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Abstract—Mobile crowd sensing enables a broad range of novel
applications by leveraging mobile devices and smartphone users
worldwide. While this paradigm is immensely useful, it involves
the collection of detailed information from sensors and their
carriers (i.e. participants) during task management processes
including sensor recruitment and task distribution. Such infor-
mation might compromise participant privacy in various regards
by identification or disclosure of sensitive attributes – thereby
increasing vulnerability and subsequently reducing participation.
In this survey, we identify different task management approaches
in mobile crowd sensing, and assess the threats to participant pri-
vacy when personal information is disclosed. We also outline how
privacy mechanisms are utilized in existing sensing applications
to address these threats. Finally, we discuss continuing challenges
facing participant privacy-preserving approaches during task
management.

I. INTRODUCTION

THE recent increase in the use of smart phones and other
mobile devices has opened the opportunity to collectively

sense and share information for common interests. Mobile
crowd sensing (MCS) refers to the wide variety of sensing
models in which individuals with sensing and computing
devices are able to collect and contribute valuable data for
different applications [1]. Examples of such applications are
instant news coverage, finding parking spots, and monitoring
traffic or crime mapping. In MCS, a participant or carrier
is an individual who collects and contributes data using a
sensing device (e.g. a smart phone) that she carries 1. Collected
data is consumed by end users directly or after processing by
some applications 2. Mobile crowd sensing can be categorized
based on the involvement of participants in sensing actions
as participatory or opportunistic. In a participatory sensing,
participants agree to fulfill the requested sensing activities,
and are thus actively involved in the sensing action (e.g.
taking a picture or entering data). In an opportunistic sensing,
data is collected with minimum or no involvement of the
participants (e.g. reporting speed while driving). Opportunistic
sensing could run as a background process, so collecting
data requires no interaction with the individuals carrying the
sensing devices.

To facilitate or coordinate the interaction between applica-
tions and participants a task management paradigm is needed
to define tasks based on end user or application requirements
to recruit qualified participants, distribute tasks, and possibly
coordinate with participants until task completion. One of the

1In this paper we refer to these individuals as participants regardless of the
sensing model (participatory or opportunistic)

2In this paper, we use the terms end user and application interchangeably

major challenges in task management is to ensure certain
degree of privacy for participants. Such an assurance of privacy
would increase the disposition of the participants to engage in
MCS activity, receive tasks and contribute data, and would
ultimately lead to more effective end user applications.

In this paper, we discuss privacy issues and solutions in
the context of task management in mobile crowd sensing. Our
focus is participant privacy and we do not address privacy
concerns of other entities in task management. In section II we
review and categorize task management models in MCS. We
then investigate privacy threats in different tasking schemes
in section III which is followed by existing and applicable
privacy solutions studied in section IV. We discuss limitations
of participant privacy in task management and other challenges
in section V. Finally, Section VI provides some concluding
remarks.

II. TASK MANAGEMENT IN MOBILE CROWD SENSING

We identify the following three entities in task management
in mobile crowd sensing:

1) Participants are entities that use a sensor to obtain or
measure the required data about a subject of interest.

2) Applications or end users are the entities that request
data through tasks and then utilize the information
acquired by participants.

3) Tasking entities are responsible for distribution of tasks
to participants who meet the requirements of applica-
tions. In certain architectures, end users and participants
can also act as tasking entities.

Figure 1 shows the general structure of task flow in MCS.
Task management in crowd sensing can be studied from two
perspectives: the distribution model and the nature of tasks.

A. Task Distribution Models

Task management models can be categorized according to
the way tasks are distributed among participants. The three
major categories for these association models are: centralized,
decentralized, and hybrid.

1) Centralized: A central server or tasking entity provides
the participants with different tasks to perform. For example, in
a party thermometer application, a central server could choose
a set of participants attending an event or party, and request
that they rate it. These ratings could serve other users who
are considering attending this event [2]. One major issue of a
central model is having a single point of failure for interactions
between participants and applications.
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Fig. 1. General structure of the task flow in mobile crowd sensing. Note that
end users and participants can also act as tasking entities.

2) Decentralized: In a decentralized model, each partici-
pant can become a tasking entity and decide either to perform
a task or pass it forward to other participants who might be
better-suited to fulfill the task. This decision would be based
on certain attributes of other participants such as location,
abilities, or the available hardware in her device. A decen-
tralized recruitment model is proposed in [3] which notifies
qualified participants of a forthcoming sensing activity. They
build a task criteria which includes the locations and times
of interest for the sensing activity and aim at recruiting those
participants that are likely to fulfill the task, given its criteria.
Some participants selected as recruiting nodes distribute the
tasks in certain locations, then in a decentralized manner
each participant passes the tasks to whoever matches the task
criteria. When tasks are reached to a participant with matching
similarity above a threshold, this participant keeps a copy of
the task and also distributes it to others.

3) Hybrid: A hybrid model includes parts of the centralized
and the decentralized models. In this scheme, a central server
and a set of participants who act as tasking entities build
the task management core. The bubble scheme [4], requires a
central server to maintain control of the sensing tasks, which
are allocated mostly in a decentralized way. In this model,
a task is defined and broadcasted in a particular location of
interest by a participant, called a bubble creator in this context.
The task is registered in the server and other participants
who move into the location of interest are signalled by the
central server and become bubble carriers. These carriers can
broadcast the task and can also fulfill them and report the
sensed data to the server. To guarantee a prolonged existence
of the bubbles, another set of participants who are less likely
to leave the location of interest assume the role of bubble
anchors. These bubble anchors keep broadcasting the tasks in
case the bubble creator leaves the location of interest.

B. Task Schemes

Tasks can be classified into several categories based on
features inherent to the tasks or the involved tasking entities. In
this study, we classify tasks into four major categories: event

based vs continuous, push vs pull based model, autonomous
vs coordinated, and spatial vs non-spatial. We should note that
all these scheme classifications are independent of each other
and any combination is possible.

1) Event-based vs Continuous: One way to categorize
different possible tasks is by the frequency with which the
data is requested. The frequency could either be event-based
or scheduled.

Event-based tasks are triggered when a particular situ-
ation occurs. This includes special circumstances such as
the presence of a participant at a specific location or an
ad hoc incident. For example, the tasking entity could ask
participants to act as citizen journalists and submit images
or other information from a scene of interest when an event
occurs [2].

Continuous tasks request information from the participants
periodically or frequently. For example, data could be re-
quested every other minute to monitor the speed of cars on a
specific highway, or vitals of a patient can be requested daily
to track the development of an illness.

2) Push vs Pull model: A different classification for task
management models is based on the entity that initiates the
task. The categories for this type of partition would be push
and pull.

Push model tasks are initiated by a tasking entity via
pushing the tasks on the participants’ devices. The platform
proposed in [2] uses a push and centralized model where
executable binaries of opportunistic tasks are pushed to an
optimized set of participants based on a predefined criteria.

Pull model tasks are queried and downloaded by participants
at an arbitrary time or location. A pull based task model can
be found in [5], where a set of tasks are stored in a central
tasking entity and the participants pull this information and
decide which tasks to perform.

3) Autonomous vs Coordinated: Tasks can also be catego-
rized based on the allocation scheme that is used to distribute
the tasks among the participants. Two approaches that we
consider are autonomous task selection and coordinated task
assignment [6].

Autonomous task selection is an allocation method in which
the participants have access to a set of tasks and they au-
tonomously choose one or more tasks to perform. The partic-
ipants do not necessarily need to inform the task distributing
entity of their decision. The lack of an optimization algorithm
for distributing the tasks can decrease the efficiency with
respect to sensing cost or global utility. For example, the
participants in general might prefer performing certain tasks
rather than others, which would result in, on the one hand,
unfulfilled or overdone tasks, and on the other, a waste of
resources. Another major drawback of autonomous task se-
lection is that it can generate bias in the obtained information.
For example, people in urban areas might be more inclined
to participate in a sensing task due to the greater presence of
sensors or smart phones. This bias would directly affect the
variables that are being studied, and will have an effect in the
quality of the analysis [7].

Coordinated task assignment aims at improving the quality
of the sensed data by optimizing the set of participants
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recruited to perform tasks. This optimization is based on
varied criteria including coverage, quality, sensing costs, and
credibility of the sensed data [6]. Reddy et al. [8] proposed a
recruitment process based on three stages. The first stage finds
those participants that meet the minimum requirements, the
second stage aims at maximizing the coverage over an area
or time period, and the third stage checks the participant’s
reputation over coverage and data collection. Once the appro-
priate set of tasks and participants have been chosen, and the
participants have performed the tasks, the task manager might
review the participant’s progress and evaluate them for future
recruitment.

4) Spatial vs Non-Spatial tasks: In location-based tasks,
the location of the participant plays an important role in
determining task initiation, distribution, or assignment while
non-spatial tasks can be triggered by time or other circum-
stances. Examples of spatial tasks are traffic control and
coffee-shop table availability. An example of a non-spatial
task the reporting of online retail pricing or sales volume by
participants.

III. PRIVACY THREATS IN TASK MANAGEMENT

In mobile crowd sensing, privacy concerns might discour-
age the participants from data contribution. Such concerns
include a) disclosure of participant identity, b) disclosure of
sensitive attributes including locations (e.g. home or work
address) and other private information like personal activities
or conditions (e.g. lifestyle or sickness). In MCS task man-
agement, participant privacy concerns can be aggravated either
directly via sharing real IDs, IP addresses, exact locations, or
other sensitive information, or indirectly by sharing insensitive
locations (e.g. home address inference from trajectories of
participants [9]). Designing a task management model that
preserves the privacy of participants can be challenging due
to the nature of crowd sensing tasks and task distribution
models. In this section, we investigate the information that
a participant shares with other tasking entities during task
management process and discuss how this information can
directly or indirectly breach her privacy. Our focus in this
paper is on privacy and we do not address security issues in
MCS task management.

Adversary Models
From the perspective of participant privacy, the adversaries

in MCS task management may include some or all of end users
(applications), tasking entities, and other participants based on
their involvement in task management. Here, we study the
privacy threats associated with each entity in different task
management models.

A. Semi-honest Entities
These entities are assumed to follow the task manage-

ment protocols and would not actively breach privacy of
the participants. However, semi-honest entities may exploit
any incidentally acquired information from participants to
learn their private information. Privacy attacks that could be
conducted by semi-honest entities are task tracing attacks and
location-based inference attacks.

Task Tracing Attacks: When a participant pulls specific
tasks during a tasking action, shares her preferences during a
coordinated task assignment, or notifies server of accepting a
pushed task, she may reveal some attributes such as location,
time, the task types she is interested, or some attributes of
the sensor she is carrying. These information alone might
not breach her privacy, however, linking multiple tasking
actions might allow an adversary to trace the selected tasks
by participant and consequently reveal her identity or other
sensitive attributes [5]. Some of the attributes that can be used
to trace participants are user-ids, IP addresses, or other network
information.

Location-based Inference Attacks: Spatial tasks which are
conducted frequently by a participant (e.g. continuous tasks)
might lead to disclosure of her sensitive attributes such as
home address or eventually her identification through inference
attacks [9]. In these types of tasks, even if the participant is
using the application anonymously, her trajectory might reveal
her sensitive locations.

B. Malicious entities

These entities may actively breach the privacy of partic-
ipants. Privacy attacks associated with malicious task man-
agement entities includes both aforementioned attacks along
with several active de-anonymization attacks such as narrow
tasking, selective tasking, and collusion attacks. To prevent or
stop these attacks, privacy countermeasure should be plugged
into sensors or other trusted-parties.

Narrow Tasking: In the process of task definition, a mali-
cious entity (either the application or a separate tasking entity)
might create tasks that impose strict limitations on participant
attributes or the device she is carrying (e.g., requiring a
special lifestyle or a rare sensor type to qualify for the task).
This attack, which is called narrow tasking [5] might result
in disclosure of identity or other sensitive attributes of the
participant who accepts such a strict task.

Selective Tasking: In the process of task distribution, a
malicious entity (either the application, a separate tasking
entity, or a participant) may share tasks to a limited set of
participants to be able to learn their attributes or trace them [5]
(e.g. pushing or assigning a task to only one participant).

Collusion Attack: Several applications (end users) might
collude to link the information of the participants for de-
anonymization. A malicious end user entity might create
several applications in an attempt to collect more private data.

IV. PRIVACY COUNTERMEASURES IN TASK MANAGEMENT

We categorize privacy solutions in MCS task management
based on state-of-the-art privacy mechanisms. These mech-
anisms can be adopted in MCS based on privacy threats
relative to task schemes and distribution models. Table 1
summarizes privacy threats and countermeasures for different
tasking schemes.

A. Anonymization

Anonymization techniques remove identification informa-
tion from all the interactions between the participant and other
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entities during task distribution. However, even anonymized
participants might be prone to tracing attacks and inference
attacks. We review some anonymization techniques here.

1) Pseudonyms: One of the basic methods to preserve the
anonymity of the participants includes using pseudonyms by
replacing the identification information with an alias [10].

2) Connection Anonymization: These methods can be used
to avoid network-based tracing attacks using IP addresses. One
such technique which is adopted in crowd sensing applica-
tions [5] is onion routing [11].

B. Spatio-Temporal Privacy Methods

With the growing advance of location-based services, sev-
eral spatio-temporal privacy mechanisms have been developed
recently. In MCS, location and time are two crucial pieces of
information in several task management models, therefore, us-
ing the existing spatio-temporal privacy-preserving techniques
can be challenging. Here, we study some of the applicable
methods in MCS task management.

1) Spatio-Temporal Cloaking: In some spatial task
schemes, a perturbed or cloaked location can be used when
exact locations are not required (e.g. pollution or weather mon-
itoring). Spatial cloaking or perturbation hides the participant
location inside a cloaked region using spatial transformations,
generalization, or a set of dummy locations in order to achieve
location privacy [12]. In our recent work [6] participants of a
coordinated spatial task assignment would share their cloaked
location to obtain a set of closest tasks which are optimized
for a global coverage goal.

Other approaches share exact locations for tasking; however,
they avoid location-based inference attacks by controlling the
timing of disclosures. For example, to avoid frequent revealing
of location of participants in spatial tasks, Krause et al. [13]
use a spatial obfuscation approach. In their solution, they
divide the space into a set of regions, then with a certain
probability distribution, a subset of participants is selected in
each region to report their exact location. Such method can be
used in traffic monitoring applications.

Another method to avoid inference attacks [13] assigns
spatial tasks to participants in a way that the number of
tasks for each participant is minimized. In such an approach,
there will be longer intervals between each location disclosure,
avoiding location-based inference attacks. This scheme can be
further controlled by participants by setting expressive policies
regarding the intervals in which they prefer to share their
location. We discuss these methods in IV-C.

2) Private Information Retrieval: In autonomous pull-
based tasking schemes, participants can retrieve the best
suited tasks without providing their attributes using private
information retrieval (PIR). PIR-based methods have been
adopted for location-based services recently [12] since they
guarantee cryptographic privacy by allowing data retrieval
from a database without revealing any information to the
database server about the retrieved item. In MCS, similar to
other autonomous tasking schemes, this approach will suffer
from overlapping task selection and bias since sharing entities
would not learn which tasks are retrieved.

C. Policy-based Privacy Preferences

To avoid direct or inference-based privacy breaches, par-
ticipants should be able to set fine-grained preferences to
control sharing information in a way that a curious party can
not learn or infer any private attributes. Such policies can
include specifications to ignore location-based tasks when the
participant is within specified range of some location (e.g.
home or work), ignore narrow tasks, limit the number of tasks
per time periods, or avoid sharing information that could be
linked to previously disclosed data. Another solution to avoid
inference attacks uses an incentive-based task assignment
model in which participants are rewarded for fulfilling a
task [14]. In such approaches, task costs can be defined based
on the frequency of location disclosures, so the tasking entity
will be reluctant to allocate tasks to a participant frequently.

V. DISCUSSION

In this section we discuss further challenges related to
participant privacy in MCS.

A. Private Tasking Limitations

1) Trust and Credibility: Privacy and trust generally follow
conflicting goals since trust is gained by higher accuracy and
exactness of provided data, but privacy aims at hiding or per-
turbing identifying data (which includes majority of exchanged
data in MCS) to protect the participant [7]. Furthermore, trust
issues become more challenging for anonymous tasking since
they may result in tasking to untrustworthy or unqualified
participants [10]. Anonymous participants are prone to provide
falsified or faulty data and it would be challenging to evaluate
their participation, especially if different task actions can not
be linked due to privacy mechanisms. One approach to avoid
trust issues in coordinated task management might be to assign
a task to several participants to avoid the effect of malicious
or faulty participation, however such method would result in
a waste of resources.

2) Reward-based Tasking: The challenge for rewarding
participants in the presence of privacy mechanisms is very
similar to the trust challenges since both require participant
evaluation. However, trust models need to trace and review
participants progress while incentives can be handled per task
completion without linking to other tasks. A delayed rewarding
model is proposed in [5] which aims at preventing task-reward
linkage.

3) Utility and Efficiency: Privacy mechanisms that obfus-
cate location, time, or other attributes challenge task manage-
ment with uncertain or incomplete information. Therefore, the
tasking entities may need to task a larger set of participants
or conduct more computation to reach a certainty similar to
the non-private models. In our recent work [6] we proposed
a two-stage tasking model in which participants would share
their cloaked locations rather than exact locations. Our model
consists of a central tasking server which deals with location
uncertainty and recommends globally optimized tasks to par-
ticipants, and then each participant locally refines and further
self-assigns tasks strictly following the global recommenda-
tion. Although, this model achieves a comparable utility as
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TABLE I
SUMMARY OF PRIVACY THREATS AND COUNTERMEASURES FOR DIFFERENT TASKING SCENARIOS.

Privacy Threats Tasking Scenarios Countermeasures
Task Tracing Pulling specific tasks Anonymization

Coordinated task assignment Temporal Cloaking
Push-based tasks with notification

Location-based Inference Spatial tasks Spatio-temporal cloaking
Private information retrieval

Narrow Tasking All tasking schemes Policy-based Privacy Preferences
Selective Tasking Coordinated task assignment Policy-based Privacy Preferences

Push-based tasks
Collusion Attacks All tasking schemes Policy-based Privacy Preferences

the non-private method, the sensing and computational costs
are higher due to uncertainty.

B. Task Context Privacy Concerns

In addition to how tasks are managed, task context (i.e.
captured sensor data) might also lead to privacy issues for
participants. For instance noise monitoring tasks might record
participants′ voices or if the participants continuously report
their driving habits during a trip, the destination of the trip may
still be inferred even without sharing specific locations [15].
Fine-grained privacy preferences can help participants to ig-
nore the tasks requiring sensitive contexts. Other privacy-
preserving data collection solutions can be also used to avoid
sensitive information reporting.

C. Report-based Privacy Concerns

In most applications, captured sensor data contains
time/location of collecting actions which might result in
location-based inference attacks. Moreover, by linking reports
to participants, other tracing attacks would arise. Privacy issues
during reporting is extensively studied in literature, and several
privacy-preserving data collection and aggregation methods
have been proposed [10].

D. Privacy Mechanism Enforcement

We have discussed how suitable privacy mechanisms could
be determined by the types of threats, but enforcing these
mechanisms still remains as a challenge. In MCS, privacy
mechanisms can be enforced on sensors (participants), semi-
honest tasking entities, or trusted third-parties. Several mech-
anisms such as data perturbation or cloaking could use a cen-
tralized trusted third-party or could benefit from decentralized
secure multiparty computation methods [1]. However, different
models might introduce further security issues which needs to
be considered in enforcement model decision making.

VI. CONCLUSION

Mobile crowd sensing is an emerging topic with a wide
variety of possible applications. However, the functionality of
MCS relies on the participation of individuals who might be
concerned about their privacy. In particular, task management
as a central part of crowd sensing structure poses several
threats to participant privacy that needs to be identified and
addressed. In this survey, we have classified different potential

privacy risks and outlined their solutions for task management
in MCS in an effort to raise awareness and preserve the privacy
of the participants.
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