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Summary. Many important problems in mathematics and physics lead to (non-
sparse) functions, vectors, or matrices in which the fraction of nonnegligible entries
is vanishingly small compared the total number of entries as the size of the system
tends to infinity. In other words, the nonnegligible entries tend to be localized, or
concentrated, around a small region within the computational domain, with rapid
decay away from this region (uniformly as the system size grows). When present,
localization opens up the possibility of developing fast approximation algorithms,
the complexity of which scales linearly in the size of the problem. While localization
already plays an important role in various areas of quantum physics and chemistry,
it has received until recently relatively little attention by researchers in numerical
linear algebra. In this chapter we survey localization phenomena arising in various
fields, and we provide unified theoretical explanations for such phenomena using
general results on the decay behavior of matrix functions. We also discuss compu-
tational implications for a range of applications.

1 Introduction

In numerical linear algebra, it is common to distinguish between sparse and dense
matrix computations. An n × n sparse matrix A is one in which the number of
nonzero entries is much smaller than n2 for n large. It is generally understood that
a matrix is dense if it is not sparse.1 These are not, of course, formal definitions.
A more precise definition of a sparse n× n matrix, used by some authors, requires
that the number of nonzeros in A is O(n) as n→∞. That is, the average number
of nonzeros per row must remain bounded by a constant for large n. Note that this
definition does not apply to a single matrix, but to a family of matrices param-
eterized by the dimension, n. The definition can be easily adapted to the case of
non-square matrices, in particular to vectors.

The latter definition, while useful, is rather arbitrary. For instance, suppose we
have a family of n×n matrices in which the number of nonzero entries behaves like
O(n1+ε) as n→∞, for some ε ∈ (0, 1). Clearly, for such matrix family the fraction
of nonzero entries vanishes as n→∞, and yet such matrices would not be regarded
as sparse according to this definition.2

1 Note that we do not discuss here the case of data-sparse matrices, which are
thoroughly treated elsewhere in this book.

2 Perhaps a better definition is the one given in [73, page 1]: “A matrix is sparse
if there is an advantage in exploiting its zeros.”



2 Michele Benzi

Another limitation of the usual definition of sparsity is that it does not take
into account the size of the nonzeros. All nonzeros are treated as equals: a matrix
is either sparse or not sparse (dense). As we shall see, there are many situations in
computational practice where one encounters vectors or matrices in which virtually
every entry is nonzero, but only a very small fraction of the entries has nonnegli-
gible magnitude. A matrix of this kind is close to being sparse: it would become
truly sparse (according to most definitions) upon thresholding, or truncation (i.e.,
the setting to zero of matrix elements smaller than a prescribed, sufficiently small
quantity in absolute value). However, this assumes that entries are first computed,
then set to zero if small enough, which could be an expensive and wasteful task.
Failing to recognize this may lead to algorithms with typical O(n2) or O(n3) scaling
for most matrix computation tasks. In contrast, careful exploitation of this prop-
erty can lead to linear scaling algorithms, i.e., approximation algorithms with O(n)
computational complexity (in some cases even sublinear complexity may be pos-
sible). One way to accomplish this is to derive a priori bounds on the size of the
elements, so as to know in advance which ones not to compute.

Matrices with the above-mentioned property are often referred to as being local-
ized, or to exhibit decay.3 These terms are no more precise than the term “sparse”
previously discussed, and one of the goals of these lectures is to provide precise for-
malizations of these notions. While the literature on sparse matrix computations
is enormous, much less attention has been devoted by the numerical linear algebra
community to the exploitation of localization in computational problems; it is our
hope that these lectures will attract some interest in this interesting and important
property, which is well known to computational physicists and chemists.

Just as sparse matrices are often structured, in the sense that the nonzeros in
them are usually not distributed at random, so are localized matrices and vectors.
The entries in them typically fit some type of decay behavior, such as exponential
decay, away from certain clearly defined positions, for example the main diagonal.
Many important computational problems admit localized solutions, and identifying
this hidden structure (i.e., being able to predict the decay properties of the solution)
can lead to efficient approximation algorithms. The aim of these lectures is to pro-
vide the reader with the mathematical background and tools needed to understand
and exploit localization in matrix computations.

We now proceed to give a brief (and by no means complete) overview of local-
ization in physics and in numerical mathematics. Some of these examples will be
discussed in greater detail in later sections.

1.1 Localization in physics

Generally speaking, the term locality is used in physics to describe situations where
the strength of interactions between the different parts of a system decay rapidly
with the distance: in other words, correlations are short-ranged. Mathematically,
this fact is expressed by saying that some function φ(r, r′) decays rapidly to zero as
the spatial separation ‖r− r′‖ increases. The opposite of localization is delocaliza-
tion: a function is delocalized if its values are nonnegligible on an extended region.
In other words, if non-local (long-range) interactions are important, a system is de-
localized. Locality (or lack of it) is of special importance in quantum chemistry and

3 Occasionally, the term pseudosparse is used; see, e.g., [34].



Localization in Matrix Computations: Theory and Applications 3

solid state physics, since the properties of molecules and the behavior of materials
are strongly dependent on the presence (or absence) of localization.

Recall that in quantum mechanics the stationary states of a system of N par-
ticles are described by wave functions, Ψn ∈ L2(R3N ), n = 0, 1, . . . , normalized so
that ‖Ψn‖L2 = 1. These states are stationary in the sense that a system initially in
state Ψn will remain in it if left unperturbed. The probability that a system in the
stationary state corresponding to Ψn is in a configuration x belonging to a given
region Ω ⊆ R3N is given by

Pr (system configuration x ∈ Ω) =

Z
Ω

|Ψn(x)|2 dx.

As an example, consider the electron in a hydrogen atom. We let r = (x, y, z) ∈
R3 be the position of the electron with respect to the nucleus (supposed to be at the
origin) and r =

p
x2 + y2 + z2. The radial part ψ0(r) of the first atomic orbital, the

wave function Ψ0(r) ∈ L2(R3) corresponding to the lowest energy (ground state),
is a decaying exponential:

ψ0(r) =
1

√
π a

3/2
0

e−r/a0 , r ≥ a0,

where (using Gaussian units) a0 = ~2

me2 = 0.0529 nm is the Bohr radius. Thus, the
wave function is strongly localized in space (see Fig. 1, left). Localization of the
wave function Ψ0 expresses the fact that in the hydrogen atom at ground state,
the electron is bound to a small region around the nucleus, and the probability of
finding the electron at a distance r decreases rapidly as r increases.

The wave function Ψ0 satisfies the (stationary) Schrödinger equation:

H Ψ0 = E0 Ψ0

where the operator H (using now atomic units) is given by

H = −1

2
∆− 1

r
(∆ = Laplacian)

is the Hamiltonian, or energy, operator, and E0 is the ground state energy. That is,
the ground state Ψ0 is the eigenfunction of the Hamiltonian corresponding to the
lowest eigenvalue E0.

Note that the Hamiltonian is of the form H = T + V where

T = −1

2
∆ = kinetic energy

and

V = −1

r
= (Coulomb) potential.

What happens if the Coulomb potential is absent? In this case there is no force
binding the electron to the nucleus: the electron is “free.” This implies delocaliza-
tion: there are no eigenvalues (the spectrum is purely continuous) and therefore
no eigenfunctions in L2(R3). Another example is the following. Consider a particle
confined to the interval [0, L], then the eigenfunction corresponding to the smallest

eigenvalue of the Hamiltonian H = − d2

dx2 (with zero Dirichlet boundary conditions)
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Fig. 1. Left: Localized eigenfunction. Right: Delocalized eigenfunction.

is given (up to a normalization factor) by Ψ0(x) = sin
`

2π
L
x
´
, which is delocalized

(see Fig. 1, right).
Consider now an extended system consisting of a large number of atoms, as-

sumed to be in the ground state. Suppose the system is perturbed at one point
space, for example by slightly changing the value of the potential V near some
point x. If the system is an insulator, then the effect of the perturbation will only
be felt locally: it will not be felt outside of a small region. This “absence of dif-
fusion” is also known as localization. W. Kohn [124, 170] called this behavior the
“nearsightedness” of electronic matter. In insulators, and also in semi-conductors
and in metallic systems under suitable conditions (such as room temperature), the
electrons tend to stay put.

Localization is a phenomenon of major importance in quantum chemistry and
in solid state physics. We will return on this in section 4.2, when we discuss applica-
tions to the electronic structure problem. Another important example is Anderson
localization, which refers to the localization in systems described by Hamiltonians
of the form H = T +γV where V is a random potential and γ > 0 a parameter that
controls the “disorder strength” in the system [4]. Loosely speaking, once γ exceeds
a certain threshold γ0 the eigenfunctions of H abruptly undergo a transition from
extended to localized with very high probability. Anderson localization is beyond
the scope of the techniques discussed in these lectures. The interested reader is
referred to [186] for a survey.

Locality (or lack thereof) is also of central importance in quantum information
theory and quantum computing, in connection with the notion of entanglement of
states [77].

1.2 Localization in numerical mathematics

In contrast to the situation in physics, the recognition of localization as an im-
portant property in numerical mathematics is relatively recent. It began to slowly
emerge in the late 1970s and early 1980s as a results of various trends in numerical
analysis, particularly in approximation theory (convergence properties of splines)
and in numerical linear algebra. Researchers in these areas were the first to investi-
gate the decay properties of inverses and eigenvectors of certain classes of banded
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matrices; see [68, 69] and [60]. By the late 1990s, the decay behavior of the en-
tries of fairly general functions of banded matrices had been analyzed [22, 117],
and numerous papers on the subject have appeared since then. Figures 2-4 provide
examples of localization for different matrix functions.

From a rather different direction, Banach algebras of infinite matrices with off-
diagonal decay arising in computational harmonic analysis and other problems of
a numerical nature were being investigated in the 1990s by Jaffard in France [119]
and by Baskakov and others [12, 13, 34] in the former Soviet Union. In particular,
much effort has been devoted to the study of classes of inverse-closed algebras of
infinite matrices with off-diagonal decay.4 This is now a well-developed area of
mathematics; see, e.g., [97, 98, 190] as well as [141, 173]. We will return on this
topic in section 3.8.
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Fig. 2. Plot of |[eA]ij | for A tridiagonal (discrete 1D Laplacian).

Locality in numerical linear algebra is related to, but should not be confused
with, sparsity. A matrix can be localized even if it is a full matrix, although it will
be close to a sparse matrix (in some norm).

Perhaps less obviously, a (discrete) system could well be described by a highly
sparse matrix but be strongly delocalized. This happens when all the different parts
comprising the system are “close together” in some sense. Network science provides
striking examples of this: small diameter graphs, and particularly small-world net-
works, such as Facebook, and other online social networks, are highly sparse but
delocalized, in the sense that there is no clear distinction between “short-range”
and “long-range” interactions between the components of the system. Even if, on

4 Let A ⊆ B be two algebras with common identity. Then A is said to be inverse-
closed in B if A−1 ∈ A for all A ∈ A that are invertible in B [97].
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Fig. 3. Plot of |[A1/2]ij | for matrix nos4 from the University of Florida Sparse
Matrix Collection [65] (scaled and reordered with reverse Cuthill–McKee).
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Fig. 4. Plot of |[log(A)]ij | for matrix bcsstk03 from the University of Florida
Sparse Matrix Collection [65] (scaled and reordered with reverse Cuthill–McKee).
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average, each component of such a system is directly connected to only a few other
components, the system is strongly delocalized, since every node is only a few steps
away from every other node. Hence, a “disturbance” at one node propagates quickly
to the entire system. Every short range interaction is also long-range: locality is al-
most absent in such systems. We shall retrun to this topic in section 4.3.

Intuitively speaking, localization makes sense (for a system ofN parts embedded
in some n-dimensional space) when it is possible to let the system size N grow to
infinity while keeping the density (number of parts per unit volume) constant. This
situation is sometimes referred to as the thermodynamic limit (or bulk limit in solid
state physics). We will provide a more formal discussion of this in a later section of
the paper using notions from graph theory.

It is interesting to observe that both localization and delocalization can be ad-
vantageous from a computational perspective. Computing approximations to vec-
tors or matrices that are strongly localized can be very efficient in terms of both
storage and arithmetic complexity, but computations with systems that are both
sparse and delocalized (in the sense just discussed) can also be very efficient, since
information propagates very quickly in such systems. As a result, iterative methods
based on matrix vector products for solving linear systems, computing eigenvalues
and evaluating matrix functions tend to converge very quickly for sparse problems
corresponding to small-diameter graphs; see, e.g., [5].

2 Notation and background in linear algebra and graph
theory

In this chapter we provide the necessary background in linear algebra and graph
theory. Excellent general references for linear algebra and matrix analysis are the
two volumes by Horn and Johnson [113, 114]. For a thorough treatment of matrix
functions, see the monograph by Higham [109]. A good general introduction to
graph theory is Diestel [72].

We will be dealing primarily with matrices and vectors with entries in R or C.
The (i, j) entry of matrix A will be denoted either by aij or by [A]ij . Throughout
this chapter, I will denote the identity matrix (or operator); the dimension should
be clear from the context.

Recall that a matrix A ∈ Cn×n is Hermitian if A∗ = A, skew-Hermitian if
A∗ = −A, unitary if A∗ = A−1, symmetric if AT = A, skew-symmetric if AT = −A,
and orthogonal if AT = A−1. A matrix A is diagonalizable if it is similar to a
diagonal matrix: there exist a diagonal matrix D and a nonsingular matrix X such
that A = XDX−1. The diagonal entries of D are the eigenvalues of A, denoted
by λi, and they constitute the spectrum of A, denoted by σ(A). The columns of
X are the corresponding eigenvectors. A matrix A is unitarily diagonalizable if
A = UDU∗ with D diagonal and U unitary. The spectral theorem states that a
necessary and sufficient condition for a matrix A to be unitarily diagonalizable is
that A is normal: AA∗ = A∗A. Hermitian, skew-Hermitian and unitary matrices
are examples of normal matrices.

Any matrix A ∈ Cn×n can be reduced to Jordan form. Let λ1, . . . , λs ∈ C
be the distinct eigenvalues of A. Then there exists a nonsingular Z ∈ Cn×n such
that Z−1AZ = J = diag(J1, J2, . . . , Js), where each diagonal block J1, J2, . . . , Js
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is block diagonal and has the form Ji = diag(J
(1)
i , J

(2)
i , . . . , J

(gi)
i ), where gi is the

geometric multiplicity of the λi,

J
(j)
i =

266664
λi 1

λi

. . .

. . . 1
λi

377775 ∈ Cν
(j)
i ×ν

(j)
i ,

and
Ps

i=1

Pgi
j=1 ν

(j)
i = n. The Jordan matrix J is unique up to the ordering of

the blocks, but Z is not. The order ni of the largest Jordan block in which the
eigenvalue λi appears is called the index of λi. If the blocks Ji are ordered from
largest to smallest, then index(λi) = ν

(1)
i . A matrix A is diagonalizable if and only

if all the Jordan blocks in J are 1× 1.
From the Jordan decomposition of a matrix A ∈ Cn×n we obtain the following

“coordinate-free” form of the Jordan decomposition of A:

A =

sX
i=1

[λiGi +Ni] (1)

where λ1, . . . , λs are the distinct eigenvalues of A, Gi is the projector onto the
generalized eigenspace Ker((A−λiI)

ni) along Ran((A−λiI)
ni) with ni = index(λi),

and Ni = (A − λiI)Gi = Gi(A − λiI) is nilpotent of index ni. The Gi’s are the
Frobenius covariants of A.

If A is diagonalizable (A = XDX−1) then Ni = 0 and the expression above can
be written

A =

nX
i=1

λi xiy
∗
i

where λ1, . . . , λn are not necessarily distinct eigenvalues, and xi, yi are right and
left eigenvectors of A corresponding to λi. Hence, A is a weighted sum of at most
n rank-one matrices (oblique projectors).

If A is normal then the spectral theorem yields

A =

nX
i=1

λiuiu
∗
i

where ui is eigenvector corresponding to λi. Hence, A is a weighted sum of at most
n rank-one orthogonal projectors.

From these expressions one readily obtains for any matrix A ∈ Cn×n that

Tr (A) :=

nX
i=1

aii =

nX
i=1

λi

and, more generally,

Tr (Ak) =

nX
i=1

λk
i , ∀k = 1, 2, . . .

Next, we recall the singular value decomposition (SVD) of a matrix. For any
A ∈ Cm×n there exist unitary matrices U ∈ Cm×m and V ∈ Cn×n and a “diagonal”
matrix Σ ∈ Rm×n such that
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U∗AV = Σ = diag (σ1, . . . , σp)

where p = min{m,n}. The σi are the singular values of A and satisfy (for A 6= 0)

σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σp = 0 ,

where r = rank(A). The matrix Σ is uniquely determined by A, but U and V
are not. The columns ui and vi of U and V are left and right singular vectors
of A corresponding to the singular value σi. From AA∗ = UΣΣTU∗ and A∗A =
V ΣTΣV ∗ we deduce that the singular values of A are the (positive) square roots
of the eigenvalues of the matrices AA∗ and A∗A; the left singular vectors of A are
eigenvectors of AA∗, and the right ones are eigenvectors of A∗A. Moreover,

A =

rX
i=1

σi uiv
∗
i ,

showing that any matrix A of rank r is the sum of exactly r rank-one matrices.
The notion of a norm on a vector space (over R or C) is well known. A matrix

norm on the matrix spaces Rn×nor Cn×n is just a vector norm ‖ · ‖ which satisfies
the additional requirement of being submultiplicative:

‖AB‖ ≤ ‖A‖‖B‖, ∀A,B .

Important examples of matrix norms include the Frobenius norm

‖A‖F :=

vuut nX
i=1

nX
j=1

|aij |2

as well as the norms

‖A‖1 = max
1≤j≤n

nX
i=1

|aij |, ‖A‖∞ = ‖A∗‖1 = max
1≤i≤n

nX
j=1

|aij |

and the spectral norm ‖A‖2 = σ1. Note that ‖A‖F =
pPn

i=1 σ
2
i and therefore

‖A‖2 ≤ ‖A‖F for all A. The inequality

‖A‖2 ≤
p
‖A‖1‖A‖∞ (2)

is often useful; note that for A = A∗ it implies that ‖A‖2 ≤ ‖A‖1 = ‖A‖∞.
The spectral radius %(A) := max{|λ| : λ ∈ σ(A)} satisfies %(A) ≤ ‖A‖ for all A

and all matrix norms. For a normal matrix, %(A) = ‖A‖2. But if A is nonnormal,
‖A‖2 − %(A) can be arbitrarily large. Also note that if A is diagonalizable with
A = XDX−1, then

‖A‖2 = ‖XDX−1‖2 ≤ ‖X‖2‖X−1‖2‖D‖2 = κ2(X)%(A) ,

where κ2(X) = ‖X‖2‖X−1‖2 is defined as the infimum of the spectral condition
numbers of X taken over the set of all matrices X which diagonalize A.

Clearly, the spectrum σ(A) is entirely contained in the closed disk in the complex
plane centered at the origin with radius %(A). Much effort has been devoted to
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finding better “inclusion regions,” i.e., subsets of C containing all the eigenvalues
of a given matrix. We review some of these next.

Let A ∈ Cn×n. For all i = 1, . . . , n, let

ri :=
X
j 6=i

|aij |, Di = Di(aii, ri) := {z ∈ C : |z − aii| ≤ ri} .

The set Di is called the ith Geršgorin disk of A. Geršgorin’s Theorem (1931) states
that σ(A) ⊂ ∪n

i=1Di. Moreover, each connected component of ∪n
i=1Di consisting

of p Geršgorin disks contains exactly p eigenvalues of A, counted with their multi-
plicities. Of course, the same result holds replacing the off-diagonal row-sums with
off-diagonal column-sums. The spectrum is then contained in the intersection of
the two resulting regions.

Also of great importance is the field of values (or numerical range) of A ∈ Cn×n,
defined as the set

W(A) := {z = 〈Ax,x〉 : x∗x = 1} . (3)

This set is a compact subset of C containing the eigenvalues of A; it is also convex.
This last statement is known as the Hausdorff–Toeplitz Theorem, and is highly
nontrivial. If A is normal, the field of values is the convex hull of the eigenvalues;
the converse is true if n ≤ 4, but not in general. The eigenvalues and the field of
values of a random 10× 10 matrix are shown in Fig. 5.

−1 0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 5. Eigenvalues and field of values of a random 10× 10 matrix.

For a matrix A ∈ Cn×n, let

H1 =
1

2
(A+A∗), H2 =

1

2i
(A−A∗). (4)

Note that H1, H2 are both Hermitian. Let a = minλ(H1), b = maxλ(H1), c =
minλ(H2), and d = maxλ(H2). Then for every eigenvalue λ(A) of A we have that

a ≤ <(λ(A)) ≤ b, c ≤ =(λ(A)) ≤ d.
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This is sometimes referred to as the Bendixson–Hirsch Theorem; see, e.g., [14,
page 224]. Moreover, the field of values of A is entirely contained in the rectangle
[a, b]× [c, d] in the complex plane [114, page 9]. Note that if A ∈ Rn×n, then c = −d.

The definition of field of values (3) also applies to bounded linear operators on
a Hilbert space H ; however, W(A) may not be closed if dim (H ) = ∞.

For a matrix A ∈ Cn×n and a scalar polynomial

p(λ) = c0 + c1λ+ c2λ
2 + · · ·+ ckλ

k,

define
p(A) = c0I + c1A+ c2A

2 + · · ·+ ckA
k .

Let A = ZJZ−1 where J is the Jordan form of A. Then p(A) = Zp(J)Z−1.
Hence, the eigenvalues of p(A) are given by p(λi), for i = 1, . . . , n. In particular,
if A is diagonalizable with A = XDX−1 then p(A) = Xp(D)X−1. Hence, A and
p(A) have the same eigenvectors.

The Cayley–Hamilton Theorem states that for any matrix A ∈ Cn×n it holds
that pA(A) = 0, where pA(λ) := det (A − λI) is the characteristic polynomial of
A. Perhaps an even more important polynomial is the minimum polynomial of A,
which is defined as the monic polynomial qA(λ) of least degree such that qA(A) = 0.
Note that qA|pA, hence deg(qA) ≤ deg(pA) = n. It easily follows from this that for
any nonsingular A ∈ Cn×n, the inverse A−1 can be expressed as a polynomial in A
of degree at most n− 1:

A−1 = c0I + c1A+ c2A
2 + · · ·+ ckA

k, k ≤ n− 1.

Note, however, that the coefficients ci depend on A. It also follows that powers
Ap with p ≥ n can be expressed as linear combinations of powers Ak with 0 ≤ k ≤
n− 1. The same result holds more generally for matrix functions f(A) that can be
represented as power series in A (see below).

Indeed, let λ1, . . . , λs be the distinct eigenvalues of A ∈ Cn×n and let ni be the
index of λi. If f is a given function, we define the matrix function

f(A) := r(A),

where r is the unique Lagrange–Hermite interpolating polynomial of degree <
sP

i=1

ni

satisfying
r(j)(λi) = f (j)(λi) j = 0, . . . , ni − 1, i = 1, . . . , s.

Here f (j) denotes the jth derivative of f , with f (0) ≡ f . Note that for the definition
to make sense we must require that the values f (j)(λi) with 0 ≤ j ≤ ni − 1 and
1 ≤ i ≤ s exist. We say that f is defined on the spectrum of A. When all the
eigenvalues are distinct, the interpolation polynomial has degree n−1. In this case,
the minimum polynomial and the characteristic polynomial of A coincide.

There are several other ways to define f(A), all equivalent to the definition just
given [109]. One such definition is through the Jordan canonical form. Let A ∈ Cn×n

have Jordan form Z−1AZ = J with J = diag(J1, . . . , Js). We define

f(A) := Z f(J)Z−1 = Z diag(f(J1), f(J2), . . . , f(Js))Z
−1,

where f(Ji) = diag(f(J
(1)
i ), f(J

(2)
i ), . . . , f(J

(gi)
i )) and
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f(J
(j)
i ) =

26666664
f(λi) f

′(λi) . . .
f
(ν

(j)
i

−1)
(λi)

(ν
(j)
i −1)!

f(λi)
. . .

...

. . . f ′(λi)
f(λi)

37777775 .

An equivalent expression is the following:

f(A) =

sX
i=1

ni−1X
j=0

f (j)(λi)

j!
(A− λiI)

jGi,

where ni = index(λi) and Gi is the Frobenius covariant associated with λi (see
(1)). The usefulness of this definition is primarily theoretical, given the difficulty
of determining the Jordan structure of a matrix numerically. If A = XDX−1 with
D diagonal, then f(A) := Xf(D)X−1 = Xdiag(f(λi))X

−1. Denoting with xi the
ithe column of X and with yi the ith column of X−1 we obtain the expression

f(A) =

nX
i=1

f(λi)xiy
∗
i .

If in addition A = UDU∗ is normal then

f(A) =

nX
i=1

f(λi)uiu
∗
i .

If f is analytic in a domain Ω ⊆ C containing the spectrum of A ∈ Cn×n, then

f(A) =
1

2πi

Z
Γ

f(z)(zI −A)−1dz , (5)

where i =
√
−1 is the imaginary unit and Γ is any simple closed curve surrounding

the eigenvalues of A and entirely contained in Ω, oriented counterclockwise. This
definition has the advantage of being easily generalized to functions of bounded
operators on Banach spaces, and it is also the basis for some of the currently most
efficient computational methods for the evaluation of matrix functions.

Another widely used definition of f(A) when f is analytic is through power
series. Suppose f has a Taylor series expansion

f(z) =

∞X
k=0

ak(z − z0)
k

„
ak =

f (k)(z0)

k!

«
with radius of convergence R. If A ∈ Cn×n and each of the distinct eigenvalues
λ1, . . . , λs of A satisfies

|λi − z0| < R,

then

f(A) :=

∞X
k=0

ak(A− z0I)
k.

If A ∈ Cn×n and f is defined on σ(A), the following facts hold (see [109]):
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(i) f(A)A = Af(A);
(ii) f(AT ) = f(A)T ;
(iii) f(XAX−1) = Xf(A)X−1;
(iv) σ(f(A)) = f(σ(A));
(v) (λ, x) eigenpair of A ⇒ (f(λ), x) eigenpair of f(A);
(vi) A is block triangular ⇒ F = f(A) is block triangular with the same block

structure as A, and Fii = f(Aii) where Aii is the ith diagonal block of A;
(vii) In particular, f(diag (A11, . . . , App)) = diag (f(A11), . . . , f(App));
(viii) f(Im ⊗A) = Im ⊗ f(A), where ⊗ is the Kronecker product;
(ix) f(A⊗ Im) = f(A)⊗ Im.

Another useful result is the following:

Theorem 1. ([110]) Let f be analytic on an open set Ω ⊆ C such that each con-
nected component of Ω is closed under conjugation. Consider the corresponding
matrix function f on the set D = {A ∈ Cn×n : σ(A) ⊆ Ω}. Then the following are
equivalent:

(a) f(A∗) = f(A)∗ for all A ∈ D.
(b) f(A) = f(A) for all A ∈ D.
(c) f(Rn×n ∩ D) ⊆ Rn×n.
(d) f(R ∩Ω) ⊆ R.

In particular, if f(x) ∈ R for x ∈ R and A is Hermitian, so is f(A).
Important examples of matrix functions are the resolvent and the matrix ex-

ponential. Let A ∈ Cn×n, and let z /∈ σ(A). The resolvent of A at z is defined
as

R(A; z) = (zI −A)−1.

The resolvent is central to the definition of matrix functions via the contour
integral approach (5). The resolvent also plays a fundamental role in spectral theory.
For example, it can be used to define the spectral projector onto the eigenspace of
a matrix or operator corresponding to an isolated eigenvalue λ0 ∈ σ(A):

Pλ0 :=
1

2πi

Z
|z−λ0|=ε

(zI −A)−1dz ,

where ε > 0 is small enough so that no other eigenvalue of A falls within ε of λ0.
It can be shown that P 2

λ0 = Pλ0 and that the range of Pλ0 is the one-dimensional
subspace spanned by the eigenvector associated with λ0. More generally, one can
define the spectral projector onto the invariant subspace of A corresponding to
a set of selected eigenvalues by integrating R(A; z) along a countour surrounding
those eigenvalues and excluding the others. It should be noted that the spectral
projector is an orthogonal projector (P = P ∗) if and only if A is normal. If A is
diagonalizable, a spectral projector P is a simple function of A: if f is any function
taking the value 1 at the eigenvalues of interest and 0 on the remaining ones, then
P = f(A).

The matrix exponential can be defined via the Maclaurin expansion

eA = I +A+
1

2!
A2 +

1

3!
A3 + · · · =

∞X
k=0

1

k!
Ak ,
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which converges for arbitrary A ∈ Cn×n. Just as the resolvent is central to spec-
tral theory, the matrix exponential is fundamental to the solution of differential
equations. For example, the solution to the inhomogeneous system

dy

dt
= Ay + f(t,y), y(0) = y0, y ∈ Cn, A ∈ Cn×n

is given (implicitly!) by

y(t) = etAy0 +

Z t

0

eA(t−s)f(s,y(s))ds.

In particular, y(t) = etAy0 when f = 0. It is worth recalling that limt→∞ etA = 0
if and only if A is a stable matrix: <(λ) < 0 for all λ ∈ σ(A).

When f(t,y) = b ∈ Cn (=const.), the solution can also be expressed as

y(t) = tψ1(tA)(b +Ay0) + y0 ,

where

ψ1(z) =
ez − 1

z
= 1 +

z

2!
+
z2

3!
+ · · ·

The matrix exponential plays an especially important role in quantum theory.
Consider for instance the time-dependent Schrödinger equation:

i
∂Ψ

∂t
= HΨ, t ∈ R, Ψ(0) = Ψ0, (6)

where Ψ0 ∈ L2 is a prescribed initial state with ‖Ψ0‖2 = 1. Here H = H∗ is the
Hamiltonian, or energy operator (which we assume to be time-independent). The
solution of (6) is given explicitly by Ψ(t) = e−itHΨ0, for all t ∈ R; note that since
itH is skew-Hermitian, the propagator U(t) = e−itH is unitary, which guarantees
that the solution has unit norm for all t:

‖Ψ(t)‖2 = ‖U(t)Ψ0‖2 = ‖Ψ0‖2 = 1, ∀ t ∈ R.

Also very important in many-body quantum mechanics is the Fermi–Dirac op-
erator, defined as

f(H) := (I + exp(β(H − µI)))−1 ,

where β = (κBT )−1 is the inverse temperature, κB the Boltzmann constant, and
µ is the Fermi level, separating the eigenvalues of H corresponding to the first ne

eigenvectors from the rest, where ne is the number of particles (electrons) com-
prising the system under study. This matrix function will be discussed in section
4.2.

Finally, in statistical quantum mechanics the state of a system is completely
described (statistically) by the density operator:

ρ :=
e−βH

Z
, where Z = Tr (e−βH).

The quantity Z = Z(β) is known as the partition function of the system.
Trigonometric functions and square roots of matrices are also important in

applications to differential equations. For example, the solution to the second-order
system
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d2y

dt2
+Ay = 0, y(0) = y0, y′(0) = y′0

(where A is SPD) can be expressed as

y(t) = cos(
√
At)y0 + (

√
A)−1 sin(

√
At)y′0 .

Apart from the contour integration formula, the matrix exponential and the
resolvent are also related through the Laplace transform: there exists an ω ∈ R
such that z /∈ σ(A) for <(z) > ω and

(zI −A)−1 =

Z ∞

0

e−ztetAdt =

Z ∞

0

e−t(zI−A)dt .

Also note that if |z| > %(A), the following Neumann series expansion of the
resolvent is valid:

(zI −A)−1 = z−1(I + z−1A+ z−2A2 + · · · ) = z−1
∞X

k=0

z−kAk.

Next, we recall a few definitions and notations associated with graphs. Let
G = (V, E) be a graph with n = |V| nodes (or vertices) and m = |E| edges (or
links). The elements of V will be denoted simply by 1, . . . , n. If for all i, j ∈ V such
that (i, j) ∈ E then also (j, i) ∈ E , the graph is said to be undirected. On the other
hand, if this condition does not hold, namely if there exists (i, j) ∈ E such that
(j, i) 6∈ E , then the network is said to be directed. A directed graph is commonly
referred to as a digraph. If (i, j) ∈ E in a digraph, we will write i → j. A graph
is simple if it is unweighted, contains no loops (edges of the form (i, i)) and there
are no multiple edges with the same orientation between any two nodes. A simple
graph can be represented by means of its adjacency matrix A = [aij ] ∈ Rn×n, where

aij =


1, if (i, j) ∈ E ,
0, else.

Note that A = AT if, and only if, G is undirected. If the graph is weighted, then
aij will be equal to the weight of the corresponding edge (i, j).

If G is undirected, the degree deg(i) of node i is the number of edges incident to
i in G. That is, deg(i) is the number of “immediate neighbors” of i in G. Note that
in terms of the adjacency matrix, deg(i) =

Pn
j=1 aij . A d-regular graph is a graph

where every node has the same degree d.
For an undirected graph we also define the graph Laplacian as the matrix

L := D −A, where D := diag(deg(1), deg(2), . . . , deg(n))

and, assuming deg(i) 6= 0 for all i, the normalized Laplacian

bL := I −D−1/2AD−1/2.

Both of these matrices play an important role in the structural analysis of networks
and in the study of diffusion-type process on graphs, and matrix exponentials of

the form e−tL and e−tbL, where t > 0 denotes time, are widely used in applications.
Note that L and L̂ are both symmetric positive semidefinite matrices. Moreover,
if G is a d-regular graph, then the eigenvalues of L are given by d − λi(A) (where
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λi(A) are the eigenvalues of the adjacency matrix A of G) and L and A have the
same eigenvectors. For more general graphs, however, there is no simple relationship
between the spectra of L and A.

A walk of length k in G is a set of nodes {i1, i2, . . . ik, ik+1} such that for all
1 ≤ j ≤ k, there is an edge between ij and ij+1 (a directed edge ij → ij+1 for a
digraph). A closed walk is a walk where i1 = ik+1. A path is a walk with no repeated
nodes.

There is a close connection between the walks in G and the entries of the powers
of the adjacency matrix A. Indeed, let k ≥ 1. For any simple graph G, the following
holds:

[Ak]ii = number of closed walks of length k starting and ending at node i;
[Ak]ij = number of walks of length k starting at node i and ending at node j.

Let now i and j be any two nodes in G. In many situations in network science it
is desirable to have a measure of how “well connected” nodes i and j are. Estrada
and Hatano [80] have proposed to quantify the strength of connection between
nodes in terms of the number of walks joining i and j, assigning more weight to
shorter walks (i.e., penalizing longer ones). If walks of length k are downweighted
by a factor 1

k!
, this leads [80] to the following definition of communicability between

node i and node j:

C(i, j) := [eA]ij =

∞X
k=0

[Ak]ij
k!

, (7)

where by convention we assign the value 1 to the number of “walks of length 0.”
Of course, other matrix functions can also be used to define the communicability
between nodes [82], but the matrix exponential has a natural physical interpretation
(see [81]).

The geodesic distance d(i, j) between two nodes i and j is the length of the
shortest path connecting i and j. We let d(i, j) = ∞ if no such path exists. We note
that d(·, ·) is a true distance function (i.e., a metric on G) if the graph is undirected,
but not in general, since only in an undirected graph the condition d(i, j) = d(j, i)
is satisfied for all i ∈ V.

The diameter of a graph G = (V, E) is defined as

diam(G) := max
i,j∈V

d(i, j) .

A digraph G is strongly connected (or, in short, connected) if for every pair of
nodes i and j there is a path in G that starts at i and ends at j; i.e., diam(G) <∞.
We say that G is weakly connected if it is connected as an undirected graph (i.e.,
when the orientation of the edges is disregarded). Clearly, for an undirected graph
the two notions coincide. It can be shown that for an undirected graph the number
of connected components is equal to the dimension of Ker(L), the null space of the
graph Laplacian.

Just as we have associated matrices to graphs, graphs can also be associated
to matrices. In particular, to any matrix A ∈ Cn×n we can associate a digraph
G(A) = (V, E) where V = {1, 2, . . . , n} and E ⊆ V × V, where (i, j) ∈ E if and only
if aij 6= 0. Diagonal entries in A are usually ignored, so that there are no loops in
G(A). We also note that for structurally symmetric matrices (aij 6= 0 ⇔ aji 6= 0)
the associated graph G(A) with A is undirected.
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Let |A| := [ |aij | ], then the digraph G(|A|2) is given by (V, Ê) where Ê is obtained
by including all directed edges (i, k) such that there exists j ∈ V with (i, j) ∈ E and
(j, k) ∈ E . (The reason for the absolute value is to disregard the effect of possible
cancellations in A2.) For higher powers `, the digraph G(|A|`) is defined similarly:
its edge set consists of all pairs (i, k) such that there is a directed path of length at
most ` joining node i with node k in G(A).
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Fig. 6. Path graph. Left: nonzero pattern of Laplacian matrix L. Right: pattern of
fifth power of L.
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Fig. 7. Scale-free graph. Left: nonzero pattern of Laplacian matrix L. Right: pat-
tern of fifth power of L.

Thus, for any square matrix A it is possible to predict the structural nonzero
pattern of the powers A` for ` = 2, 3, . . . from the connectivity of the graphs G(|A|`).
One of the first observations that can be made is that powers of narrow-banded
matrices (corresponding to graphs with large diameter, for example paths) take
large values of ` to fill, whereas the opposite happens with matrices that correspond
to small-diameter graphs. Figures 6-7 illustrate this fact by displaying the graph
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Laplacian L and the fifth power of L for two highly sparse undirected graphs, a
path graph with n = 100 nodes and a scale-free graph on n = 2000 nodes built
according to preferential attachment scheme (see, e.g., [79]). Graphs of this type are
examples of small-world graphs, in particular they can be expected to have small
diameter. It can be seen that in the case of the scale-free graph the fifth power of
the Laplacian, L5, is almost completely full (the number of nonzeros is 3, 601, 332
out of a possible 4, 000, 000), implying that in this graph most pairs of nodes are
less than five degrees of separation away from one another.

The transitive closure of G is the graph Ḡ = (V, Ē) where (i, j) ∈ Ē if and only
if there is a directed path from i to j in G(A). A matrix A ∈ Cn×n is reducible if
there exists a permutation matrix P such that

PTAP =

»
A11 A12

0 A22

–
with A11 and A22 square submatrices. If no such P exists, A is said to be irreducible.
Denote by Kn the complete graph on n nodes, i.e., the graph where every edge (i, j)
is present (with i 6= j). The following statements are equivalent:

(i) the matrix A is irreducible;
(ii) the digraph G(A) is strongly connected;
(iii) the transitive closure Ḡ(A) of G(A) is Kn.

Note that (iii) and the Cayley–Hamilton Theorem imply that the powers (I +
|A|)k are completely full for k ≥ n− 1. This has important implications for matrix
functions, since it implies that for an irreducible matrix A a matrix function of the
form

f(A) =

∞X
k=0

ak(A− z0I)
k

is completely full, if no cancellation occurs and ak 6= 0 for sufficiently many k. This
is precisely formulated in the following result.

Theorem 2. ([24]) Let f be an analytic function of the form

f(z) =

∞X
k=0

ak(z − z0)
k

„
ak =

f (k)(z0)

k!

«
,

where z0 ∈ C and the power series expansion has radius of convergence R > 0. Let
A have an irreducible sparsity pattern and let l (1 ≤ l ≤ n − 1) be the diameter
of G(A). Assume further that there exists k ≥ l such that f (k)(z0) 6= 0. Then it
is possible to assign values to the nonzero entries of A in such a way that f(A) is
defined and [f(A)]ij 6= 0 for all i 6= j.

This result applies, in particular, to banded A and to such functions as the
inverse (resolvent) and the matrix exponential.

3 Localization in matrix functions

We have just seen that if A is irreducible and f is a “generic” analytic function
defined on the spectrum of A then we should expect f(A) to be completely full
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(barring fortuitous cancellation). For A large, this seems to make the explicit com-
putation of f(A) impossible, and this is certainly the case if all entries of f(A) need
to be accurately approximated.

As we have already mentioned in the Introduction, however, numerical exper-
iments show that when A is a banded matrix and f(z) is a smooth function for
which f(A) is defined, the entries of f(A) often decay rapidly as one moves away
from the diagonal. The same property is often (but not always!) satisfied by more
general sparse matrices: in this case the decay is away from the support (nonzero
pattern) of A. In other words, nonnegligible entries of f(A) tend to be concentrated
near the positions (i, j) for which aij 6= 0.

This observation opens up the possibility of approximating functions of sparse
matrices, by neglecting “sufficiently small” matrix elements in f(A). Depending on
the rate of decay and on the accuracy requirements, it may be possible to develop
approximation algorithms that exhibit optimal computational complexity, i.e., O(n)
(or linear scaling) methods.

In this section we review our current knowledge on localization in functions of
large and sparse matrices. In particular, we consider the following questions:

1. Under which conditions can we expect decay in f(A)?
2. Can we obtain sharp bounds on the entries of f(A)?
3. Can we characterize the rate of decay in f(A) in terms of

– the bandwidth/sparsity of A?
– the spectral properties of A?
– the location of singularities of f(z) in relation to the spectrum of A?

4. What if f(z) is an entire5 function?
5. When is the rate of decay independent of the matrix size n?

The last point is especially crucial if we want to develop O(n) algorithms for
approximating functions of sparse matrices.

3.1 Matrices with decay

A matrix A ∈ Cn×n is said to have the off-diagonal decay property if its entries
[A]ij satisfy a bound of the form

|[A]ij | ≤ Kφ(|i− j|), ∀ i, j, (8)

where K > 0 is a constant and φ is a function defined and positive for x ≥ 0 and
such that φ(x) → 0 as x → ∞. Important examples of decay include exponential
decay, corresponding to φ(x) = e−αx for some α > 0, and algebraic (or power-law)
decay, corresponding to φ(x) = (1 + |i− j|p)−1 for some p ≥ 1.

As it stands, however, this definition is meaningless, since for any fixed matrix
A ∈ Cn×n the bound can always be achieved with an arbitrary choice of φ just
by taking K sufficiently large. To give a meaningful definition we need to consider
either infinite matrices (for example, bounded linear operators on some sequence
space `p), or sequences of matrices of increasing dimension. The latter situation
being the more familiar one in numerical analysis, we give the following definition.

5 Recall that an entire function is a function of a complex variable that is analytic
everywhere on the complex plane.
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Definition 1. Let {An} be a sequence of n × n matrices with entries in C, where
n→∞. We say that the matrix sequence {An} has the off-diagonal decay property
if

|[An]ij | ≤ Kφ(|i− j|), ∀ i, j = 1, . . . , n, (9)

where the constant K > 0 and the function φ(x), defined for x ≥ 0 and such that
φ(x) → 0 as x→∞, do not depend on n.

Note that if A is an infinite matrix that satisfies (8) then its finite n×n sections
(leading principal submatrices, see [141]) An form a matrix sequence that satisfies
Def. 1. The definition can also be extended to block matrices in a natural way.

When dealing with non-Hermitian matrices, it is sometimes required to allow
for different decay rates on either side of the main diagonal. For instance, one could
have exponential decay on either side but with different rates:

|[An]ij | ≤ K1 e−α(i−j) for i > j ,

and
|[An]ij | ≤ K2 e−β(j−i) for j > i .

Here K1,K2 and α, β are all positive constants. It is also possible to have matrices
where decay is present on only one side of the main diagonal (see [24, Theorem
3.5]). For simplicity, in the rest of the paper we will primarily focus on the case
where the decay bound has the same form for i > j and for j > i. However, most
of the results can be extended easily to the more general case.

Also, in multidimensional problems it is important to be able to describe decay
behavior not just away from the main diagonal but with a more complicated pattern.
To this end, we can use any distance function (metric) d (with d(i, j) = d(j, i) for
simplicity) with the property that

∀ε > 0 ∃ c = c(ε) such that sup
j

X
i

e−εd(i,j) ≤ c(ε), (10)

see [119]. Again, condition (10) is trivially satisfied for any distance function on a
finite set S = {1, 2, . . . , n}, but here we allow infinite (S = N) or bi-infinite matrices
(S = Z). In practice, we will consider sequences of matrices of increasing size n and
we will define for each n a distance dn on the set S = {1, 2, . . . , n} and assume that
each dn satisfies condition (10) with respect to a constant c = c(ε) independent of
n.

We will be mostly concerned with decay away from a sparsity pattern. For
banded sparsity patterns, this is just off-diagonal decay. For more general sparsity
patterns, we assume that we are given a sequence of sparse graphs Gn = (Vn, En)
with |Vn| = n and |En| = O(n) and a distance function dn satisfying (10) uniformly
with respect to n. In practice we will take dn to be the geodesic distance on Gn and
we will impose the following bounded maximum degree condition:

sup
n
{deg(i) | i ∈ Gn} <∞ . (11)

This condition guarantees that the distance dn(i, j) grows unboundedly as
|i − j| does, at a rate independent of n for n → ∞. In particular, we have that
limn→∞ diam(Gn) = ∞. This is necessary if we want the entries of matrices with
decay to actually go to zero with the distance as n→∞.
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Let us now consider a sequence of n×n matrices An with associated graphs Gn

and graph distances dn(i, j). We will say that An has the exponential decay property
relative to the graph Gn if there are constants K > 0 and α > 0 independent of n
such that

|[An]ij | ≤ K e−αdn(i,j), for all i, j = 1, . . . , n, ∀n ∈ N. (12)

The following two results says that matrices with decay can be “uniformly well
approximated” by sparse matrices.

Theorem 3. ([20]) Let {An} be a sequence of n × n matrices satisfying the expo-
nential decay property (12) relative to a sequence of graphs {Gn} having uniformly
bounded maximal degree. Then, for any given 0 < δ < K, each An contains at most
O(n) entries greater than δ in magnitude.

Theorem 4. ([24]) Let the matrix sequence {An} satisfy the assumptions of Theo-
rem 3. Then, for all ε > 0 and for all n there exists an n×n matrix Ãn containing
only O(n) nonzeros such that

‖An − Ãn‖1 < ε. (13)

For example, suppose the each matrix in the sequence {An} satisfies the fol-
lowing exponential decay property: there exist K, α > 0 independent of n such
that

|[An]ij | ≤ Ke−α|i−j|, ∀ i, j = 1, . . . , n, ∀n ∈ N.
Then, for any ε > 0, there is a sequence of p-banded matrices Ãn, with p indepen-
dent of n, such that ‖An − Ãn‖1 < ε. The matrices Ãn can be defined as follows:

[Ãn]ij =

(
[An]ij if |i− j| ≤ p;

0 otherwise,

where p satisfies

p ≥
—

1

α
log

„
2K

1− e−α
ε−1

«�
. (14)

Note that Ãn is the orthogonal projection of An, with respect to the inner
product associated with the Frobenius norm, onto the linear subspace of Cn×n of
p-banded matrices.

Similar approximation results hold for other matrix norms. For instance, using
the inequality (2) one can easily satisfy error bounds in the matrix 2-norm.

Remark 1. As mentioned in [20], similar results also hold for other types of decay;
for instance, it suffices to have algebraic decay of the form

|[An]ij | ≤ K (|i− j|p + 1)−1 ∀ i, j, ∀n ∈ N,

with p > 1. However, this type of decay is often too slow to be useful in practice,
in the sense that any sparse approximation Ãn to An would have to have O(n)
nonzeros with a huge prefactor in order to satisfy (13) for even moderately small
values of ε.
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3.2 Decay bounds for the inverse

It has long been known that the entries in the inverse of banded matrices are
bounded in a decaying manner away from the main diagonal, with the decay being
faster for more diagonally dominant matrices [68]. In 1984, Demko, Moss and Smith
[69] proved that the entries of A−1, where A is Hermitian positive definite and m-
banded ([A]ij = 0 if |i − j| > m), satisfy the following exponential off-diagonal
decay bound:

|[A−1]ij | ≤ K ρ|i−j|, ∀ i, j. (15)

Here we have set

K = max{a−1,K0}, K0 = (1 +
√
κ)/2b, κ =

b

a
, (16)

where [a, b] is the smallest interval containing the spectrum σ(A) of A, and

ρ = q1/m, q = q(κ) =

√
κ− 1√
κ+ 1

. (17)

Hence, the decay bound deteriorates as the relative distance between the spectrum
of A and the singularity at zero of the function f(x) = x−1 tends to zero (i.e., as
κ→∞) and/or if the bandwidth m increases. The bound is sharp (being attained
for certain tridiagonal Toeplitz matrices). The result holds for n × n matrices as
well as for bounded, infinite matrices acting on the Hilbert space `2. We also note
that the bound (15) can be rewritten as

|[A−1]ij | ≤ Ke−α|i−j|, ∀ i, j, (18)

where we have set α = − log(ρ).
It should be emphasized that (15) is a just a bound: the off-diagonal decay in

A−1 is in general not monotonic. Furthermore the bound, although sharp, may be
pessimistic in practice.

The result of Demko et al. implies that if we are given a sequence of n × n
matrices {An} of increasing size, all Hermitian, positive definite, m-banded (with
m < n0) and such that

σ(An) ⊂ [a, b] ∀n ≥ n0, (19)

then the bound (15) holds for all matrices of the sequence; in other words, if the
spectra σ(An) are bounded away from zero and infinity uniformly in n, the entries
of A−1

n are uniformly bounded in an exponentially decaying manner (i.e., the decay
rates are independent of n). Note that it is not necessary that all matrices have
exactly the same bandwidth m, as long as they are banded with bandwidth less
than or equal to a constant m.

The requirement that the matrices An have uniformly bounded condition num-
ber as n → ∞ is restrictive. For example, it does not apply to banded or sparse
matrices that arise from the discretization of differential operators, or in fact of any
unbounded operator. Consider for example the sequence of tridiagonal matrices

An = (n+ 1)2 tridiag(−1 , 2 ,−1)

which arise from the three-point finite difference approximation with mesh spacing

h = 1
n+1

of the operator T = − d2

dx2 with zero Dirichlet conditions at x = 0 and
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x = 1. For n→∞ the condition number of An grows like O(n2), and although the
entries of each inverse A−1

n satisfy a bound of the type (15), the spectral condition
number κ2(An) is unbounded and therefore the bound deteriorates since K =
K(n) → 1

π2 and ρ = ρ(n) → 1 as n→∞. Moreover, in this particular example the
actual decay in A−1

n (and not just the bound) slows down as h → 0. This is to be
expected since A−1

n is trying to approximate the Green’s function of T , which does
not fall off exponentially.

Nevertheless, this result is important for several reasons. First of all, families of
banded or sparse matrices (parameterized by the dimension n) exhibiting bounded
condition numbers do occur in applications. For example, under mild conditions,
mass matrices in finite element analysis and overlap matrices in quantum chem-
istry satisfy such conditions (these matrices represent the identity operator with
respect to some non-orthogonal basis set {φi}n

i=1, where the φi are strongly lo-
calized in space). Second, the result is important because it suggests a possible
sufficient condition for the existence of a uniform exponential decay bound in more
general situations: the relative distance of the spectra σ(An) from the singularities
of the function must remain strictly positive as n→∞. Third, it turns out that the
method of proof used in [69] works with minor changes also for more general func-
tions and matrix classes, as we shall see. The proof of (15) is based on a classical
result of Chebyshev on the uniform approximation error

min max
a≤x≤b

|pk(x)− x−1|

(where the minimum is taken over all polynomials pk of degree ≤ k), according to
which the error decays exponentially in the degree k as k →∞. Combined with the
spectral theorem (which allows to go from scalar functions to matrix functions, with
the ‖ · ‖2 matrix norm replacing the ‖ · ‖∞ norm), this result gives the exponential
decay bound for [A−1]ij . A crucial ingredient of the proof is the fact that if A is
m-banded, then Ak is km-banded, for all k = 0, 1, 2, . . ..

The paper of Demko et al. also contains some extensions to the case of non-
Hermitian matrices and to matrices with a general sparsity pattern. Invertible,
non-Hermitian matrices are dealt with by observing that for any A ∈ Cn×n one can
write

A−1 = A∗(AA∗)−1 (20)

and that if A is banded, then the Hermitian positive definite matrix AA∗ is also
banded (albeit with a larger bandwidth). It is not difficult to see that the product
of two matrices, one of which is banded and the other has entries that satisfy an
exponential decay bound, is also a matrix with entries that satisfy an exponential
decay bound.

For a general sparse matrix, the authors of [69] observe that the entries of A−1

are bounded in an exponentially decaying manner away from the support (nonzero
pattern) of A. This fact can be expressed in the form

|[A−1]ij | ≤ Ke−αd(i,j), ∀ i, j, (21)

where d(i, j) is the geodesic distance between nodes i and j in the undirected graph
G(A) associated with A.

Results similar to those in [69] where independently obtained by Jaffard [119],
motivated by problems concerning wavelet expansions. In this paper Jaffard proves
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exponential decay bounds for the entries of A−1 and mentions that similar bounds
can be obtained for other matrix functions, such as A−1/2 for A positive definite.
Moreover, the bounds are formulated for (in general, infinite) matrices the entries
of which are indexed by the elements of a suitable metric space, allowing the author
to obtain decay results for the inverses of matrices with arbitrary nonzero pattern
and even of dense matrices with decaying entries (we will return to this topic in
section 3.8).

The exponential decay bound (15) together with Theorem 4 implies the follow-
ing (asymptotic) uniform approximation result.

Theorem 5. Let {An} be a sequence of n × n matrices, all Hermitian positive
definite and m-banded. Assume that there exists an interval [a, b], 0 < a < b <∞,
such that σ(An) ⊂ [a, b], for all n. Then, for all ε > 0 and for all n there exist an
integer p = p(ε,m, a, b) (independent of n) and a matrix Bn = B∗n with bandwidth
p such that ‖A−1

n −Bn‖2 < ε.

The smallest value of the bandwidth p needed to satisfy the prescribed accuracy
can be easily computed via (14). As an example, for tridiagonal matrices An (m =
1), K = 10, α = 0.6 (which corresponds to ρ ≈ 0.5488) we find ‖A−1

n −Bn‖2 < 10−6

for all p ≥ 29, regardless of n. In practice, of course, this result is of interest only
for n > p (in fact, for n� p).

We note that a similar result holds for sparse matrix sequences {An} corre-
sponding to a sequence of graphs Gn = (Vn, En) satisfying the assumption (11) of
bounded maximum degree. In this case the matrices Bn will be sparse rather than
banded, with a maximum number p of nonzeros per row which does not depend on
n; in other words, the graph sequence G(Bn) associated with the matrix sequence
{Bn} will also satisfy a condition like (11).

The proof of the decay bound (15) shows that for any prescribed value of ε >
0, each inverse matrix A−1

n can be approximated within ε (in the 2-norm) by a
polynomial pk(An) of degree k in An, with k independent of n. To this end, it
suffices to take the (unique) polynomial of best approximation of degree k of the
function f(x) = x−1, with k large enough that the error satisfies

max
a≤x≤b

|pk(x)− x−1| < ε.

In this very special case an exact, closed form expression for the approximation
error is known ; see [150, pages 33–34]. This expression yields an upper bound for
the error ‖pk(An)−A−1

n ‖2, uniform in n. Provided that the assumptions of Theorem
5 are satisfied, the degree k of this polynomial does not depend on n, but only on
ε. This shows that it is in principle possible to approximate A−1

n using only O(n)
arithmetic operations and storage.

Remark 2. The polynomial of best approximation to the function f(x) = x−1 found
by Chebyshev does not yield a practically useful expression for the explicit ap-
proximation of A−1. However, observing that for any invertible matrix A and any
polynomial p

‖A−1 − p(A)‖2
‖A−1‖2

≤ ‖I − p(A)A‖2,

we can obtain an upper bound on the relative approximation error by finding the
polynomial of smallest degree k for which
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max
a≤x≤b

|1− pk(x)x| = min . (22)

Problem (22) admits an explicit solution in terms of shifted and scaled Chebyshev
polynomials; see, e.g., [177, page 381]. Other procedures for approximating the
inverse will be briefly mentioned in section 4.1.

A number of improvements, extensions, and refinements of the basic decay
results by Demko et al. have been obtained by various authors, largely motivated
by applications in numerical analysis, mathematical physics and signal processing,
and the topic continues to be actively researched. Decay bounds for the inverses of
M -matrices that are near to Toeplitz matrices (a structure that arises frequently
in the numerical solution of partial differential equations) can be found in Eijkhout
and Polman [76]. Freund [85] obtains an exponential decay bound for the entries of
the inverse of a banded matrix A of the form

A = c I + d T, T = T ∗, c, d ∈ C.

Exponential decay bounds for resolvents ad eigenvectors of infinite banded matrices
were obtained by Smith [185]. Decay bounds for the inverses of nonsymmetric band
matrices can be found in a paper by Nabben [156]. The paper by Meurant [153]
provides an extensive treatment of the tridiagonal and block tridiagonal cases. In-
verses of triangular Toeplitz matrices arising from the solution of integral equations
also exhibit interesting decay properties; see [84].

A recent development is the derivation of bounds that accurately capture the
oscillatory decay behavior observed in the inverses of sparse matrices arising from
the discretization of multidimensional partial differential equations. In [48], Canuto
et al. obtain bounds for the inverse of matrices in Kronecker sum form, i.e., matrices
of the type

A = T1 ⊕ T2 := T1 ⊗ I + I ⊗ T2, (23)

with T1 and T2 banded (for example, tridiagonal). For instance, the 5-point finite
difference scheme for the discretization of the Laplacian on a rectangle produces
matrices of this form. Generalization to higher-dimensional cases (where A is the
Kronecker sum of three or more banded matrices) is also possible.

3.3 Decay bounds for the matrix exponential

As we have seen in the Introduction, the entries in the exponential of banded
matrices can exhibit rapid off-diagonal decay (see Fig. 2). As it turns out, the
actual decay rate is faster than exponential (the term superexponential is often
used), a phenomenon common to all entire functions of a matrix. More precisely,
we have the following definition.

Definition 2. A matrix A has the superexponential off-diagonal decay property if
for any α > 0 there exists a K > 0 such that

|[A]ij | ≤ Ke−α|i−j| ∀ i, j.

As usual, in this definition A is either infinite or a member of a sequence of
matrices of increasing order, in which case K and α do not depend on the order.
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The definition can be readily extended to decay with respect to a general nonzero
pattern, in which case |i − j| must be replaced by the geodesic distance on the
corresponding graph.

A superexponential decay bound on the entries of the exponential of a tridiag-
onal matrix has been obtained by Iserles [117]. The bound takes the form

|[eA]ij | ≤ eρI|i−j|(2ρ), i, j = 1, . . . , n (24)

where ρ = maxi,j |[Aij ]| and Iν(z) is the modified Bessel function of the first kind:

Iν(z) =

„
1

2
z

«ν ∞X
k=0

`
1
4
z2
´k

k!Γ (ν + k + 1)
,

where ν ∈ R and Γ is the gamma function; see [1]. For any fixed value of z ∈ C, the
values of |Iν(z)| decay faster than exponentially for ν → ∞. The paper by Iserles
also presents superexponential decay bounds for the exponential of more general
banded matrices, but the bounds only apply at sufficiently large distances from the
main diagonal. None of these bounds require A to be Hermitian.

In [25], new decay bounds for the entries of the exponential of a banded, Her-
mitian, positive semidefinite matrix A have been presented. The bounds are a con-
sequence of fundamental error bounds for Krylov subspace approximations to the
matrix exponential due to Hochbruch and Lubich [111]. The decay bounds are as
follows.

Theorem 6. ([25]) Let A be a Hermitian positive semidefinite matrix with eigen-
values in the interval [0, 4ρ] and let τ > 0. Assume in addition that A is m-banded.
For i 6= j, let ξ = d|i− j|/me. Then

i) For ρτ ≥ 1 and
√

4ρτ ≤ ξ ≤ 2ρτ ,

|[exp(−τA)]ij | ≤ 10 exp

„
− 1

5ρτ
ξ2
«

;

ii) For ξ ≥ 2ρτ ,

|[exp(−τA)]ij | ≤ 10
exp (−ρτ)

ρτ

„
eρτ

ξ

«ξ

.

As shown in [25], these bounds are quite tight and capture the actual super-
exponential decay behavior very well. Similar bounds can be derived for the skew-
Hermitian case (A = −A∗). See also [180], where decay bounds are derived for the
exponential of a class of unbounded infinite skew-Hermitian tridiagonal matrices
arising in quantum mechanical problems, and [203].

These bounds can also be adapted to describe the decay behavior of the expo-
nential of matrices with a general sparsity pattern. See Fig. 8 for an example.

Bounds for the matrix exponential in the nonnormal case will be discussed
in section 3.4 below, as special cases of bounds for general analytic functions of
matrices.

We note that exploiting the well known identity

exp (A⊕B) = exp (A)⊗ exp (B) (25)

(see [109, Theorem 10.9]), it is possible to use Theorem 6 to obtain bounds for
the exponential of a matrix that is the Kronecker sum of two (or more) banded
matrices; these bounds succeed in capturing the oscillatory decay behavior in the
exponential of such matrices (see [25]).
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Fig. 8. Sparsity pattern of multi-banded matrix A and decay in eA.

3.4 Decay bounds for general analytic functions

In this section we present decay bounds for the entries of matrix functions of the
form f(A) where f is analytic on an open connected set Ω ⊆ C with σ(A) ⊂ Ω and
A is banded or sparse. These bounds are obtained combining classical results on
the approximation of analytic functions by polynomials with the spectral theorem,
similar to the approach used by Demko et al. in [69] to prove exponential decay
in the inverses of banded matrices. The classical Chebyshev expression for the
error incurred by the polynomials of best approximation (in the infinity norm) of
f(x) = x−1 will be replaced by an equally classical bound (due to S. N. Bernstein)
valid for arbitrary analytic functions. The greater generality of Bernstein’s result
comes at a price: instead of having an exact expression for the approximation error,
it provides only an upper bound. This is sufficient, however, for our purposes.

We begin with the Hermitian case.6 If [a, b] ⊂ R denotes any interval containing
the spectrum of a (possibly infinite) matrix A = A∗, the shifted and scaled matrix

Â =
2

b− a
A− a+ b

a− b
I (26)

has spectrum contained in [−1, 1]. Since decay bounds are simpler to express for
functions of matrices with spectrum contained in [−1, 1] than in a general interval
[a, b], we will make the assumption that A has already been scaled and shifted so
that σ(A) ⊆ [−1, 1]. It is in general not difficult to translate the decay bounds in
terms of the original matrix, if required. In practice it is desirable that [−1, 1] is
the smallest interval containing the spectrum of the scaled and shifted matrix.

Given a function f continuous on [−1, 1] and a positive integer k, the kth best
approximation error for f by polynomials is the quantity

Ek(f) = inf


max

−1≤x≤1
|f(x)− p(x)| : p ∈ Pk

ff
,

6 The treatment is essentially the same for any normal matrix with eigenvalues
lying on a line segment in the complex plane, in particular if A is skew-Hermitian.
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where Pk is the set of all polynomials of degree less than or equal to k. Bernstein’s
Theorem describes the asymptotic behavior of the best polynomial approximation
error for a function f analytic on a domain containing the interval [−1, 1].

Consider now the family of ellipses in the complex plane with foci in −1 and 1.
Any ellipse in this family is completely determined by the sum χ > 1 of the lengths
of its half-axes; if these are denoted by κ1 > 1 and κ2 > 0, it is well known thatq

κ2
1 − κ2

2 = 1, κ1 − κ2 = 1/(κ1 + κ2) = 1/χ .

We will denote the ellipse characterized by χ > 1 by Eχ.
If f is analytic on a region (open simply connected subset) of C containing

[−1, 1], then there exists an infinite family of ellipses Eχ with 1 < χ < χ̄ such that
f is analytic in the interior of Eχ and continuous on Eχ. Moreover, χ̄ = ∞ if and
only if f is entire.

The following fundamental result is known as Bernstein’s Theorem.

Theorem 7. Let the function f be analytic in the interior of the ellipse Eχ and
continuous on Eχ, for χ > 1. Then

Ek(f) ≤ 2M(χ)

χk(χ− 1)
,

where M(χ) = maxz∈Eχ |f(z)|.

Proof. See, e.g., [145, Chapter 3.15].

Hence, if f is analytic, the error corresponding to polynomials of best approxi-
mation in the uniform convergence norm decays exponentially with the degree of the
polynomial. As a consequence, we obtain the following exponential decay bounds
on the entries of f(A). We include the proof (modeled after the one in [69]) as it is
instructive.

Theorem 8. ([22]) Let A = A∗ be m-banded with spectrum σ(A) contained in
[−1, 1] and let f be analytic in the interior of Eχ and continuous on Eχ for 1 < χ <
χ̄. Let

ρ := χ−
1
m , M(χ) = max

z∈Eχ

|f(z)|, and K =
2χM(χ)

χ− 1
.

Then
|[f(A)]ij | ≤ K ρ|i−j|, ∀ i, j. (27)

Proof. Let pk be the polynomial of degree k of best uniform approximation for
f on [−1, 1]. First, observe that if A is m-banded then Ak (and therefore pk(A))
is km-banded: [pk(A)]ij = 0 if |i − j| > km. For i 6= j write |i − j| = km + l,

l = 1, 2, . . . ,m, hence k < |i− j|/m and χ−k < χ−
|i−j|

m = ρ|i−j|. Therefore, for all
i 6= j we have

|[f(A)]ij | = |[f(A)]ij − [pk(A)]ij | ≤ ‖f(A)− pk(A)‖2 ≤ ‖f − pk‖∞ ≤ Kρ|i−j|.

The last inequality follows from Theorem 7. For i = j we have |[f(A)]ii| ≤
‖f(A)‖2 < K (since 2χ/(χ − 1) > 1 and ‖f(A)‖2 ≤ M(χ) for all χ > 1 by
the maximum principle). Therefore the bound (27) holds for all i, j.
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Note that the bound can also be expressed as

|[f(A)]ij | ≤ K e−α|i−j|, ∀ i, j,

by introducing α = − log(ρ) > 0.

Remark 3. An important difference between (27) and bound (15) is that (27) ac-
tually represents an infinite family of bounds, one for every χ ∈ (0, χ̄). Hence, we
cannot expect (27) to be sharp for any fixed value of χ. There is a clear trade-off
involved in the choice of χ; larger values of χ result in faster exponential decay
(smaller ρ) and smaller values of 2χ/(χ − 1) > 1 (which is a monotonically de-
creasing function of χ for χ > 1), but potentially much larger values of M(χ). In
particular, as χ approaches χ̄ from below, we must have M(χ) → ∞. As noted in
[20, pp. 27–28] and [180, p. 70], for any entry (i, j) of interest the bound (27) can
be optimized by finding the value of χ ∈ (0, χ̄) that minimizes the right-hand side
of (27); for many functions of practical interest there is a unique minimizer which
can be found numerically if necessary.

Remark 4. Theorem 8 can be applied to both finite matrices and bounded infinite
matrices on `2. Note that infinite matrices may have continuous spectrum, and
indeed it can be σ(A) = [−1, 1]. The result is most usefully applied to matrix
sequences {An} of increasing size, all m-banded (or with bandwidth ≤ m for all n)
and such that

∞[
n=1

σ(An) ⊂ [−1, 1],

assuming f is analytic on a region Ω ⊆ C containing [−1, 1] in its interior. For
instance, each An could be a finite section of a bounded infinite matrix A on `2

with σ(A) ⊆ [−1, 1]. The bound (27) then becomes

|[f(An)]ij | ≤ K ρ|i−j| ∀ i, j, ∀n ∈ N. (28)

In other words, the bounds (28) are uniform in n. Analogous to Theorem 5, it
follows that under the conditions of Theorem 8, for any prescribed ε > 0 there
exists a positive integer p and a sequence of p-banded matrices Bn = B∗n such that

‖f(An)−Bn‖2 < ε .

Moreover, the proof of Theorem 8 shows that each Bn can be taken to be a poly-
nomial in An, which does not depend on n. Therefore, it is possible in principle to
approximate f(An) with arbitrary accuracy in O(n) work and storage.

We emphasize again that the restriction to the interval [−1, 1] is done for ease
of exposition only; in practice, it suffices that there exists a bounded interval I =
[a, b] ⊂ R such that σ(An) ⊂ [a, b] for all n ∈ N. In this case we require f to
be analytic on a region of C containing [a, b] in its interior. The result can then
be applied to the corresponding shifted and scaled matrices Ân with spectrum in
[−1, 1], see (26). The following example illustrates how to obtain the decay bounds
expressed in terms of the original matrices in a special case.
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Example 1. The following example is taken from [22]. Assume that A = A∗ is m-
banded and has spectrum in [a, b] where b > a > 0, and suppose we want to obtain
decay bounds on the entries of A−1/2. Note that there is an infinite family of ellipses
{Eξ} entirely contained in the open half plane with foci in a and b, such that the
function F (z) = z−1/2 is analytic on the interior of each Eξ and continuous on it.
If ψ denotes the linear affine mapping

ψ(z) =
2z − (a+ b)

b− a

which maps [a, b] to [−1, 1], we can apply Theorem 8 to the function f = F ◦ ψ−1,
where

ψ−1(w) =
(b− a)w + a+ b

2
.

Obviously, f is analytic on the interior of a family Eχ of ellipses (images via ψ of
the Eξ) with foci in [−1, 1] and continuous on each Eχ, with 1 < χ < χ̄. An easy
calculation shows that

χ̄ =
b+ a

b− a
+

s„
b+ a

b− a

«2

− 1 =
(
√
κ+ 1)2

κ− 1
,

where κ = b
a
. Finally, for any χ ∈ (1, χ̄) we easily find (recalling that χ = κ1 + κ2)

M(χ) = max
z∈Eχ

|f(z)| = |f(−κ1)| =
√

2p
(a− b)κ1 + a+ b

=
2q

(a−b)(χ2+1)
2χ

+ a+ b
.

It is now possible to compute the bounds (27) for any χ ∈ (1, χ̄) and for all i, j. Note
that if b is fixed and a→ 0+, M(χ) grows without bound and ρ→ 1−, showing that
the decay bound deteriorates as A becomes nearly singular. Conversely, for well-
conditioned A decay can be very fast, since χ̄ will be large for small conditioned
numbers κ. This is analogous to the situation for A−1.

More generally, the decay rate in the bound (27) depends on the distance be-
tween the singularities of f (if any) and the interval [a, b] (and, of course, on the
bandwidth m). If f has any singularities near [a, b] then χ̄ will be necessarily close
to 1, and the bound (27) will decay very slowly. Conversely, if they are far from
[a, b] then χ can be taken large and decay will be fast.

In the case of an entire function, χ can be taken arbitrarily large, so that the
exponential decay part of the bound decays arbitrarily fast; note, however, that this
will cause K to increase. Thus, it is clear that for f entire and A banded, the entries
of f(A) are bounded in a superexponentially decay manner according to Definition
2; see [180]. As a special case, we have an alternative proof of the superexponential
decay for the matrix exponential. Note, however, that in the case of the matrix
exponential the specialized bounds given in Theorem 6 are generally tighter.

Remark 5. Let now {An} be a sequence of m-banded matrices of increasing size.
It is clear that if σ(An) is not bounded away from the singularities of f for all
n, then we cannot expect to have uniform decay bounds like (27) valid for all n.
The same happens in the case of a (non-constant) entire function f if the smallest
interval containing σ(An) is unbounded as n→∞. Hence, the bounds (27) cannot
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be expect to hold uniformly for matrices An arising from the discretization of
unbounded differential operators if the size n is related to the mesh size h (in the
sense that n → ∞ if h → 0). Nevertheless, we will see that there are important
applications where the decay bounds (8) hold uniformly in n.

As in the case of the inverse, the bounds (8) can be extended, with some caution,
from the banded case to the case of matrices with more general sparsity patterns.
We formally state this result as follows.

Theorem 9. ([20]) Let {An} be a sequence of sparse Hermitian matrices of in-
creasing size. Assume that there exists a bounded interval [a, b] ⊂ R such that
σ(An) ⊂ [a, b] for all n ∈ N, and that the sequence of graphs G(An) has bounded
maximum degree. If f is analytic on a region containing [a, b] in its interior, there
exist constants K > 0 and α > 0 such that

|[f(An)]ij | ≤ K e−αdn(i,j), ∀ i, j, ∀n ∈ N, (29)

where dn denotes the geodesic distance on G(An). The constants K and α depend
on [a, b] and on the maximum degree of any node in the graph sequence {G(An)},
but not on n.

As before, (29) is actually an infinite family of bounds parameterized by χ, the
sum of the semi-axes of the infinitely many ellipses with foci in a and b entirely
contained in the largest simply connected region Ω on which f is analytic. The
expressions for K and α (equivalently, ρ) are exactly as in Theorem 8 when a = −1
and b = −1, otherwise they can be found as shown in Example 1.

Theorem 9 also holds if the sequence {An} is replaced by a single bounded
infinite matrix acting on `2 such that σ(A) ⊆ [a, b] and such that the infinite graph
G(A) has finite maximum degree.

Remark 6. The proof of Theorem 8 shows that the bounds (27) and (29) are in
general pessimistic. Indeed, much can be lost when bounding |[f(A)]ij − [pk(A)]ij |
with ‖f(A)− pk(A)‖2 and the latter quantity with ‖f − pk‖∞. In particular, these
bounds completely ignore the distribution of the eigenvalues of A in the interval
[−1, 1]; in this sense, the situation is completely analogous to the well known error
estimate for the A-norm of the error in the conjugate gradient method based on the
condition number of A, see [96, page 636]. It is is well known that this bound, while
sharp, can be overly conservative. The same holds for (29): the bound on the rate
of decay depends on a single essential quantity, the distance between the spectrum
of A and the singularities of f , and thus cannot be expected to be very accurate.
More accurate bounds can likely be obtained given more information on the spectral
distribution of A; for example, if most of the eigenvalues of A are tightly clustered,
then the decay rate in f(A) should be much faster than if the eigenvalues of A are
distributed more or less evenly in the spectral interval. In the limiting case where
A has only k � n distinct eigenvalues (so that the minimum polynomial of A has
degree k), then f(A) can be represented exactly by a low degree polynomial, and
many of the entries of A will be exactly zero as long as diam(G(A)) � k.
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Bounds for the normal case. Owing to the fact that the spectral theorem
applies not just to Hermitian matrices but more generally to normal matrices, it is
not surprising that results completely analogous to Theorem 8 and Theorem 9 can
be stated and proved assuming that {An} is a sequence of normal matrices (banded
or sparse) with eigenvalues lying on a line segment [z1, z2] ⊂ C entirely contained
in a region Ω on which f is analytic. For instance, decay bounds for the entries of
functions of banded skew-symmetric matrices have been given in [67, 143].

More generally, suppose A is normal and m-banded. Let F ⊂ C be a compact,
connected region containing σ(A), and denote by Pk the set of complex polynomials
of degree at most k. Then the argument in the proof of Theorem 8 still holds, except
that now polynomial approximation is no longer applied on an interval, but on the
complex region F . Therefore, the following bound holds for all indices i, j such that
|i− j| > km:

|[f(A)]ij | ≤ max
λ∈σ(A)

|f(λ)− p(λ)| ≤ Ek(f,F), (30)

where
Ek(f,F) := min

p∈Pk

max
z∈F

|f(z)− p(z)| =: min
p∈Pk

‖f − p‖∞,F .

Unless more accurate estimates for σ(A) are available, a possible choice for F is
the disk of center 0 and radius %(A).

If f is analytic on F , bounds for Ek(f,F) that decay exponentially with k
are available through the use of Faber polynomials: see [24, Theorem 3.3] and the
next subsection for more details. More precisely, there exist constants c̃ > 0 and
0 < ρ̃ < 1 such that Ek(f,F) ≤ c̃ ρ̃k for all k ∈ N. This result, together with (30),
yields for all i and j the bound

|[f(A)]ij | ≤ K ρ|i−j| = K e−α|i−j| (31)

(where α = − log(ρ)) for suitable constants K > 0 and 0 < ρ < 1, which do not
depend on the size of the matrix n, although they generally depend on f and F
(and of course on the bandwidth, m, in the case of ρ).

The extension of these bounds to sparse matrices with more general sparsity
patterns is entirely straightforward; note, however, that unless A is structurally
symmetric (in which case the graph G(A) is undirected), the distance d(i, j), defined
as the length of the shortest directed path starting at node i and ending at node
j, will be different, in general, from d(j, i). Hence, different rates of decay may be
observed on either side of the main diagonal.

Bounds for the nonnormal case. As can be expected, the derivation of decay
bounds for the entries of f(A) when A is banded or sparse and nonnormal is more
challenging than in the normal case, since in this case the spectral theorem can no
longer be relied upon.

It is easy to give examples where decay fails to occur. The simplest one is
probably the following. Let An be the n× n upper bidiagonal matrix

An =

2666664
1 −α 0 . . . 0
0 1 −α . . . 0
...

...
. . .

. . .
...

0 0 . . . 1 −α
0 0 . . . 0 1

3777775 , (32)
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where α ∈ R. Then

A−1
n =

2666664
1 α α2 . . . αn−1

0 1 α . . . αn−2

...
...

. . .
. . .

...
0 0 . . . 1 α
0 0 . . . 0 1

3777775 .
Hence, for α ≥ 1 no decay is present7 in the upper triangular part of A−1

n .
Nevertheless, useful bounds can still be obtained in many cases. In order to

proceed, we need some additional background in approximation theory, namely,
some notions about Faber polynomials and their use in the approximation of analytic
functions on certain regions of the complex plane. In a nutshell, Faber polynomials
play for these regions the same role played by Taylor polynomials for disks. The
following discussion is taken from [24] and follows closely the treatment in [145].

A continuum in C is a nonempty, compact and connected subset of C. Let F
be a continuum consisting of more than one point. Let G∞ denote the component
of the complement of F containing the point at infinity. Note that G∞ is a simply
connected domain in the extended complex plane C̄ = C ∪ {∞}. By the Riemann
Mapping Theorem there exists a function w = Φ(z) which maps G∞ conformally
onto a domain of the form |w| > ρ > 0 satisfying the normalization conditions

Φ(∞) = ∞, lim
z→∞

Φ(z)

z
= 1; (33)

ρ is the logarithmic capacity of F . Given any integer N > 0, the function [Φ(z)]N

has a Laurent series expansion of the form

[Φ(z)]N = zN + α
(N)
N−1z

N−1 + · · ·+ α
(N)
0 +

α
(N)
−1

z
+ · · · (34)

at infinity. The polynomials

ΦN (z) = zN + α
(N)
N−1z

N−1 + · · ·+ α
(N)
0

consisting of the terms with nonnegative powers of z in the expansion (34) are
called the Faber polynomials generated by the continuum F .

Let Ψ be the inverse of Φ. By CR we denote the image under Ψ of a circle
|w| = R > ρ. The (Jordan) region with boundary CR is denoted by I(CR). By
Theorem 3.17, p. 109 of [145], every function f analytic on I(CR0) with R0 > ρ
can be expanded in a series of Faber polynomials:

f(z) =

∞X
k=0

αkΦk(z), (35)

where the series converges uniformly inside I(CR0). The coefficients are given by

7 At first sight, this example seems to contradict the result by Demko et al. [69]
based on the identity (20). However, the result of Demko et al. assumes that the
condition number of AA∗ (equivalently, of A itself) remains bounded as n→∞,
which is not the case for this example.
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αk =
1

2πi

Z
|w|=R

f(Ψ(w))

wk+1
dw

where ρ < R < R0. We denote the partial sums of the series in (35) by

ΠN (z) :=

NX
k=0

αkΦk(z). (36)

Each ΠN (z) is a polynomial of degree at most N , since each Φk(z) is of degree k.
We are now ready to state the following generalization of Theorem 7, also due to
Bernstein, which will be instrumental for what follows.

Theorem 10. Let f be a function defined on F . Then given any ε > 0 and any
integer N ≥ 0, there exists a polynomial ΠN of degree at most N and a positive
constant c(ε) such that

|f(z)−ΠN (z)| < c(ε)(q + ε)N (0 < q < 1) (37)

for all z ∈ F if and only if f is analytic on the domain I(CR0), where R0 = ρ/q. In
this case, the sequence {ΠN} converges uniformly to f inside I(CR0) as N →∞.

In the special case where F is a disk of radius ρ centered at z0, Theorem 10
states that for any function f analytic on the disk of radius ρ/q centered at z0,
where 0 < q < 1, there exists a polynomial ΠN of degree at most N and a positive
constant c(ε) such that for any ε > 0

|f(z)−ΠN (z)| < c(ε)(q + ε)N , (38)

for all z ∈ F . We are primarily concerned with the sufficiency part of Theorem 10.
Note that the choice of q (with 0 < q < 1) depends on the region where the
function f is analytic. If f is defined on a continuum F with logarithmic capacity
ρ then we can pick q bounded away from 1 as long as the function is analytic
on I(Cρ/q). Therefore, the rate of convergence is directly related to the properties
of the function f , such as the location of its poles (if there are any). Following
[145], the constant c(ε) can be estimated as follows. Let R0, q and ε be given as in
Theorem 10. Furthermore, let R′ and R be chosen such that ρ < R′ < R < R0 and

R′

R
= q + ε,

then we define
M(R) = max

z∈CR

|f(z)|.

An estimate for the value of c(ε) is asymptotically (i.e., for sufficiently large N)
given by

c(ε) ≈ 3

2
M(R)

q + ε

1− (q + ε)
.

It may be necessary to replace the above expression for c(ε) by a larger one to
obtain validity of the bound (37) for all N . However, for certain regions (and in
particular for convex F ) it is possible to obtain an explicit constant valid for all
N ≥ 0; see [78] and [24, Section 3.7]. Based on this theorem, we can state the
following result.
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Theorem 11. Let {An} be a sequence of n×n diagonalizable matrices and assume
that σ(An) is contained in a continuum F , for all n. Assume further that the matri-
ces An are sparse and that each graph G(An) satisfies the maximum bounded degree
assumption. Let κ2(Xn) be the spectral condition number of the eigenvector matrix
of An. Let f be a function defined on F . Furthermore, assume that f is analytic on
I(CR0) (⊃ σ(An)), where R0 = ρ

q
with 0 < q < 1 and ρ is the logarithmic capacity

of F . Then there are positive constants K and α, independent of n, such that

|[f(An)]ij | < κ(Xn)Ke−α dn(i,j), ∀ i, j, ∀n ∈ N, (39)

where dn denotes the geodesic distance on G(An).

Proof. From Theorem 10 we know that for any ε > 0 there exists a sequence of
polynomials Πk of degree k which satisfies for all z ∈ F

|f(z)−Πk(z)| < c(ε)(q + ε)k, where 0 < q < 1.

Therefore, since An = XnDnX
−1
n with Dn diagonal, we have

‖f(An)−Πk(An)‖2 ≤ κ2(Xn) max
z∈σ(An)

|f(z)−Πk(z)| < κ2(Xn)c(ε)(q + ε)k,

where 0 < q < 1. For i 6= j we can write

dn(i, j) = k + 1

and therefore, observing that [Πk(An)]ij = 0 for dn(i, j) > k, we have

|[f(An)]ij | = |[f(An)]ij−[Πk(An)]ij | ≤ ‖f(An)−Πk(An)‖2 < κ2(Xn)c(ε)(q+ε)dn(i,j)−1.

Hence, choosing ε > 0 such that ρ0 := q + ε < 1 and letting K0 = c(ε)/(q + ε) we
obtain

|[f(An)]ij | < κ2(Xn)K0 ρ
dn(i,j)
0 .

If i = j then |[f(An)]ii| ≤ ‖f(An)‖2 and therefore letting K = max{K0, ‖f(A)‖2}
and α = − log(ρ0) we see that inequality (39) holds for all i, j.

It is worth noting that in the normal case we have κ2(Xn) = 1 in (39), and
therefore the bound (31) is proved. Bound (39) may also prove useful if the spec-
tral condition numbers κ2(Xn) are uniformly bounded by a (moderate) constant.
However, in the case of a highly nonnormal sequence (for which the κ2(Xn) are
necessarily very large, see [96, P7.2.3]) the bound is virtually useless as it can can
be a severe overestimate of the actual size of the elements of f(An); see [24, page
25] for an example. The situation is entirely analogous to the standard residual
bound for GMRES applied to diagonalizable matrices; see, e.g., [177, Proposition
6.32].

In this case a different approach, based on the field of values and not requiring
diagonalizability, is often found to give better bounds. The following discussion is
based on [19]. The field of values of a complex matrix appears in the context of
bounds for functions of matrices thanks to a fundamental result by Crouzeix (see
[58]):
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Theorem 12. (Crouzeix) There is a universal constant 2 ≤ Q ≤ 11.08 such that,
given A ∈ Cn×n, F a convex compact set containing the field of values W(A), a
function g continuous on F and analytic in its interior, then the following inequality
holds:

‖g(A)‖2 ≤ Q sup
z∈F

|g(z)|.

We mention that Crouzeix has conjectured that Q can be replaced by 2, but so
far this has been proved only in some special cases. Combining Theorem 10 with
Theorem 12 we obtain the following result from [19].

Theorem 13. ([19]) Let {An} be a sequence of banded n× n matrices, with band-
widths uniformly bounded by m. Let the complex function f be analytic on a neigh-
borhood of a connected compact set C ⊂ C containing W(An) for all n. Then there
exist explicitly computable constants K > 0 and α > 0, independent of n, such that

|[f(An)]ij | ≤ K e−α|i−j| (40)

for all indices i, j, and for all n ∈ N.

This result is similar to the one for the normal case, with the field of values
W(An) now playing the roles of the spectra σ(An). As long as the singularities of
f (if any) stay bounded away from a fixed compact set C containing the union of
all the fields of values W(An), and as long as the matrices An have bandwidths
less than a fixed integer m, the entries of f(An) are bounded in an exponentially
decaying manner away from the main diagonal, at a rate bounded below by a fixed
positive constant as n→∞. The larger the distance between the singularities of f
and the compact C, the larger this constant is (and the faster the bound decays).

As usual, the same result holds for sequences of sparse matrices An such that
the graphs G(An) satisfy the bounded maximum degree assumption, in which case
|i− j| in (40) is replaced by the geodesic distance dn(i, j).

In Fig. 9 we show three plots which correspond to the first row of eA where A
is the 100 × 100 nonnormal tridiagonal Toeplitz matrix generated by the symbol
φ(t) = 2t−1 +1+3t, see [42]. This matrix is diagonalizable with eigenvector matrix
X such that κ2(X) ≈ 5.26 · 108. The lowest curve is the actual magnitude of the
entries [eA]1j for j = 1, . . . , 100 (drawn as a continuous curve). The top curve is the
bound (39), and the curve in the middle is the bound (40) obtained from Crouzeix’s
Theorem (with C = W(A)). Note the logarithmic scale on the vertical axis. Clearly,
for this example the Crouzeix-type bound is a significant improvement over the
earlier bound from [24].

A practical limitation of bound (40) is that it is in general difficult to find the
constants K and α. This requires knowledge of the compact set C in the statement
of Theorem 13. If such a set is known, a simple approach to the computation of
constants K and α goes as follows [19, 149]. Suppose there is a disk of center 0 and
radius r > 0 that contains C, and such that f is analytic on an open neighborhood
of some disk of center 0 and radius R > r. Define

Ek(f, C) = inf max
z∈C

|f(z)− pk(z)|,

where the infimum is taken over all polynomials with complex coefficients of degree
≤ k. Then the standard theory of complex Taylor series gives the following estimate
for the Taylor approximation error [78, Corollary 2.2]:
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Fig. 9. Black: first row of eA. Blue: bound (39). Red: bound (40).

Ek(f, C) ≤ M(R)

1− r
R

“ r
R

”k+1

, (41)

where M(R) = max|z|=R |f(z)|. Therefore we can choose

K = max


‖f(A)‖, QM(R)

r

R− r

ff
, ρ̂ =

“ r
R

”1/m

, α = − log(ρ̂).

The choice of the parameter R in (41) is somewhat arbitrary: any value of R
will do, as long as r < R < min |ζ|, where ζ varies over the poles of f (if f is entire,
we let min |ζ| = ∞). As discussed earlier, there is a trade-off involved in the choice
of R: choosing as large a value of R as possible gives a better asymptotic decay
rate, but also a potentially large constant K. It is also clear that in the entire case
the bound decays superexponentially.

We also mention that the choice of a disk can result in poor bounds, as it can
give a crude estimate of the field of values. Better estimates can sometimes be
obtained by replacing disks with rectangles: for instance, if good estimates for the
smallest and largest eigenvalues of the real and imaginary parts H1 and H2 of A
are known (see (4)), then one can approximate the rectangle of the Bendixson–
Hirsch Theorem. This is a compact set containing W(A) and may be a much better
estimate of W(A) than some disk containing the field of values. In [203] the authors
show how these rectangles, combined with certain conformal mappings, may be
useful in obtaining improved decay bounds in the case of the exponential of a
matrix in upper Hessenberg form, which in turn provides accurate error estimates
for Krylov subspace approximations of the action of the matrix exponential on a
given vector in the nonnormal case. We shall return to this topic in section 4.1.

Further decay bounds for the entries of analytic functions of general nonnormal,
nondiagonalizable band matrices based on Faber polynomials can be found in [167];
see also the comments at the end of the next section.
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3.5 Bounds for matrix functions defined by integral transforms

In the Hermitian positive definite case, the available decay bounds (see (15) and
Theorem 6) for the inverse and the exponential of a band matrix are generally better
than the general bounds (27) based on Bernstein’s Theorem. This is not surprising:
the bound (15) of Demko et al. exploits the fact that the best approximation error
of f(x) = x−1 is known exactly, and similarly very good error bounds are known
for the polynomial approximation of f(x) = e−x. On the other hand, Bernstein’s
Theorem is much more general since it applies to any analytic function and thus
the bounds on the entries of f(A) obtained from it are likely to be less sharp.

This observation suggests that improved bounds should be obtainable for those
matrix functions that are related in some manner to the exponential and the inverse
function. As it turns out, many of the most important functions that arise in appli-
cations can be expressed as integral transforms involving either the exponential or
the resolvent (and as we know, these two functions are related through the Laplace
transform).

Here we focus on two (overlapping) classes of functions: the strictly completely
monotonic functions (associated with the Laplace–Stieltjes transform) and the
Markov functions (associated with the Cauchy–Stieltjes transform). We first re-
view some basic properties of these functions and the relationship between the two
classes, following closely the treatment in [25].

Definition 3. Let f be defined in the interval (a, b) where −∞ ≤ a < b ≤ +∞.
Then, f is said to be completely monotonic in (a, b) if

(−1)kf (k)(x) ≥ 0 for all a < x < b and all k = 0, 1, 2, . . .

Moreover, f is said to be strictly completely monotonic in (a, b) if

(−1)kf (k)(x) > 0 for all a < x < b and all k = 0, 1, 2, . . .

Here f (k) denotes the kth derivative of f , with f (0) ≡ f . A classical result of
Bernstein (see [205]) states that a function f is completely monotonic in (0,∞) if
and only if f is a Laplace–Stieltjes transform:

f(x) =

Z ∞

0

e−τxdα(τ), (42)

where α(τ) is nondecreasing and the integral in (42) converges for all x > 0. Fur-
thermore, f is strictly completely monotonic in (0,∞) if it is completely monotonic
there and the function α(τ) has at least one positive point of increase, that is, there
exists a τ0 > 0 such that α(τ0 + δ) > α(τ0) for any δ > 0. Here we assume that
α(τ) is nonnegative and that the integral in (42) is a Riemann–Stieltjes integral.

Important examples of strictly completely monotonic functions include (see for
instance [200]):

1. f1(x) = x−1 =
R∞
0

e−xτdα(τ) for x > 0, where α(τ) = τ for τ ≥ 0.
2. f2(x) = e−x =

R∞
0

e−xτdα(τ) for x > 0, where α(τ) = 0 for 0 ≤ τ < 1 and
α(τ) = 1 for τ ≥ 1.

3. f3(x) = (1− e−x)/x =
R∞
0

e−xτdα(τ) for x > 0, where α(τ) = τ for 0 ≤ τ ≤ 1,
and α(τ) = 1 for τ ≥ 1.
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Other examples include the functions x−σ (for any σ > 0), log(1 + 1/x) and
exp(1/x), all strictly completely monotonic on (0,∞). Also, it is clear that products
and positive linear combinations of strictly completely monotonic functions are
strictly completely monotonic.

A closely related class of functions is given by the Cauchy–Stieltjes (or Markov-
type) functions, which can be written as

f(z) =

Z
Γ

dγ(ω)

z − ω
, z ∈ C \ Γ , (43)

where γ is a (complex) measure supported on a closed set Γ ⊂ C and the integral
is absolutely convergent. In this paper we are especially interested in the special
case Γ = (−∞, 0] so that

f(x) =

Z 0

−∞

dγ(ω)

x− ω
, x ∈ C \ (−∞, 0] , (44)

where γ is now a (possibly signed) real measure. The following functions, which
occur in various applications (see, e.g., [102] and references therein), fall into this
class:

x−
1
2 =

Z 0

−∞

1

x− ω

1

π
√
−ω

dω,

e−t
√

x − 1

x
=

Z 0

−∞

1

x− ω

sin(t
√
−ω)

−πω dω,

log(1 + x)

x
=

Z −1

−∞

1

x− ω

1

(−ω)
dω.

The two classes of functions just introduced overlap. Indeed, it is easy to see
(e.g., [152]) that functions of the form

f(x) =

Z ∞

0

dµ(ω)

x+ ω
,

with µ a positive measure, are strictly completely monotonic on (0,∞); but every
such function can also be written in the form

f(x) =

Z 0

−∞

dγ(ω)

x− ω
, γ(ω) = −µ(−ω),

and therefore it is a Cauchy–Stieltjes function. We note, however, that the two
classes do not coincide: e.g., f(x) = exp(−x) is strictly completely monotonic but is
not a Cauchy–Stieltjes function. In the following, the term Laplace–Stieltjes function
will be used to denote a function that is strictly completely monotonic on (0,∞).

If A is Hermitian and positive definite and f is a Laplace–Stieltjes function
given by (42), we can write

f(A) =

Z ∞

0

e−τAdα(τ)

and therefore
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|[f(A)]ij | ≤
Z ∞

0

|[e−τA]ij | dα(τ), ∀ i, j = 1, . . . , n.

We can now apply Theorem 6 on the off-diagonal decay behavior of [e−τA]ij to
bound the entries of f(A). We thus obtain the following result.

Theorem 14. ([25]) Let A = A∗ be m-banded and positive definite, and let bA =

A−λmin(A)I, Let [0, 4ρ] be the smallest interval containing σ( bA), and assume f is
a Laplace–Stieltjes function. Then, with the notation and assumptions of Theorem
6 and for ξ = d|i− j|/me ≥ 2:

|[f(A)]ij | ≤
Z ∞

0

exp(−τλmin(A))|[exp(−τ bA)]ij |dα(τ)

≤ 10

Z ξ
2ρ

0

exp(−τλmin(A))
exp(−ρτ)

ρτ

„
eρτ

ξ

«ξ

dα(τ) (45)

+10

Z ξ2
4ρ

ξ
2ρ

exp(−τλmin(A)) exp

„
− ξ2

5ρτ

«
dα(τ)

+

Z ∞

ξ2
4ρ

exp(−τλmin(A))[exp(−τ bA)]ijdα(τ) = I + II + III.

The nature of these bounds (45) is quite different from the ones previously seen,
since they are given only implicitly by the integrals I, II and III. Note that the
latter integral does not significantly contribute provided that |i − j| is sufficiently
large while ρ and m are not too large. In general, it will be necessary to evaluate
these integrals numerically; in some special cases it may be possible to find explicit
bounds for the various terms in (45). On the other hand, these bounds are much
more accurate, in general, than those based on Bernstein’s Theorem. We refer to
[25] for numerical examples illustrating the tightness of these bounds.

Suppose now that f is a Cauchy–Stieltjes function of the form (44), then for
any Hermitian positive definite matrix A we can write

f(A) =

Z 0

−∞
(A− ωI)−1dγ(ω),

Since A − ωI is Hermitian positive definite, if A is banded (or sparse) we can
apply the bounds (15) of Demko et al. to the resolvent (A−ωI)−1 in order to derive
bounds for the entries of f(A).

For a given ω ∈ Γ = (−∞, 0), let κ = κ(ω) = (λmax(A) − ω)/(λmin(A) − ω),
q = q(ω) = (

√
κ − 1)/(

√
κ + 1), C = C(−ω) = max{1/(λmin(A) − ω), C0}, with

C0 = C0(−ω) = (1 +
√
κ)2/(2(λmax(A)− ω)). We have the following result.

Theorem 15. ([25]) Let A = A∗ be positive definite and let f be a Cauchy–Stieltjes
function of the form (44), where γ is of bounded variation on (−∞, 0]. Then for all
i and j we have

|[f(A)]ij | ≤
Z 0

−∞

˛̨
[(A− ωI)−1]ij

˛̨
|dγ(ω)| ≤

Z 0

−∞
C(ω)q(ω)

|i−j|
m |dγ(ω)|. (46)
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We remark that the first inequality in (46) is a consequence of the assumptions
made on γ; see [205, Chapter I].

A natural question is the following: if f is both a Laplace–Stieltjes and a
Cauchy–Stieltjes function, how do the bounds (45) and (46) compare? Is one better
than the other? The answer is likely to depend on the particular function consid-
ered. However, (46) tends to lead to more explicit and more accurate bounds for
some important functions, like f(x) = x−1/2 (which is both a Laplace–Stieltjes and
a Cauchy–Stieltjes function); see [25].

Remark 7. As always, all the decay bounds discussed in this section can be formu-
lated for a sequence {An} of Hermitian positive definite matrices of increasing size
n as long as they are all banded (with bandwidth uniformly bounded by m) and
such that the norms ‖An‖2 are uniformly bounded with respect to n. In this case,
the decay bounds (45) and (46) hold uniformly in n. Moreover, the bounds can be
modified to accommodate more general sparsity patterns, and can be applied to
sequences of sparse matrices of increasing size under the bounded maximum degree
assumption (11).

Next, we briefly discuss the case of matrices that are Kronecker sums of banded
or sparse matrices, again following the treatment in [25]. Recall that the Kronecker
sum of two matrices T1 ∈ Cn×n and T2 ∈ T2 ∈ Cm×m is defined as the nm × nm
matrix

A = T1 ⊕ T2 = T1 ⊗ Im + In ⊗ T2.

A familiar example is given by the 5-point finite difference discretization of the
Dirichlet Laplacian on a rectangular region. In this case T1 and T2 are tridiagonal,
and A is block tridiagonal.

Suppose now that f(A) is defined, then numerical experiments reveal that the
entries of f(A) decay in an oscillatory manner. In Fig. 10 we illustrate this behavior
for two different matrix functions, the exponential e−tA for t = 5 and the inverse
square root A−1/2. Here A is 100× 100 and represents the 5-point finite difference
discretization of the Dirichlet Laplacian on the unit square.

The question arises of whether such oscillatory behavior can be accurately cap-
tured in the form of non-monotonic decay bounds. One possibility is to treat A as
a general sparse matrix, and to use the graph distance to measure decay. However,
this approach does not exploit the relationship (25) between the exponential of A
and the exponentials of T1 and T2; since we have very good bounds for the decay in
the exponential of a banded matrix, it should be possible to derive similarly good
bounds on the entries of the exponential of A by making use of (25). Moreover,
suppose that f is a Laplace–Stieltjes functions and that A = T1 ⊕ T2 (with T1, T2

Hermitian positive definite), such as f(A) = A−1/2. Then we can write

f(A) =

Z ∞

0

exp(−τA) dα(τ) =

Z ∞

0

exp(−τT1)⊗ exp(−τT2) dα(τ) (47)

for a suitable choice of α(τ). Now (47) can be used to obtain bounds on the entries
of f(A) in terms of integrals involving the entries of exp(−τT1) and exp(−τT2), for
which accurate bounds are available. It has been shown in [25] that these bounds are
generally better than the ones obtained when A is treated as a general sparse matrix.
A similar approach can also be used in the case of Cauchy–Stieltjes functions; see
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Fig. 10. Oscillatory behavior of exp(−5A) and A−1/2 where A is a discrete Lapla-
cian on a 10× 10 grid.

[25] for details. These results can be extended to the case where A is the Kronecker
sum of an arbitrary number of terms.

Finally, we mention that in the recent paper [167] new decay bounds for Cauchy–
Stieltjes functions of banded non-Hermitian matrices have been obtained based on
rational approximation. Specifically, the use of Faber–Dzhrbashyan rational func-
tions (see [189]) allows the authors to derive exponential decay bounds which are
found to be much less sensitive to the distance between the field of values of A
and the singularities of f than the bounds based on polynomial approximation,
in the sense that the quality of the bounds does not deteriorate nearly as much
as this distance approaches zero. In [167] these bounds are also used to study the
oscillatory decay behavior in functions of nonnormal matrices with Kronecker sum
structure.

3.6 Functions of structured matrices

Up to now we have considered rather general classes of banded or sparse matrices,
and (apart from the case where A is a Kronecker sum) we have not taken into
account possible additional structure present in A. The question arises whether
more can be said about the structural and decay properties of f(A) when A is
restricted to a specific class of structured matrices.

The simplest nontrivial example is perhaps that of circulant matrices [64]. Since
any circulant n×n matrix with complex entries is of the form A = F ∗ΛF , where Λ
is diagonal and F is the (unitary) discrete Fourier transform matrix, we have that
f(A) = F ∗f(Λ)F is also circulant. More generally, if A belongs to a subalgebra
A ⊆ Cn×n, then so does f(A). Clearly, this poses strong constraints on the decay
pattern of f(A).

What if A is not circulant, but Toeplitz? Since Toeplitz matrices do not form
an algebra, it is not generally true that f(A) is Toeplitz if A is. Banded Toeplitz
and block Toeplitz matrices arise in many important applications (see for example
[41]), but relatively little has been done in the study of functions of banded Toeplitz
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and block Toeplitz matrices. To our knowledge, most of the results in this area are
found in [101], in which the authors study the structure of functions of banded
Hermitian block Toeplitz matrices An ∈ CnN×nN in the limit as n→∞ (with N ,
the block size, being fixed). In this limit, f(An) is asymptotically “close” to being
a block Toeplitz matrix, in a precise sense. However, there is no explicit discussion
of decay in [41].

Another very interesting example is that of functions of finite difference matri-
ces (approximations of differential operators), which in [187] are shown to have a
“Toeplitz-plus-Hankel” structure. Again, this fact imposes constraints on the decay
behavior of the entries of f(A).

Finally, it can happen that A and f(A) belong to different, but related struc-
tures. For example, if A is skew-Hermitian, the exponential eA is unitary. Hence,
the exponential map takes elements of the Lie algebra of skew-Hermitian matrices
to elements of the corresponding Lie group, the unitary matrices. Many more such
examples are given in [109, Section 14.1.1]. Exploiting these structural properties
may lead to improved bounds for the entries of f(A); to our knowledge, however,
this possibility has not been explored so far.

3.7 Some generalizations

So far we have only considered matrices over R or C. In applications (especially
in physics) it is sometimes necessary to consider functions of matrices over more
general algebraic and topological structures. Depending on the problem, these could
be non-commutative division algebras, algebras of operators on a Hilbert space
(finite or infinite dimensional), algebras of continuous functions, etc.

The question arises then whether decay bounds such as those discussed up to
now can be extended to these more general situations. The answer, as shown in [19],
is largely affirmative. The most natural tool for carrying out the desired extension is
the general theory of complex C∗-algebras. In particular, the holomorphic functional
calculus allows one to define the notion of analytic function on such algebras, and to
develop a theory of functions of matrices over such algebras. In this setting, almost
all8 the decay bounds described so far can be extended verbatim, the only difference
being that the absolute value of [f(A)]ij must now be replaced by ‖[f(A)]ij‖, where
‖ · ‖ is the norm in the underlying C∗-algebra.

We proceed now to sketch the generalization of some of the decay bounds. The
following discussion is based on [19]; for an excellent introduction to the basic theory
of C∗-algebras, see [122].

Recall that a Banach algebra is a complex algebra A with a norm making A
into a Banach space and satisfying

‖ab‖ ≤ ‖a‖‖b‖

for all a, b ∈ A. In this paper we consider only unital Banach algebras, i.e., algebras
with a multiplicative unit I with ‖I‖ = 1.

An involution on a Banach algebra A is a map a 7→ a∗ of A into itself satisfying

(i) (a∗)∗ = a

8 The exception is given by the bounds involving the condition number of the
eigenvector matrix, see Theorem 11.
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(ii) (ab)∗ = b∗a∗

(iii) (λa+ b)∗ = λa∗ + b∗

for all a, b ∈ A and λ ∈ C. A C∗-algebra is a Banach algebra with an involution
such that the C∗-identity

‖a∗a‖ = ‖a‖2

holds for all a ∈ A. Note that we do not make any assumption on whether A is
commutative or not. Basic examples of C∗-algebras are:

1. The commutative algebra C(X ) of all continuous complex-valued functions on
a compact Hausdorff space X . Here the addition and multiplication operations
are defined pointwise, and the norm is given by ‖f‖∞ = maxt∈X |f(t)|. The
involution on C(X ) maps each function f to its complex conjugate f∗, defined
by f∗(t) = f(t) for all t ∈ X .

2. The algebra B(H) of all bounded linear operators on a complex Hilbert space
H, with the operator norm ‖T‖ = sup ‖Tx‖H/‖x‖H, where the supremum is
taken over all nonzero x ∈ H. The involution on B(H) maps each bounded
linear operator T on H to its adjoint, T ∗.

Note that the second example contains as a special case the algebra Mn(C)
(= Ck×k) of all k×k matrices with complex entries, with the norm being the usual
spectral norm and the involution mapping each matrix A = [aij ] to its Hermitian
conjugate A∗ = [ aji ]. This algebra is noncommutative for k ≥ 2.

Examples 1 and 2 above provide, in a precise sense, the “only” examples of
C∗-algebras. Indeed, every (unital) commutative C∗-algebra admits a faithful rep-
resentation onto an algebra of the form C(X ) for a suitable (and essentially unique)
compact Hausdorff space X ; and, similarly, every unital (possibly noncommutative)
C∗-algebra can be faithfully represented as a norm-closed subalgebra of B(H) for a
suitable complex Hilbert space H.

More precisely, a map φ between two C∗-algebras is a ∗-homomorphism if φ is
linear, multiplicative, and such that φ(a∗) = φ(a)∗; a ∗-isomorphism is a bijective
∗-homomorphism. Two C∗-algebras are said to be isometrically ∗-isomorphic if
there is a norm-preserving ∗-isomorphism between them, in which case they are
indistinguishable as C∗-algebras. A ∗-subalgebra B of a C∗-algebra A is a subalgebra
that is ∗-closed, i.e., a ∈ B implies a∗ ∈ B. Finally, a C∗-subalgebra is a norm-closed
∗-subalgebra of a C∗-algebra. The following two results are classical [86, 87].

Theorem 16. (Gelfand) Let A be a commutative C∗-algebra. Then there is a com-
pact Hausdorff space X such that A is isometrically ∗-isomorphic to C(X ). If Y is
another compact Hausdorff space such that A is isometrically ∗-isomorphic to C(Y),
then X and Y are necessarily homeomorphic.

Theorem 17. (Gelfand–Naimark) Let A be a C∗-algebra. Then there is a complex
Hilbert space H such that A is isometrically ∗-isomorphic to a C∗-subalgebra of
B(H).

We will also need the following definitions and facts. An element a of a C∗-
algebra is unitary if aa∗ = a∗a = I, Hermitian (or self-adjoint) if a∗ = a, skew-
Hermitian if a∗ = −a, normal if aa∗ = a∗a. Clearly, unitary, Hermitian and skew-
Hermitian elements are all normal. Any element a in a C∗-algebra can be written
uniquely as a = h1 + i h2 with h1, h2 Hermitian and i =

√
−1.
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For any (complex) Banach algebra A, the spectrum of an element a ∈ A is the
set of all λ ∈ C such that λI − a is not invertible in A. We denote the spectrum
of a by σ(a). For any a ∈ A, the spectrum σ(a) is a non-empty compact subset of
C contained in the closed disk of radius r = ‖a‖ centered at 0. The spectral radius
of a is defined as %(a) = max{|λ| : λ ∈ σ(A)}. Gelfand’s formula for the spectral
radius [86] states that

%(a) = lim
m→∞

‖am‖
1
m . (48)

Note that this identity contains the statement that the above limit exists.
If a ∈ A (a C∗-algebra) is Hermitian, σ(a) is a subset of R. If a ∈ A is normal

(in particular, Hermitian), then %(a) = ‖a‖. This implies that if a is Hermitian,
then either −‖a‖ ∈ σ(a) or ‖a‖ ∈ σ(a). The spectrum of a skew-Hermitian element
is purely imaginary, and the spectrum of a unitary element is contained in the unit
circle T = {z ∈ C : |z| = 1}.

An element a ∈ A is nonnegative if a = a∗ and the spectrum of a is contained
in R+, the nonnegative real axis; a is positive if σ(a) ⊂ (0,∞). Any linear combi-
nation with real nonnegative coefficients of nonnegative elements of a C∗-algebra is
nonnegative; in other words, the set of all nonnegative elements in a C∗-algebra A
form a (nonnegative) cone in A. For any a ∈ A, aa∗ is nonnegative, and I + aa∗ is
invertible in A. Furthermore, ‖a‖ =

p
%(a∗a) =

p
%(aa∗), for any a ∈ A.

Note that if ‖ · ‖∗ and ‖ · ‖∗∗ are two norms with respect to which A is a
C∗-algebra, then ‖ · ‖∗ = ‖ · ‖∗∗.

Let A be a C∗-algebra. Given a positive integer n, let An×n = Mn(A) be the
set of n×n matrices with entries in A. Observe that An×n has a natural C∗-algebra
structure, with matrix addition and multiplication defined in the usual way (in
terms, of course, of the corresponding operations on A). The involution is naturally
defined as follows: given a matrix A = [aij ] ∈ An×n, the adjoint of A is given by
A∗ = [a∗ji]. The algebra An×n is obviously unital, with unit

In =

2666664
I 0 . . . . . . 0
0 I . . . . . . 0
...

. . .
. . .

. . .
...

0 . . . . . . I 0
0 . . . . . . 0 I

3777775
where I is the unit of A. The definition of unitary, Hermitian, skew-Hermitian and
normal matrix are the obvious ones.

It follows from the Gelfand–Naimark Representation Theorem (Theorem 17
above) that each A ∈ An×n can be represented as a matrix TA of bounded linear
operators, where TA acts on the direct sum H = H ⊕ · · · ⊕ H of n copies of a
suitable complex Hilbert space H. This fact allows us to introduce an operator
norm on An×n, defined as follows:

‖A‖ := sup
‖x‖H =1

‖TAx‖H , (49)

where

‖x‖H :=
q
‖x1‖2H + · · ·+ ‖xn‖2H
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is the norm of an element x = (x1, . . . ,xn) ∈ H . Relative to this norm, An×n

is a C∗-algebra. Note that An×n can also be identified with the tensor product of
C∗-algebras A ⊗ Mn(C).

Similarly, Gelfand’s Theorem (Theorem 16 above) implies that if A is com-
mutative, there is a compact Hausdorff space X such that any A ∈ An×n can be
identified with a continuous matrix-valued function

A : X −→Mn(C) .

In other words, A can be represented as an n × n matrix of continuous, complex-
valued functions: A = [aij(t)], with domain X . The natural C∗-algebra norm on
An×n, which can be identified with C(X )⊗Mn(C), is now the operator norm

‖A‖ := sup
‖x‖=1

‖Ax‖ , (50)

where x = (x1, . . . , xn) ∈ [C(X )]n has norm ‖x‖ =
p
‖x1‖2∞ + · · ·+ ‖xn‖2∞ with

‖xi‖∞ = maxt∈X |xi(t)|, for 1 ≤ i ≤ n.
Since An×n is a C∗-algebra, all the definitions and basic facts about the spec-

trum remain valid for any matrix A with entries in A. Thus, the spectrum σ(A) of
A ∈ An×n is the set of all λ ∈ C such that λIn − A is not invertible in An×n. The
set σ(A) is a nonempty compact subset of C completely contained in the disk of
radius ‖A‖ centered at 0. The definition of spectral radius and Gelfand’s formula
(48) remain valid. Hermitian matrices have real spectra, skew-Hermitian matrices
have purely imaginary spectra, unitary matrices have spectra contained in T, and
so forth. Note, however, that it is not true in general that a normal matrix A over
a C∗-algebra can be unitarily diagonalized [121].

The standard way to define the notion of an analytic function f(a) of an element
a of a C∗-algebra A is via contour integration. In particular, we can use this approach
to define functions of a matrix A with elements in A.

Let f(z) be a complex function which is analytic in an open neighborhood U
of σ(a). Since σ(a) is compact, we can always find a finite collection Γ = ∪`

j=1γj

of smooth simple closed curves whose interior parts contain σ(a) and entirely con-
tained in U . The curves γj are assumed to be oriented counterclockwise.

Then f(a) ∈ A can be defined as

f(a) =
1

2πi

Z
Γ

f(z)(zI − a)−1dz, (51)

where the line integral of a Banach-space-valued function g defined on a smooth
curve γ : t 7→ z(t) for t ∈ [0, 1] is given by the norm limit of Riemann sums of the
form

νX
j=1

g(z(θj))[z(tj)− z(tj−1)], tj−1 ≤ θj ≤ tj ,

where 0 = t0 < t1 < . . . < tν−1 < tν = 1.
Denote by H(a) the algebra of analytic functions whose domain contains an

open neighborhood of σ(a). The following well known result is the basis for the
holomorphic functional calculus; see, e.g., [122, page 206].

Theorem 18. The mapping H(a) −→ A defined by f 7→ f(a) is an algebra ho-
momorphism, which maps the constant function 1 to I ∈ A and maps the identity
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function to a. If f(z) =
P∞

j=0 cjz
j is the power series representation of f ∈ H(a)

over an open neighborhood of σ(a), then we have

f(a) =

∞X
j=0

cja
j .

Moreover, the following version of the spectral theorem holds:

σ(f(a)) = f(σ(a)). (52)

If a is normal, the following properties also hold:

1. ‖f(a)‖ = ‖f‖∞,σ(a) := maxλ∈σ(a) |f(λ)|;
2. f(a) = [f(a)]∗; in particular, if a is Hermitian then f(a) is also Hermitian if

and only if f(σ(a)) ⊂ R;
3. f(a) is normal;
4. f(a)b = bf(a) whenever b ∈ A and ab = ba.

Obviously, these definitions and results apply in the case where a is a matrix A
with entries in a C∗-algebra A. In particular, if f(z) is analytic on a neighborhood
of σ(A), we define f(A) via

f(A) =
1

2πi

Z
Γ

f(z)(zIn −A)−1dz, (53)

with the obvious meaning of Γ .
The holomorphic functional calculus allows us to generalize most of the decay

results that hold for analytic functions of matrices with entries in C to functions
of matrices with entries in an arbitrary C∗-algebra A almost without changes. The
fact that finite matrices over C have finite spectra whereas matrices over a general
C∗-algebra A have in general continuous spectra makes no difference whatsoever;
note that we have already encountered this situation when we discussed the case
of functions of bounded infinite matrices. To see that the same arguments used for
matrices over C carry over almost verbatim to this more general setting, consider
for example an m-banded Hermitian matrix A ∈ An×n. Then σ(A) ⊆ [a, b] ⊂ R
for some a, b with −∞ < a < b < ∞. Up to scaling and shift, we can assume that
[a, b] = I = [−1, 1]. Let f be analytic on a region Ω ⊆ C containing I and let Pk

denote the set of all complex polynomials of degree at most k on I. Given p ∈ Pk,
the matrix p(A) ∈ An×n is well defined and it is banded with bandwidth at most
km. So for any polynomial p ∈ Pk and any pair of indices i, j such that |i− j| > km
we have

‖[f(A)]ij‖ = ‖[f(A)− p(A)]ij‖ (54)

≤ ‖f(A)− p(A)‖ (55)

= %(f(A)− p(A)) (56)

= max(σ(f(A)− p(A))) = max(σ((f − p)(A))) (57)

= max((f − p)(σ(A))) ≤ Ek(f, I), (58)

where Ek(f, I) is the best uniform approximation error for the function f on the
interval I using polynomials of degree at most k:
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Ek(f, I) := min
p∈Pk

max
x∈I

|f(x)− p(x)| .

In the above derivation we made use of the definition (49), of the fact that
A = A∗, and of the spectral theorem (52), valid for normal elements of any C∗-
algebra. We can now apply Bernstein’s Theorem to bound Ek(f, I) in terms of
ellipses contained in Ω having foci at −1, 1. From this we can deduce exponentially
decaying bounds for ‖[f(A)]ij‖ with respect to |i− j| in the usual manner:

‖[f(A)]ij‖ ≤ K χ−
|i−j|

m = K ρ|i−j|, ρ = χ−
1
m , (59)

where K = 2M(χ)/(χ− 1), M(χ) = maxz∈Eχ |f(z)|.
Analogous decay bounds can be derived in the normal case, without any changes

to the proofs. The same is true for the general, nonnormal case, with one caveat:
the notion of field of values is not well-defined, in general, for an element of a C∗-
algebra. One can attempt to define the field of values of an element a of a C∗-algebra
A by making use of the Gelfand–Naimark Representation Theorem (Theorem 17):
since there is an isometric ∗-isomorphism φ from A into the algebra B(H) for some
complex Hilbert space H, we could define the field of values of a as the field of
values of the bounded linear operator Ta = φ(a), i.e.,

W(a) = W(Ta) = {〈Tax,x〉 |x ∈ H , ‖x‖ = 1}.

Unfortunately, φ is not unique and it turns out that different choices of φ may give
rise to different fields of values. Fortunately, however, the closure of the field of
values is independent of the choice of representation [28]. Hence, if we replace the
field of values W(Ta) with the closure W(Ta), everything works as in the “classical”
case.9

In order to achieve the desired generalization, we make use of the following the-
orem of Crouzeix, which is an extension of Theorem 12. Given a set E ⊂ C, denote
by Hb(E) the algebra of continuous and bounded functions in E which are analytic
in the interior of E. Furthermore, for T ∈ B(H) let ‖p‖∞,T := maxz∈W(T ) |p(z)|.
Then we have ([58], Theorem 2):

Theorem 19. For any bounded linear operator T ∈ B(H) the homomorphism p 7→
p(T ) from the algebra C[z], with norm ‖ · ‖∞,T , into the algebra B(H), is bounded
with constant Q. It admits a unique bounded extension from Hb(W(T )) into B(H).
This extension is also bounded with constant Q.

Making use of the notion of field of values for elements of a C∗-algebra, we
obtain the following corollary.

Corollary 1. Given A ∈ An×n, the following bound holds for any complex function
g analytic on a neighborhood of W(A):

‖g(A)‖ ≤ Q‖g‖∞,A = Q max
z∈W(A)

|g(z)|.

9 Recall that for A ∈ Cn×n the field of values W(A) is compact and therefore
always closed.
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In order to obtain bounds on ‖[f(A)]ij‖, where the function f(z) can be assumed
to be analytic on an open set S ⊃ W(A), we can choose g(z) in Corollary 1 as
f(z)− pk(z), where pk(z) is any complex polynomial of degree bounded by k. The
argument in (54)–(58) can then be adapted as follows:

‖[f(A)]ij‖ = ‖[f(A)− pk(A)]ij‖ (60)

≤ ‖f(A)− pk(A)‖ (61)

≤ Q‖f − pk‖∞,A (62)

= Q max
z∈W(A)

|f(z)− pk(z)| (63)

≤ QEk(f,W(A)), (64)

where Ek(f,W(A)) is the degree k best approximation error for f on the compact
set W(A). In order to make explicit computations easier, we may of course replace
W(A) with a larger but more manageable set in the above argument.

Putting everything together, we obtain the following generalization of Theorem
13:

Theorem 20. ([19]) Let {An} be a sequence of matrices of increasing size over a
complex C∗-algebra A with bandwidths uniformly bounded by m. Let the complex
function f be analytic on a neighborhood of a connected compact set C ⊂ C contain-
ing W(An) for all n. Then there exist explicitly computable constants K > 0 and
α > 0, independent of n, such that

‖[f(An)]ij‖ ≤ K e−α|i−j|

for all indices i, j and for all n ∈ N.

As always, analogous results hold for more general sparse matrices, with the
geodesic distance on the matrix graphs G(An) replacing the distance from the main
diagonal, as long as the bounded maximum degree condition (11) holds. Also, if f
is entire, then the entries of f(An) are bounded in a superexponentially decaying
manner.

As a consequence of this extension, the decay bounds apply directly to functions
of block-banded matrices (with blocks all of the same size), to functions of banded
or sparse matrices of operators on a complex Hilbert space, and to functions of
matrices the entries of which are complex-valued continuous functions. In [19] one
can also find the results of numerical and symbolic computations illustrating the
decay in f(A) where A is a banded (in particular, tridiagonal) function over the
function algebra C[0, 1] endowed with the infinity norm, showing the rapid decay of
‖[f(A)]ij‖∞ for increasing |i− j|.

In [19] it is further shown that the theory can be extended to cover analytic
functions of matrices with entries in the real C∗-algebra H of quaternions, as long
as these functions have power series expansions with real coefficients.

The time-ordered exponential. In mathematical physics, the time-ordered
exponential OE[A] associated with a given time-dependent matrix A = A(t) =
[A(t)]ij , t ∈ [a, b] ⊂ R, is defined as the unique solution to the system of ordinary
differential equations
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d

dt′
OE[A](t′, t) = A(t′)OE[A](t′, t)

such that OE[A](t, t) = I for all t ∈ [a, b]. Hence, the time-ordered exponential,
also denoted by

OE[A](t′, t) = T exp

 Z t′

t

A(τ)dτ

!
,

with T the time-ordering operator (see, e.g., [133]), provides a way to express the
solution of a linear first-order system of ordinary differential equations with variable
coefficients. In the case of a constant A, the time-ordered exponential reduces to
the usual matrix exponential: OE[A](t′, t) = e(t′−t)A, where we assume t′ > t.

When A(t) 6= A(t′) for t 6= t′, no simple, explicit expression is available for the
time-ordered exponential. Techniques for evaluating OE[A](t′, t) (or its action) have
been studied in, e.g., [89]. In that paper the authors also study the decay properties
of the time-ordered exponential for the case of a sparse A(t). Note that OE[A](t′, t)
cannot be expressed in terms of countour integration, power series expansion, or
other such device, therefore techniques different from those employed so far must
be employed. The authors of [89] assume that A = A(t) is a possibly infinite sparse
matrix satisfying

M := sup
t∈[a,b]

max
i,j

|[A(t)]ij | <∞,

and that the nonzero pattern of A(t) does not depend on t. The following result
holds.

Theorem 21. ([89]) If d = d(i, j) is the geodesic distance between nodes i and j in
the graph G(A), then the following bound holds for all i and j and for t′ > t:˛̨̨ˆ

OE[A](t′, t)
˜
ij

˛̨̨
≤

∞X
k=d

Mk(t′ − t)k

k!
Wi,j;k , (65)

where Wi,j;k is the number of walks of length k in G(A) between node i and node
j. If ∆, the maximum degree of any node in G(A), is finite, then we also have the
weaker bound ˛̨̨ˆ

OE[A](t′, t)
˜
ij

˛̨̨
≤ e∆M(t′−t) (∆M(t′ − t))d

d!
. (66)

The bound (66) decays superexponentially with the distance d(i, j). The same
result can be restated for a sequence of sparse time-dependent matrices {An(t)}
of increasing size such that supn supt∈[a,b] maxi,j |[An(t)]ij | < ∞, as long as the
corresponding graphs G(An) satisfy the bounded maximum degree assumption. In
this case a bound of the type (66) holds uniformly in n. In [89] it is also shown by
example that the superexponential decal fails, in general, if ∆ = ∞.

3.8 Decay algebras

Although so far our main emphasis has been on exponential decay, other types
of decay occur frequently in applications. These different decay rates lead to the
definition of various decay algebras, which are Banach algebras of infinite matrices,
the entries of which satisfy different decay conditions.
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Seminal works on decay algebras are the already cited paper by Jaffard [119]
and papers by Baskakov [12, 13]. A key question addressed in these papers is that
of inverse-closedness (see footnote 4). This question is highly relevant for us in view
of the fact that the techniques covered so far all assume bandedness or sparsity of
A in order to make statements about the decay behavior in A−1 or in more general
matrix functions f(A), but they are not applicable if A is a full matrix satisfying
a decay condition. As noted in [98], if A and B are Banach algebras with A ⊆ B
and A is inverse-closed in B, then using the contour integral definition of a matrix
function

f(A) =
1

2πi

Z
Γ

f(z)(zI −A)−1dz (67)

(where the integral of a Banach-space-valued function has been defined in the pre-
vious section) we immediately obtain that f(A) ∈ A if A ∈ A . Therefore, the
entries of f(A) must satisfy the same decay bound as those of A itself. Hence,
inverse-closedness provides a powerful tool to establish the decay properties in the
entries of f(A) when A is not just a sparse or banded matrix, but more generally a
matrix with certain types of decay. We emphasize that this approach is completely
different from the techniques reviewed earlier, which are largely based on classical
results on the approximation of analytic functions with polynomials.

Results on inverse-closedness of decay algebras can be regarded as noncom-
mutative variants of Wiener’s Lemma: if a periodic function f has an absolutely
convergent Fourier series and is never zero, then 1/f has an absolutely conver-
gent Fourier series.10 There is a strong analogy between Wiener’s Lemma and
the inverse-closedness of matrix algebras. Just as a function with rapidly decay-
ing Fourier coefficients can be well approximated by trigonometric polynomials, so
a matrix with rapidly decaying off-diagonal entries can be well approximated by
banded matrices. We refer the reader to [97] for details.

In this section we limit ourselves to a brief description of some of the most
important decay algebras, and we refer to the original papers for details and ap-
plications. For simplicity we focus on matrices (bounded linear operators) of the
form A = [Aij ]i,j∈S with S = Z or S = N and on off-diagonal decay measured in
terms of the distance d(i, j) = |i−j|, although the same results hold more generally
for matrices indexed by a set T × T where (T, d) is a metric space such that the
distance function d on T satisfies condition (10).

The first two examples are due to Jaffard [119]:

Definition 4. Let γ > 0. A matrix A belongs to the class Eγ if for all i, j:

∀ γ′ < γ, |[A]ij | ≤ K(γ′) exp(−γ′|i− j|) (68)

for some constant K = K(γ′) > 0.

Next, suppose that

10 As is well known, Gelfand was able to give a short proof of Wiener’s Lemma
using his general theory of commutative Banach algebras; see, e.g., [88, page 33].
Wiener’s Lemma is simply the statement that the Wiener algebra A (T) of all
functions on the unit circle having an absolutely convergent Fourier expansion
is inverse-closed in the algebra C(T) of continuous functions on T.
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sup
i∈S

X
j∈S

(1 + |i− j|)−p <∞;

for example, p > 1 (for S = N or Z). For such p we have the following definition.

Definition 5. Let α > p. A matrix A belongs to the class Qα if for all i, j:

|[A]ij | ≤ K(1 + |i− j|)−α, (69)

for some constant K > 0.

Any matrix A in Eγ or in Qα is a bounded linear operator on `2(S) (this is a
consequence of Schur’s Lemma, see [119]). Moreover, in [119] it is also shown that
both Eγ and Qα are algebras; Qα is called the Jaffard algebra.

In [119], Jaffard proved the following theorems (the first straightforward, the
second not).

Theorem 22. ([119]) Let A ∈ Eγ and assume that A is invertible as an operator
on `2(S). Then A−1 ∈ Eγ′ for some 0 < γ′ < γ.

Hence, if A has an exponential off-diagonal decay property and A is invertible
in B(`2), the entries of A−1 are also bounded in an exponentially decaying manner
away from the main diagonal but with a different decay rate, the decay being
generally slower. Note that this result generalizes many of the results known in the
literature about the exponential decay in the inverses of band matrices.

A deeper, and a priori unexpected, result is the following.

Theorem 23. ([119]) Let A ∈ Qα and assumat that A is invertible as an operator
on `2(S). Then A−1 ∈ Qα

Thus, the Jaffard algebra Qα is inverse-closed in B(`2): if A satisfies the off-
diagonal algebraic decay property (69) and is invertible in B(`2), the inverse A−1

satisfies exactly the same decay property. Similar results were obtained by Baskakov
in [12, 13].

Jaffard’s and Baskakov’s results have attracted considerable interest and have
been generalized in various directions. Extensions to different types of decay can
be found in [98] and [190]; the former paper, in particular, makes use of Banach
algebra techniques (not mentioned in Jaffard’s original paper) and points out the
implications for the functional calculus.

Although concerned with infinite matrices, there is no lack of applications of
the theory to concrete, finite-dimensional problems from numerical analysis. A con-
nection is provided by the finite section method for the solution of operator equa-
tions of the form Ax = b, where A is assumed to be boundedly invertible and
b ∈ `2. In a nutshell, this method consists in considering the n-dimensional sections
An = PnAPn (where Pn is the orthogonal projector onto the subspace spanned by
e1, . . . , en) of the infinite matrix A and the truncated vectors bn = Pnb, solving the
finite-dimensional problems Anxn = bn, and letting n→∞. The component-wise
convergence of the approximate solutions xn to the solution x = A−1b of the orig-
inal, infinite-dimensional problem requires that the sequence {An} be stable, i.e.,
the inverses A−1

n exist and have uniformly bounded norm with respect to n. These
conditions are essentially those that guarantee off-diagonal decay in A−1; hence,
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decay algebras play a key role in the analysis, see for example [99], or [141] for a
systematic treatment. Another approach, based on the notion of nearest neighbor
approximation, is described in [61]; here again decay algebras play the main role. In
the opposite direction, the authors of [174] develop an algorithm for solving large
n× n Toeplitz systems by embedding the coefficient matrix An into a semi-infinite
Toeplitz matrix A and making use of the (canonical) Wiener–Hopf factorization
of the inverse of the symbol of A to obtain the solution, which is then truncated
and corrected (via the solution of a much smaller Toeplitz system by conventional
techniques) to yield the solution of the original problem. Ultimately, this approach
works because of the exponential decay of the entries of the inverse of the infinite
matrix A.

The finite section method, when applicable, can also be used to establish decay
properties for functions of n×n matrices An with off-diagonal decay (with n→∞)
by thinking of the An’s as the finite sections of an infinite matrix A ∈ A for a
suitable decay algebra A , assumed to be inverse-closed in B(`2). Suppose that the
spectra of all the An are contained in a compact subset C of C and that the contour
Γ in (67) surrounds C. If the norms of the resolvents (zIn − An)−1 are bounded
uniformly in n and in z ∈ Γ , then the entries of (zIn − An)−1 converge to those
of (zI − A)−1 as n → ∞, and therefore the entries of f(An) must converge to
those of f(A) as n→∞. This implies that, at least for n sufficiently large, the off-
diagonal entries of f(An) must decay like those of f(A), therefore the decay is that
of the algebra A . Note that this approach does not work unless A is inverse-closed
in B(`2); thus, it cannot be used to prove exponential decay (or superexponential
decay when f is entire), since the algebra Eγ is not inverse-closed in B(`2).

3.9 Localization in matrix factorizations

So far we have focused on the decay properties of functions of matrices, includ-
ing the inverse. In numerical linear algebra, however, matrix factorizations (LU,
Cholesky, QR, and so forth) are even more fundamental. What can be said about
the localization properties of the factors of a matrix which is itself localized? By
localized here we mean banded, sparse, or satisfying an off-diagonal decay property.

We say that a matrix A is (m, p)-banded if [A]ij = 0 for i − j > m and for
j − i > p. If A is (m, p)-banded and has the LU factorization A = LU with L
unit lower triangular and U upper triangular (without pivoting), it is clear that
the triangular factors L and U have, respectively, lower bandwidth m and upper
bandwidth p. A similar observation applies to the Cholesky and QR factors.

For more general sparse matrices the situation is more complicated, because of
the fill-in that usually occurs in the factors of a sparse matrix and due to the fact
that reorderings (row and column permutations) are usually applied in an attempt
to preserve sparsity. Nevertheless, much is known about the nonzero structure of
the triangular factors, especially in the case of Cholesky and QR factorizations.

The decay properties of the inverse factors of infinite banded matrices have been
studied by a few authors. Existence and bounded invertibility results for triangular
factorizations and block factorizations of have been obtained, e.g., in [198, 199], in
particular for Toeplitz and block Toeplitz matrices, where the decay properties of
the inverse factors were also considered.

For a banded n× n matrix An, example (32) shows that in general we cannot
expect decay in the inverse triangular factors as n → ∞ unless some uniform
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boundedness condition is imposed on the condition number of An. One such result
(from [27]) goes as follows. Recall the bound of Demko et al. for the entries of the
inverse of an m-banded Hermitian and positive definite A:

|[A−1]ij | ≤ K ρ|i−j|, ∀ i, j

where [a, b] is the smallest interval containing the spectrum σ(A) of A, K =
max{a−1,K0}, K0 = (1 +

p
κ2(A))/2b, κ = b

a
= ‖A‖2‖A−1‖2, ρ = q1/m, and

q = q(κ2(A)) =

√
κ2(A)−1√
κ2(A)+1

. With these definitions of K and ρ, we have:

Theorem 24. ([27]) Let A = A∗ ∈ Cn×n be positive definite and m-banded, and
suppose A has been scaled so that max1≤i≤n[A]ii = 1. Let A = LL∗ denote the
Cholesky factorization of A. Then

|[L−1]ij | ≤ K1 ρ
i−j , ∀ i > j , (70)

where K1 = K 1−ρm

1−ρ
.

In view of the identity L−1 = LTA−1, the decay in the inverse factor is a
consequence of the fact that the product of a banded matrix times a matrix with
exponential decay must necessarily decay as well. Since K1 > K, the bound (70)
indicates a potentially slower decay in L−1 than in the corresponding entries of
A−1, but this is not always the case. For instance, as noted in [27], the entries of
L−1 must actually be smaller than the corresponding entries of A−1 when A is an
M -matrix.

As usual, Theorem 24 can be applied to a sequence {An} of m-banded, Her-
mitian positive definite matrices of increasing order, such that σ(An) ⊂ [a, b] for
all n, normalized so that their largest entry is equal to 1. The theorem then gives
a uniform (in n) exponential decay bound on the entries of the inverse Cholesky
factors L−1

n , as n→∞. If, on the other hand, the condition numbers κ2(An) grow
unboundedly for n → ∞, the bounds (70) depend on n, and will deteriorate as
n → ∞. This is the case, for instance, of matrices arising from the discretization
of partial differential equations. Nevertheless, sharp decay bounds on the elements
of the inverse Cholesky factor of sparse matrices arising from the discretization of
certain PDEs have been recently obtained in [49].

What about the case of matrices with decay, which may be full rather than
banded or sparse? When are the factors of a localized matrix themselves localized?
A wealth of results for matrices belonging to different decay algebras have been
obtained by Blatov [33, 34] and more recently by Kryshtal et al. [129]. Roughly
speaking, these papers show that for the most frequently encountered decay algebras
A , if a matrix A ∈ A admits the LU factorization in B(`2), then the factors belong
to A , hence they satisfy the same decay condition as A; if, moreover, the algebra
A is inverse-closed in B(`2), then obviously the inverse factors L−1, U−1 must
satisfy the same decay bounds. Analogous results, under the appropriate technical
conditions, apply to the Cholesky, QR, and polar factorizations. We refer to [33, 34]
and [129] for details.

3.10 Localization in the unbounded case.

Throughout this paper, we have limited our discussion of localization to the follow-
ing situations:
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– finite matrices of fixed size;
– sequences of matrices of increasing size, with uniformly bounded spectra;
– bounded infinite matrices on `2.

A natural question is, to what extent can the decay results for matrix functions
(especially the inverse, the exponential, and spectral projectors) be extended to
unbounded operators11 or to sequences of matrices of increasing size not having
uniformly bounded spectra? We know from simple examples that in general we
cannot hope to find straightforward extensions of (say) exponential decay bounds
of the type (15) or (28) without the boundedness assumption on the spectra. On
the other hand, classical exponential decay results for the eigenfunctions of certain
elliptic operators (e.g., [2, 54, 75, 183]) and for the Green’s function of parabolic
operators (like the heat kernel for a fixed time t, see e.g. [204, page 328]) show that
exponential and even superexponential decay with respect to space do occur for
certain functions of unbounded operators. It is reasonable to expect that similar
results should hold for discretizations of these operators that lead to sparse matrices;
ideally, one would like to obtain decay rates that do not depend on discretization
parameters, and unfortunately decay bounds like the ones in Theorem 8 fail to meet
this requirement.

More in detail, suppose A is a self-adjoint, unbounded operator defined on a
dense subspace of a Hilbert space H , and that f is a function defined on the
spectrum of A = A∗. If f is an essentially bounded function defined on σ(A), the
spectral theorem for self-adjoint operators (see, e.g., [176]) allows one to define the
function f(A) via the integral representation

f(A) =

Z ∞

−∞
f(λ) dE(λ) ,

where E is the spectral family (resolution of the identity) associated with A
which maps Lebesgue-measurable subsets of σ(A) to the algebra B(H ), such that
E(σ(A)) = I. Note that σ(A) ⊆ R is now unbounded. Since f ∈ L∞(σ(A)), clearly
f(A) ∈ B(H ). Thus, bounded functions of unbounded operators are bounded op-
erators. Non-trivial examples include the Cayley transform,

Ψ(A) = (A− iI)(A+ iI)−1,

a unitary (and therefore bounded) operator, and the exponential eitA, also unitary.
Furthermore, the exponential e−tA (when A is positive definite) and the closely
related resolvent (A− zI)−1 (with z /∈ σ(A)) are compact, and therefore bounded,
for some important classes of unbounded operators. Another obvious example is
given by the spectral projectors, since in this case the range of f is just the set
{0, 1}. In such cases it is sometimes possible to obtain exponential decay results for
certain (analytic) functions of banded, unbounded operators.

Remark 8. The case in which f(A) is compact is especially favorable: since every
compact operator on a separable Hilbert space is the norm-limit of finite rank
operators, the entries of f(A) (represented by an infinite matrix with respect to an
arbitrary orthonormal basis on H ) must have rapid decay away from a finite set
of positions, including down the main diagonal. If in addition f(A) is trace class

11 For the sake of simplicity, we only consider the self-adjoint case here.
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(
P∞

i=1[f(A)]ii < ∞) and in particular Hilbert–Schmidt (
P∞

i,j=1 |[f(A)]ij |2 < ∞),
decay must be quite fast, though not necessarily exponential.

To the best of our knowledge, only isolated results are available in the literature.
An example, already mentioned, is that of eitA for a specific class of unbounded
tridiagonal matrices A on `2(Z). Additional examples can be found in [185] and
[120]. In these papers one can find exponential localization results for the resol-
vent and eigenfunctions (and thus spectral projectors) of certain infinite banded
matrices of physical interest. Very recently, sharp decay estimates of discretized
Green’s functions for a broad class of Schrödinger operators have been obtained in
[138]. These decay results are established for finite difference and pseudo-spectral
discretizations, using methods similar to those used to establish the decay prop-
erties of the continuous Green’s function (see, e.g., [169]). The advantage of these
bounds is that they do not deteriorate as the mesh parameter h tends to zero, and
thus they are able to capture the exponential decay in the Green’s function, when
present.

It would be desirable to investigate to what extent one can derive general decay
results for bounded analytic functions of unbounded banded (or sparse) infinite
matrices, analogous to those available in the bounded case.

4 Applications

In this section we discuss a few selected applications of the theory developed so
far. We focus on two broad areas: numerical linear algebra, and electronic struc-
ture computations. Algorithmic aspects are also briefly mentioned. The following is
not intended as an exhaustive discussion, but rather as a sampling of current and
potential applications with pointers to the literature for the interested reader.

4.1 Applications in numerical linear algebra

The decay properties of inverses and other matrix functions have been found useful
in various problems of numerical linear algebra, from solving linear systems and
eigenvalue problems to matrix function evaluation. Below we discuss a few of these
problems.

Linear systems with localized solutions. A possible application of inverse
decay occurs when solving linear systems Ax = b with a localized right-hand side
b. For example, if b = αei where ei is the ith standard basis vector, the solution is
given by x = αA−1ei, a multiple of the ith column of A−1. If it is known that A−1

decays rapidly away from certain positions, the solution vector will be localized
around the corresponding positions in x. The same holds if b contains not just one
but k � n nonzero entries, or if it is a dense but localized vector. Problems of this
kind arise frequently in applications, where the right-hand side b often corresponds
to a localized forcing term such as a point load or a source (of heat, of neutrons,
etc.) located in a small subregion of the computational domain. In each of these
cases, bounds on the entries of A−1 can be used to determine a priori an “envelope”
containing those parts of the solution vector x in which the nonnegligible entries
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are concentrated. Even if the bounds are pessimistic, this can lead to worthwhile
computational savings.

Of course, this approach requires the use of algorithms for solving linear systems
that are capable of computing only selected parts of the solution vector. Available
methods include variants of Gaussian elimination [73, Chapter 7.9], Monte Carlo
linear solvers [21], and quadrature rule-based methods for evaluating bilinear forms
uTA−1v (in our case u = ej and v = b, since xj = eT

j A
−1b), see [40, 95].

It is worth mentioning that this problem is somewhat different from that arising
in compressed sensing, where one looks for solutions that have (near-)maximal
sparsity in a non-standard basis, leading to the problem of finding the “sparsest”
solution among the infinitely many solutions of an underdetermined system [46, 47].

Construction of preconditioners. The results on the exponential decay in
the inverses of band and sparse matrices, originally motivated by the converge
analysis of spline approximations [68], have been applied to the construction of
preconditioners for large, sparse systems of linear equations. Specifically, such re-
sults have been used, either implicitly or explicitly, in the development of block
incomplete factorizations and of sparse approximate inverse preconditioners.

A pioneering paper on block incomplete factorizations is [55], where various
block incomplete Cholesky preconditioners are developed for solving large, sym-
metric positive definite block tridiagonal linear systems with the preconditioned
conjugate gradient method. This paper has inspired many other authors to develop
similar techniques, including preconditioners for nonsymmetric problems; see, e.g.,
[7, Chapter 7], and [8, 11, 33, 35, 201] among others.

Consider a large, sparse, block tridiagonal matrix (assumed to be symmetric
positive definite for simplicity):

A =

2666666666664

A1 B
T
2

B2 A2 BT
3

B3 A3 BT
4

. . .
. . .

. . .

. . .
. . .

. . .

Bp−1 Ap−1 B
T
p

Bp Ap

3777777777775
,

where the blocks Ai and Bi are typically banded; for example, in [55] the diagonal
blocks Ai are all tridiagonal, and the off-diagonal nonzero blocks Bi are diagonal.
Then A has a block Cholesky factorization of the form

A = (L+D)D−1(L+D)T

where L is block strictly lower triangular and D is block diagonal with blocks

∆1 = A1, ∆i := Ai −Bi∆
−1
i−1B

T
i , i = 2, . . . , p. (71)

The successive Schur complements ∆i in (71) are the pivot blocks of the incom-
plete block Cholesky (more precisely, block LDLT ) factorization. They are dense
matrices for i = 2, . . . , p. An incomplete block factorization can be obtained by
approximating them with sparse matrices:



58 Michele Benzi

∆−1
1 ≈ Σ1, ∆i ≈ Ai −BiΣi−1B

T
i , i = 2, . . . , p,

where Σi ≈ ∆−1
i for 2 ≤ i ≤ p is typically a banded approximation. Estimates

of the decay rates of the inverses of band matrices can then be used to determine
the bandwidth of the successive approximations to the pivot blocks. We refer to
the above-given references for details on how these banded approximations can be
obtained.

Unfortunately, unless the pivot blocks are sufficiently diagonally dominant they
cannot be well-approximated by banded matrices. For these reasons, more sophisti-
cated (albeit generally more expensive) approximations have been developed based
on hierarchical matrix techniques in recent years [11]. Nevertheless, cheap approx-
imations to Schur complements using banded or sparse approximations to the in-
verses of the blocks may be sufficient in some applications; see, e.g., [144, 182].

Preconditioners for general sparse matrices based on sparse approximate in-
verses, the first examples of which date back to the 1970s, have been intensively
developed beginning in the 1990s; see, e.g., [17] for a survey, and [177, Chapter 10.5]
for a self-contained discussion. More recently, interest in these inherently parallel
preconditioning methods has been revived, due in part to the widespread diffusion
of Graphic Processing Units (GPUs). In these methods, the inverse of the coeffi-
cient matrix is approximated directly and explicitly by a sparse matrix M ≈ A−1;
in some cases M is the product of two sparse triangular matrices which approx-
imate the inverse triangular factors L, U of A. Applying the preconditioner only
requires matrix-vector products, which are much easier to parallelize than triangu-
lar solves [100]. The main challenge in the construction of these preconditioners is
the determination of a suitable sparsity pattern for M . Indeed, if a “good” sparsity
pattern can be estimated in advance, the task of computing a sparse approximate
inverse with a nonzero pattern that is a subset of the given one is greatly facilitated
[53, 100, 115]. If A is banded, a banded approximate inverse may suffice. If A is
not banded but strongly diagonally dominant, a sparse approximate inverse with
the same nonzero pattern as A will usually do. In other cases, using the sparsity
pattern of A2 will give better results, although at a higher cost since A2 may be
considerably less sparse than A. The rationale for considering the patterns of suc-
cessive powers of A is the following. Suppose A is diagonally dominant. Then, up
to a diagonal scaling, it can be written as A = I − B for some matrix B ∈ Cn×n

with %(B) < 1. Therefore

A−1 = (I −B)−1 = I +B +B2 + · · · , (72)

where the entries of Bk must decay rapidly to zero as k →∞ since A is diagonally
dominant. Since B and A have the same pattern, (72) suggests that using the
sparsity pattern of A for M may be sufficient, especially if A exhibits very strong
diagonal dominance; if not, higher order terms in (72) may have to be considered.
Note that considering higher powers of A means looking beyond the immediate
neighbors of each node in the sparsity graph G(A) of A; in view of bounds like
(21), according to which the entries in A−1 decay rapidly with the distance from
the nonzeros in A, it shouldn’t be necessary to look at high powers, and indeed
in practice one rarely goes beyond A2. For highly nonsymmetric matrices, Huckle
[115] has shown that the nonzero pattern of AT and its powers may have to be
considered as well. We refer to [3, 53] for further details.
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Fig. 11. Left: nonzero pattern of A. Right: pattern of approximate inverse of A.

As an example, in Fig. 11 we show on the left the nonzero pattern of a complex
symmetric matrix A arising from an application to computational electromagnetics
(see [3] for details), and on the right the sparsity pattern of an approximation M
to A−1 corresponding to the nonzero pattern of A2. The approximate inverse M
was computed by minimizing the Frobenius norm ‖I − AM‖F over all matrices
with the same sparsity pattern of A2. With this preconditioner, GMRES requires
80 iterations to reduce the relative residual norm below 10−8 (the method stagnates
without preconditioning). It is worth noting that computing the exact inverse A−1

and dropping all entries with |[A−1]ij | < ε‖A‖F with ε = 0.075 produces a sparse
matrix with a nonzero pattern virtually identical to the one in Fig. 11 (right).

In the construction of factorized approximate inverse preconditioners (like FSAI
[127] and AINV [23, 26]), it is useful to know something about the decay in the
inverse triangular factors of A. Hence, bounds like (70) provide some insight into
the choice of a good approximate sparsity pattern and on the choice of ordering
[27]. Similar remarks apply to more traditional incomplete LU and QR factorization
using the results in section 3.9 on the localization in the factors of matrices with
decay. See also [49] and [140] for other examples of situations where knowledge of
decay bounds in the inverse Cholesky factor is useful for numerical purposes.

In recent years, much attention has been devoted to the numerical solution of
fractional differential equations. Discretization of these non-local equations leads
to dense matrices which are usually not formed explicitly. Matrix-vector multi-
plications (needed in the course of Krylov subspace iterations) can be efficiently
computed in O(n logn) work using Fast Fourier Transforms (FFTs) and diagonal
scalings. In [162], preconditioning techniques for linear systems arising from the
discretization of certain initial boundary value problems for a fractional diffusion
equation of order α ∈ (1, 2) are introduced and analyzed. At each time step, a
nonsymmetric linear system Ax = b must be solved, where A is of the form

A = ηI +DT +WTT ,

with η > 0, D,W diagonal and nonnegative, and T a lower Hessenberg Toeplitz
matrix. As the matrices D and W change at each time step, A also changes, and
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it is therefore important to develop preconditioners that are easy to construct and
apply, while at the same time resulting in fast convergence rates of the precondi-
tioned Krylov iteration. The preconditioners studied in [162] are based on circulant
approximations, FFTs and interpolation and the authors show both theoretically
and numerically that they are effective. The theoretical analysis in [162], which
shows that the preconditioned matrices have spectra clustered around unity, makes
crucial use of inverse-closed decay algebras. In particular, the authors show that T ,
and therefore A and the circulant approximations used in constructing the precon-
ditioners, all belong to the Jaffard algebra Qα+1, where α is the fractional order of
the spatial derivatives in the differential equation (see Def. 5). This fact is used in
establishing the spectral properties of the preconditioned matrices.

Localization and eigenvalue problems. Parlett [163, 164] and Vömel and
Parlett [202] have observed that the eigenvectors corresponding to isolated groups
of eigenvalues of symmetric tridiagonal matrices are often localized—an observation
already made by Cuppen [60].12 In [202], Vömel and Parlett develop heuristics for
estimating envelopes corresponding to nonnegligible entries of eigenvectors of tridi-
agonals, and show that knowledge of these envelopes can lead to substantial savings
when the eigenvectors are localized and when solvers that are able to compute only
prescribed components of eigenvectors are used, such as inverse iteration and the
MRRR algorithm [71, 146, 165]. They also observe that eigenvectors corresponding
to isolated eigenvalue clusters are not always localized, and that a priori detection
of localization of the eigenvectors poses a challenge.

To see how the theory of decay in matrix functions can help address this chal-
lenge, we recast the problem in terms of spectral projectors instead of eigenvectors.
Let A = A∗ ∈ Cn×n have eigenvalues

λ1 ≤ λ2 ≤ · · · ≤ λn

(in the tridiagonal case we can assume that A is irreducible so that its eigenval-
ues are all simple, see [96, page 467]). Suppose now that eigenvalue λk+1 is well-
separated from λk, and that eigenvalue λk+p is well-separated from λk+p+1. If vi

denotes an eigenvector corresponding to λi with ‖vi‖2 = 1, the spectral projector
associated with the group of eigenvalues {λk+1, . . . , λk+p} can be written as

P = vk+1v
∗
k+1 + · · ·+ vk+pv

∗
k+p = V V ∗, (73)

where
V = [vk+1, . . . ,vk+p] ∈ Cn×p (74)

is a matrix with orthonormal columns. Note that P is the orthogonal projector onto
the A-invariant subspace V = span {vk+1, . . . ,vk+p}.

Let us first consider the case of a single, simple eigenvalue, p = 1. If v is the
corresponding normalized eigenvector, the spectral projector is of the form

P = vv∗ =

26664
|v1|2 v1v̄2 . . . v1v̄n

v2v̄1 |v2|2 . . . v2v̄n

...
...

. . .
...

vnv̄1 vnv̄2 . . . |vn|2

37775 .
12 See also Exercise 30.7 in Trefethen and Bau [195].
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Fig. 12. Plot of |[P ]ij | where P is the spectral projector onto the eigenspace
corresponding to an isolated eigenvalue of a tridiagonal matrix of order 100.

Conversely, given a rank-1 projector P , the eigenvector v is uniquely determined
(up to a constant). It is also clear that if v = (vi) is a vector such that |vi| � |vj |
for i 6= j, then the entries of P must decay rapidly away from [P ]ii = |vi|2 (not only
away from the main diagonal, but also along the main diagonal). More generally,
if most of the “mass” of v is concentrated in a few components, the entries of P
must decay rapidly away from the corresponding diagonal entries. Conversely, it is
evident that rapid decay in P implies that v must itself be localized. Hence, in the
rank-1 case P = vv∗ is localized if and only if v is. An example is shown in Fig. 12.

On the other hand, in the case of spectral projectors of the form (73) with p > 1,
localization in the eigenvectors vk+1, . . . ,vk+p is a sufficient condition for localiza-
tion of P , but not a necessary one . This is due to the possible (near-)cancellation
in the off-diagonal entries when adding up the rank-1 projectors vjv

∗
j . This fact

becomes actually obvious if one observes that summing all the projectors vjv
∗
j for

j = 1, . . . , n must result in the identity matrix, which is maximally localized even
though the eigenvectors may be strongly delocalized. Less trivial examples (with
1 < p� n) can be easily constructed. Real-world instances of this phenomenon are
actually well known in physics; see, e.g., [45] and section 4.2 below.

We also remark that if P is localized, there may well be another orthonormal
basis {uk+1, . . . ,uk+p} of V, different from the eigenvector basis, which is localized.
When p > 1, P does not determine the basis vectors uniquely. Indeed, if Θ ∈ Cp×n

is any matrix with orthonormal rows, we have that

P = V V ∗ = V ΘΘ∗V ∗ = UU∗, U = V Θ,

which shows how U = [uk+1, . . . ,uk+p] is related to V . Even if the columns of V
are not localized, those of U may well be, for a suitable choice of Θ. We note, on
the other hand, that if P is delocalized then there can be no strongly localized
basis vectors {uk+1, . . . ,uk+p} for V. Nevertheless, searching for an orthonormal



62 Michele Benzi

basis that is “as localized as possible” is an important problem in certain physics
applications; see, e.g., [62, 63, 93].

Now that we have recast the problem in terms of spectral projectors, we can
apply the theory of decay in matrix functions. Indeed, the spectral projector is a
function of A: if A = A∗ has the spectral decomposition A = QΛQ∗, where Q is
unitary and Λ = diag (λ1, . . . , λn), then

P = φ(A) = Qφ(Λ)Q∗, (75)

where φ is any function such that

φ(λi) =


1, if k + 1 ≤ i ≤ k + p,
0, else.

Hence, any analytic function that interpolates φ at the eigenvalues of A will do;
in practice, it is sufficient to use an analytic function that approximates φ on the
spectrum of A. For example, any function f such that f(λ) ≈ 1 for λ ∈ [λk+1, λk+p]
which drops rapidly to zero outside this interval will be an excellent approximation
of P . It is easy to see that the wider the gaps (λk, λk+1) and (λk+p, λk+p+1), the
easier it is to construct such an analytic approximation of φ(λ), and the faster
the off-diagonal decay is in f(A) and therefore in P , assuming of course that A is
banded or sparse.

As an illustration, consider the case of an isolated eigenvalue λ ∈ σ(A). Since
an eigenvector of A associated with λ is an eigenvector of A−λI associated with 0,
we can assume without any loss of generality that λ = 0. Let v be this eigenvector
(with ‖v‖2 = 1) and let P = vv∗ be the corresponding spectral projector. The
function φ such that P = φ(A) can be approximated to within arbitrary accuracy
by a Gaussian

f(x) = e−x2/ξ, where ξ > 0. (76)

The choice of ξ, which controls the rate of decay to zero of the Gaussian, will
depend on the desired accuracy and thus on the distance between the eigenvalue
λ = 0 and its nearest neighbor in the spectrum of A; we denote this distance by η.
To determine ξ, suppose we wish to have f(±η) ≤ ε for a prescribed ε > 0. Thus,
we require that

e−η2/ξ ≤ ε,

which yields
0 < ξ ≤ −η2/ log(ε).

For instance, given ε > 0 we can approximate P by

P ≈ f(A) = exp(−A2/ξ), ξ = −η2/ log(ε).

It is shown in [171] that this approximation works very well. For instance, for
ε = 10−8 and η = 0.1, choosing ξ = 3 · 10−4 yields ‖P − f(A)‖F = 7 · 10−14.
Moreover, specializing Theorem 8 to the Gaussian (76) leads to the following off-
diagonal decay result (Theorem 4.2 in [171]):

Theorem 25. ([171]) Let ε > 0 and let f be given by (76) with ξ = −cη2, c =
1/ log(ε). Let A = A∗ be m-banded and assume that [−1, 1] is the smallest interval
containing σ(A). Then, for i 6= j we have
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|[exp(−A2/ξ)]ij | ≤ K ρ|i−j|, (77)

where

K =
2χecα2/η2

χ− 1
, α > 1, χ = α+

p
α2 − 1, ρ = χ−1/m.

Note that the assumption that σ(A) ⊂ [−1, 1] leads to no loss of generality,
since spectral projectors are invariant under shifting and scaling of A. Recalling
that for any projector |[P ]ij | ≤ 1 for all i, j, it is clear that the bound (77) is only
informative if the quantity on the right-hand side is less than 1, which may require
taking |i− j| sufficiently large. This theorem provides an infinite family of bounds
parameterized by α > 1 (equivalently, by χ > 1). Hence, the entries of f(A), and
thus of P , satisfy a superexponential off-diagonal decay (this is expected since f is
entire). Note that there is fast decay also along the main diagonal: this is obvious
since for an orthogonal projector,

Tr(P ) = rank(P ) , (78)

and since the diagonal entries of P are all positive, they must decrease rapidly away
from the (1, 1) position for the trace of P to be equal to 1. With this, the localiza-
tion of the spectral projector (and thus of a normalized eigenvector) corresponding
to isolated eigenvalues of banded matrices (in particular, tridiagonal matrices) is
rigorously established.

The above construction can be extended to approximate the spectral projector
P corresponding to a group of k well-separated eigenvalues: in this case P can be
well-approximated by a sum of rapidly decaying Gaussians centered at the eigen-
values in the given group, hence P will again exhibit superexponential off-diagonal
decay, with k spikes appearing on the main diagonal.

The use of a single shifted Gaussian (centered at a prescribed value µ) with
a suitable choice of the parameter ξ can also be used to approximate the spectral
projector corresponding to a tight cluster of several eigenvalues falling in a small
interval around µ. Combined with a divide-and-conquer approach, this observation
is at the basis of the recently proposed localized spectrum slicing (LSS) technique
for computing interior eigenpairs of large, sparse, Hermitian matrices, see [137].
Unlike most current methods, this technique does not require the solution of highly
indefinite, shifted linear systems. The decay theory for analytic functions of sparse
matrices plays a central role in the development and analysis of this algorithm,
which is shown in [137] to have linear cost in n. It should also be noted that the
LSS algorithm has controllable error.

On the other hand, a different function f must be used if the eigenvalues of in-
terest form an isolated band, i.e., they densely fill an interval which is well separated
from the rest of the spectrum. This situation, which is of importance in physical
applications, will be discussed in section 4.2 below. As we shall see, in this case
only exponential off-diagonal decay should be expected. Nevertheless, this gives a
partial answer to the problem posed by Vömel and Parlett in [202]: even though the
eigenvectors corresponding to an isolated cluster of eigenvalues of a tridiagonal A
may fail to be localized, the corresponding spectral projector will be localized, the
more so the larger the relative gap between the cluster and the rest of the spectrum.



64 Michele Benzi

0 20 40 60 80 100
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

100
80

60
40

20
00

50

1

0.5

0

-0.5
100

Fig. 13. Top: eigenvalues of a random tridiagonal. Bottom: spectral projector
corresponding to 10 smallest eigenvalues.

We emphasize, however, that the gap assumption is only a sufficient condition,
not a necessary one. If A is a large tridiagonal matrix without any discernible gap
in the spectrum, its eigenvectors may or may not be localized. For instance, the
n× n tridiagonal matrix

An = tridiag(−1, 2,−1)

presents no gaps in the spectrum as n→∞, and in fact the corresponding infinite
tridiagonal matrix A, viewed as a bounded operator on `2, has purely continuous
spectrum: σ(A) = [0, 4]. As is well known, the eigenvectors of An are delocalized,
and the orthogonal projectors corresponding to individual eigenvalues or to groups
of eigenvalues of An are also delocalized with very slow decay as n → ∞ (see [20,
Section 10] for a detailed analysis). On the other hand, with very high probability,
the eigenvectors (and therefore the spectral projectors) of a randomly generated
symmetric tridiagonal matrix will exhibit a high degree of localization, even in the
absence of any clearly defined spectral gap between (groups of) eigenvalues. An
instance of this behavior is shown in Fig. 13. At the top we show a plot of the
eigenvalues of a random symmetric tridiagonal matrix A of order n = 100, and
at the bottom we display the spectral projector P onto the invariant subspace
spanned by the eigenvectors associated with the 10 smallest eigenvalues of A. Note
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that there is no clear gap separating the eigenvalues λ1, . . . , λ10 from the rest of the
spectrum, and yet P exhibits rapid off-diagonal decay. The eigenvectors themselves
are also strongly localized. See also the already referenced Exercise 30.7 in [195] and
the examples discussed in [41, pages 374–375], where a connection with Anderson
localization [4] is made.

Hence, the challenge posed by Vömel and Parlett in [202] remains in part open,
both because localization can occur even in the absence of gaps in the spectrum,
and because the presence of gaps may be difficult to determine a priori.

Another interesting application of off-diagonal decay is to eigenvalue perturba-
tion theory. It turns out that for certain structured matrices, such as tridiagonal or
block tridiagonal matrices, the effect of small perturbations in the matrix entries on
some of the eigenvalues is much smaller than can be expected from the “standard”
theory based on Weyl’s Theorem.13 It has been observed (see, e.g., [157]) that for
tridiagonal matrices an eigenvalue is insensitive to perturbations in A if the corre-
sponding eigenvector components are small. In [157], generalizations of this fact are
established for block tridiagonal A under suitable assumptions. Hence, eigenvector
localization plays an important role in proving much tighter perturbation results
when A is block tridiagonal (including the special cases of tridiagonal and general
m-banded matrices).

Here we show how localization results like Theorem 25 can shed some light on
perturbation theory. Assume A = A∗ ∈ Cn×n is banded and consider the eigenvalue
problem Av = λv. For simplicity we assume that λ is a simple eigenvalue. If v is
normalized (‖v‖2 = 1), then

λ = v∗Av =

nX
i=1

nX
j=1

aij v̄ivj .

The sensitivity of an eigenvalue λ to small changes in the entries of A can be
estimated, to first order, by the partial derivative

∂λ

∂aij
= v̄ivj + viv̄j ∀i, j.

Now, the (i, j) entry of the spectral projector P = vv∗ on the eigenspace
associated with λ is [P ]ij = viv̄j . Therefore,

|[P ]ij | ≈ 0 ⇒ λ is insensitive to small changes in aij .

But we know from Theorem 25 that |[P ]ij | ≈ 0 if |i − j| is sufficiently large,
since the entries of |[P ]ij | satisfy a superexponential decay bound. Thus, perturbing
entries of A at some distance from the main diagonal by a small amount δ 6= 0
will cause a change in λ much smaller than δ. The change can be expected to be
comparable to δ, on the other hand, if the perturbation occurs in a position (i, j)
where [P ]ij is not small.

13 Weyl’s Theorem implies that the eigenvalues of A and A+ E (both Hermitian)
can differ by a quantity as large as ‖E‖2. See [113, Chapter 4.3] for precise
statements.
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Example 2. Consider the symmetric tridiagonal matrix

A =

2666666666664

5 1
1 0 1

1 0 1

. . .
. . .

. . .

. . .
. . .

. . .

1 0 1
1 0

3777777777775
of order 100. The spectrum of A consists of the eigenvalues λ1, . . . , λ99, all falling
in the interval [−1.99902, 1.99902], plus the eigenvalue λ = λ100 = 5.2. As expected
from Theorem 25, the (normalized) eigenvector v associated with λ is strongly
localized:

v =

2666666666666666664

0.979795897113271
0.195959179422654
0.039191835884531
0.007838367176906
0.001567673435381
0.000313534687076
0.000062706937415
0.000012541387483
0.000002508277497
0.000000501655499

...

3777777777777777775

.

The entries of v decay monotonically; they are all smaller than the double-precision
machine epsilon from the 22nd one on.14 Hence, P = vvT is strongly localized, and
in fact its entries decay very fast away from the (1, 1) position. See also Fig. 12 for
a similar case corresponding to a well-separated interior eigenvalue.

Let Ã be the perturbed matrix obtained by replacing the 5 in position (1, 1)
with the value 5.001. Clearly, ‖A − Ã‖2 = 10−3. We find that the change in the
largest eigenvalue is |λ(Ã) − λ(A)| = 9.6 · 10−4. Hence, the change in the isolated
eigenvalue is essentially as large as the change in the matrix; note that the (1, 1)
entry of the spectral projector, P , is equal to 0.96 ≈ 1.

On the other hand, suppose that the perturbed matrix Ã is obtained from A
by replacing the zero in positions (10, 1) and (1, 10) of A by δ = 10−3. Again, we
have that ‖A − Ã‖2 = 10−3, but the largest eigenvalue of the modified matrix is
now λ(Ã) = 5.2000002. Hence, in this case a perturbation of size 10−3 in A only
produces a change of O(10−7) in the isolated eigenvalue; note that the (10, 1) entry
of P is ≈ 4.9152 · 10−7.

As we have mentioned, rapid decay in P is not limited to the off-diagonal entries:
the diagonal entries [P ]ii of P also decay superexponentially fast for increasing i.
Perturbing the (2, 2) entry of A by 0.001 causes a change equal to 3.84 ·10−5 in the
largest eigenvalue, consistent with the fact that [P ]2,2 = 3.84 · 10−2; perturbing the

14 We mention in passing reference [142], where an alternative justification is given
for the observed exponential decay in v.
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(5, 5) entry of A again by 0.001 causes a change equal to 2.458·10−9, consistent with
the fact that [P ]2,2 = 2.458 · 10−6. After a perturbation by 0.001 in the (i, i) of A
for i ≥ 12, we find that the largest computed eigenvalue is numerically unchanged
at 5.2.

Incidentally, we note that in this example the presence of an isolated eigenvalue
can be determined a priori from Geršgorin’s Theorem. More generally, this theorem
can sometimes be used to determine the presence of groups or clusters of eigenvalues
well-separated from the rest of the spectrum.

More generally, suppose we are interested in computing the quantity

Tr (PA) = λ1 + λ2 + · · ·+ λk, (79)

where P is the orthogonal projector onto the invariant subspace spanned by the
eigenvectors corresponding to the k smallest eigenvalues of A, assumed to be banded
or sparse. This is a problem that occurs frequently in applications, especially in
physics.

If the relative gap γ = (λk+1 − λk)/(λn − λ1) is “large”, then the entries of
P can be shown to decay exponentially away from the sparsity pattern of A, with
larger γ leading to faster decay (see section 4.2). Differentiating (79) with respect
to aij shows again that the quantity in (79) is insensitive to small perturbations in
positions of A that are far from the nonzero pattern of A. This fact has important
consequences in quantum chemistry and solid state physics.

Although we have limited our discussion to Hermitian eigenvalue problems, an
identical treatment applies more generally to normal matrices. In the nonnormal
case, it is an open question whether decay results (for oblique spectral projectors)
can be used to gain insight into the stability of isolated components of the spectrum,
or of the pseudo-spectra [197], of a matrix. For a study of localization in the case
of random nonnormal matrices, see [196].

Approximation of matrix functions. In most applications involving func-
tions of large, sparse matrices, it is required to compute the vector x = f(A)b for
given A ∈ Cn×n and b ∈ Cn×n. When f(A) = A−1, this reduces to approximating
the solution of a linear system. If b is localized, for example b = ei (or a linear
combination of a few standard basis vectors), then the decay in f(A) leads to a
localized solution vector x. In this case, similar observations to the ones we made
earlier about localized linear system solutions apply.

Suppose now that we want to compute a sparse approximation to f(An), where
{An} is a sequence of banded or sparse matrices of increasing size. If the conditions
of Theorems 8, 11 or 13 are satisfied, the entries of f(An) are bounded in an
exponentially decaying manner, with decay rates independent of n; if f is entire,
decay is superexponential. In all these cases Theorem 4 ensures that we can find a
banded (or sparse) approximation to f(An) to within an arbitrary accuracy ε > 0
in O(n) work.

The question remains of how to compute these approximations. The above-
mentioned theorems are based on the existence of best approximation polynomials
pk(x), such that the error ‖pk(An)−f(An)‖2 decays exponentially fast with the de-
gree k. Under the assumptions of those theorems, for every ε > 0 one can determine
a value of k, independent of n, such that ‖pk(An) − f(An)‖2 < ε. Unfortunately,
the form of the polynomial pk is not known, except in very special cases. However,
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it is not necessary to make use of the polynomial of best approximation: there may
well be other polynomials, also exponentially convergent to f , which can be easily
constructed explicitly.

From here on we drop the subscript n and we work with a fixed matrix A, but
the question of (in-)dependence of n should always be kept in mind. Suppose first
that A = A∗ is banded or sparse, with spectrum in [−1, 1]; shifting and scaling
A so that σ(A) ⊂ [−1, 1] requires bounds on the extreme eigenvalues of A, which
can usually be obtained in O(n) work, for instance by carrying out a few Lanczos
iterations. Let f be a function defined on a region containing [−1, 1]. A popular
approach is polynomial approximation of f(A) based on Chebyshev polynomials;
see, e.g., [10, 92]. For many analytic functions, Chebyshev polynomials are known
to converge very fast; for example, convergence is superexponential for f(x) = ex

and other entire functions.
The following discussion is based on [24] (see also [171]). We start by recalling

the matrix version of the classical three-term recurrence relation for the Chebyshev
polynomials:

Tk+1(A) = 2ATk(A)− Tk−1(A), k = 1, 2, . . . (80)

(with T0(A) = I, T1(A) = A). These matrices can be used to obtain an approxima-
tion

f(A) =

∞X
k=1

ckTk(A)− c1
2
I ≈

NX
k=1

ckTk(A)− c1
2
I =: pN (A)

to f(A) by truncating the Chebyshev series expansion after N terms. The coeffi-
cients ck in the expansion only depend on f (not on A) and can be easily computed
numerically at a cost independent of n using the approximation

ck ≈
2

M

MX
j=1

f(cos(θj)) cos((k − 1)θj),

where θj = π(j − 1
2
)/M with a sufficiently large value of M . Thus, most of the

computational work is performed in (80). The basic operation in (80) is the matrix–
matrix multiply. If the initial matrix A is m-banded, then after k iterations the
matrix Tk+1(A) will be km-banded. The Paterson–Stockmeyer algorithm can be
used to evaluate polynomials in a matrix A with minimal arithmetic complexity, see
[166] and [109, pages 73–74]. We also mention [36], where sophisticated algorithms
for matrix-matrix multiplication that take decay into account are developed.

In order to have a linear scaling algorithm, it is essential to fix a maximum
bandwidth for the approximation PN (A), which must not depend on n. Then the
cost is dominated by the matrix–matrix multiplies, and this is an O(n) opera-
tion provided that the maximum bandwidth remains bounded as n → ∞. Similar
conclusions apply for more general sparsity patterns, which can be determined by
using the structure of successive powers Ak of A. In alternative, dropping elements
by size using a drop tolerance is often used, although rigorous justification of this
procedure is more difficult.

Let us now consider the error incurred by the series truncation:

‖eN (A)‖2 = ‖f(A)− PN (A)‖2, (81)
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where PN (A) =
PN

k=1 ckTk(A)− c1
2
I. We limit our discussion to the banded case,

but the same arguments apply in the case of general sparsity patterns as well. Since
|Tk(x)| ≤ 1 for all x ∈ [−1, 1] and k = 1, 2, . . . , we have that ‖Tk(A)‖2 ≤ 1 for all
k, since σ(A) ⊂ [−1, 1]. Using this well known property to bound the error in (81),
we obtain that

‖eN (A)‖2 =

‚‚‚‚‚
∞X

k=N+1

ckTk(A)

‚‚‚‚‚
2

≤
∞X

k=N+1

|ck|.

The last inequality shows that the error defined by (81) only depends on the sum
of the absolute values of the coefficients ck for k = N + 1, N + 2, . . . , but these
in turn do not depend on n, the dimension of the matrix we are approximating.
Hence if we have a sequence of n × n matrices {An} with σ(An) ⊂ [−1, 1] for
all n, we can use an estimate of the quantity

P∞
k=N+1 |ck| (see, for instance, [30,

Equations (2.2)-(2.3)]) and use that to prescribe a sufficiently large bandwidth
(sparsity pattern) to ensure a prescribed accuracy of the approximation. As long
as the bandwidth of the approximation does not exceed the maximum prescribed
bandwidth, the error is guaranteed to be n-independent. In practice, however, we
found that this strategy is too conservative. Because of the rapid decay outside of
the bandwidth of the original matrix, it is usually sufficient to prescribe a much
smaller maximum bandwidth than the one predicted by the truncation error. This
means that numerical dropping is necessary (see below for a brief discussion), since
the bandwidth of PN (A) rapidly exceeds the maximum allowed bandwidth. Because
of dropping, the simple error estimate given above is no longer rigorously valid. The
numerical experiments reported in [24], however, suggest that n-independence (and
therefore linearly scaling complexity and storage requirements) is maintained.

We now turn to the problem of approximating f(A) for a general A with spec-
trum contained in an arbitrary continuum F ⊂ C; for a more detailed description
of the technique we use, see [192]. In this case we can use a (Newton) interpolation
polynomial of the form

PN (A) = c0I+c1(A−z0I)+c2(A−z0I)(A−z1I)+ · · ·+cN (A−z0I) . . . (A−zN−1I)

where ck is the divided difference of order k, i.e.,

ck = f [z0, . . . , zk], k = 0, . . . , N.

For k = 0, . . . , N − 1, the interpolation points are chosen as zk = Ψ(ωk), where
ωk are the N − 1 roots of the equation ωN−1 = ρ and Ψ(z) is the inverse of the
map Φ(z) that maps the complement of F to the outside of a disk with radius ρ
and satisfies the normalization conditions (33). This method does not require the
computation of Faber polynomials and their coefficients. However, it does require
knowledge of the map Ψ(z). For specific domains F this map can be determined
analytically, see for example [29, 192]. In addition, Ψ(z) may require information
on the convex hull of the eigenvalues of A. For more general domains one may
have to resort to numerical approximations to compute Ψ(z); see [194]. Once again,
the approximation algorithm requires mostly matrix–matrix multiplies with banded
(or sparse) matrices and appropriate sparsification is generally required to keep the
cost within O(n) as the problem size n grows. A rigorous error analysis that takes
dropping as well as truncation into account is however still lacking.
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We briefly discuss now numerical dropping. The idea applies to more general
sparsity patterns, but we restrict our discussion to the case where A is a banded
matrix with bandwidth m. In this case we only keep elements inside a prescribed
bandwidth m̂ in every iteration. For given ρ and R (see (41)) we choose m̂ a priori
so as to guarantee that

(ρ/R)m̂ ≈ ε/K

where K > 0 is the constant for the bounds on |[f(A)]ij | (with i 6= j) appearing in
Theorem 13 (for instance) and ε > 0 is a prescribed tolerance. As already noted,
if A is banded with bandwidth m, then Ak has bandwidth km. This means that
if we want the approximation to have a fixed bandwidth m̂, where m̂ is (say) an
integer multiple of m corresponding to a prescribed approximation error ε, then
we ought to truncate the expansion at the N∗th term, with N∗ = m̂/m. It may
happen, however, that this value of N is actually too small to reduce the error
below the prescribed threshold. In this case it is necessary to add extra terms to
the Chebyshev expansion; but this would lead to an increase of the bandwidth
beyond the prescribed limit. A solution that has been used by physicists is simply
to continue the recurrence but ignoring all entries in positions outside the prescribed
bandwidth; By restricting all the terms in the three-term recurrence (80) to have
a fixed bandwidth (independent of n and N) we obtain an approximation scheme
whose cost scales linearly in the size n of the problem. This, however, leaves open
the problem of controlling the approximation error.

Approximation based on quadrature rules. Another approach that can
sometimes be used to find a banded or sparse approximation of a rapidly decaying
matrix f(A) is based on Gaussian quadrature [95]. With this approach it is possible
to compute or estimate individual entries in f(A). There exist also block versions
of these techniques which allow the computation of several entries of f(A) at once
[95, 172]. Thus, if we know that only the entries of f(A) within a certain bandwidth
or block structure are nonnegligible, one can use Gaussian quadrature rules to
estimate the entries within this bandwidth or blocks. This approach has been used,
e.g., in [22] to construct simple banded preconditioners for Toeplitz matrices with
decay, using the function f(A) = A−1.

Here we briefly sketch this technique. Suppose f is strictly completely monotonic
on an interval (a, b) (see Definition 3). For instance, the function f(x) = x−σ is
strictly completely monotonic on (0,∞) for any σ > 0, and f(x) = e−x is strictly
completely monotonic on R.

Now, let A = AT ∈ Rn×n. Consider the eigendecompositions A = QΛQT and
f(A) = Qf(Λ)QT . For u,v ∈ Rn we have

uT f(A)v = uTQf(Λ)QT v = pT f(Λ)q =

nX
i=1

f(λi)piqi, (82)

where p = QT u and q = QT v. In particular, we have that [f(A)]ij = eT
i f(A) ej .

Next, we rewrite the expression in (82) as a Riemann–Stieltjes integral with
respect to the spectral measure:

uT f(A)v =

Z b

a

f(λ)dµ(λ), µ(λ) =

8<:
0, if λ < a = λ1,Pi

j=1 pjqj , if λi ≤ λ < λi+1,Pn
j=1 pjqj , if b = λn ≤ λ.
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The general Gauss-type quadrature rule gives in this case:Z b

a

f(λ)dµ(λ) =

NX
j=1

wjf(tj) +

MX
k=1

vkf(zk) +R[f ], (83)

where the nodes {tj}N
j=1 and the weights {wj}N

j=1 are unknown, whereas the nodes
{zk}M

k=1 are prescribed. We have

– M = 0 for the Gauss rule,
– M = 1, z1 = a or z1 = b for the Gauss–Radau rule,
– M = 2, z1 = a and z2 = b for the Gauss–Lobatto rule.

Also, for the case u = v, the remainder in (83) can be written as

R[f ] =
f (2N+M)(η)

(2N +M)!

Z b

a

MY
k=1

(λ− zk)
h NY

j=1

(λ− tj)
i2

dµ(λ), (84)

for some a < η < b. This expression shows that, if f(x) is strictly completely
monotonic on an interval containing the spectrum of A, then quadrature rules
applied to (83) give bounds on uT f(A)v. More precisely, the Gauss rule gives a lower
bound, the Gauss–Lobatto rule gives an upper bound, whereas the Gauss–Radau
rule can be used to obtain both a lower and an upper bound. In particular, they
can be used to obtain bounds on [f(A)]ij . The evaluation of these quadrature rules
is reduced to the computation of orthogonal polynomials via three-term recurrence,
or, equivalently, to the computation of entries and spectral information on a certain
tridiagonal matrix via the Lanczos algorithm. We refer to [22, 95] for details. Here
we limit ourselves to observe that the conditions under which one can expect rapid
decay of the off-diagonal entries of f(A) also guarantee fast convergence of the
Lanczos process. In practice, this means that under such conditions a small number
N of quadrature nodes (equivalently, Lanczos steps) are sufficient to obtain very
good estimates of the entries of f(A). In numerical experiments, this number is
usually between 5 and 10, see [18].

Error bounds for Krylov subspace approximations. Another situation
where the decay bounds for f(A) have found application is in the derivation of
error bounds for Krylov subspace approximations of f(A)b, and in particular for
the important case of the matrix exponential f(A) = e−tAb [203, 207]. Recall
that Krylov subspace methods are examples of polynomial approximation methods,
where f(A)b is approximated by p(A)b for some (low-degree) polynomial p. Since
every matrix function f(A) is a polynomial in A, this is appropriate. The kth Krylov
subspace of A ∈ Cn×n and a nonzero vector b ∈ Cn is defined by

Kk(A,b) = span
n
b, Ab, . . . , Ak−1b

o
,

and it can be written as

Kk(A,b) = {q(A)b | q is a polynomial of degree ≤ k − 1}.

The successive Krylov subspaces form a nested sequence:

K1(A,b) ⊂ K2(A,b) ⊂ · · · ⊂ Kd(A,b) = · · · = Kn(A,b).
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Here d is the degree of the minimum polynomial of A with respect to b. This is
just the monic polynomial p of least degree such that p(A)b = 0.

The basic idea behind Krylov methods is to project the given problem onto the
successive Krylov subspaces, solving the (low-dimensional) projected problems, and
expand the solution back to n-dimensional space to yield the next approximation.
An orthonormal basis for a Krylov subspace can be efficiently constructed using
the Arnoldi process; in the Hermitian case, this reduces to the Lanczos process
(see [96, 195, 177]). Both of these algorithms are efficient implementations of the
classical Gram–Schmidt process. In Arnoldi’s method, the projected matrix Hk has
upper Hessenberg structure, which can be exploited in the computation. In the
Hermitian case, Hk is tridiagonal.

Denoting by Qk = [q1, . . . ,qk] ∈ Cn×k, with q1 = b/‖b‖2, the orthonormal
basis for the kth Krylov subspace produced by the Arnoldi process, the kth ap-
proximation to the solution vector f(A)b is computed as

xk := ‖v‖2Qkf(Hk)e1 = Qkf(Hk)Q∗kv. (85)

Typically, k � n and computing f(Hk) is inexpensive, and can be carried out in a
number of ways. For instance, when Hk = H∗

k = Tk (a tridiagonal matrix), it can
be computed via explicit diagonalization of Tk. More generally, methods based on
the Schur form of Hk can be used [96, Chapter 9.1.4].

The main remaining issue is to decide when to stop the iteration. Much effort
has been devoted in recent years to obtained bounds for the error ‖xk−f(A)b‖2. As
it turns out, in the case of the matrix exponential f(A) = e−tA the approximation
error is mainly governed by the quantity

h(t) = eT
k e−tHke1, (86)

i.e., by the last entry in the first column of e−tHk . Since Hk is upper Hessenberg (in
particular, tridiagonal if A = A∗), the bottom entry in the first column of e−tHk

should be expected to decay rapidly to zero as k increases. In [203] the authors
show how the decay bounds in Theorem 13, combined with estimates of the field
of values of A obtained from a clever use of the Bendixson–Hirsch Theorem, can
lead to fairly tight bounds on |h(t)|, which in turn leads to an explanation of the
superlinear convergence behavior of Krylov methods. These results can be seen as
a generalization to the nonnormal case of the bounds obtained in [111] and [207]
for the Hermitian case.

Exponentials of stochastic matrices. A real n×n matrix S is row-stochastic
if it has nonnegative entries and its row sums are all equal to 1. It is doubly stochastic
if its columns sums are also all equal to 1. Such matrices arise as transition matrices
of discrete Markov chains, and play an important role in the analysis of large graphs
and networks (see, e.g., [130] and [32]).

In the study of diffusion-type and other dynamical processes on graphs, it is
often necessary to perform computations involving matrix exponentials of the form
etS , where t ∈ R; see, e.g., [90, page 357] and [91]. In some cases, one is interested in
approximating selected columns of etS . Note that this is a special case of the problem
of computing a matrix function times a given vector, where the given vector is now
of the form ei. If the entries in the ith column of etS are strongly localized, it may be
possible to compute reasonable approximations very cheaply. This is crucial given
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the often huge size of graphs arising from real-world applications, for example in
information retrieval.

For sparse matrices corresponding to graphs with maximum degree uniformly
bounded in n, the decay theory for matrix functions guarantees superexponential
decay in the entries of etS . This means that each column of etS only contains
O(1) nonnegligible entries (with a prefactor depending on the desired accuracy
ε, of course). Localized computations such as those investigated in [91] may be
able to achieve the desired linear, or even sublinear, scaling. Note, however, that
the bounded maximum degree assumption is not always realistic. Whether strong
localization can occur without this assumption is an open question. While it is
easy to construct sparse graphs which violate the condition and lead to delocalized
exponentials, the condition is only a sufficient one and it may well happen that etS

remains localized even if the maximum degree grows as n→∞.
Localization in etS is also linked to localization in the PageRank vector p, the

unique stationary probability distribution vector (such that pT = pTS) associated
with an irreducible row-stochastic matrix S [90, 130, 159]. When S is the “Google
matrix” associated with the World Wide Web, however, the decay in the entries
of p does not appear to be exponential, but rather to satisfy a power law of the
form pk = O(k−γ) for k → ∞, assuming the entries are sorted in nonincreasing
order. The value of γ is estimated to be approximately 2.1; see [130, page 110]. This
fact reflects the power law nature of the degree distribution of the Web. General
conditions for strong localization in seeded PageRank vectors are discussed in [159].

A completely different type of stochastic process leading to exponentials of
very large, structured matrices is the Markovian analysis of queuing networks, see
[31, 32]. In [31] the authors study the exponential of huge block upper triangular,
block Toeplitz matrices and show that this matrix function satisfies useful decay
properties that can be exploited in the computations, leading to efficient algorithms.

Exponential integrators. Finally, we mention that the decay properties of the
exponential of banded matrices have recently been used in [39] to develop and ana-
lyze a class of domain decomposition methods for the integration of time-dependent
PDEs [39] and in the analysis of an infinite Arnoldi exponential integrator for sys-
tems of ODEs [128].

4.2 Linear scaling methods for electronic structure computations

In quantum chemistry and solid state physics, one is interested in determining
the electronic structure of (possibly large) atomic and molecular systems [147].
The problem amounts to computing the ground state (smallest eigenvalue and
corresponding eigenfunction) of the many-body quantum-mechanical Hamiltonian
(Schrödinger operator), H. In variational terms, we want to minimize the Rayleigh
quotient:

E0 = min
Ψ 6=0

〈HΨ, Ψ〉
〈Ψ, Ψ〉 and Ψ0 = argminΨ 6=0

〈HΨ, Ψ〉
〈Ψ, Ψ〉 (87)

where 〈·, ·〉 denotes the L2 inner product. In the Born–Oppenheimer approximation,
the many-body Hamiltonian is given (in atomic units) by

H =

neX
i=1

0@−1

2
∆i −

MX
j=1

Zj

|xi − rj |
+

neX
j 6=i

1

|xi − xj |

1A
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where ne = number of electrons and M = number of nuclei in the system. The
electron positions are denoted by xi, those of the nuclei by rj ; as usual, the charges
are denoted by Zj . The operator H acts on a suitable subspace of H1(R3ne) con-
sisting of anti-symmetric functions (as a consequence of Pauli’s Exclusion Principle
for fermions). Here, the spin is neglected in order to simplify the presentation.

Unless ne is very small, the “curse of dimensionality” makes this problem
intractable; even storing the wave function Ψ becomes impossible already for
moderately-sized systems [125]. In order to make the problem more tractable, var-
ious approximations have been devised, most notably:

– Wave function methods (e.g., Hartree–Fock);
– Density Functional Theory (e.g., Kohn-Sham);
– Hybrid methods (e.g., B3LYP).

In these approximations the original, linear eigenproblem HΨ = EΨ for the many-
electrons Hamiltonian is replaced by a non-linear one-particle eigenproblem:

F(ψi) = λiψi, 〈ψi, ψj〉 = δij , 1 ≤ i, j ≤ ne, (88)

where λ1 ≤ λ2 ≤ · · · ≤ λne are the ne smallest eigenvalues of (88). In the case of
Density Functional Theory, (88) are known as the Kohn–Sham equations, and the
nonlinear operator F in (88) has the form F(ψi) =

`
− 1

2
∆+ V (ρ)

´
ψi, where ρ =

ρ(x) =
Pne

i=1 |ψi(x)|2 is a the electronic density, a function of only three variables
that alone is sufficient to determine, in principle, all the properties of a system
[112, 126]. The Kohn–Sham equations (88) are the Euler–Lagrange equations for the
minimization of a functional J = J [ρ] (the density functional) such that the ground
state energy, E0, is the minimum of the functional: E0 = infρ J . While the exact
form of this functional is not known explicitly, a number of increasingly accurate
approximations have been developed since the original paper [126] appeared. The
enormous success of Density Functional Theory (which led to the award of a share
of the 1998 Nobel Prize for Chemistry to Kohn) is due to the fact that the high-
dimensional, intractable minimization problem (87) with respect to Ψ ∈ L2(R3ne)
is replaced by a minimization problem with respect to ρ ∈ L2(R3).

The nonlinear Kohn–Sham equations (88) can be solved by a “self-consistent
field” (SCF) iteration, leading to a sequence of linear eigenproblems

F (k)ψ
(k)
i = λ

(k)
i ψ

(k)
i , 〈ψ(k)

i , ψ
(k)
j 〉 = δij , k = 1, 2, . . . (89)

(1 ≤ i, j ≤ ne), where each F (k) = − 1
2
∆+ V (k) is a one-electron Hamiltonian with

potential

V (k) = V (k)(ρ(k−1)), ρ(k−1) =

neX
i=1

|ψ(k−1)
i (x)|2.

Solution of each of the (discretized) linear eigenproblems (89) leads to a typ-

ical O(n3
e) cost per SCF iteration. However, the actual eigenpairs (ψ

(k)
i , λ

(k)
i ) are

unnecessary; hence, diagonalization of the (discretized) one-particle Hamiltonians
can be avoided. Indeed, all one really needs is the density matrix, i.e., the spectral
projector P onto the invariant subspace

Vocc = span{ψ1, . . . , ψne}
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corresponding to the ne lowest eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λne (“occupied states”).
At the kth SCF cycle, an approximation P (k) ≈ P to the orthogonal projector onto
the occupied subspace Vocc needs to be computed. At convergence, all quantities of
interest in electronic structure theory can be computed from P .

In practice, operators are replaced by matrices by Galerkin projection onto a
finite-dimensional subspace spanned by a set of basis functions {φi}n

i=1, where n
is a multiple of ne. Typically, n = nb · ne where nb ≥ 2 is a moderate constant
when linear combinations of Gaussian-type orbitals are used; often, nb ≈ 10 − 25
(see [134]). We assume that the basis functions are localized, so that the resulting
discrete Hamiltonians (denoted by H) are, up to some small truncation tolerance,
sparse: their pattern/bandwidth is determined by the form of the potential. Finite
difference approximations can also be used, in which case the sparsity pattern is that
of the discrete Laplacian, since the potential is represented by a diagonal matrix.

Non-orthogonal bases are easily accommodated into the theory but they may
lead to algorithmic complications. They are often dealt with by a congruence
transformation to an orthogonal basis, which can be accomplished via an inverse-
Cholesky factorization; the transformed Hamiltonian is bH = ZTHZ where S−1 =
ZZT is the inverse Cholesky factorization of the overlap matrix,

S = [Sij ], Sij =

Z
Ω

φi(r)φj(r)dr .

The inverse factor Z can be efficiently approximated by the AINV algorithm [23, 50].
Often S is strongly localized and has condition number independent of n. As we
have seen, under these conditions its inverse (and therefore Z) decays exponentially
fast, with a rate independent of n; see Theorem 24. Hence, up to a small truncation
tolerance Z is sparse and so is bH, see [20, page 49]. In alternative, Z can be replaced
by the inverse square root S−1/2 of S; transformation from H to S−1/2HS−1/2 is
known as Löwdin orthogonalization. Again, localization of S−1/2 is guaranteed if
S is banded, sparse, or localized and well-conditioned, so a sparse approximation
to S−1/2 is possible. It is important to stress that transformation of H into bH
need not be carried out explicitly in most linear scaling algorithms. Rather, the
transformed matrix is kept in factored form, similar to preconditioning. From here
on, we assume that the transformation has already been performed and we denote
the representation of the discrete Hamiltonian in the orthogonal basis by H instead
of bH.

Thus, the fundamental problem of (zero-temperature) electronic structure the-
ory has been reduced to the approximation of the spectral projector P onto the
subspace spanned by the ne lowest eigenfunctions of H (occupied states):

P = ψ1 ⊗ ψ1 + · · ·+ ψne ⊗ ψne , (90)

where Hψi = λi ψi, i = 1, . . . , ne. Note that we can write P = h(H), where f is
the Heaviside (step) function

h(x) =

(
1 if x < µ

0 if x > µ

with λne < µ < λne+1 (µ is the “Fermi level”). Alternatively, we can write P =
(I − sign(H − µI))/2, where sign denotes the sign function (sign(x) = 1 if x > 0,
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sign(x) = −1 if x < 0). We will come back to this representation at the end of this
section.

As usual, we can assume that H has been scaled and shifted so that σ(H) ⊂
[−1, 1]. If the spectral gap γ = λne+1 − λne is not too small, h can be well ap-
proximated by a smooth function with rapid decreases from 1 to 0 within the gap
(λne , λne+1). A common choice is to replace h by the Fermi–Dirac function

f(x) =
1

1 + eβ(x−µ)
, (91)

which tends to a step function as the parameter β increases.
Physicists have observed long ago that for “gapped systems” (like insulators

and, under certain conditions, semiconductors) the entries of the density matrix
P decay exponentially fast away from the main diagonal, reflecting the fact that
interaction strengths decrease rapidly with the distance [9, 70, 107, 118, 123, 134,
148, 160, 168, 170]. We recall that, as already discussed, exponential decay in the
ψi in (90) is sufficient for localization of the density matrix P , but not necessary;
and indeed, situations can be found where P decays exponentially but the ψi do
not, see [45] and the discussion in [20, section 4].

Localization of the density matrix is a manifestation of the “nearsightedness”
of electronic matter discussed in section 1.1.15 Localization is crucial as it provides
the basis for so-called linear scaling (i.e., O(ne)) methods for electronic structure
calculations. These methods have been vigorously developed since the early 1990s,
and they are currently able to handle very large systems, see, e.g., [9, 10, 37, 43, 50,
92, 124, 132, 135, 136, 139, 161, 175, 178, 206]. These methods including expansion
of the Fermi–Dirac operator f(H) in the Chebyshev basis, constrained optimization
methods based on density matrix minimization (possibly with `1 regularization to
enforce localized solutions), methods based on the sign matrix representation of
P (such as “McWeeny purification”), multipole expansions, and many others. As
we have seen, rapidly decaying matrices can be approximated by sparse matrices,
uniformly in n. Hence, rigorously establishing the rate of decay in the density
matrix provides a sound mathematical foundation for linear scaling methods in
electronic structure calculations. A mathematical analysis of the asymptotic decay
properties of spectral projectors associated with large, banded or sparse Hermitian
matrices has been presented in [20]. The main result in [20] can be summarized in
the following theorem.

Theorem 26. ([20]) Let n = nb · ne where nb is a fixed positive integer and the
integers ne form a monotonically increasing sequence. Let {Hn} be a sequence of
Hermitian n× n matrices with the following properties:

1. Each Hn has bandwidth m independent of n;

15 As we saw earlier (see (79)), rapid decay in P means that quantities like Tr(PH),
which in electronic structure theory has the interpretation of a single particle-
energy [92, 161], are insensitive to small perturbations in the Hamiltonian in
positions that correspond to small entries in P . Also, the fact that Tr(P ) =
rank(P ) = ne � n implies that many of the diagonal entries of P will be tiny;
hence, slight changes in the potential V (x) at a point x are only felt locally, see
Example 2.
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2. There exist two (fixed) intervals I1 = [a, b], I2 = [c, d] ⊂ R with γ = c − b >
0 such that for all n = nb · ne, I1 contains the smallest ne eigenvalues of
Hn (counted with their multiplicities) and I2 contains the remaining n − ne

eigenvalues.

Let Pn denote the n× n spectral projector onto the subspace spanned by the eigen-
vectors associated with the ne smallest eigenvalues of Hn, for each n. Then there
exist constants K > 0, α > 0 independent of n such that

|[Pn]ij | ≤ K e−α|i−j|, ∀i 6= j. (92)

Moreover, for any ε > 0 there is a matrix P̃n of bandwidth p independent of n such
that ‖Pn − P̃n‖ < ε, for all n.

As usual, the bandedness assumption can be replaced with the assumption
that the Hamiltonians are sparse, with associated graphs that satisfy the bounded
maximum degree assumption. In this case the geodesic distance on the graphs
should be used to measure decay.

Different proofs of Theorem 26 can be found in [20]. One approach consists
in approximating Pn via the (analytic) Fermi–Dirac function (91), and exploiting
the fact that the rate of decay in f(Hn) is independent of n thanks to the non-
vanishing gap assumption. This approach yields explicit, computable formulas for
the constants K and α in (92), see [20, pages 26–27]. Another approach is based on
results on the polynomial approximation of analytic functions on disjoint intervals
[59, 105]. Both proofs make crucial use of the general theory of exponential decay
in analytic functions of banded and sparse matrices discussed earlier, in particular
Theorem 9.

Some comments about the meaning of Theorem 26 are in order. The first thing
to observe is that the independence of the decay bounds on n follows from the
assumption that n = nb ·ne where nb, which controls the accuracy of the discretiza-
tion, is fixed, whereas ne, which determines the system size (i.e., the number of
electrons in the system), is allowed to increase without bounds. This is sometimes
referred to as the thermodynamic limit, where the system size grows but the dis-
tance between atoms is kept constant. It should not be confused with the limit in
which ne is fixed and nb →∞, or with the case where both ne and nb are allowed
to grow without bounds. Keeping nb constant ensures that the spectra of the dis-
crete Hamiltonians remain uniformly bounded, which guarantees (for insulators)
that the relative spectral gap γ does not vanish as n → ∞. In practice a constant
nb is a reasonable assumption since existing basis sets are not very large and they
are already highly optimized so as to achieve the desired accuracy.

Another issue that warrants comment is the choice of the parameter β (the
“inverse temperature”) in the Fermi–Dirac function. Note that the Fermi–Dirac
function has two poles in the complex plane: if we assume, without loss of generality,
that the Fermi level is at µ = 0, the poles are on the imaginary axis at ±iπ/β.
Since the rate of decay is governed by the distance between these two poles and
the smallest intervals I1, I2 containing all the spectra σ(Hn), a large value of β
(corresponding to a small gap γ) means that the poles approach 0 and therefore b
and c. In this case, decay could be slow; indeed, the rate of decay α in the bounds
(92) tends to zero as γ → 0 or, equivalently, as β → ∞. On the other hand, a
relatively large value of γ means that β can be chosen moderate and this will imply
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fast decay in the entries of the density matrix Pn, for all n. We refer to [20, pages
40–42] for details on the dependence of the decay rate in the density matrix as a
function of the gap and of the temperature, in particular in the zero-temperature
limit (β → ∞), and to [191] for an example of how these results can be used in
actual computations.

The case of metallic systems at zero temperature corresponds to γ → 0. In this
case the bound (92) becomes useless, since α→ 0. The actual decay in the density
matrix in this case can be as slow as (1+ |i−j|)−1; see [20, section 10] for a detailed
analysis of a model problem.

We conclude this section discussing alternative representations of the density
matrix that could potentially lead to better decay bounds. Recall that the step func-
tion h(x) can be expressed in terms of the sign function as h(x) = (1− sign(x))/2.
Hence, studying the decay behavior of the spectral projector h(H) amounts to
studying the decay behavior in sign(H). Again, we assume for simplicity that the
Fermi level is at µ = 0. Now, the matrix sign function admits a well known integral
representation, see [109]:

sign(H) =
2

π
H

Z ∞

0

(t2I +H2)−1dt. (93)

One can now use available decay bounds on the inverse of the banded (or sparse)
Hermitian positive definite matrix t2I+H2 together with quadrature rules to obtain
bounds on the entries of sign(H) and therefore of P . Note the similarity of this
approach with the one reviewed in section 3.5.

Another approach, which yields more explicit bounds, is based on the identity

sign(H) = H(H2)−1/2, (94)

see again [109]. We can then use bounds for the inverse square root of the banded (or
sparse) Hermitian positive definite matrix H2 to obtain exponential decay bounds
for sign(H), using the fact that the product of a banded (or sparse) matrix times
an exponentially decaying one retains the exponential decay property. Preliminary
numerical experiments on simple model gapped Hamiltonians [38] suggest that the
decay bounds obtained via the representations (93) and (94) can be more accurate
than those obtained via the Fermi–Dirac representation.

4.3 Further applications

In this section we briefly mention a few other applications of localization and decay
bounds in applied mathematics and physics.

Localized solutions to matrix equations. In the area of control of discrete-
time, large-scale dynamical systems, a central role is played by the Lyapunov equa-
tion associated to a linear, time-varying dynamical system:

AX +XAT = P, (95)

with A,P ∈ Rn×n given matrices and X unknown. If A is stable, equation (95) has
a unique solution, which can be expressed as
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X = −
Z ∞

0

etAP etA dt ; (96)

and also as the solution of a linear system in Kronecker sum form:

(I ⊗A+AT ⊗ I)vec(X) = vec(P ) , (97)

where “vec” is the operator that takes an n × n matrix and forms the vector of
length n2 consisting of the columns of the matrix stacked one on top of one another;
see, e. g. [131] or [184].

Several authors (e.g., [52, 104]) have observed that whenever A and P are
banded, or sparse, the solution matrix X is localized, with rapid off-diagonal decay
if A is well-conditioned. Moreover, the decay is oscillatory (see [104, Fig. 3]). This
does not come as a surprise given the relation of X to the matrix exponential of
A, see (96), and to the inverse of a matrix in Kronecker sum form, see (97). The
decay in the solution has been exploited to develop efficient solution techniques
for (95) with A and P banded. When A = AT , an approximate solution to (95)
can sometimes be obtained using polynomial expansion in the Chebyshev basis, as
outlined in the previous section. We refer again to [104] for details.

Localized matrices (in the form of rapidly decaying inverse Gramians) also arise
in another problem in control theory, namely, subspace identification of large-scale
interconnected systems. Again, this fact can be exploited to develop fast approxi-
mation algorithms; see [103].

For a different application of exponential decay bounds for A−1 to the study of
the behavior of dynamical systems, see [155].

Localization in graph and network analysis. Recently, several authors
have proved that, with high probability, the eigenvectors of the adjacency matrix
[66, 74, 193] and of the Laplacian [44] of large sparse undirected random graphs, in
particular Erdős–Rényi graphs, are delocalized, a fact that was already known on
the basis of empirical observation; see, e.g., [94]. On the other hand, localization in
eigenvectors of scale-free networks, particularly those corresponding to the largest
eigenvalues of the adjacency matrix or of the Laplacian, has been reported, for
both synthetic [94, 151] and real-world [108, 158, 181] networks. For instance, in
[94] the eigenvector corresponding to the largest eigenvalue of the adjacency matrix
of a power-law graph was found to be localized at the hub (the node of maximum
degree).

Power-law graphs are also studied in [108], where a class of graph substruc-
tures leading to locally supported eigenvectors is identified. In some cases these
eigenvectors are actually sparse, not just localized: an extreme example is given
by the so-called Faria vectors [83], i.e., eigenvectors that have only two nonzero
components (one positive, the other necessarily negative). These eigenvectors are
associated with eigenvalues of very high multiplicity (sometimes as large as O(n)),
such as those associated with star graphs—graphs consisting of a central node con-
nected to several peripheral nodes. Many star-like subgraphs, and thus Laplacian
eigenvalues of very high multiplicity, are often found in real-world scale-free graphs,
an observation that leads to the conjecture that such Laplacians may have a number
of locally supported eigenvectors. We refer to [108] for a detailed study, including
computational aspects. It should be noted that since power-law graphs do not sat-
isfy the bounded maximum degree assumption, we cannot directly apply the decay
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theory for matrix functions (and in particular for spectral projectors) to explain
the eigenvector localization discussed in [94, 108].

Another class of graphs for which eigenvector localization has been observed
is discussed in [158], motivated by the study of dendrites of retinal ganglion cells
(RGCs). It turns out the Laplacian eigenvalues of a typical dendritic tree display
a peculiar distribution: most of the λi are distributed according to a smooth curve
in the interval (0, 4), after which a jump occurs in the spectrum and the remaining
eigenvalues are clustered around some value larger than 4. Moreover, the eigenvec-
tors associated with eigenvalues less than 4 are delocalized, while those associated
with eigenvalues greater than 4 are exponentially localized.

In order to find an explanation to this phenomenon, the authors of [158] consider
simplified models of RGCs that are easier to analyze but at the same time capture
the main properties of RGCs. The simplest among these models is a star-like tree,
obtained by connecting one or more path graphs to the central hub of a star graph
Sk (consisting of k peripheral nodes connected to a central node), where k ≥ 3. In
the case of a single path graph P` connected to the central hub of a star graph Sk,
the resulting graph is called a comet of type (k, `). The Laplacian of the resulting
star-like tree is then obtained by gluing the Laplacians of Sk and P` For example,
in the case k = 4, ` = 5 the corresponding comet graph (with the hub numbered
first) has 10 nodes and the associated Laplacian is given by

L =

2666666666666664

5 −1 −1 −1 −1 −1 0 0 0 0
−1 1 0 0 0 0 0 0 0 0
−1 0 1 0 0 0 0 0 0 0
−1 0 0 1 0 0 0 0 0 0
−1 0 0 0 1 0 0 0 0 0

−1 0 0 0 0 2 −1 0 0 0
0 0 0 0 0 −1 2 −1 0 0
0 0 0 0 0 0 −1 2 −1 0
0 0 0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 0 0 −1 1

3777777777777775
,

where the horizontal and vertical line have been added to more clearly show how
the gluing of the Laplacians of S4 and P5 is carried out. The resulting L has nine
eigenvalues < 4, all falling between 0 and 3.652007105, with the tenth eigenvalue
λ ≈ 6.0550. It is known that a star-like tree can have only one eigenvalue ≥ 4, with
equality if and only if the graph is a claw (see [158] for details). In our example the
(normalized) eigenvector associated with the largest eigenvalue is of the form

v =
ˆ
v1, v2

˜
,

where
v1 =

ˆ
0.9012, −0.1783, −0.1783, −0.1783, −0.1783

˜
,

and
v2 =

ˆ
0.2377, −0.0627, 0.0165, −0.0043, 0.0008

˜
(rounding to four decimal places). We see that the dominant eigenvector is mostly
concentrated at the hub, is constant on the peripheral nodes of the star S4, and
decays monotonically in magnitude along the path P5 away from the hub. It can
be shown that this phenomenon is common to all comet graphs and that the decay



Localization in Matrix Computations: Theory and Applications 81

of the dominant eigenvector along the path is exponential [158]. Moreover, similar
behavior is also common to star-like trees in general; if there are multiple paths
connected to the central node of a star, the dominant eigenvector will decay ex-
ponentially along the paths, away from the central hub, where the eigenvector is
concentrated. The remaining eigenvectors, corresponding to eigenvalues less than
4, are delocalized (oscillatory).

The proofs in [158] are direct and are based on previous results on the eigen-
values of star-like trees, together with a careful analysis of certain recurrences that
the entries of the dominant eigenvector of L must satisfy. Here we point out that
the decay behavior of the dominant eigenvector of L for star-like trees (and also
for more general, less structured graphs obtained by gluing one or more long paths
to a graph having a hub of sufficiently high degree) is a byproduct of our general
decay results for functions of banded or sparse matrices. To see this, we consider
the case of a single path of length ` attached to the hub of a graph with order k+1
nodes. The resulting graph has n = k+ `+1 nodes, and its Laplacian is of the form

Ln =

»
L11 L12

LT
12 L22

–
,

where L12 is a (k + 1)× ` matrix with all its entries equal to 0 except for a −1 in
the upper left corner. For fixed k and increasing `, the sequence {Ln} satisfies the
assumptions of Theorem 9, therefore for any analytic function f , the entries of f(Ln)
must decay at least exponentially fast away from the main diagonal (or nonzero
pattern of Ln) with rate independent of n for ` sufficiently large. Moreover, assume
that the dominant eigenvalue of Ln is well separated from the rest of the spectrum;
this happens for example if one of the nodes, say the first, has a significantly higher
degree than the remaining ones. Then the corresponding eigenvector is localized,
and its entries decay exponentially along the path, away from the hub. To see this
we can approximate the corresponding spectral projector, P , by a Gaussian in Ln

and use the fact that Tr(P ) = 1, as discussed earlier.
Next, we consider the issue of localization in functions of matrices associated

with graphs, limited to the undirected case. We are especially interested in the
matrix exponential, which is widely used in the study of network structure and
dynamics. We discuss first the communicability between nodes, see (7), which is
measured by the entries of the exponential of the adjacency matrix. In many ap-
plications, see for example [81], it is desirable to identify pairs of nodes within a
network having low communicability. For fairly regular sparse graphs with large
diameter, communication between neighboring nodes is clearly much easier than
communication between pairs of distant nodes, and this fact is well captured by
the fact that [eA]ij decays superexponentially with the geodesic distance d(i, j).
The simplest example is that of a path graph P`, for which A is tridiagonal: as
we have shown, in this case the entries of the exponential decay very fast with the
distance |i − j|. On the other hand, for large connected graphs of small diameter,
like many real world complex networks, the distance d(i, j) is small for any i and
j, and decay bounds like (29) cannot predict any small entries in functions of the
adjacency matrix. This fact is related to the violation of the bounded maximum
degree assumption. The simplest example is now that of a star graph Sn, which has
diameter 2 and maximum degree n, and for which there is no decay whatsoever in
eA.
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Analogous remarks apply to functions of the Laplacian of a connected graph.
Consider for instance the heat kernel, e−tL. As is well known, this matrix function
occurs in the solution of initial value problems of the form

ẋ = −Lx subject to x(0) = x0, (98)

where the dot on a vector denotes differentiation with respect to time and x0 ∈ Rn

is given. The solution of (98) is given, for all t ≥ 0, by

x(t) = e−tLx0.

Consider now the special case where x0 = ei, the ith vector of the standard basis.
This means that a unit amount of some “substance” is placed at node i at time
t = 0, the amount at all other nodes being zero. Alternatively, we could think
of node i being at 1o temperature, with all other nodes having 0o temperature
initially. Then the jth entry of the solution vector x(t) represents the fraction of
the substance that has diffused to node j at time t or, alternatively, the temperature
reached by node j at time t. This quantity is given by

xj(t) = [e−tL]ij .

Note that

lim
t→∞

xj(t) =
1

n
∀ j = 1, . . . , n,

and moreover this limit is independent of i. This fact simply means that asymptot-
ically, the system is at thermal equilibrium, with all the initial “substance” (e.g.,
heat) being equally distributed among the nodes of the network, regardless of the
initial condition.

Another interpretation is possible: observing that e−tL is a (doubly stochastic)
matrix for all t ≥ 0, we can interpret its entries [e−tL]ij as transition probabilities
for a Markov chain, namely, for a (continuous-time) random walk on the graph.
Then [e−tL]ij has the meaning of the probability of a “walker” being at node j at
time t given that it was at node i at time t = 0.

No matter what the interpretation is, we see that the entries of e−tL can serve
as a measure of communicability over time between pairs of nodes in a network. We
note that for t = 1 and regular graphs, this measure is identical (up to a constant
factor) to the earlier notion of communicability (7). Note that for fairly regular,
large diameter, sparse, “grid-like” graphs and for fixed t > 0 the entries [e−tL]ij
decay superexponentially fast as the geodesic distance d(i, j) increases, reflecting the
fact that after a finite time only a relatively small fraction of the diffusing substance
will have reached the furthest nodes in the network. Clearly, this amount increases
with time. The rate of convergence to equilibrium is governed by the spectral gap
(i.e., the smallest nonzero eigenvalue of L): the smaller it is, the longer it takes for
the system to reach equilibrium. Since for grid-like graphs the smallest eigenvalue
goes to zero rapidly as n → ∞ (λ2(L) = O(n−2), convergence to equilibrium
is slow. On the other hand, graphs with good expansion properties tend to have
large spectral gap and equilibrium is reached much faster, even for large n. This is
reflected in the fact that e−tL is usually delocalized for such graphs. Note, however,
that things are more complicated in the case of weighted graphs, or if a normalized
Laplacian bL = I −D−1/2AD−1/2 or eL = I −D−1A
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is used instad of L (see for instance [91]).
Finally, we consider a “quantum” form of network communicability, obtained

by replacing the diffusion-type equation (98) with the Schrödinger-type equation:

i ẋ = Lx, x(0) = x0, (99)

where i =
√
−1, x0 ∈ Cn is given and such that ‖x0‖2 = 1. As we have seen, the

solution of (99) is given by

x(t) = e−itLx0, ∀ t ∈ R.

Note that since U(t) = e−itL is unitary, the solution satisfies ‖x(t)‖2 = 1 for all
t ∈ R. Consider now the matrix family {S(t)}t∈R defined as follows:

S(t) = [S(t)]ij , [S(t)]ij = |[U(t)]ij |2 ∀ i, j. (100)

Since U(t) is unitary, S(t) is doubly stochastic. Its entries are transition proba-
bilities: they measure how likely a system (say, a particle) governed by equation
(99), initially in state i, is to be in state j at time t. Here we have identified the
nodes of the underlying graph with the states of the system. We see again that the
magnitudes (squared) of the entries of e−itL measure the communicability (which
we could call “quantum communicability”) between pairs of nodes, or states. Lo-
calization in e−itL means low quantum communicability between far away pairs of
nodes.

Log-determinant evaluation. In statistics, it is frequently necessary to eval-
uate the expression

log(det(A)) = Tr (log(A)), (101)

where A is symmetric positive definite. When A is not too large, one can directly
compute the determinant on the left-hand side of (101) via a Cholesky factoriza-
tion of A. If A is too large to be factored, various alternative methods have been
proposed, the most popular of which are randomized methods for trace estimation
such as the one proposed by Hutchinson [116]:

Tr (log(A)) ≈ 1

s

sX
j=1

vT
j log(A)vj ,

with v1, . . . ,vs suitably chosen “sampling” vectors. This method requires the rapid
evaluation of the matrix-vector products log(A)vj for many different vectors vj .

A number of methods for approximating log(A)vj are studied in [6]. Some of
the techniques in [6] rely on the off-diagonal decay property in log(A) when A is
sparse. The authors of [6] make the observation that the decay in log(A) will be
different in different bases; using the fact that for any nonsingular matrix W the
identities

det(f(WAW−1)) = det(Wf(A)W−1) = det(f(A))

hold, it may be possible to find a basis W in which f(WAW−1) is highly local-
ized, so that performing the computations in this basis might result in significant
speed-ups. In particular, the use of an orthonormal (W−1 = WT ) wavelet basis is
shown to result in considerable off-diagonal compression, as long as the entries in
A vary smoothly (as is often the case). We refer to [6] for details. We note that a
similar approach, with f(A) = A−1, has been used (e.g., in [51]) to construct sparse
approximate inverses for use as preconditioners.
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Quantum information theory. Another area of research where decay bounds
for matrix functions have proven useful is the study of many-body systems in quan-
tum information theory; see, e.g., [56, 57, 77, 179]. For instance, relationships be-
tween spectral gaps and rates of decay for functions of local Hamiltonian operators
have been derived in [56] based on Bernstein’s Theorem, following [22].

As shown in [57], exponential decay bounds for matrix functions can be used
to establish so-called area laws for the entanglement entropy of ground states asso-
ciated with bosonic systems. In a nutshell, these area laws imply that the entan-
glement entropy associated with a 3D bosonic lattice is proportional to the surface
area, rather than to the volume, of the lattice. It is noteworthy that such area laws
are analogous to those governing the Beckenstein–Hawking black hole entropy. We
refer the interested reader to the comprehensive survey paper [77], where implica-
tions for computer simulations of quantum states are also discussed.

5 Conclusions and future work

The traditional dichotomy between sparse and dense matrix computations is too
restrictive and needs to be revised to allow for additional modes of computation in
which other, less-obvious forms of (approximate) sparsity are present, either in the
problem data or in the solution, or both.

In recent years there has been strong interest and many important developments
in research areas like hierarchical matrices and data-sparse algorithms (discussed by
Ballani and Kressner and by Bini in this same volume) and compressed sensing; a
different direction, the exploitation of localization, or decay, has been the subject of
this chapter. Localization has long played an important role (both conceptual and
computational) in various areas of physics, but until recently it has received less
attention from researchers in the field of numerical linear algebra. Here we have
reviewed various notions of localization arising in different fields of mathematics
and some of its applications in physics. We have attempted to provide a unified
view of localization in numerical linear algebra using various types of decay bounds
for the entries of matrix functions. Other useful tools include the use of decay
algebras and C∗-algebras, and integral representations of matrix functions. We have
further indicated how exploitation of localization is being used for developing fast
approximate solution algorithms, in some cases having linear complexity in the size
of the problem.

There are numerous opportunities for further research in this area. At several
points in the chapter we have pointed out a few open problems and challenges,
which can be summarized briefly as follows.

1. Concerning functions of matrices, including the important special cases of in-
verses and spectral projectors, we have discussed several conditions for local-
ization. We have seen that these conditions are sufficient, but not necessary
in general. Finding necessary conditions would deepen our understanding of
localization considerably. Deriving some lower bounds on the entries of f(A)
would be useful in this regard.

2. Many of the decay bounds we have seen are rather pessimistic in practice.
Similar to the convergence theory for Krylov subspace methods, it should be
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possible to obtain improved bounds by making use of more detailed spectral
information on the matrix, at least in the Hermitian case.

3. As usual, the case of nonnormal matrices presents challenges and difficulties not
present in the normal case. It would be useful to have a better understanding
of decay properties in functions of highly nonnormal matrices, for example in
oblique spectral projectors. This may have interesting applications in fields like
non-Hermitian quantum mechanics [15, 16, 154, 196].

4. It is easy to see with examples that violating the bounded maximum degree as-
sumption leads to failure of exponential decay in the limit n→∞; in practice,
however, sufficiently rapid decay may persist for finite n to be useful in com-
putation if the maximum degree increases slowly enough. This aspect seems
to warrant further investigation, especially in view of applications in network
analysis.

5. It would be interesting to develop general conditions under which bounded
functions of unbounded, banded operators (or sequences of banded finite ma-
trices without uniformly bounded spectra) exhibit decay behavior.

6. Outside of the broad area of linear scaling methods for electronic structure
computations and in the solution of certain types of structured problems (e.g.,
[31, 188]), relatively little has been done so far to exploit advance knowledge
of localization in designing efficient algorithms. It would be especially useful
to develop approximation algorithms that can exploit localization in the solu-
tion of large linear systems and in the eigenvectors (or invariant subspaces) of
large matrices, when present. The ideas and techniques set forth in [137] for
Hermitian matrices are a good starting point.

7. Last but not least, error control techniques in algorithms based on neglecting
small matrix or vector entries deserve careful study.

We hope hope that this chapter will stimulate progress on these and other
problems related to localization.
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11. H. Bağci, J. E. Pasciak, and K. Y. Sirenko, A convergence analysis for a
sweeping preconditioner for block tridiagonal systems of linear equations, Nu-
mer. Linear Algebra Appl., 22 (2015), pp. 371–392.

12. A. G. Baskakov, Wiener’s theorem and the asymptotic estimates of the ele-
ments of inverse matrices, Funct. Anal. Appl., 24 (1990), pp. 222–224.

13. A. G. Baskakov, Estimates for the entries of inverse matrices and the spectral
analysis of linear operators, Izvestiya: Mathematics, 61 (1997), pp. 1113–1135.

14. R. Bellman, Introduction to Matrix Analysis. Second Edition, McGraw–Hill,
New York, NY, 1970.

15. C. M. Bender, S. Boettcher and P. N. Meisinger, PT-symmetric quan-
tum mechanics, J. Math. Phys., 40 (1999), pp. 2201–2229.

16. C. M. Bender, D. C. Brody and H. F. Jones, Must a Hamiltonian be
Hermitian?, Amer. J. Phys., 71 (2003), pp. 1095–1102.

17. M. Benzi, Preconditioning techniques for large linear systems: a survey,
J. Comp. Phys., 182 (2002), pp. 418–477.

18. M. Benzi and P. Boito, Quadrature rule-based bounds for functions of adja-
cency matrices, Linear Algebra Appl., 433 (2010), pp. 637–652.

19. M. Benzi and P. Boito, Decay properties for functions of matrices over C∗-
algebras, Linear Algebra Appl., 456 (2014), pp. 174–198.

20. M. Benzi, P. Boito and N. Razouk, Decay properties of spectral projectors
with applications to electronic structure, SIAM Rev., 55 (2013), pp. 3–64.

21. M. Benzi, T. Evans, S. Hamilton, M. Lupo Pasini, and S. Slattery,
Analysis of Monte Carlo accelerated iterative methods for sparse linear systems,
Math/CS Technical Report TR-2016-002, Emory University, 2016.

22. M. Benzi and G. H. Golub, Bounds for the entries of matrix functions with
applications to preconditioning, BIT Numer. Math., 39 (1999), pp. 417–438.
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