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Abstract

We study the differentially private (DP) stochastic
nonconvex optimization with a focus on its under-
studied utility measures in terms of the expected
excess empirical and population risks. While the
excess risks are extensively studied for convex op-
timization, they are rarely studied for nonconvex
optimization, especially the expected population
risk. For the convex case, recent studies show that
it is possible for private optimization to achieve the
same order of excess population risk as to the non-
private optimization under certain conditions. It
still remains an open question for the nonconvex
case whether such ideal excess population risk is
achievable.
In this paper, we progress towards an affirmative
answer to this open problem: DP nonconvex opti-
mization is indeed capable of achieving the same
excess population risk as to the nonprivate algo-
rithm in most common parameter regimes, under
certain conditions (i.e., well-conditioned noncon-
vexity). We achieve such improved utility rates com-
pared to existing results by designing and analyzing
the stagewise DP-SGD with early momentum al-
gorithm. We obtain both excess empirical risk and
excess population risk to achieve differential privacy.
Our algorithm also features the first known results
of excess and population risks for DP-SGD with mo-
mentum. Experiment results on both shallow and
deep neural networks when respectively applied to
simple and complex real datasets corroborate the
theoretical results.

1 Introduction
Many machine learning models have the underlying
goal of minimizing the population loss of the form
minω∈Rd FE(ω) := Ez∼Z [f(ω, z)], where f is a noncon-
vex loss function of the d-dimension variable ω, and z is
data sample from the distribution Z . It is often known as
the stochastic nonconvex optimization (SNCO) problem. In
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practice, SNCO is approached by solving the nonconvex em-
pirical risk minimization (ERM) problem minω∈Rd FS(ω) :=
1
n

∑n
i=1 f(ω, zi), where zi ∈ S for i = 1, ..., n are drawn

from Z and S is the n-size training dataset.
The privacy breach of sensitive information contained by

the data samples in the training dataset has become a growing
concern. To provide rigorous privacy protection, differential
privacy (DP) [Dwork et al., 2006] has become a standard tech-
nique in privacy-preserving SNCO and ERM training [Abadi
et al., 2016], abbreviated as DP-SNCO and DP-ERM here-
after. DP works by injecting additional perturbation to the
training process to hide in probability the presence or absence
of any single data sample. For example, DP-SGD [Abadi et
al., 2016], one of the most popular DP algorithms for deep
learning, injects calibrated Gaussian noise to the stochastic
gradient in each iteration. The DP perturbation inevitably
degrades the utility of the private model compared to the non-
private counterpart. Therefore, quantifying the utility of the
DP-SNCO and DP-ERM becomes an important problem for
understanding their capability and limitation, which will be
the focus of this paper. The expected excess empirical risk
(empirical risk for short) and expected excess population risk
(population risk) are common utility measures for DP-ERM
and DP-SNCO, respectively, which are summarized in the
following definition.
Definition 1.1. (Utility measures and their relationship
[Hardt et al., 2016]) The definitions of the expected excess
population risk, expected excess empirical risk, along with test-
ing error, and generalization error, as well as their relationship
are presented as follows,

expected excess population risk︷ ︸︸ ︷
EA,S[FE(ωS)]−min

ω
FE(ω)

≤

testing error︷ ︸︸ ︷
EA,S[FE(ωS)]− ES[FS(ω∗S)]

≤ ES EA[FS(ωS)− FS(ω∗S)]︸ ︷︷ ︸
expected excess empirical risk

+EA,S[FE(ωS)− FS(ωS)]︸ ︷︷ ︸
generalization error

,

(1)

where ω∗S ∈ arg minω FS(ωS) denotes a minimizer of the
empirical risk FS, A denotes the randomized optimization
algorithm, EA denotes the expectation with respect to A; and
S denotes the training set randomly drawn from the population
distribution Z , ES denotes the expectation with respect to S;
EA,S denotes expectation with both randomness of A and S.
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For the convex loss function, the empirical risk has been
extensively studied [Bassily et al., 2014; Wang et al., 2017],
while the population risk is much less. Very recently, [Bass-
ily et al., 2019] improves the result in [Bassily et al., 2014]
and shows that the population risk of DP stochastic convex
optimization (DP-SCO) is the larger of the nonprivate popu-
lation loss of order O( 1√

n
) and the optimal excess empirical

loss of order O(

√
d log(1/δ)

nε ) under common assumptions. It
indicates that it is possible for DP-SCO to obtain the same
excess population risk as its nonprivate counterpart in most
parameter regime. [Feldman et al., 2020] shows the same
population loss performance with lower computational com-
plexity. For the nonconvex loss function, despite their practical
popularity and success in various applications, the theoretical
understanding of the utility of the DP-ERM and DP-SNCO
is much less, among which the results of the excess risks are
even rare, especially for the population risk. There are some
work that use different utility measures [Wang et al., 2017;
Wang and Xu, 2019; Wang et al., 2019a; Wang et al., 2019b]
(e.g., the gradient norm), which are not as meaningful as the
excess risks, as pointed out by [Wang et al., 2019a]. To the
best of our knowledge, [Wang et al., 2019a] is the only existing
work that studies the population risk and [Wang et al., 2017;
Wang et al., 2019a] are the only known results for the empiri-
cal risk, which are detailed as follows.

1.1 Related Works and Gaps

Existing Excess Empirical Risk for Nonconvex Loss

For the Empirical risk, E-1) [Wang et al., 2019a] analyzes the
DP gradient langevin dynamics (GLD) and obtains O( 1

nε2 +
d

log(n) ) for general nonconvex and smooth loss, under T →
+∞ and log(n) ≥ d to be meaningful. In addition, they
improve the excess empirical risk to C0(d)

nτ ετ under the number
of iterations T → +∞ for τ ∈ (0, 1) by a finer analysis
of the same DP-GLD algorithm. E-2) With the additional
assumption of the loss satisfying the Polyak-Łojasiewicz (PL)
condition, [Wang et al., 2017] obtains O(d log

2(n) log(1/δ)
n2ε2 ) by

analyzing the DP full gradient descent. E-3) Although [Wang
et al., 2019a] shows that there exists algorithm that provides
the Õ( dnε ) excess empirical risk for general non-convex and
smooth loss, which matches the rate under general convex
setting, it is inapplicable in practice since it has an exponential
computational complexity of O((1 + n

d )dn).

Existing Excess Population Risk for Nonconvex Loss

For the Population risk, P-1) [Wang et al., 2019a] obtains
O( 1

nε2 + d
log(n) ) for general non-convex and smooth loss by

analyzing DP-GLD. P-2) For two special non-convex losses of
the generalized linear model [Foster et al., 2018] and the robust
regression [Loh and Wainwright, 2015], [Wang et al., 2019a]

obtains O( d
1
4√
nε

) population loss by analyzing the DP Frank-

Wolfe algorithm, which can be improved to O(

√
log(nd)√
nε

) if
the constraint is the `1 norm ball.

Gaps
In addition to the under-studied situation, there are some key
limitations of the above existing work, which raise the follow-
ing three gaps.

The first gap lies between the private algorithms analyzed
in existing theory and the ones applied in practice. The al-
gorithms analyzed above may not best suit large-scale ma-
chine learning problems nowadays, e.g., deep neural networks
(DNN). In fact, these algorithms all require full gradient com-
putation, which results in high per-iteration computation and
poor scalability. In practice, SGD-based optimization algo-
rithms are more popular in such large-scale problems. For
example, DP-SGD has been offered by Tensorflow for private
deep neural network training. For the convex case, it is possi-
ble to obtain the optimal excess risks by analyzing DP-SGD
[Bassily et al., 2019]. It is unknown in theory how the DP-
SGD-based algorithms perform in terms of the excess risks
under the nonconvex loss setting, despite its scalability and
practical popularity.

The second gap lies in the SGD algorithm design differ-
ences between the private and nonprivate settings. For the non-
private SGD, there are many popular algorithm designs that
further improve its performance. For one example, it is pop-
ular for the nonprivate SGD to utilize the stagewise learning
rate scheduling (also known as the geometric step decay learn-
ing rate) [Yuan et al., 2019; Ge et al., 2019; Davis et al., 2019;
Zhao et al., 2020], which decreases the learning rate by a
certain factor after certain iterations. Such stagewise step-
size scheduling has been popularly adopted in practice (e.g.,
offered by Tensorflow, PyTorch) and has recently been an-
alyzed in theory [Yuan et al., 2019; Zhao et al., 2020;
Davis et al., 2019; Chen et al., 2019], where O( 1√

n
) pop-

ulation risk [Yuan et al., 2019; Zhao et al., 2020] is obtained
under well-conditioned nonconvexity assumptions known to
be held by some of deep neural networks. However, all ex-
isting excess risks analysis of SGD/GD-based algorithms in
both convex and nonconvex settings only analyzes the con-
stant step-size setting. For another example, the momentum
technique [Polyak, 1964] is also popular in nonprivate SGD
for DNN training, but there is only a few private counterpart
[Bu et al., 2019] providing merely empirical utility results
under constant learning rate. It is unknown how the designs
of the stagewise step-size and momentum affect the DP-SGD
and whether it is possible to obtain improved excess risks in
theory given these designs.

The third gap lies between the existing excess risks of the
private algorithms and the ones for nonprivate algorithms.
Under the high-dimensional setting of n = Θ(d) consid-
ered by [Bassily et al., 2019; Feldman et al., 2020], all
existing private population risks (i.e., P-1,P-2) are worse
than the nonprivate risks of O( 1√

n
) [Yuan et al., 2019;

Zhao et al., 2020] obtained under well-conditioned nonconvex-
ity assumptions. However, for the convex losses, the private
population risk can match the nonprivate one in most parame-
ter regimes [Bassily et al., 2019; Feldman et al., 2020]. For
the empirical risks, although E-2 has achieved a smaller rate, it
is still worse than theO(d log(1/δ)n2ε2 ) rate achievable for strongly
convex losses [Zhang et al., 2017]. It is unknown whether it is
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possible to improve the excess risks to match the nonprivate
ones at least for well-conditioned nonconvexity problems.

1.2 Our Contributions
Overview
In this paper, we progress towards answering the open prob-
lem that for nonconvex loss, whether the private optimization
has a chance to achieve the same excess population risk as
the nonprivate optimization. We provide much improved rates
of both the expected excess empirical and population risks
for the non-convex loss compared to existing works. We the-
oretically analyze the DP-SGD with stagewise learning rate
and momentum under the same assumptions used by non-
private optimization [Yuan et al., 2019; Zhao et al., 2020;
Ramezani-Kebrya et al., 2018]. We also conduct experi-
ments on both shallow (2-layer convolution neural network
[Lawrence et al., 1997]) and deep neural networks (residual
net ResNet-20 [He et al., 2016]) for simple (MNIST [LeCun et
al., 1998]) and complex (CIFAR-10 [Krizhevsky et al., 2009])
datasets, respectively.

Algorithm Design
We propose a Differentially Private stagewise SGD with Early
Momentum (DpageEM). To close Gap 2, we consider 1)
stagewise learning rate scheduling in DP-SGD, which de-
creases the learning rate by a factor after certain iterations;
2) the early momentum strategy [Ramezani-Kebrya et al.,
2018], which switches the momentum on during the early iter-
ations and switches it off for the later iterations in each stage.
The early momentum not only facilitates the need to strike a
trade-off between the training efficiency and generalization
performance, but also includes the DP-SGD without momen-
tum as a special case. Thus, our theoretical results obtained
for DpageEM can be easily applied to DP-SGD.

Assumptions
We analyze its excess empirical and population risks under
the same set of assumptions adopted by nonprivate optimiza-
tion, which include common mild assumptions like Lipschitz
smoothness and continuity in Assumption 2.1 & 2.2, together
with the Polyak-Łojasiewicz (PL) condition in Assumption
2.4 and one point weakly quasi-convex Assumption 2.5. The
latter two have been observed and proved for shallow and deep
neural networks as detailed in Remark 1.

Excess Risks
To the best of our knowledge, our excess risks are the first
known theoretical results for the momentum technique under
the private setting, especially for nonconvex losses. Analyzing
both excess risks is a nontrivial task. Neither the convergence
nor the uniform stability is known for the stagewise early
momentum SGD even without the private restriction. As a
result, it requires us to develop the following two new results
as the stepping stone towards the private excess risks: 1) We
provide the convergence of DpageEM in Theorem 3.2, which
is general enough to include the momentum always-on and
always-off as special cases. 2) We provide the uniform stability
result of DpageEM in Thoerem 3.3, which shows the tradeoff
between the number of iterations of momentum-on and the
generalization error. By neglecting the DP noise, these two

results can be of independent interest for nonprivate stagewise
early momentum SGD for DNN optimization.

We obtainO(d log(1/δ)n2ε2 ) excess empirical risk for DpageEM
with (ε, δ)-DP, which is the same order in the dependence
of the training data size n and model dimension d with the
strongly convex loss setting [Zhang et al., 2017]. However,
our assumptions are much weaker than [Zhang et al., 2017] as
discussed in Remark ??.

We obtain O(max{d log(1/δ)n2ε2 , 1√
n
}) excess population risk,

where the O(d log(1/δ)n2ε2 ) term is the same as its private excess
empirical risk and the O( 1√

n
) term matches the population

risk of the nonprivate stagewise SGD [Yuan et al., 2019; Zhao
et al., 2020]. Thus, it indicates that it is possible for the
private SNCO to have the same rate of the population risk as
the nonprivate SNCO in most parameter regimes in practice.
In the same high-dimensional regime considered in [Bassily
et al., 2019; Feldman et al., 2020] where n = Θ(d), our
population risk is better than the O(d

1/4
√
nε

) = O( 1

n
1
4 ε

1
2

) rate

(i.e., P-2) in [Wang et al., 2019a], which is obtained for the
specific generalized linear model [Foster et al., 2018] and
robust regression [Loh and Wainwright, 2015] problems by
the DP Frank-Wolfe algorithm that is not popular for DNN.

2 Preliminaries
2.1 Stochastic Nonconvex Optimization
To show that private optimization has the same order of util-
ity with nonprivate optimization, we invoke the same set
of assumptions for both by following [Yuan et al., 2019;
Zhao et al., 2020; Ramezani-Kebrya et al., 2018]. For the
nonconvex loss function f(ω, z), we assume it is bounded and
without loss of generality, |f(ω, z)| ≤ 1. We also make the
following common assumptions.
Assumption 2.1. (Lipschitz continuous) f(ω, z) is L-
Lipschitz continuous in ω for any z, i.e., ∀ω,ω′ ∈ Rd, we
have |f(ω, z)− f(ω′, z)| ≤ L‖ω − ω′‖2.

Assumption 2.2. (Lipschitz smoothness) f(ω, z) is β-
Lipschitz smooth in ω for any z, ∀ω,ω′ ∈ Rd, we have
‖∇f(ω, z)−∇f(ω′, z)‖2 ≤ β‖ω − ω′‖2.

Assumption 2.3. (Bounded variance) The variance of
the stochastic gradient is bounded, i.e., Ei[‖∇f(ω, zi) −
∇FS(ω)‖22] ≤ σ2, for any ω.

In addition, the loss function is well-conditioned nonconvex
as depicted by the following two assumptions.
Assumption 2.4. (Polyak-Łojasiewicz (PL) condition)
FS(ω) satisfies µ-Polyak-Łojasiewicz (PL) condition, i.e.,
2µ(FS(ω)−minω FS(ω)) ≤ ‖∇FS(ω)‖22.

Assumption 2.5. (One point weakly quasi-convex) FS(ω)
is one point θ-weakly quasi convex, i.e., for any ω,
〈∇FS(ω),ω − ω∗S〉 ≥ θ(FS(ω) − FS(ω∗S)), where ω∗S is
the optimal solution.

Remark 1. (Consistency of the assumptions with some
deep neural networks) Both assumptions are satisfied with
some deep learning losses. For the PL condition, it has been
empirically observed or theoretically proved for shallow (e.g.,
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two-layer) and deep neural networks (DNN) [Hardt and Ma,
2017]. In fact, throughout the paper, the assumption only
needs to hold locally instead of in the entire space. That is,
[Allen-Zhu et al., 2019] shows that this relaxed local PL con-
dition holds for two-layer and deep overparameterized neural
networks in a ball that contains the global optimum and cen-
ters around a random initial solution. For the one point weakly
quasi-convex assumption, [Yuan et al., 2019] shows that it is
satisfied by some deep neural networks (e.g., ResNet [He et
al., 2016]) together with the PL condition. As for the range of
the parameters, we consider µ� 1 (i.e., ill-conditioned) and
θ ≈ 1 which are consistent with the empirical observations
about DNN [Yuan et al., 2019].

2.2 Differential Privacy

Definition 2.1. (Neighboring datasets) Let the data universe
be Z and S,S′ be two datasets of n observed data samples
drawn from Z with distribution Pz. Then, S and S′ are called
neighboring datasets if they differ in exactly one data sample.

Definition 2.2. (Differential privacy) A randomized algo-
rithm A is (ε, δ)-differentially private, if for all neighboring
datasets S,S′, and for any events O in the output range of A,
we have P[A(S) ∈ O] ≤ eε · P[A(S′) ∈ O] + δ, where the
probability is over the random coins of A.

Definition 2.3. (Gaussian mechanism) Given a query q :
Zn → Rd, the Gaussian mechanism is defined as:M(S, q) =
q(S) + ξ, where ξ is drawn from Gaussian distribution
N (0, π2Id).

Theorem 2.1. ([Abadi et al., 2016]) For an L-Lipschitz con-
tinuous loss function f , there exists constants c1 and c2 so
that given the sampling probability q = B

n and the number of
total iterations T , for any ε < c1q

2T , a stochastic gradient-
based algorithm with batch size B and stochastic gradient
injected with noise from Gaussian mechanism with standard
deviation Lπ, is (ε, δ)-differentially private for any δ > 0 if

π ≥ c2
q
√
T log(1/δ)

ε .

2.3 Stability and Generalization

The uniform stability is a well-known technique exploited to
study the generalization performance of the SGD algorithms
[Hardt et al., 2016].

Definition 2.4. (Uniform stability) A randomized algorithm
A is called to satisfy α-uniform stability, if for any neighboring
datasets S,S′ ∈ Zn the following holds,

sup
z

EA[f(A(S), z)− f(A(S′), z)] ≤ α. (2)

Theorem 2.2. (Generalization error by uniform stability,
Theorem 2.2 in [Hardt et al., 2016]) If an algorithm A :
Zn → W satisfies α-uniform stability with respect to loss
f :W ×Z → R, its generalization error is bounded by α:

EA,S[FE(A(S))− FS(A(S))] ≤ α. (3)

Algorithm 1 DPageEM

Input: Dataset S = {z1, ..., zn}, step-size series {ηk}, num-
ber of inner iterations {T k}, number of iterations with
momentum on {tkMon}, momentum parameter %, DP noise
parameter π, batch size B, initialization ω0;

1: for k = 1, ...,K do
2: ωk = DP-EMSGD(FS,ω

k−1,ωk−1, ηk, T k, tkMon, %);
3: end for

Output: ωK ;

Algorithm 2 DP-EMSGD(FS,ω0,ω−1, η, T, tMon, %)

1: for t = 1, ..., T do
2: Draw mini-batch with index It ∈ {n} uniformly ran-

dom, where |It| = B;
3: Draw DP noise ξt ∼ N (0, π2Id);
4: ωt+1 = ωt− η( 1

B

∑
i∈It ∇f(ωt, zi) + ξt) + %t(ωt−

ωt−1), where %t = % · True(t ∈ {1, . . . , tMon});
5: end for

Output: ωO randomly sampled from ω1, ...,ωT ;

3 DP Stagewise Early Momentum SGD with
Step Decay Step-size

3.1 Algorithm Description
Algorithm 1 presents the DP-SGD with stagewise learning
rate and early momentum (DpageEM), which runs T k inner
iterations under the learning rate ηk at stage k and iterates
for K outer iterations. Within each stage k, we use the DP
early momentum SGD (Algorithm 2), which switches the
momentum on for iterations t = 1, ..., tkMon by setting the
momentum parameter %t = %, and switches the momentum
off for iterations t = tkMon + 1, ..., T k by setting %t = 0 (Mon
is short for Momentum on).

3.2 Algorithm Analysis
Privacy Analysis
The following theorem provides the privacy guarantee of Al-
gorithm 1, which follows 1) the moments accountant analysis
in Theorem 3.1 from [Abadi et al., 2016]; and 2) the privacy
amplification result in [Balle et al., 2018] that the amplifi-
cation ratio is the same under the uniform sampling without
replacement and under the Poisson sampling when B

n = q.

Theorem 3.1. (Differential privacy of Algorithm 1) Sup-
pose Assumptions 2.1 and 2.2 hold. There exist some con-
stants c1, c2 > 0 such that given the sampling ratio B

n

and the number of total iterations
∑K
k=1 T

k, for any ε <
c1(Bn )2

∑K
k=1 T

k, Algorithm 1 is (ε, δ)-differentially private
for any δ > 0 under the choice of

π2 ≥ c22
∑K
k=1 T

kL2 log(1/δ)

n2ε2
. (4)

Remark 2. We emphasize that the privacy design and DP
analysis are not the main tasks of this paper, so we follow this
widely accepted DP technique in deep learning. It enables a di-
rect comparison with the existing works on excess risks [Wang
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et al., 2019a] which also utilize moments accountant for DP
analysis. It is possible to use more advanced DP analysis for
a tighter privacy amplification result derived for the uniform
sampling without replacement in [Wang et al., 2019c], as well
as tighter privacy composition, e.g., the Gaussian DP [Dong
et al., 2019] used in [Bu et al., 2019].

Excess Empirical Risk
In the following, we provide the excess empirical risk and
excess population risk results of DpageEM. To obtain the
excess risks, we analyze the convergence and uniform stability
of the SGD with early momentum. As the early momentum
has not been analyzed with stagewise step-size before, both
results are new and the analysis is also nontrivial even without
the DP consideration. The detailed proof (and all proofs for
the remaining results) can be found in Supplement1.

We first analyze the excess empirical risk of DpageEM,
which has better rate than existing ones (E-1 to E-3).
Theorem 3.2. (Excess empirical risk) Suppose Assumptions
2.1–2.5 hold. By setting π in eq.(4), ηk = ( 1

2 )kη0, T k =

(2)kT 0, tkMon = (2)kt0Mon, where η0 ≤ max{ θ(1−%)
2

2β , 1}
and η0((T 0 − t0Mon) + 1

2(1−%) t
0
Mon) = 1

c4θµ
for some 0 <

c4 < 2 (which gives η0(T 0 − t0Mon + t0Mon
1

2(1−%) ) >
1

2θµ ),
in Algorithm 1, with Γ = 1

4θµη0
1

(T 0−t0Mon)+
t0
Mon

2(1−%)

< 1
2 ,

E[FS(ωK)− FS(ω∗S)] ≤ (
1

2
)K
(
E[FS(ω0)− FS(ω∗S)]

+
1

1− 2Γ

(T 0 − t0Mon) +
t0Mon
(1−%)3

(T 0 − t0Mon) +
t0
Mon

2(1−%)

· η
0σ2

2θB

)

+
1

1− 2Γ

(T 0 − t0Mon) +
t0Mon
(1−%)3

(T 0 − t0Mon) +
t0
Mon

2(1−%)

2c22dL
2 log(1/δ)η0

c4θ2µn2ε2
.

(5)

By setting K = Ω(log( n2ε2θ2µ
dL2 log(1/δ) )), we obtain the excess

empirical risk: E[FS(ωK)− FS(ω∗S)] ≤ O( dL
2 log(1/δ)

θ2µn2ε2
).

Remark 3. The above theorem shows that the excess em-
pirical risk of DpageEM is O(d log (1/δ)

n2ε2 ), which matches the
result in [Zhang et al., 2017]. However, we obtain it under as-
sumptions of weak quasi-convexity and PL-conditions, which
are much weaker than their strongly convex assumption. Com-
pared with nonconvex settings under different utility measures
and different assumptions, our result is also much better. It
indicates that it is possible to achieve good excess empirical
risk by the practical step-size scheduling.
Remark 4. By the generality of the analysis, the above result
also implies that the two special cases, i.e., stagewise DP-SGD
with momentum always on and always off, also have the same
order of excess empirical risk. Thus, our result can also be
flexibly applied to DP-SGD with stagewise learning rate.

Excess Population Risk
In this part, we provide the excess population risk of DpageEM.
We utilize the uniform stability technique to obtain the gen-
eralization error (i.e., Thm.2.2) [Hardt et al., 2016]. The

1https://www.dropbox.com/sh/ldtrfa3ihx51dkz/
AADWQD1qvNEeiLFYgRn5I30ba?dl=0

following Theorem 3.3 presents the α-uniform stability of
DpageEM, which is nontrivial because it not only deals with
the additional DP noise, but also extends the stability re-
sult from the constant step-size SGD with early momentum
[Ramezani-Kebrya et al., 2018] to the stagewise setting with
step decay step-size scheduling. Although the momentum
technique has been considered in the stagewise setting [Chen
et al., 2019; Zhao et al., 2020], they only provide the conver-
gence result, while we also study the stability, generalization
and population risk. To the best of our knowledge, this is
the first uniform stability and generalization result for the
momentum SGD with stagewise step-size.
Theorem 3.3. (α-Uniform stability) With the same assump-
tions and parameter settings as in Theorem 3.2, Algorithm 1
is α-uniformly stable with

α =
2L2

c4θµn
(TK)qe2%(t

K
Mon−1)(log(1 +

1

2%
)− 1

2
log(1 +

1

%tKMon

))

+
2L2

(n− 1)β
(TK)q +

(TK + 1)B

n
, where q = (1− 1

n
)
β

c4θµ
.

Remark 5. Theorem 3.3 reflects the tradeoff between the
stability, generalization performance, excess population risk
against the training efficiency. According the first term in
Theorem 3.3, α increases when tKMon becomes larger, i.e., the
stability of the algorithm gets worse when the momentum
switches on for more iterations. By Theorem 2.2, the general-
ization performance is negatively affected by the momentum,
which further implies that the population risk will be larger.
Theorem 3.4. (Excess population risk) Under the same as-
sumptions and parameter setting as in Theorem 3.2, we have
the excess population risk of Algorithm 1,

EA,S[FE(ωK)−min
ω
FE(ω)] ≤ O(max{dL

2 log(1/δ)

θ2µn2ε2
,

√
1

θµn
}).

Remark 6. The above theorem shows that the excess popu-
lation risk of DpageEM is the larger one between the excess
empirical risk of DpageEM and the excess population risk of
the nonprivate stagewise SGD. Thus, we have shown that DP-
SGD-based method is able to match the nonprivate population
risk in most parameter regimes for the nonconvex losses with
the same assumptions with the nonprivate algorithms. This
result greatly improves the O( log(1/δ)

nε2 + d
log(n) ) in P-1 which

is for general nonconvex loss and obtained by DP-GLD with
constant step-size and full gradient descent. It also improves

over the O( (d log(1/δ))
1
4√

nε
) and O(

√
log(nd)√
nε

) in P-2, which are
obtained for the special nonconvex generalized linear model
[Foster et al., 2018] and nonconvex robust regression [Loh
and Wainwright, 2015] by the DP Frank-Wolfe algorithm.

4 Numerical Experiments
4.1 Experiments Setup
Datasets and Models We conduct experiments on two real
datasets: MNIST and CIFAR-10. For the simpler MNIST
dataset, we consider a shallow convolution neural network
(2-layer CNN); For the more complex CIFAR-10 dataset, we
use a deeper neural network of ResNet-20. ELU activation
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Figure 1: Training/Testing accuracy of CNN on MNIST. ε = 8.

function is used. The assumptions made for theoretical anal-
ysis are (approximately) satisfied by the empirical settings
[Yuan et al., 2019]. The experiment details and additional
experiment results can be found in Supplement.

Compared Methods We compare the proposed methods:
DPageEM with momentum always off (DPageS) and DP early
momentum SGD with stagewise learning rate (DpageEM)
with the following methods: 1) nonprivate SGD with stage-
wise learning rate (nonpri-SGD-stage); 2) DP-SGD with con-
stant learning rate (DP-SGD-const); 3) DP-SGD with linear
decayed learning rate with respect to the training iteration t
(DP-SGD-c/t); 4) DP-SGD with polynomial decayed learning
rate with respect to the square root of the training iteration
(DP-SGD-c/

√
t); 5) DP momentum SGD with constant learn-

ing rate (DP-SGDM-const); 6) DP early momentum SGD with
constant learning rate (DP-SGDEM-const).

4.2 Experiments Results and Discussions
We plot the training and testing accuracy versus the number of
iterations for all algorithms under different privacy parameters
ε in Figure 1-2. The key observations and discussions are
summarized as follows:
1) DPageS achieves the best training and testing accuracy
among the private algorithms in all experiment settings, which
indicates that stagewise learning rate indeed improves the
training performance. Thus, this empirical observation corrob-
orates the improved excess empirical and population risks.
2) DpageEM has better accuracy than DP-SGDM-const and
DP-SGDEM-const in all experiment settings. Also, DP-
SGDM-const performs the worst compared to the early mo-
mentum methods. The early momentum methods perform
worse than DP-SGD without any momentum. Thus, it indi-
cates that momentum trades the utility for efficiency and early

Figure 2: Training/Testing accuracy of ResNet-20 on CIFAR-10.
ε = 10.

momentum can help make an explicit trade-off by adjusting
the ratio of the momentum-on iterations.
3) The performance gap between private and nonprivate mod-
els corresponding to the training and testing accuracy is
smaller for shallow neural networks (2-layer CNN) applied to
simpler dataset (MNIST), while becoming larger for deeper
neural networks (ResNet-20) applied to more complex dataset
(CIFAR-10). It indicates opportunities of future improvements
for DP optimization targeted at deeper neural networks.

5 Conclusion
In this paper, we studied the expected empirical and population
risks of nonconvex DP-ERM and DP-SNCO by designing and
analyzing DP-SGD-based algorithms. In order to reduce the
gap between the nonprivate algorithms with designs popular
in practice and the private algorithms analyzed in theory, we
introduced and analyzed the DP-SGD with the stagewise step-
size and momentum designs. Under the same assumptions
that are observed and proved for nonprivate nonconvex learn-
ing, the proposed algorithm is able to reach improved excess
risks over existing results and the excess population risk can
match the nonprivate setting. Experiments on both shallow
and deep neural networks when respectively applied to simple
and complex datasets corroborate the theoretical results. In
the future, we will study the excess risks for other types of
nonconvex optimization algorithms and under more general
assumptions, e.g., nonsmooth loss function.
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