrices B, C and D
are given as follows:
(2.6)

B =
[

1 1 1 1
1 0 1 0

]
, C =

[
1 0 0 0
1 1 1 1

]
, and D =

[
0 0
0 1

]
.

• For the case that A < 0 is a singular matrix and D � 0, consider the 8 × 8
matrix A where B and C are defined as (2.6),

A =
[

0 0
0 I3

]
and D =

[
2 0
0 1

]
.

In both examples the matrix A is invertible and range(BT ) ∩ range(CT ) 6= {0}.

The following proposition addresses the case where D is a zero matrix. We beging
by noting that in this case, a necessary condition for A to be invertible is that CT

has full column rank. Indeed, if there exists a nonzero vector z such that CT z = 0
then A u = 0 for u = (0; 0; z) 6= 0 and thus A cannot be invertible.

Proposition 2.3. Let A � 0 and assume that BT and CT have full column rank.
Consider the linear system (1.1) with D = 0. Then range(BT ) ∩ range(CT ) = {0} is
a necessary and sufficient condition for the coefficient matrix A to be invertible.

Proof. As seen in the proof of Theorem 2.2, range(BT ) ∩ range(CT ) = {0} is a
sufficient condition for invertibility of A . Therefore we only need to show that it is
also a necessary condition when D = 0 in (1.1). To this end, suppose that there exists
a nonzero vector v ∈ range(BT ) ∩ range(CT ). As a result, v = BT y and v = CT z for
some nonzero vectors y and z and letting u = (0; y;−z), we get A u = 0, contradicting
the invertibility of A . Hence it must be range(BT ) ∩ range(CT ) = {0}.

Remark 2.4. We stress that in the case D = 0, both BT and CT must have full
column rank for A to be invertible. In contrast, in the case that D � 0 and D 6= 0,
only the matrix BT is required to have full column rank while the matrix CT can be
rank deficient.

In the remainder of the paper we will always assume that A is nonsingular.

3. Uzawa-like iterative methods. Uzawa-type methods have long been among
the most popular algorithms for solving linear systems in saddle point form [4, Sect. 8.1].
In this section we study two variants of Uzawa’s algorithm, motivated by the two pos-
sible block partitionings (1.2). We discuss first the case where the matrix D in (1.1)
is zero, and then the case D 6= 0.

3.1. Uzawa-like iterative methods of the first type. In this subsection we
present two Uzawa-like iterative methods for solving (1.1) when D = 0. To this end
we first consider the following two splittings for A ,

A = M1 −N1 = M2 −N2,
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where

M1 =

 A 0 0
B − 1

αI 0
C 0 − 1

β I

 , N1 =

 0 −BT −CT
0 − 1

αI 0
0 0 − 1

β I

 ,

M2 =

 A BT 0
B 0 0
C 0 − 1

αI

 , and N2 =

 0 0 −CT
0 0 0
0 0 − 1

αI

 ,
where α and β are two given nonzero parameters.

The corresponding iterative schemes for solving (1.1) are given by

(3.1) uk+1 = G1uk + M−1
1 b, k = 0, 1, 2 . . . ,

and

(3.2) uk+1 = G2uk + M−1
2 b, k = 0, 1, 2 . . . ,

respectively, where u0 is arbitrary,

(3.3) G1 = M−1
1 N1 =

 0 −A−1BT −A−1CT

0 I − αBA−1BT −αBA−1CT

0 −βCA−1BT I − βCA−1CT

 ,
and

(3.4) G2 = M−1
2 N2 =

 0 0 −ÃCT
0 0 −S−1

B BA−1CT

0 0 I − αCÃCT

 ,
with Ã = A−1 −A−1BTS−1

B BA−1 and SB = BA−1BT .

In the rest of this subsection, we analyze the convergence properties of iterative
methods (3.1) and (3.2).

Proposition 3.1. Assume that A � 0, BT and CT have full column rank, and
range(BT )∩ range(CT ) = {0}. Then all of the eigenvalues of the following matrix are
real and positive for positive parameters α and β:

Sα,β =
[
αBA−1BT αBA−1CT

βCA−1BT βCA−1CT

]
.

Proof. Evidently, we have

Sα,β =
[
αI 0
0 βI

] [
BA−1BT BA−1CT

CA−1BT CA−1CT

]
.

On the other hand, we can write

(3.5) S =
[
BA−1BT BA−1CT

CA−1BT CA−1CT

]
=
[
B
C

]
A−1

[
BT CT

]
.
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Given the following partitioning for the matrix A ,

(3.6) A =

 A BT CT

B 0 0
C 0 0

 =
[

A A12

AT12 0

]
,

we see that S is just the Schur complement S = AT12A
−1A12. Under our assump-

tions, A is invertible by Proposition 2.3, and therefore so is S . Moreover, the positive
definiteness of A−1 implies the positive definiteness of S . This shows that Sα,β is
the product of two SPD matrices and thus its eigenvalues must be real and positive.

In the sequel, we first discuss the convergence properties of the iterative method
(3.1) and then conclude this subsection with a necessary and sufficient condition for
the convergence of the iterative method (3.2). For the convergence analysis of itera-
tive scheme (3.1) we need the following useful lemma, which is a special case of Weyl’s
Theorem [9, Theorem 4.3.1].

Lemma 3.2. Let A and B be two Hermitian matrices. Then,

λmax(A+B) ≤ λmax(A) + λmax(B),
λmin(A+B) ≥ λmin(A) + λmin(B).

Proposition 3.3. Let A in (1.1) be nonsingular with A � 0 and D = 0. If the
parameters α > 0 and β > 0 satisfy

(3.7) αλmax(BA−1BT ) + βλmax(CA−1CT ) < 2,

then the iterative scheme (3.1) is convergent for any initial guess, i.e., ρ(G1) < 1.
Proof. Note that if A is nonsingular with A � 0, then in view of Proposition 2.3

and Remark 2.4 all of the assumptions in Proposition 3.1 are satisfied. Next, observe
that the nonzero eigenvalues of

Sα,β =
[
αB
βC

]
A−1

[
BT CT

]
are the same as those of

S1 = A−1
[
BT CT

] [ αB
βC

]
= αA−1BTB + βA−1CTC.

From (3.3) it is clear that the iterative scheme (3.1) is convergent if and only if
ρ(I −Sα,β) < 1. From Proposition 3.1, it is known that the eigenvalues of Sα,β are
all positive. As a result,

λ̄min(S1) ≤ λ(Sα,β) ≤ λmax(S1),

where λ(Q), λmax(Q) and λ̄min(Q) respectively denote an arbitrary eigenvalue, the
maximum eigenvalue and the minimum nonzero eigenvalue of a given matrix Q having
real and nonnegative spectrum. Writing again SB = BA−1BT , SC = CA−1CT , and
using Lemma 3.2, it is easy to see that

(3.8) 1− (αλmax(SB) + βλmax(SC)) ≤ λ(G1) ≤ 1− (αλmin(SB) + βλmin(SC)) .
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From the above relation and invoking the fact that SB � 0 and SC � 0, we can see
that a sufficient condition for the convergence of (3.1) is

−1 < 1− (αλmax(SB) + βλmax(SC)) ,

which is precisely (3.7). This completes the proof.

Remark 3.4. Under the assumptions of Proposition 3.3, it follows from (3.8)
that

(3.9) ρ(G1) ≤ f(α, β),

where

f(α, β) = max{ |1− (αλmax(SB) + βλmax(SC)) |, |1− (αλmin(SB) + βλmin(SC)) | }.

It can be verified that the upper bound f(α, β) is minimized (and less than 1) for any
pair (α∗, β∗) with α∗, β∗ > 0 such that

(3.10) α∗(λmax(SB) + λmin(SB)) + β∗(λmax(SC) + λmin(SC)) = 2,

or, equivalently,

β∗ =
2− α∗(λmax(SB) + λmin(SB))

λmax(SC) + λmin(SC)
.

Remark 3.5. In the special case when α = β, (3.1) reduces to the standard
Uzawa method based on the partitioning (3.6) of A . In this case the conditions (3.7)
and (3.10) simply become

0 < α <
2

λmax(SB) + λmax(SC)
,

and the upper bound on the spectral radius of the iteration matrix G1 is minimized
for

α∗ =
2

λmax(SB) + λmax(SC) + λmin(SB) + λmin(SC)
.

We further recall that in the case that α = β, the asymptotic convergence rate
of Uzawa’s method (3.1) is the same as that of the stationary Richardson iteration
applied to the Schur complement system obtained by the eliminating the x variable
from (1.1), with the coefficient matrix S defined by (3.5). Under the assumptions
of Proposition 3.1, we have S � 0. From a well-known result on the convergence of
the Richardson iteration (e.g., [16, Chapter 4]) we may conclude that a necessary and
sufficient condition for the convergence of the iterative method (3.1) is given by

0 < α <
2

λmax(S )
,

and the optimum values of α is given by

α∗ =
2

λmax(S ) + λmin(S )
,
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which leads to the smallest possible spectral radius of the iteration matrix G1.

We conclude this subsection with a brief discussion of the convergence properties
of the iterative method (3.2). To this end we first need the following two propositions.
We recall that SB = BA−1BT .

Proposition 3.6. Assume that A � 0 and BT has full column rank. Then
Ã = A−1 −A−1BTS−1

B BA−1 < 0.
Proof. Since A is SPD, we can write

Ã = A−1/2(I −A−1/2BTS−1
B BA−1/2)A−1/2.

The nonzero eigenvalues of

A−1/2BTS−1
B BA−1/2

are the same as those of

BA−1/2A−1/2BTS−1
B = SBS

−1
B = I

and therefore they are all equal to 1. Hence, I−A−1/2BTS−1
B BA−1/2 < 0 as claimed.

Proposition 3.7. Suppose that A � 0, BT , CT have full column rank, and
Ã = A−1 − A−1BTS−1

B BA−1. If zT (CÃCT )z = 0 for some nonzero vector z, then
range(BT ) ∩ range(CT ) 6= {0}.

Proof. Suppose that z is a nonzero vector such that zT (CÃCT )z = 0. Setting
y = CT z and invoking Proposition 3.6, we obtain that yT Ãy = 0 where Ã < 0. Note
that CT has full column rank, hence y 6= 0. From [9, Page 400], we obtain that
Ãy = 0, or y ∈ ker(Ã). On the other hand, Ãy = 0 implies that y = BTS−1

B BA−1y,
which shows that y ∈ range(BT ). Consequently, in view of the definition of y, we
have that that y ∈ range(BT ) ∩ range(CT ) as claimed.

The following proposition provides a necessary and sufficient condition under
which ρ(G2) < 1.

Proposition 3.8. Assume that A is invertible, with A � 0 and D = 0. A
necessary and sufficient condition for the iterative scheme (3.2) to be convergent is

0 < α <
2

λmax(ŜC)
,

where ŜC = CÃCT and Ã is defined as before. The minimum value of the spectral
radius ρ(G2) is attained for

α∗ =
2

λmax(ŜC) + λmin(ŜC)
.

Proof. Since A is assumed to be nonsingular, by Remark 2.4, the matrices BT and
CT have full column rank and Proposition 2.3 guarantees range(BT ) ∩ range(CT ) 6=
{0}. Therefore, Proposition 3.7 implies that ŜC � 0. From the structure of the
matrix G2, given by (3.4), it is clear that a necessary and sufficient condition for the
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convergence of (3.2) is that ρ(I − αŜC) < 1; moreover, the asymptotic convergence
rate is the same as that of Richardson’s method for solving a linear system of equations
with coefficient matrix ŜC . Now the conclusions follow from the results in [16, Chapter
4] on the convergence properties of Richardson’s method applied to a linear system
with an SPD coefficient matrix.

3.2. Uzawa-like iterative methods of the second type. In this subsection
we focus primarily on the case D 6= 0 and present two Uzawa-like iterative schemes for
solving (1.1). Nevertheless, we stress that these iterative schemes can also be applied
in the case that D = 0 (with A invertible). In what follows we assume that a splitting
D = M −N is given.

Similarly to the previous subsection, we consider two splittings for A ,

A = M̄1 − N̄1 = M̄2 − N̄2,

where now

M̄1 =

 A 0 0
B − 1

αI 0
C 0 −M

 , N̄1 =

 0 −BT −CT
0 − 1

αI 0
0 0 −N

 ,

M̄2 =

 A BT 0
B 0 0
C 0 −M

 , and N̄2 =

 0 0 −CT
0 0 0
0 0 −N

 .
Consequently we may define the following iterative methods for solving (1.1),

(3.11) uk+1 = Ḡ1uk + M̄−1
1 b, k = 0, 1, 2 . . . ,

and

(3.12) uk+1 = Ḡ2uk + M̄−1
2 b, k = 0, 1, 2 . . . ,

where u0 is arbitrary,

(3.13) Ḡ1 =

 0 −A−1BT −A−1CT

0 I − αBA−1BT −αBA−1CT

0 −M−1CA−1BT M−1(N − CA−1CT )

 ,
and

(3.14) Ḡ2 =

 0 0 −ÃCT
0 0 −S−1

B BA−1CT

0 0 M−1(N − CÃCT )

 ,
where Ã is defined in (3.4).

We recall next the following theorem, which plays a key role in the convergence
analysis of both iterative methods (3.11) and (3.12).

Theorem 3.9. [9, Theorem 7.7.3] Let A and B be two n × n real symmetric
matrices such that A is positive definite and B is positive semidefinite. Then A < B
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if and only if ρ(A−1B) ≤ 1, and A � B if and only if ρ(A−1B) < 1.

Theorem 3.10. Let A � 0 and let BT have full column rank. Furthermore,
assume that D = M − N is a convergent splitting with M � 0 and N < 0. If
M � SC , then for

(3.15) 0 < α <
1 + λmin(M−1N)− λmax(M−1SC)

λmax(SB)

the iterative scheme (3.11) converges to the solution of (1.1).
Proof. From the structure of Ḡ1 it is clear that to prove the convergence of iterative

method (3.11) we only need to show that the spectral radius of the following matrix
is less than one:

H =
[
I − αBA−1BT −αBA−1CT

−M−1CA−1BT M−1N −M−1CA−1CT

]

=
[
I 0
0 M−1N

]
−
[

αB
M−1C

]
A−1

[
BT CT

]
.

It is easy to see that this matrix is similar to the symmetric matrix[
I 0
0 M−

1
2NM−

1
2

]
−
[ √

αB

M−
1
2C

]
A−1

[ √
αBT CTM−

1
2
]
.

Using Lemma 3.2 and straightforward computations, we get the bounds

(3.16) β1 ≤ λ(H ) ≤ β2,

for the eigenvalues of H , where

(3.17) β1 = λmin(M−1N)− αλmax(SB)− λmax(M−1SC)

and

(3.18) β2 = 1− αλmin(SB)− λmin(M−1SC).

Evidently, the positive definiteness of SB implies β2 < 1. On the other hand, by The-
orem 3.9, the assumption M � SC is equivalent to λmax(M−1SC) < 1 and therefore
the set of values of α satisfying (3.15) is not empty and for these values of α, we have
β1 > −1. Therefore, ρ(H ) < 1.

Remark 3.11. In addition to the assumptions of Theorem 3.10, let us assume
that

(3.19) λmin(M−1N) ≥ λmin(M−1SC).

From the proof of Theorem 3.10, we can conclude that

ρ(Ḡ1) < h(α),

where h(α) = max{|β1|, |β2|} in which β1 and β2 are respectively defined by (3.17)
and (3.18). Consequently, it can be observed that α∗ = argmin h(α) is given by

(3.20) α∗ =
1−

(
λmax(M−1SC) + λmin(M−1SC)− λmin(M−1N)

)
λmax(SB) + λmin(SB)

.
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Note that if CT is rank deficient or N is singular then λmin(M−1SC) = 0 and
λmin(M−1N) = 0, respectively. We observe here that the condition (3.19) guar-
antees that the value of α∗ given by (3.20) is positive.

Proposition 3.12. Assume that A � 0 and D � 0. Let the splitting D = M−N
be such that M � 0. If N−CÃCT < 0, then the iterative scheme (3.12) is convergent
for any initial guess.

Proof. Notice that by Proposition 3.7, we have CÃCT < 0. The assumptions
imply that M � N − CÃTCT . Therefore, using Theorem 3.9 we immediately obtain
ρ(Ḡ2) = ρ(M−1(N − CÃCT )) < 1.

Proposition 3.13. Assume that A � 0, D < 0, range(BT ) ∩ range(CT ) = {0}
and CT has full column rank. Let the splitting D = M − N be such that M � 0. If
N −CÃCT < 0, then the iterative scheme (3.12) is convergent for any initial guess.

Proof. Notice that the assumptions, together with Propositions 2.3 and 3.7, imply
that CÃCT � 0. Therefore D+CÃCT � 0, which is equivalent to M � N −CÃCT .
The result follows immediatly from Theorem 3.9.

Remark 3.14. Consider the case that D � 0. From the structure of Ḡ2 in (3.14),
we can see that a suitable choice for the splitting D = M −N is given by

M = D + CA−1CT and N = CA−1CT .

Notice that the above splitting satisfies the conditions on the splitting D = M − N
required in Proposition 3.12. However, both M and N would be dense matrices in
general. As a result, this splitting may not be a practical one for large problems
in general situations. Nevertheless, this observation suggests that approximations to
such choices of M and N may lead to effective preconditioners for Krylov subspace
methods.

Remark 3.15. Consider the following splitting for D � 0,

M = D + ωI and N = ωI,

where ω is a given nonnegative parameter. In view of Proposition 3.12, the iterative
method (3.12) is convergent to the exact solution of (1.1) for any initial guess if

ω ≥ λmax(CÃCT ).

Indeed, if ω satisfies the above inequality, then Lemma 3.2 implies that λmin(N −
CÃCT ) ≥ 0, which is equivalent to say that N − CÃCT < 0. Hence, all the assump-
tions of Proposition 3.12 are satisfied.

Remark 3.16. Consider the case that A is nonsingular with A � 0 and D = 0.
Let the splitting D = M − N be such that M = CÃCT and N = CÃCT . From
Proposition 3.13 one may deduce that the iterative scheme (3.12) is convergent for
any initial guess. While in general it is not practical to form the matrix CÃCT ex-
plicitly, there are cases where this may be possible (see, for instance, the experiments
in section 5.1, where good results are reported using this approach).

In the case that D = M−N � 0 and N−CÃCT < 0, the convergence of iterative
method (3.12) has been proved by Proposition 3.12. Next, we study the convergence
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of the iterative method in the case that N −CÃCT 4 0. It is interesting to note that
in this case we can drop the assumption that D is positive semidefinite, as long as A
is nonsingular. We first recall a useful lemma.

Lemma 3.17. [17] Suppose that A and B are n × n Hermitian matrices with A
negative definite and B positive semidefinite. Then

λmin(A)λmin(B) ≤ λmax(AB) ≤ λmax(A)λmin(B),

λmin(A)λmax(B) ≤ λmin(AB) ≤ λmax(A)λmax(B).

Theorem 3.18. Assume A be nonsingular, with A � 0, and consider a splitting
D = M −N such that M � 0. If N − CÃCT 4 0 and

(3.21) λmin(N − CÃCT ) + λmin(M) > 0,

then the iterative scheme (3.12) is convergent to the solution of (1.1).
Proof. From Lemma 3.17 we have that

λmin(N − CÃCT )λmin(M−1) ≤ λmax(Ḡ2) ≤ λmax(N − CÃCT )λmin(M−1)

and

λmin(N − CÃCT )λmax(M−1) ≤ λmin(Ḡ2) ≤ λmax(N − CÃCT )λmax(M−1).

In view of the fact that N − CÃCT is negative semidefinite and M � 0 we may
immediately conclude that λmax(N −CÃCT )λmin(M−1) < 1 and thus λmax(Ḡ2) < 1.
On the other hand, condition (3.21) implies that λmin(N −CÃCT )λmax(M−1) > −1,
which completes the proof.

Remark 3.19. In the case that D � 0, we may simply use the splitting D =
M −N where M = D and N = 0, provided D is easily invertible and

(3.22) λmax(CÃCT ) < λmin(D),

which is equivalent to (3.21). It is not difficult to verify that (3.22) is satisfied if the
following relation holds:

(3.23) λmax(CA−1CT ) < λmin(D).

Numerical results for iterative methods (3.12) corresponding to this splitting and the
splitting given in Remark 3.14 will be discussed in section 5.

4. Preconditioning techniques. In this section we develop and analyze several
block preconditioners to be used in conjunction with Krylov subspace methods to solve
linear system of equations of the form (1.1). The section is divided into two subsections
which correspond again to the two main cases D = 0 and D 6= 0, respectively.
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4.1. Block preconditioners of the first type. In this part we discuss the
eigenvalue distribution of the preconditioned matrices corresponding to the following
block diagonal and block triangular preconditioners for solving systems of the form
(1.1) with D = 0:

P
D

=

 A 0 0
0 BA−1BT 0
0 0 CA−1CT

 , P
T

=

 A BT CT

0 −BA−1BT 0
0 0 −CA−1CT

 ,
(4.1)

P
GD

=

 A 0 0
0 BA−1BT BA−1CT

0 CA−1BT CA−1CT

 , P
GT,1 =

 A 0 0
B −BA−1BT −BA−1CT

C −CA−1BT −CA−1CT

 ,
and

(4.2) P
GT,2 =

 A BT 0
B 0 0
C 0 −S̄

 ,
where

(4.3) S̄ = C(A−1 +A−1BTS−1
B
BA−1)CT .

These preconditioners can be regarded as extensions or generalizations of “stan-
dard” block diagonal and block triangular preconditioners for saddle point problems
(see, e.g., [4] and [7] for extensive treatments). We note that the two block triangular
preconditioners P

GT,1 and P
GT,2 correspond to the two natural possible partition-

ing of the matrix A shown in (1.2). We also remark that all these preconditioners
are examples of “ideal” preconditioners, in the sense that in general the matrices
SB = BA−1BT , SC = CA−1CT , BA−1CT (or CA−1BT ), and S̄ will be full and
therefore cannot be formed explicitly. In practice, they (or their inverses) will have to
be approximated, possibly by some iterative process; the same applies to the action of
A−1 when solving the systems associated with the preconditioners.1 Hence, in prac-
tice, the preconditioners will have to be applied “inexactly”, possibly necessitating
the use of a flexible Krylov subspace method. Nevertheless, the spectral analysis for
the ideal case is still useful as it provides insight on the performance of the inexact
preconditioners, at least for “sufficiently accurate” inexact solves.

We also mention that one can just as well adopt block upper triangular variants
of the preconditioners P

GT,1 and P
GT,2 . It has been shown in [14] that the differ-

ence between employing block lower and upper preconditioners should not be very
significant, with the block upper triangular versions often working slightly better in
practice. Nevertheless, in our numerical experiments we opted for P

GT,1 instead of
the block upper triangular version as the subsystem corresponding to S (see (3.5)) is
solved inexactly by an inner iteration, while the subsystem associated with coefficient
matrix A is solved “exactly.” Hence, using forward substitution leads to a more ac-
curate application of the preconditioner. For consistency we also chose to adopt the
lower triangular form for P

GT,2 .

1See section 5.1, however, for an example in which some of these matrices remain sparse and can
be formed explicitly.
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Our first result concerns the block diagonal preconditioner P
D

. It is obvious that
P

D
is invertible (indeed, SPD) if and only if A � 0 and B, C have full rank. Under

these assumptions, P
D

can be used to precondition the Minimal Residual (MINRES)
method [13].

Theorem 4.1. Suppose that A � 0, BT and CT have full column rank, and that
D = 0 in (1.1). Then

(4.4) σ(P−1
D

A ) ⊂
(
−1,

1−
√

1 + 4γ∗
2

)
∪ {1} ∪

(
1 +
√

1 + 4γ∗
2

, 2
)
,

with

(4.5) γ∗ = min
xT (BTS−1

B B + CTS−1
C C)x

xTAx
> 0,

where the minimum is taken over all x ∈ Rn, x /∈ ker(B) ∩ ker(C), such that (x; y; z)
is an eigenvector of P−1

D
A . In particular, the set {1} ∪

(
1+
√

1+4γ∗
2 , 2

)
contains n

eigenvalues and the negative interval
(
−1, 1−

√
1+4γ∗
2

)
contains m + p eigenvalues.

Furthermore, if λ 6= 1 is an eigenvalue of P−1
D

A , then 1− λ is also an eigenvalue.
Proof. Since A is symmetric and P

D
is SPD, all the eigenvalues and correspond-

ing eigenvectors are real. Let λ be an arbitrary eigenvalue of P−1
D

A
D

, then there
exists a vector (x; y; z) 6= (0; 0; 0) such that

Ax+BT y + CT z = λAx,(4.6)
Bx = λBA−1BT y,(4.7)
Cx = λCA−1CT z.(4.8)

Note that it must be x 6= 0, otherwise y = 0 and z = 0 by (4.7)-(4.8). If ker(B) ∩
ker(C) 6= {0} then λ = 1 is an eigenvalue, since any vector (x; 0; 0) with x 6= 0,
x ∈ ker(B) ∩ ker(C) will be a corresponding eigenvector of A . Conversely, any
eigenvector corresponding to λ = 1 is necessarily of this form.

Assume now that λ 6= 1. We compute y = 1
λ (BA−1BT )−1Bx ≡ 1

λS
−1
B Bx and

z = 1
λ (CA−1CT )−1Cx ≡ 1

λS
−1
C Cx from (4.7) and (4.8), respectively. Substituting

the computed y and z into (4.6) and premultiplying by xT , we obtain the following
quadratic equation:

(4.9) λ2 − λ− γ = 0,

where

γ =
xT
(
BTS−1

B B + CTS−1
C C

)
x

xTAx
> 0.

The roots of (4.9) are given by

(4.10) λ+ =
1 +
√

1 + 4γ
2

and λ− =
1−
√

1 + 4γ
2

,

which shows that λ± = 1− λ∓. Since

xTBTS−1
B Bx

xTAx
≤ λmax(A−1BTS−1

B B) = 1,
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and, in a similar way,

xTCTS−1
C Cx

xTAx
≤ 1,

we obtain that γ ∈ (0, 2) and thus −1 < λ− < 1−
√

1+4γ∗
2 < 0 and 1 < 1+

√
1+4γ∗
2 <

λ+ < 2, proving (4.4).
Finally, recalling that A has n positive and m+ p negative eigenvalues (see, e.g.,

[4, Sect. 3.4]) and observing that P−1
D

A is similar to P
− 1

2
D A P

− 1
2

D , we conclude by
Sylvester’s Law of Inertia that there are exactly n eigenvalues that are either 1 or lie
in the positive interval in (4.4), and exactly m + p eigenvalues lying in the negative
interval, counted with their multiplicities.

Remark 4.2. It is clear from the foregoing proof that for any positive eigenvalue
of the form λ+, there must be a corresponding negative eigenvalue λ− = 1 − λ+;
see (4.10). On the other hand, we also showed that P−1

D
A

D
must have n positive

and m + p negative eigenvalues, and in general n > m + p. This is true whether
λ = 1 is an eigenvalue or not. This apparent contradiction can be explained by
observing that the multiplicity of λ+ as an eigenvalue of P−1

D
A

D
will generally be

different from that of the corresponding λ−. Indeed, there may be a different number
of eigenvectors of the form (x; y; z) corresponding to λ+ and to λ−, all with the same
x (and thus the same γ) but different y or z. Hence, while the negative and positive
interval must contain the same number of distinct non-unit eigenvalues, the multiplic-
ities of the positive and negative eigenvalues must add up to n and m+p, respectively.

Remark 4.3. While Theorem 4.1 shows that the positive eigenvalues are nicely
bounded (between 1 and 2), it does not provide any useful information on the right-
most negative eigenvalue, since γ∗, while always strictly greater than zero, can in
principle be arbitrarily small. Nevertheless, in special cases, given additional assump-
tions on the blocks A, B and C, it may be possible to derive a positive lower bound
for γ, and therefore an upper bound (away from zero) for the rightmost negative
eigenvalue.

Next, we prove a result concerning the spectrum of of matrices preconditioned
with the block triangular preconditioner P

T
. We note that since this preconditioner

is nonsymmetric, it cannot be used with MINRES. Note that P
T

is guaranteed to be
nonsingular when A � 0 and B, C have full rank.

Theorem 4.4. Under the assumptions of Theorem 4.1, σ(P−1
T

A ) ⊂ (0, 2), with
λ = 1 being an eigenvalue of multiplicity at least n. Moreover, the spectrum of P−1

T
A

is symmetric with respect to λ = 1; i.e., if λ1 6= 1 and λ2 6= 1 are two eigenvalues of
P−1

T
A , then λ1 + λ2 = 2.

Proof. Suppose that λ is an arbitrary eigenvalue of P−1
T

A with the corresponding
eigenvector (x; y; z), i.e.,

Ax+BT y + CT z = λ(Ax+BT y + CT z),(4.11)
Bx = −λBA−1BT y,(4.12)
Cx = −λCA−1CT z.(4.13)

Notice that x 6= 0, otherwise, in view of the fact that BT and CT are full column
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rank, x = 0 implies (x; y; z) = (0; 0; 0) in contradiction with the fact that (x; y; z) is
an eigenvector.

Clearly, λ = 1 is an eigenvalue of P−1
T

A with corresponding eigenvector of the
form (x;−S−1

B Bx;−S−1
C Cx). The multiplicity of this eigenvalue is therefore at least

n. Assume now that λ 6= 1. From (4.11), we deduce that

(4.14) Ax+BT y + CT z = 0.

Similar to the proof of Theorem 4.1, we compute y and z from (4.12) and (4.13) in
terms of λ and x, respectively. Substituting the derived values of y and z into (4.14),
we get

(4.15) λ =
x∗
(
BTS−1

B Bx+ CTS−1
C C

)
x

x∗Ax
.

(Note that since λ is real, the corresponding eigenvector can also be chosen to be real
and therefore x∗ in (4.15) can be replaced by xT .) Hence, λ has the same expression
as γ in the proof of Theorem 4.1, therefore (4.15) shows that λ ∈ (0, 2].

Next, recall that σ(A P−1
T

) = σ(P−1
T

A ). Straightforward computations reveal
that

A P−1
T

=

 A BT CT

B 0 0
C 0 0

 A−1 A−1BTS−1
B A−1CTS−1

C

0 −S−1
B 0

0 0 −S−1
C


=

 I 0 0
BA−1 I BA−1CTS−1

C

CA−1 CA−1BTS−1
B I

 .
The above relation, incidentally, confirms that the number of eigenvalues which are
equal to one cannot be less than n, the order of the (1, 1)-block. In addition, it can
be seen that the remaining m+ p eigenvalues of P−1

T
A are the eigenvalues of I + Ŝ ,

where

Ŝ =
[

0 BA−1CTS−1
C

CA−1BTS−1
B 0

]
=
[

0 BA−1CT

CA−1BT 0

] [
S−1
B 0
0 S−1

C

]
.

To conclude the proof, we only need to show that the distribution of the eigenvalues
of Ŝ is symmetric with respect to zero. Hence, all the eigenvalues of P−1

T
A must

lie in the interval (0, 2). In view of the fact that SB � 0 and SC � 0, matrix Ŝ is
similar to

Š =

[
S
−1/2
B 0
0 S

−1/2
C

] [
0 BA−1CT

CA−1BT 0

][
S
−1/2
B 0
0 S

−1/2
C

]
,

and therefore the two matrices have the same eigenvalues. Evidently,

Š =
[

0 X
XT 0

]
,
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with X = S
−1/2
B BA−1CTS

−1/2
C . It is well known that the eigenvalues of a matrix of

the above form are given by ±σi(X), where σi(X) stands for the ith singular value
of X. This shows the symmetric distribution of the eigenvalues of Ŝ with respect to
zero.

Remark 4.5. Similar to Remark 4.3, we note that without additional assump-
tions on the matrices A, B and C we cannot give a useful lower bound on the eigen-
values of P−1

T A .

We conclude this section with a few brief remarks on the preconditioners PGD,
PGT,1, and PGT,2. We observe that the first two are just special cases of the “ideal”
block diagonal and block (lower) triangular preconditioners for saddle point problems
based on the first of the two partitionings in (1.2); the third one is the ideal block
(lower) triangular preconditioner based on the second partitioning of A in (1.2).
The spectral properties of preconditioned saddle point matrices with any of these
block preconditioners are well known; see, e.g., [4, Sec. 10.1.1–10.1.2]. In particular,
P−1
GDA has only three distinct eigenvalues and is diagonalizable, while P−1

GT,1A and
P−1
GT,2A have all the eigenvalues equal to 1 and are non-diagonalizable but have

minimum polynomial of degree 2. Hence, MINRES and the Generalized Minimum
Residual Method (GMRES) [16] will reach the exact solution in at most three and two
steps, respectively. As before, these ideal block preconditioners may be prohibitively
expensive to construct and apply; in practice, they are ususally replaced by inexact
variants.

4.2. Block preconditioners of the second type. In this part the eigenvalue
distributions of the preconditioned matrices are discussed for the case that the coef-
ficient matrix A has nonzero (3, 3)-block. We consider two following types of block
triangular preconditioners:

(4.16) P̃
T

=

 A BT CT

0 −BA−1BT 0
0 0 −(D + CA−1CT )

 ,
and

(4.17) P̂
T

=

 A BT CT

0 −BA−1BT −BA−1CT

0 0 −(D + CA−1CT )

 .
We note that these preconditioners wil be nonsingular if A � 0, BT has full col-

umn rank, D � 0 and ker(D) ∩ ker(CT ) = {0}. From Theorem 2.2, these conditions
also guarantee the invertibility of A .

For ease of exposition, we present the analysis in several steps. Our first result is
the following.

Theorem 4.6. Assume that A � 0, B has full rank, D � 0 and ker(D) ∩
ker(CT ) = {0}. Then all the eigenvalues of A P̃−1

T
are real and nonzero. Moreover,

λ = 1 is an eigenvalue of algebraic multiplicity at least n.
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Proof. Under the stated assumptions, both A and P̃
T

are nonsigular. We have

A P̃−1
T

=

 A BT CT

B 0 0
C 0 −D

 A−1 A−1BTS−1
B A−1CT S̃−1

C

0 −S−1
B 0

0 0 −S̃−1
C


=

 I 0 0
BA−1 I BA−1CT S̃−1

C

CA−1 CA−1BTS−1
B I +DS̃−1

C

 ,
where S̃C = D + CA−1CT . Similar to the proof of Theorem 4.4, we find that the
number of eigenvalues of A P̃−1

T
which are equal to one is at least n, the order of the

(1, 1)-block, with the remaining eigenvalues being those of the matrix I + S̃1 where

S̃1 =
[

0 BA−1CT S̃−1
C

CA−1BTS−1
B DS̃−1

C

]
=
[

0 BA−1CT

CA−1BT D

] [
S−1
B 0
0 S̃−1

C

]
.

Since S̃1 is the product of two symmetric matrices, one of which is positive defi-
nite, its eigenvalues are all real and the result is proved.

Next, we present bounds on the eigenvalues of the preconditioned matrices P̃−1
T A

and P̂−1
T A . To this end, we make use of the Cholesky factorization of the (1, 1)-block

of A , i.e., A = LLT . Consider the lower triangular matrix L defined by

L =

 L 0 0
0 I 0
0 0 I

 .
We define Â = L −1A L −T , which has the following structure:

Â =

 I B̂T ĈT

B̂ 0 0
Ĉ 0 D

 ,
where B̂ = BL−T and Ĉ = CL−T . Now we consider the following two block triangular
preconditioners for Â ,

(4.18) ˜̄P
T

=

 I B̂T ĈT

0 −B̂B̂T 0
0 0 −(D + ĈĈT )


and

(4.19) ˆ̄P
T

=

 I B̂T ĈT

0 −B̂B̂T −B̂ĈT
0 0 −(D + ĈĈT )

 .
It is not difficult to check that the following two relations hold:

P̃−1
T

A = L −T ˜̄P−1
T

Â L T and P̂−1
T

A = L −T ˆ̄P−1
T

Â L T ,
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which reveal that σ(P̃−1
T

A ) = σ( ˜̄P−1
T

Â ) and σ(P̂−1
T

A ) = σ( ˆ̄P−1
T

Â ).

Theorem 4.7. Under the same assumptions of Theorem 4.6, σ(P̃−1
T

A ) =
σ( ˜̄P−1

T
Â ) ⊂ (0, 1−

√
ξ] ∪ {1} ∪ [1 +

√
ξ, 2) ⊂ (0, 2), where

(4.20) ξ =
σ̄2

min(Ĉ)
λmax(D) + σ̄2

min(Ĉ)
.

Here σ̄min(Ĉ) denotes the smallest nonzero singular value of Ĉ.
Proof. The equality σ(P̃−1

T
A ) = σ( ˜̄P−1

T
Â ) has already been noted. From

Theorem 4.6 we already know that the spectrum is real and that λ = 1 is an eigenvalue
of algebraic multiplicity at least n. Assume now that λ 6= 1 is an eigenvalue of ˜̄P−1

T
Â .

There exists a (real) nonzero vector (x; y; z) such that

x+ B̂T y + ĈT z = λ(x+ B̂T y + ĈT z),(4.21)
B̂x = −λB̂B̂T y,(4.22)
Ĉx −Dz = −λ(D + ĈĈT )z.(4.23)

Notice that x 6= 0, otherwise x = 0 implies that y and z are both zero in contradiction
with the fact that (x; y; z) is an eigenvector.

From (4.21), we get

x+ B̂T y + ĈT z = 0,

and therefore

B̂x = −(B̂B̂T y + B̂ĈT z)

and

Ĉx = −(ĈB̂T y + ĈĈT z).

Substituting the preceding two relations into (4.22) and (4.23), respectively, we get

(λ− 1)B̂B̂T y = B̂ĈT z(4.24)

and

(λ− 1)(D + ĈĈT )z = ĈB̂T y.(4.25)

We observe that the vectors y and z must both be nonzero. Indeed, our assumptions
imply that both B̂B̂T and D + ĈĈT are positive definite, and this fact, together
with (4.24) and (4.25), implies that y = 0 if and only if z = 0. Notice that ĈT z 6=
0, otherwise (4.24) implies that λ = 1 which is contrary to our assumption. By
computing y from (4.24) and then substituting it into (4.25), we obtain

(4.26) (λ− 1)2 =
zT ĈP ĈT z

zT (D + ĈĈT )z
,

where P = B̂T (B̂B̂T )−1B̂. Note that P is an orthogonal projector, i.e., P 2 = P
and P = PT . Using the fact that ‖Pv‖2 ≤ ‖v‖2 for any vector v, we obtain as a
consequence of (4.26) that |λ− 1| < 1, which is equivalent to say that λ ∈ (0, 2).
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Finally, we apply the Rayleigh–Ritz Theorem [9, Thm. 4.2.2] to obtain

(4.27)
1

λmax(D)/λ̄min(ĈĈT ) + 1
≤ z∗ĈP ĈT z

z∗(D + ĈĈT )z
≤ 1
λmin(D)/λmax(ĈĈT ) + 1

,

where λ̄min(ĈĈT ) denotes the smallest nonzero eigenvalue of ĈĈT . This shows that
|λ− 1| ≥

√
ξ. The proof is complete.

We conclude this section with a result on the preconditioner P̂
T

.

Theorem 4.8. Assume that A � 0, BT has full column rank, and D � 0 in
(1.1). Then σ(P̂−1

T
A ) = σ( ˆ̄P−1

T
Â ) ⊆ {1} ∪ [1 + ξ, 1 + η] ⊂ [1, 2), where ξ is given

by (4.20) and

η =
σ2

max(Ĉ)
λmin(D) + σ2

max(Ĉ)
.

Proof. First, we note that P̂−1
T

A is invertible and σ(P̂−1
T

A ) = σ( ˆ̄P−1
T

Â ),

where ˆ̄P
T

is given in (4.19). Let λ be an eigenvalue of ˆ̄P−1
T

Â with corresponding
eigenvector (x; y; z). We have

x+ B̂T y + ĈT z = λ(x+ B̂T y + ĈT z),(4.28)
B̂x = −λ(B̂B̂T y + B̂ĈT z),(4.29)
Ĉx −Dz = −λ(D + ĈĈT )z.(4.30)

If CT (and therefore ĈT ) does not have full column rank, we observe that λ = 1
is an eigenvalue with corresponding eigenvectors of the form (0; 0; z), where 0 6= z ∈
ker(CT ). Hence, the multiplicity of λ = 1 is at least equal to p−r, where r = rank(C).

Let us now assume that ĈT has full column rank, and let x ∈ Rn be any nonzero
vector. It is then easy to see that λ = 1 is an eigenvalue of ˆ̄P−1

T
Â with corresponding

eigenvector (
x;−(B̂B̂T )−1(B̂ − B̂ĈT (ĈĈT )−1Ĉ)x;−(ĈĈT )−1Ĉx

)
.

Since there are n linearly independent vectors of this form, λ = 1 is an eigenvalue of
multiplicity at least n of P̂−1

T
A .

In the sequel we assume that λ 6= 1. From (4.28) we obtain

x+ B̂T y + ĈT z = 0.

It follows that

B̂x = −(B̂B̂T y + B̂ĈT z),(4.31)
Ĉx = −(ĈB̂T y + ĈĈT z).(4.32)

Substituting (4.31) and (4.32) into (4.29) and (4.30), respectively, we get

(λ− 1)(B̂B̂T y + B̂ĈT z) = 0,(4.33)
(λ− 1)(D + ĈĈT )z = −ĈB̂T y.(4.34)
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From the above two relations it can be deduced that y = 0 if (and only if) z = 0, in
which case x = 0 in contradiction with the assumption that (x; y; z) is an eigenvector.
Keeping in mind that λ 6= 1, the vector y can be computed from (4.33) as y =
−(B̂B̂T )−1B̂ĈT z. In order to complete the proof, we first substitute y in (4.34), and
then multiply both sides of the resulting relation by z∗; note that we can actually use
zT since the eigenvalues are necessarily real. Thus,

λ = 1 +
zT ĈP ĈT z

zT (D + ĈĈT )z
,

where P = B̂T (B̂B̂T )−1B̂. As pointed before, the matrix P is an orthogonal projec-
tor. The result immediately follows from (4.27).

Remark 4.9. We remark again that specific knowledge of the largest and small-
est (nonzero) singular value of Ĉ (for instance, knowledge of their behavior as the
meshsize h→ 0 in PDE problems) is required in order to make the foregoing spectral
bounds explicit and useful. Also, it is well known that eigenvalue information alone
does not suffice, in general, to predict the convergence behavior of nonsymmetric
Krylov subspace methods like GMRES. Nevertheless, experience shows that in many
cases of practical interest convergence can be expected to be fast when the spectrum
is real, positive, and contained in an interval of modest length bounded away from
zero. This behavior is also observed when the “ideal” preconditioners are replaced
with inexact versions, as long as the preconditoner is applied with a reasonable degree
of accuracy.

5. Numerical experiments. In this section, we present a selection of numer-
ical tests aimed at illustrating the performance of some of the proposed solvers and
preconditioners. Due to space limitations, we present detailed results only for some of
the methods analyzed in the theoretical sections, and comment briefly on the reman-
ing ones. We focus on two sets of problems of the type (1.1) arising from two very
different applications, one with D = 0 and the other with D 6= 0. All of the reported
numerical results were performed on a 64-bit 2.45 GHz core i7 processor and 8.00GB
RAM using MATLAB version 8.3.0532. In all of the experiments we have used right-
hand sides corresponding to random solution vectors, performing ten runs and then
averaging the CPU-times. The iteration counts reported in the tables (under “Iter”)
are also averages (rounded to the nearest integer).

All of the methods require repeated solution (whether “exact” or inexact) of SPD
linear systems as subtasks. These are either solved by sparse Cholesky factoriza-
tion with symmetric approximate minimum degree (SYMAMD) reordering or by the
preconditioned conjugate gradient (PCG) method. When using PCG, unless other-
wise specified, the preconditioner used is a drop tolerance-based incomplete Cholesky
factorization [3, 16] computed using the MATLAB function “ichol(.,opts)”, where

• opts.type = ’ict’,
• opts.droptol = 1e-2.

In all of the numerical tests below, the initial guess is taken to be the zero vector.
For the Uzawa, MINRES, GMRES, and Flexible GMRES (FGMRES) methods the
iterations are stopped once

‖b−A (x(k); y(k); z(k))‖2 < 10−10‖b‖2.
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For the inner PCG iterations (whenever applicable), the stopping tolerances used are
specified below.

5.1. Saddle point systems from potential fluid flow modeling. Here we
consider linear systems of equations of the form

(5.1)

 A BT CT

B 0 0
C 0 0

 x
y
z

 =

 b1
b2
b3

 ,
arising from a low-order Raviart–Thomas mixed-hybrid finite element approximation
[5] of Darcy’s law and continuity equation describing the three-dimensional (3D) po-
tential fluid flow problem in porous media. The continuous problem reads:

Au = −∇p, ∇ · u = q,

where u is the fluid velocity, p is the piezometric potential (fluid pressure), A is
the symmetric and uniformly positive definite second-rank tensor of the hydraulic
resistance of the medium with [A(x)]ij ∈ L∞(Ω) for i, j = 1, 2, 3, and q represents
the density of potential sources in the medium. The underlying spatial domain Ω is
cubic, and the boundary conditions are given by

p = pD on ∂ΩD, u · n = uN on ∂ΩN ,

where ∂Ω = ∂ΩD ∪ ∂ΩN with ∂ΩD 6= ∅, ∂ΩD ∩ ∂ΩN = ∅, and n is the outward
normal vector defined (a.e.) on ∂Ω. We refer to [10] for details of the problem and
its discretization. The solution vectors x and y in (5.1) correspond to velocity and
pressure degrees of freedom (respectively), while z is a vector of Lagrange multipliers.
For this problem we have that A � 0 and BT , CT have full column rank, hence A
is nonsingular. Details on the dimensions of sub-blocks A, B, and C and further
information can be found in [10, Table 1].

For this test problem, the SPD matrix A is block diagonal with small blocks, and
linear systems associated with it can be solved very cheaply by means of Cholesky
factorization. Likewise, the Schur complements SB = BA−1BT , SC = CA−1CT , S̄
(see (4.3)) and the matrix BA−1CT are still relatively sparse matrices which can be
formed explicitly at low expense.2 For this problem, the Uzawa-type methods of the
first kind were found to converge rather slowly, hence we do not report the results.
On the other hand, as pointed out in Remark 3.16, the Uzawa-type method (3.12)
converges fast. Concerning the block preconditioners, the best results were obtained
with PGD and PGT,1 in (4.1) and PGT,2 in (4.2). The block diagonal preconditioner
PGD was used with MINRES, while the two block triangular preconditioners PGT,1

and PGT,2 were used with both GMRES and FGMRES.
Apart from the inexpensive solves associated with A, the implementation of P

GD

and PGT,1 requires solving linear systems associated with matrix S given in (3.5). In
spite of the sparsity of S , solution by sparse Cholesky factorization is expensive (recall
that this is a 3D problem). Thus, we solve such systems with the PCG method with a
very stringent stopping criterion (inner relative residual norm less than tol = 10−15)
for MINRES and GMRES and a looser one (tol = 10−4) for FGMRES.

2The Schur complement BA−1BT for this problem turns out to be a scalar multiple of the m×m
identity matrix.
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Table 1
Numerical results for Uzawa’s method (3.12), potential fluid flow problem.

M = N = CÃCT

size Iter CPU
2125 2 0.0070
17000 2 0.0369
57375 2 0.1399
136000 2 0.4843
265625 2 1.7452
459000 2 4.1678

The application of the preconditioner P
GT,2 , on the other hand, requires solving

at each step a linear system of the form P
GT,2(w1;w2;w3) = (r1; r2; r3). This amounts

to solving a saddle point problem of size (n+m)× (n+m) of the form

(5.2)
[
A BT

B 0

] [
w1

w2

]
=
[
r1
r2

]
,

followed by solution of a linear systems with the coefficient matrix S̄ (see (4.3)). The
solution of (5.2) can be obtained in two steps as follows:

• Step I. Solve SBw2 = BA−1r1 − r2, to find w2.
• Step II. Set w1 = A−1(r1 −BTw2).

We recall that for this particular test problem, A is block diagonal (with small
blocks) and SB is just a scalar multiple of the identity, so the above solution process
is extremely cheap and in our experiments we use it both within stationary iterative
scheme (3.12) (with M = N = CÃCT ), and within GMRES and FGMRES iterative
methods. We stress that for this problem the matrix CÃCT is sparse and it can be
formed explicitly very cheaply. We also observed that CÃCT is well-conditioned. Ib
our tests, the linear systems with coefficient matrix CÃCT which arise in applying
iterative scheme (3.12) have been solved by CG with inner tolerance 10−12. In ad-
dition to solving (5.2), for applying P

GT,2 we also need to solve S̄w3 = −r3 + Cw1

where S̄ is defined by (4.3). As already mentioned, in this problem S̄ can be formed
explicitly as it is a sparse matrix. To solve S̄w3 = −r3 + Cw1, the PCG method was
used where the inner stopping tolerances were chosen as before as 10−15 and 10−4

depending on whether GMRES or FGMRES is used, respectively.

In Tables 1, 2, 3, and 4 we report the results for Uzawa’s method (3.12) and for the
preconditioned MINRES, GMRES and FGMRES iterative methods. The total num-
ber n+m+ p of unknowns is reported under “size”. As expected, MINRES/GMRES
with the “ideal” bock diagonal/triangular preconditioners require exactly three and
two steps to converge, independent of problem size. In Table 4, the cumulative num-
ber of inner PCG iterations required is reported under “Iterpcg”.

These results show that for this particular example, the best results are obtained
with Uzawa’s method (3.12) and the inexact block triangular preconditioners P

GT,1

and P
GT,2 ; of these last two, the latter one (based on the second of the two par-

titionings (1.2)) appears to be slighlty better in this particular case. We note the
satisfactory scaling in terms of CPU time for sufficiently small h, especially for FGM-
RES with the inexact P

GT,2 preconditioner. As for the other two preconditioners, PD
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Table 2
Results for MINRES with block diagonal preconditioner PGD , potential fluid flow problem.

.

size Iter CPU-time
2125 3 0.0125
17000 3 0.0947
57375 3 0.4829
136000 3 1.6226
265625 3 3.9002
459000 3 8.8899

Table 3
Results for GMRES with block triangular preconditioners, potential fluid flow problem.

Preconditioner
P

GT,1 P
GT,2

size Iter CPU-time Iter CPU-time
2125 2 0.0191 2 0.0180
17000 2 0.1284 2 0.1180
57375 2 0.5247 2 0.4516
136000 2 1.5425 2 1.2936
265625 2 3.6811 2 3.1080
459000 2 7.9861 2 6.8368

Table 4
Results for FGMRES with block triangular preconditioners, potential fluid flow problem.

Preconditioner
P

GT,1 P
GT,2

size Iter Iterpcg CPU-time Iter Iterpcg CPU-time
2125 5 25 0.0085 5 25 0.0073
17000 6 47 0.0575 6 53 0.0534
57375 6 66 0.2361 6 72 0.2265
136000 6 87 0.7480 6 95 0.6563
265625 6 108 1.8190 6 112 1.5220
459000 6 134 4.2658 5 117 3.0442

and PT , their performance was generally inferior, with worsening iteration counts for
increasing problem sizes. The observed behavior appears to be due to the fact that for
this problem, some of the eigenvalues of the preconditioned matrices corresponding
to PD and PT approach zero as the mesh is refined. Still, these preconditioners, as
well as the two Uzawa methods discussed in section 3.1, may well be useful in solving
saddle point systems arising from other applications.

5.2. Saddle point systems from liquid crystal directors modeling. Con-
tinuum models for the orientational properties of liquid crystals require the minimiza-
tion of free energy functionals of the form

(5.3) F [u, v, w, U ] =
1
2

∫ 1

0

[
(u2
z + v2

z + w2
z)− α2(β + w2)U2

z

]
dz,
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where u, v, w and U are functions of z ∈ [0, 1] subject to suitable end-point conditions,
uz = du

dz (etc.), and α, β are positive prescribed parameters. Approximation via a
uniform piecewise-linear finite element scheme with k+1 cells using nodal quadrature
and using the prescribed boundary conditions leads to replacing the functional F
with a function f of 4k variables:

F [u, v, w, U ] ≈ f(u1, . . . , uk, v1, . . . , vk, w1, . . . , wk, U1, . . . , Uk),

see [15, Eq. (2.4)] for the precise form of f .
Minimization of the free energy (5.3) must be carried out under the so-called unit

vector constraint, which at the discrete level can be expresses by imposing that the
solution components uj , vj and wj satisfy

u2
j + v2

j + w2
j = 1, j = 1, . . . , k.

Introducing Lagrange multipliers λ1, . . . , λk, the problem reduces to finding the crit-
ical points of the Lagrangian function

L = f +
1
2

k∑
j=1

λj(u2
j + v2

j + w2
j − 1).

Imposing the first-order conditions results in the system of 5k nonlinear equations
∇L(x) = 0 where the unknown vector x ∈ R5k collects the values (uj , vj , wj) (j =
1, . . . , k), (λ1, . . . , λk), and (U1, . . . , Uk) (in this order). Solving this nonlinear system
with Newton’s method leads to a linear system of the form

(5.4) ∇2L(x(`)) δx(`) = −∇L(x(`))

at each step `, where ∇2L(x(`)) denotes the Hessian of L evaluated at x(`). As shown
in [15], the Hessian has the following structure:

∇2L =

 A BT CT

B 0 0
C 0 −D

 ,
where A is n × n, B is m × n, C is p × n and D 6= 0 is p × p with n = 3k and
m = p = k. Therefore, it is necessary to solve a system of the form (1.1) within each
Newton step. Details on the structure of the blocks A, B, C and D can be found in
[15]. Here we note that A is SPD, BT has full column rank and is such that BBT is
diagonal (and indeed BBT = Im if the unit vector constraints are satisfied exactly),
C is rank deficient, and D is tridiagonal and SPD. Hence, A is nonsingular.3 We
also mention that in our experiments we used the following values of the parameters
α and β appearing in (5.3): α = 0.5αc and β = 0.5 where αc ≈ 2.721 is known as the
critical switching value. For further details we refer the reader to [15].

First we consider the use of the Uzawa-type methods (3.11) and (3.12). While
the first of these (which necessitates the selection of the parameter α) was found to
converge very slowly, method (3.12) converged extremely fast for suitable (parameter-
free) choices of the splitting D = M −N . At each step of (3.12) we need to solve a

3We are assuming here that the Hessian is being evaluated away from bifurcation points and
turning points, see again [15].
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linear system of equations with coefficient matrix

M̄2 =

 A BT 0
B 0 0
C 0 −M

 .
This requires solving at each step of (3.12) a system of the form (5.2), followed by the
solution of a system with coefficient matrix M . The first task requires similar steps to
those (Steps I and II) described in Example 5.1. Within these steps, we used sparse
Cholesky factorization with SYMAMD reordering for solving systems with coefficient
matrix A, and the PCG method to solve the linear systems with coefficient matrix
SB = BA−1BT . Note that SB would be full and is not formed explicitly. As for the
preconditioner used, the observation that B has (nearly) orthogonal rows suggests
that the matrix BABT would be a good approximate inverse of BA−1BT , and indeed
it was found to be a very effective preconditioner. Note that only sparse matrix-vector
products are required for its application, and there is no construction overhead.

Concerning the choice of M , we considered the following two options:

(5.5) M = D + CA−1CT and M = D.

We note that in view of Remark 3.14, the first choice results in a convergent iteration.
For M = D, we were able to check for some of the smaller problem sizes that condition
(3.23) was satisfied. We conjecture that this is also true for the larger problem sizes.
The second choice is especially easy to implement since D is tridiagonal and SPD. The
first one requires solving linear systems with the matrix S̃C = M = D+CA−1CT . To
this end we used again the PCG method, which does not require forming S̃C explicitly
(it is a full matrix). As a preconditioner we used the (sparse) matrix D + CD−1

A CT ,
where DA is the diagonal part of A. Application of the preconditioner is accomplished
via a sparse Cholesky factorization.

We experimented with different convergence tolerances for the inner PCG method
and we found that for the first choice of M in (5.5), a very stringent tolerance (of the
order of machine precision) is needed for the outer Uzawa-type method to converge,
particulalry for larger problems. For the second choice of M the inner PCG converge
tolerance could be relaxed (resulting in an inexact Uzawa method), but the total
timings were not significantly affected. We report the performance of the two variants
of the iterative method (3.12) in Table 5. As can be seen, convergence is extremely
fast, and for larger problems only two steps are required. Clearly, using M = D
results in faster solution times.

Finally, we present a few results obtained with the block triangular precondition-
ers P̃

T
and P̂

T
given in (4.16)–(4.17). The application of these two preconditioners

can be performed “exactly” or inexactly, via block backsubstitution. Both versions of
the preconditioners require the solution (“exact” and approximate) of linear systems
with SPD coefficient matrices D+CA−1CT , BA−1BT , and A at each (outer) GMRES
or FGMRES iteration. The first two systems are solved via the PCG method, with
the already described preconditioners for D + CA−1CT and BA−1BT . The systems
with matrix A are solved via sparse Cholesky factorization with SYMAMD reordering
when GMRES is used, and with PCG preconditioned with the incomplete Cholesky
factorization described earlier in the case of FGMRES. In Table 6, we report the inner
tolerances in the PCG method utilized inside the preconditioners P̃

T
and P̂

T
. The

symbol “?” in this table means that for solving linear systems with coefficient A, we
used the sparse Cholesky factorization with SYMAMD reordering.
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Table 5
Numerical results for Uzawa’s method (3.12), liquid crystal problem.

M = D + CA−1CT M = D
size Iter CPU Iter CPU
5115 4 0.25794 4 0.12869
10235 4 0.40680 3 0.16013
20475 3 0.67560 3 0.28280
40955 2 0.90899 2 0.38881
81915 2 1.9106 2 0.82650
163835 2 4.2573 2 1.9536
327675 2 10.141 2 4.6240

The results for preconditioners P̃
T

and P̂
T

are shown in Tables 7 and 8, respec-
tively. In all cases we observe mesh-independent convergence rates, with no deteri-
oration when using the inexact variants of the block preconditioners in place of the
exact ones; indeed, in several cases FGMRES even requires one less iteration than
GMRES with the “exact” preconditioner. The CPU timings are clearly much better
for the inexact variants, especially for larger problems. Overall, the fastest solution
times are obtained with FGMRES preconditioned by the inexact variant of the block
preconditioner P̂

T
. With this method, solution times exhibit almost linear scaling

behavior.

6. Conclusions. In this paper we have introduced and analyzed several itera-
tive methods and block preconditioners for the solution of sparse linear systems with
double saddle point structure. While “standard” techniques for saddle point problems
are certainly applicable to systems of the form (1.1), several of the methods investi-
gated in this paper and their analysis make specific use of the 3× 3 block structure of
the coefficient matrix. Furthermore, different block partitionings (see (1.2)) lead to
different solvers with distinct theoretical and practical properties.

Numerical experiments on test problems arising from two distinct application
domains show that some of the proposed solvers can be very efficient in situations of
practical interest, resulting in rapid convergence (independent of problem size) and
scalable behavior. Of course, the performance of each method is highly problem-
dependent, and specific information on the spectral properties of the problem at hand
may be needed in order to make a good choice. We stress that it is quite possible that
some of the methods that were found to be not competitive for the two test problems
considered here may well turn out to be useful on other problems.

In our analysis we assumed that the various solvers and preconditioners were
implemented exactly. Numerical experiments, however, showed that the rates of con-
vergence do not necessarily deteriorate when inexact solves are used instead, often
leading to significantly faster solution times relative to the “exact” versions. This is
consistent with previous experience for block preconditioners; see, e.g., [4] or [7].
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Table 6
Inner tolerance in PCG method used inside the preconditioned methods, liquid crystal problem.

Preconditioner: P̃
T

P̂
T

Coefficient
matrix: A SB S̃C A SB S̃C
GMRES ? 1e–12 1e–12 ? 1e–12 1e–12

FGMRES 1e–02 1e–02 1e–01 1e–03 1e–03 1e–01

Table 7
Numerical results for preconditioner P̃T , liquid crystal problem.

Method
GMRES FGMRES

size Iter CPU Iter CPU
5115 10 0.53144 9 0.08461
10235 9 0.98055 9 0.14981
20475 9 1.9727 8 0.27168
40955 9 3.6642 8 0.53854
81915 9 8.4782 8 1.2848
163835 9 17.947 8 3.1012
327675 9 42.743 8 7.4957

Table 8
Numerical results for preconditioner P̂T , liquid crystal problem.

Method
GMRES FGMRES

size Iter CPU Iter CPU
5115 6 0.32469 6 0.02981
10235 6 0.62408 6 0.05179
20475 6 1.2614 6 0.08967
40955 6 2.4815 6 0.17196
81915 6 5.4721 6 0.33430
163835 6 11.879 6 0.69814
327675 6 28.196 6 1.5901
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