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Abstract—Deep learning models trained on large-scale data
have achieved encouraging performance in many real-world
tasks. Meanwhile, publishing those models trained on sensitive
datasets, such as medical records, could pose serious privacy
concerns. To counter these issues, one of the current state-of-
the-art approaches is Private Aggregation of Teacher Ensembles,
or PATE, which achieved promising results in preserving the
utility of the model while providing a strong privacy guarantee.
PATE combines an ensemble of “teacher models” trained on
sensitive data and transfers the knowledge to a “student” model
through the noisy aggregation of teachers’ votes for labeling
unlabeled public data which the student model will be trained on.
However, the knowledge or voted labels learned by the student
are noisy due to private aggregation. Learning directly from
noisy labels can significantly impact the accuracy of the student
model. In this paper, we propose the PATE++ mechanism, which
combines the current advanced noisy label training mechanisms
co-teaching(+) with the original PATE framework to enhance its
accuracy. A novel structure of Generative Adversarial Nets with
one generator and two discriminators is developed in order to
integrate them effectively. Furthermore, we discuss the intrinsic
limitations of the "update-by-disagreement" method in the co-
teaching+ mechanism and develop a novel noisy label detec-
tion mechanism for semi-supervised model training to further
improve student model performance when training with noisy
labels. We evaluate our method on Fashion-MNIST and SVHN
to show the improvements on the original PATE on all measures.

Index Terms—Differential Privacy, Deep Learning, Noisy La-
bels

I. INTRODUCTION

Training deep learning models requires large-scale data that
may be sensitive and contain user’s private information, such
as detailed medical histories and personal messages or pho-
tographs [1]–[3]. Publishing or sharing those models trained
on private data directly could cause information leakage and
lead to serious privacy issues, as adversaries could exploit the
trained models to infer or reconstruct (the features of) the
training data [4], [5].

Differential privacy (DP) [6], [7] has demonstrated itself
as a strong and provable privacy framework for statistical
data analysis and recently been explored to protect privacy
of training data when training deep learning models [8]–[10].
Phan et al. [11] explore the objective function perturbing
method and use it to train a deep autoencoder satisfying
DP. However, it may not be trivial to generalize to other

deep learning models. One widely accepted way to provide
a rigorous DP guarantee for training neural network models
on sensitive data is to use differentially private Stochastic
Gradient Descent (DP-SGD) which adds Gaussian noise to the
gradients in each iteration during the SGD based optimization
process [8]. However, as the model goes deeper, their method
becomes less effective.

Another promising approach is Private Aggregation of
Teacher Ensembles, or PATE, which trains multiple teacher
models on disjoint sensitive data and transfers the knowledge
of teacher ensembles to a student model by letting the teachers
vote for the label of each record from an unlabeled public
dataset [9], [12]. The teachers’ votes are aggregated through
a differentially private noisy-max mechanism, which is to add
DP noise to the number of each label’s votes first and then
take the label with the majority count as the output. Finally,
the student model is trained on the partially labeled public
dataset in a semi-supervised fashion and published, while the
teacher models are kept private. Compared to DP-SGD, PATE
achieves higher accuracy with a tighter privacy guarantee.
Meanwhile, the PATE method is independent of the learning
algorithms and can be applied to different model structures
and to datasets with various characteristics. However, the
knowledge transferred from teachers to the student, which are
noisy-max voted labels, contain a certain proportion of errors
or noisy labels, and the proportion has a positive relationship
with the level of privacy guarantee that PATE provides and a
negative impact on the accuracy of the student model.

In this paper, we propose an enhanced framework PATE++
by incorporating the start-of-the-art noisy label training mech-
anism into PATE to further improve its practical applicability.
PATE++ makes several novel contributions. First, we modify
the student model in the original PATE, a generative adver-
sarial network (GAN) [13] with a semi-supervised training
strategy [14], by adding another discriminator to the structure
of GAN. The purpose of the second discriminator is to enable
co-teaching [15] with the first discriminator for robust training
with noisy labels. Second, to further exploit the benefit of
semi-supervised training, we propose a novel noisy label
detection mechanism based on the co-teaching framework
and move the data with detected noisy labels from labeled
dataset to unlabeled dataset instead of excluding them com-
pletely from the training process. We evaluate our framework
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on Fashion-MNIST and SVHN datasets. Empirical results
demonstrate that our new PATE structure with additional noisy
label detection and switching (from labeled data to unlabeled
data) mechanism outperforms the original PATE in privacy-
preserving model training. Our work further improves the
practicality and operability to privately and safely train deep
learning models on sensitive data.

II. PRELIMINARIES

In this section, we introduce the definitions of differential
privacy [6], and the two essential components of our approach:
(1) the PATE framework which was first developed by Paper-
not et al. in [12] and later improved by Papernot et al. in [9];
(2) the co-teaching mechanism for robust model training with
noisy labels and the improved co-teaching+ mechanism [16].

A. Differential Privacy

Differential Privacy (DP) ensures the output distributions of
an algorithm are indistinguishable with a certain probability
when the input datasets differ in only one record, which is
achieved by adding some randomness to the output. Both
Laplacian noise and Gaussian noise are widely used to achieve
DP, and the scale of the noise is calibrated according to the
privacy parameter(s) ε (and δ) as well as the sensitivity of the
algorithm [7].

Definition 1. ((ε, δ)-Differential Privacy) [7]. Let D and D′
be two neighboring datasets that differ in at most one entry. A
randomized algorithm A satisfies (ε, δ)-differential privacy if
for all S ⊆ Range(A): Pr [A(D) ∈ S] ≤ eεPr [A(D′) ∈ S]+
δ, where A(D) represents the output of A with the input D.

Rényi Differential Privacy (RDP) generalizes (ε, 0)-DP in
the sense that ε-DP is equivalent to (∞, ε)-RDP.

Definition 2. (Rényi Differential Privacy (RDP)) [17]. A
randomized mechanism A is said to guarantee (λ, ε)-RDP
with λ ≥ 1 if for any neighboring datasets D and D′,

Dλ(A(D)‖A(D′)) =

1

λ− 1
logEx∼A(D)

[(
Pr[A(D) = x]

Pr [A (D′) = x]

)λ−1
]
≤ ε.

In the above definition, Dλ(A(D)‖A(D′)) indicates the
Rényi divergence of order λ between A(D) and A(D′).
RDP satisfies the adaptive sequential composition property
of the privacy guarantee as stated in Proposition 1. The
self-composition property of two RDP mechanisms can be
generalized to the sequence of mechanisms as in Theorem
1.

Proposition 1. (RDP Composition) [17] Let f : D 7→ R1 be
(α, ε1)-RDP and g : R1× D 7→ R2 be (α, ε2)-RDP, then the
mechanism defined as (X,Y ), where X ∼ f(D) and Y ∼
g(X,D), satisfies (α, ε1 + ε2)-RDP.

Theorem 1. (Sequence Composition) [9]. If a mechanism A
consists of a sequence of adaptive mechanisms A1, ..., Ak
such that for any i ∈ [k],Ai guarantees (λ, εi)-RDP, then A
guarantees

(
λ,
∑k
i=1 εi

)
-RDP.

Theorem 2. (From RDP to (ε, δ)-DP) [17]. If a mechanism A
guarantees (λ, ε)-RDP, then A guarantees

(
ε+ log 1/δ

λ−1 , δ
)

-DP
for any 0 < δ < 1.

Theorem 2 reveals the relationship between (ε, δ)-DP and
(λ, ε)-RDP. Both of them are relaxed from pure ε-DP, while
RDP equipped with Gaussian noise has better composition
property when analyzing the accumulated privacy loss.

Corollary 1. (Gaussian Mechanism for RDP) [17] Let f :
D 7→ R be a real-valued function. If A has sensitivity 1, then
the Gaussian mechanism GσA = f(D) + N

(
0, σ2

)
satisfies

(α, α/(2σ2))-RDP, where N
(
0, σ2

)
is normally distributed

random variable with standard deviation σ2 and mean 0.

B. The PATE Framework

Figure 1 illustrates the framework of PATE borrowed from
[12]. It consists of an ensemble of teacher models and a student
model. Each teacher is trained on a disjoint subset of sensitive
data that contains user’s private information that needs to be
protected. Teacher models can be flexibly chosen to fit the
data and task. After teachers are trained, the knowledge that
teachers learned from sensitive data will be transferred to the
student in a private manner. More specifically, at prediction,
teachers independently predict labels for the queried data from
an unlabeled public dataset. The votes assigned to each class
will be counted to form a histogram. To ensure DP, Laplacian
or Gaussian noise will be added to each count. The final
prediction result for the queried data will be the label with
the most votes after adding the noise.

Fig. 1. Overview of the PATE framework: (1) an ensemble of teachers is
trained on disjoint subsets of the sensitive data, (2) a student model is trained
on public data labeled using the ensemble.

The student model in the PATE framework uses GAN
with semi-supervised learning. During student model training,
labeled public data are fed into the discriminator D of GAN
to form the supervised cross-entropy loss while unlabeled data
and generated data from generator G (labeled as an additional
‘generated’ class) are fed into D to form the unsupervised loss.
Feature matching is used to increase the stability of GAN by
involving a new objective for G, which requires the activations
of real data and generated data on an intermediate layer of D to
be as similar as possible through gradient-based optimization.

The initial PATE uses Laplacian noise for the perturbation
and moments accountant [8] to compose the total privacy cost
for multiple predictions. The improved PATE uses Gaussian
noise based on RDP. Additionally, they proposed a selec-
tive aggregation mechanism called the confident Gaussian
NoisyMax aggregator (Confident-GNMax) as in Algorithm
2. Teacher ensembles will only answer the queries if their
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votes have strong consensus, which is checked privately. This
mechanism benefits both privacy and utility. The privacy cost
is small when most teachers agree on one vote. Meanwhile,
when most teachers agree, the prediction result is more likely
to be correct. However, even with the Confident-GNMax
mechanism, the voted labels still contain a certain ratio of
errors due to the noisy aggregation. Additionally, in order to
achieve a tighter privacy guarantee, larger noise is needed for
perturbing the votes, thus causing more noise in the student
training dataset, which severely affects the utility of the trained
student model.

C. Co-teaching and Co-teaching+ Mechanisms
Deep learning models have enough capacity to remember all

training instances even with noisy labels, which leads to bad
generalization ability [18]. Han et al. [15] propose a simple
but effective mechanism called co-teaching for training deep
models with the existence of noisy labels. Their method is
based on the observation that during training, models would
first memorize or fit training data with clean labels and then
those with noisy labels [19]. Co-teaching maintains two net-
works with the same structure but independent initialization.
In each mini-batch of data, each network selects a ratio
of small-loss instances as useful knowledge and teaches its
peer network with such useful instances for updating the
parameters. Intuitively, small-loss instances are more likely to
be the ones with correct labels, thus training the network in
each mini-batch using only small-loss instances is more robust
to noisy labels.

In the early stage of co-teaching, due to independent and
random parameter initialization, two networks have different
abilities to filter out different types of error using the small-
loss trick. However, this divergence between two networks
will gradually diminish with the increase of training epochs,
which decreases the ability to select clean data and increases
the accumulated error. To solve this issue, Yu et al. introduce
the “Update by Disagreement” strategy to co-teaching and
name the improved mechanism co-teaching+ [16]. Similar
to co-teaching, co-teaching+ maintains two networks simul-
taneously. In each mini-batch of training, two networks feed
forward and predict the same batch of data independently first,
and then a ratio of small-loss instances will be chosen by
each network only from those data with disagreed predictions
between two networks and fed to each other for parameter
update. This disagreement-update step keeps the constant
divergence between two networks and promotes the ability
of them to select clean data.

III. IMPROVED TRAINING MECHANISM FOR PATE
Inspired by co-teaching mechanism and its improved ver-

sion co-teaching+, we modify the PATE framework to improve
the student model’s robustness when training with noisy labels
provided by teachers.

A. PATE+: Student Model with Co-teaching+
The student model of PATE is a GAN trained under semi-

supervised learning with both supervised and unsupervised

losses while co-teaching(+) is originally used in the supervised
model training. To utilize co-teaching(+) in the student model,
our main idea is to add an additional discriminator in the GAN
used in the student model, as shown in Figure 2. We do not use
two GANs with both generator and discriminator as the peers
for co-teaching(+) because the small-loss trick plays its role
only in the supervised part, while the generator is involved in
the unsupervised loss of GAN as well as the feature matching
loss [14], which are both unsupervised and not associated with
labels.

Fig. 2. Overview of the PATE+ framework. (1) an ensemble of teachers is
trained on disjoint subsets of the sensitive data, (2) a semi-supervised GAN
student model with one generator and two discriminators co-teaching+ with
each other is trained on public data labeled using the ensemble.

Suppose there exist K possible classes in sensitive data as
well as the labeled public data that the student model will be
trained on. In the semi-supervised learning using GANs, the
data generated by generator G are labeled with a new "gen-
erated" class y = K + 1. The discriminator D takes in a data
sample x as input and outputs class probabilities distribution
pD(y|x, j < K + 1). For labeled data x, the cross-entropy
between the observed label and the predicted distribution
pD(y|x, j < K + 1) forms the supervised loss. For generated
data, pD(y = K + 1|x) is used to supply the probability that
x is not real. For those unlabeled data, since we know they
come from one of the K classes of real data, we can learn
from them by maximizing log pD(y ∈ {1, . . . ,K}|x) [14].

For the student model in Figure 2, there are two discrimina-
tors and one generator. The supervised loss and unsupervised
loss for Discriminator1 and Discriminator2 (D1 and D2)
are expressed as:

LDi
supervised = −{Ex,y∼pdata (x,y) log pDi(y|x, y < K + 1)};

LDi
unsupervised =− {Ex∼pdata (x) log [1− pDi(y = K + 1|x)]

+ Ex∼G log [pDi(y = K + 1|x)]}.

where i = 1, 2 and pdata indicates the real data distribution.
Feature matching loss in the semi-supervised GANs train-

ing is defined as:
∥∥Ex∼pdata f(x)− Ez∼pz(z)f(G(z))

∥∥2
2
, where

pz(z) indicates the random distribution and f(x) is the acti-
vation output of an intermediate layer of the discriminator.
In the structure of student model as shown in Figure 2,
the generator takes the activations from two discriminators
which are expressed as fD1

(x) and fD2
(x) respectively. We

use the average of two feature losses associated with two
discriminators as the objective for the generator. Therefore, the
feature matching loss of the generator in the student model is
defined as:



1106

LGfm =
1

2

( ∥∥Ex∼pdata fD1(x)− Ez∼pz(z)fD1(G(z))
∥∥2
2

+
∥∥Ex∼pdata fD2(x)− Ez∼pz(z)fD2(G(z))

∥∥2
2

)
.

The main steps for training student model with the “update
by disagreement” strategy are illustrated in Algorithm 1.

Algorithm 1 PATE+: Training Student Model in PATE with
Discriminators Co-teaching+
Input: D1, D2, G, labeled public data Ml from private teachers
aggregation, unlabeled data Mu, batch size B, learning rate η, epoch
E, ratio R.

1: Duplicate Ml or Mu to make them have the same size.
2: for e = 1, ..., E do
3: Shuffle Ml, Mu into |Ml|

B
mini-batches respectively.

4: for b = 1, ..., |Ml|
B

do
5: Fetch b-th mini-batch ml (mu) from Ml (Mu);
6: Generate B fake samples mg from G;
7: Select samples with the different predicted results between

D1 and D2 in ml as m̂l

8: for i = 1, 2 do
9: Fetch the R% smallest-loss samples m̂l

(i) of Di:
m̂l

(i) = argminm̂l
′:|m̂l

′|≥R|m̂l|L
Di
supervised(m̂l

′;Di)
10: end for
11: Update D1 = D1 − η∇(LD1

supervised(m̂l
(2);D1) +

LD1
unsupervised(mu,mg;D1)) // D1 indicates parameters of

Discriminator1 here
12: Update D2 = D2 − η∇(LD2

supervised(m̂l
(1);D2) +

LD2
unsupervised(mu,mg;D2)) // D2 indicates parameters of

Discriminator2 here
13: Update G = G − η∇LGfm (mu,mg;G) // G indicates

parameters of Generator here
14: end for
15: end for
Output: Trained D1, D2 and G, where D1 and D2 satisfy rigorous
DP guarantee.

B. Privacy Guarantee of PATE+

The privacy guarantee of Algorithm 1 is inherited from the
privacy guarantee of the labeled public dataset Ml by the post-
processing property of DP [7]. We analyze the RDP guarantee
of generating Ml by the Confident-GNMax aggregator which
is used in the scalable PATE framework [9]. To start with,
we recall the two steps of the Confident-GNMax aggregator.
Given a query sample x belonging to one of the classes from
1 to m, let ni(x) denote the vote count for the i-th class
of x. Confident-GNMax aggregator first privately checks if
there is enough consensus among teachers (line 1 in Algo-
rithm 2). N

(
0, σ2

1

)
is the Gaussian distribution with mean 0

and variance σ2
1 . If the check is passed, Confident-GNMax

aggregator will output the class label with noisy plurality
after adding Gaussian noise (N

(
0, σ2

2

)
) to each vote count

(line 2 in Algorithm 2), while discarding this query without
labeling it if the pass is failed. The sensitivity of private
consensus check (line 1) is 1 because the private training data
is divided without overlapping, and one data sample will only
affect one teacher model which will change the maximum
vote count (maxi {nj(x)}) by at most 1. Therefore, line 1
in Algorithm 2 guarantees

(
λ, λ/2σ2

1

)
-RDP for all λ > 1 by

corollary 1. Line 2 in Algorithm 2 is the GNMax mechanism
in [9]. By the data-dependent privacy guarantee in Proposition
8 of [9], line 2 satisfies

(
λ, λ/σ2

2

)
-RDP for all λ > 1. By

using the composition property of RDP in Proposition 1, we
can conclude the privacy guarantee for the Confident-GNMax
Aggregator as in Theorem 3.

Algorithm 2 Confident-GNMax Aggregator [9]
Input: input x, threshold T, noise parameters σ1 and
σ2.

1: if maxi {nj(x)}+N
(
0, σ2

1

)
≥ T then

2: return argmaxj
{
nj(x) +N

(
0, σ2

2

)}
3: else
4: return ⊥
5: end if

Theorem 3. For any λ > 1, the Confident-GNMax Aggregator
in Algorithm 2 satisfies (λ, β)-RDP where β = λ/2σ2

1 +λ/σ
2
2

if the private consensus check in line 1 of Algorithm 2 is
passed, or β = λ/2σ2

1 if the check is failed.

By using the privacy guarantee of Confident-GNMax ag-
gregator in Theorem 3, we derive the privacy guarantee of the
PATE+ algorithm.

Proposition 2. If querying the teacher ensembles with a
public dataset M , and the teacher ensembles label M using
Confident-GNMax aggregator in Algorithm 2 to generate a
labeled dataset Ml, then the student model trained on Ml

using PATE+ algorithm in Algorithm 1 satisfies (ε, δ)-DP for
any 0 < δ < 1 and ε = λ

(
|M|
2σ2

1
+ |Ml|

σ2
2

)
+ log 1/δ

λ−1
, where λ > 1.

Proof: Suppose the number of data samples in
public dataset M and in labeled dataset Ml is |M |
and |Ml| respectively. Therefore, the number of data
samples that are discarded (without labeling) during
Confident-GNMax aggregation is |M | − |Ml|. We
use Theorem 3 in conjunction with Theorem 1 to
derive the total (λ, β)-RDP privacy guarantee for
answering M and generating Ml, where λ > 1 and
β = (|M | − |Ml|) ∗

λ

2σ2
1

+ |Ml| ∗ (
λ

2σ2
1

+
λ

σ2
2

) =
|M |λ
2σ2

1

+
|Ml|λ
σ2
2

.

By Theorem 2, we can transfer (λ, |M |λ
2σ2

1
+ |Ml|λ

σ2
2

)-RDP into(
λ
(
|M|
2σ2

1
+ |Ml|

σ2
2

)
+ log 1/δ

λ−1
, δ
)

-DP for any 0 < δ < 1. By the
post-processing property of DP, the student model trained on
Ml will satisfies (ε, δ)-DP where ε = λ

(
|M |
2σ2

1
+ |Ml|

σ2
2

)
+ log 1/δ

λ−1
and 0 < δ < 1 since it has no access to the private training
data of teacher ensembles and therefore, can not obtain
additional knowledge about the private dataset.

Notice that training PATE with co-teaching satisfies the
same privacy guarantee with PATE+ because the discrepancy
between co-teaching and co-teaching+, which is the “update
by disagreement” strategy, is independent with the private
training data of teacher ensembles and the privacy analysis.

C. PATE++: PATE+ with Noisy Label Cleansing

Potential Drawbacks in PATE+. “Update by disagreement”
strategy actually has two potential drawbacks. First, in the
late stage of training, two discriminators are going to achieve
a similar capacity and consensus on the predictions with most
data. Therefore, the number of “disagreed” data in each mini-
batch is limited, which restricts the models from learning since
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Fig. 3. A student model trained on 2,200 labeled (726 are noisy labels) and 6,800 unlabeled data from Fashion-MNIST dataset using PATE+ algorithm. (a)
The training accuracy of two discriminators in the student model vs epochs (b) The number of labeled samples with different predictions by two discriminators
vs epochs (c) The noisy rate of labels in disagreed predictions vs epochs.

Fig. 4. Illustration of the three stages of model training process with the
existence of noisy data.

they can only learn from limited data. Second, the proportion
of noisy labels within the “disagreement” in the mini-batch is
increasing with the epoch, and models’ utility is sacrificed by
learning from data with more noisy labels. According to the
learning pattern of deep models [19], after the models have
learned to fit easy (clean) data, they are more likely to agree on
the predictions of clean data while disagreeing on noisy data
because the predictions on noisy data have more randomness
and errors before models fit them.

We demonstrate our hypothesis using an example. We train
a student model using Algorithm 1. Each discriminator is a
convolutional neural network (see Experiments on Fashion-
MNIST for details). A total of 2,200 data labeled by Confident-
GNMax aggregator and 6,800 unlabeled data is used as the
training dataset, where 726 of 2,200 labeled samples are
noisy data (the labels of them are different from their ground
truth labels). Fig 3(a) shows the training accuracy of two
discriminators in the student model. We can see that they
follow different learning paths. Fig 3(b) shows the number
of training samples with disagreed predictions by two dis-
criminators. The number is decreased to a small value during
the training process. This observation is consistent with our
first hypothesis of the potential drawbacks of the “update by
disagreement” strategy. When two discriminators gradually
acquire a similar capacity, the number of “disagreed” data
in each mini-batch is few (less than 50 out of 2,200 after
400 epochs). Therefore, discriminators can only learn from
very few data in the late period, which seriously affects their
learning capacity. We calculate the percentage of noisy labels
within the “disagreement” in each epoch as shown by the
blue line in Fig 3(c). The noisy label rate in all labeled data
is 0.33, while the noisy label rate in the “disagreement" is
much higher. This observation reflects our second hypothesis
that the model’s utility will be sacrificed by learning from the
“disagreed” data which contains more noisy labels.

Model Training Stages. We roughly divide the model learning

process into three stages based on the observations in [19].
In the early stage which is indicated as stage 1 in Figure
4, models have not fit either clean or noisy data. The dis-
agreement on predictions between two peer models is mainly
caused by randomness. The percentage of noisy labels within
the “disagreement” roughly equals the percentage of noisy
labels in the entire training dataset. In stage 2, models have
fit the clean data (except for “hard examples”) but not the
noisy data. The peer models are more likely to have the same
(and correct) predictions for clean data. For those noisy data,
since the models have not fitted them, the predictions of them
are more random and with more errors. Therefore, prediction
disagreements are more likely to happen on the data with noisy
labels during this stage. In stage 3, which is the late stage
of training, due to the memorization effort, the models have
learned to fit both the clean and noisy data. The peer models
begin to be more consistent in the prediction of both types of
data. Thus the ratio of noisy labels in the disagreed predictions
decreases. We can observe this phenomenon from Fig 3(c).
We fit part of the blue line which is the noisy label rate in
the "disagreement" as the function of epochs using smoothing
spline fit [20] to observe the general trend of the curve more
clearly, which is shown in the red line. We can see the noisy
percentage in the "disagreement" increases in the early stage
of model training while decreases in the later stage.

Noisy Label Cleansing. Based on our analysis and observa-
tions, we hypothesize that the noisy label ratio is the highest
within the “disagreement” during stage 2. We propose to filter
out noisy labels using this criterion, i.e., the data that has
different prediction results by the two peer models during
stage 2. However, there is a critical situation that we need
to consider. Two peer models do not always have the same
learning speed, and they follow different paths during the
optimization (as shown in Figure 3(a)). Therefore, it could
happen that one model already fits the clean data while the
other does not. In this situation, suppose there is a data record
with the true (clean) label, the first model gives the correct
prediction with high probability, while the second model with
the weaker capability predicts it as other labels incorrectly
and causes the variation in predictions. Thus clean data could
also be chosen by the “disagreement” criterion. To avoid this
situation, we further refine our criterion. Notice that in the



1108

Algorithm 3 PATE++: PATE+ with Noisy Label Cleansing
Input: D1, D2, G, labeled public data Ml from private teach-
ers aggregation, unlabeled data Mu, batch size B, learning
rate η, epoch E, ratio R, removal percentage τ , decay factor
α.

1: Step 1: Filter out noisy label in Ml based on PATE+
framework

2: Duplicate Ml or Mu to make them have the same size.
3: Initialize the filtered out noisy dataset Mn as ∅.
4: Initialize a count table T for each data in Ml to be 0.
5: for e = 1, ..., E do
6: Shuffle Ml, Mu into |Ml|

B
mini-batches respectively.

7: for b = 1, ..., |Ml|
B

do
8: Fetch b-th mini-batch ml (mu) from Ml (Mu);
9: Generate B fake samples mg from G;

10: Select samples with the different predicted results between
D1 and D2 in ml as m̂l

11: Select samples in m̂l whose prediction results by D1 and
D2 are both different with its observed label as ml.

12: Set the count of data in ml to 1.
13: Fetch the R% smallest-loss samples m̂l

(1) (m̂l
(2)) of D1

(D2) as in line 8-10 in Algorithm 1
14: Update D1, D2, G as in line 11-13 in Algorithm 1
15: end for
16: Multiply the count of each labeled data in this epoch with α

and add to the count table T .
17: end for

18: Step 2: Remove filtered out noisy labels
19: Remove τ% data with the most count from Ml to form Msan

l .
20: Add those removed data to the unlabeled dataset to form Msan

u .

21: Step 3: Retrain the PATE+ on sanitized datasets Msan
l and

Msan
u using Algorithm 1

Output: Trained D1, D2 and G, where D1 and D2 satisfy rigorous
DP guarantee.

above-mentioned circumstance, the “disagreement” happens
when the first model with the stronger capability predicts
the true label for the clean data (the predicted label is the
same as the observed label) while the second model with the
weaker capability predicts a wrong label (the predicted label is
different from the observed label). Therefore, we further filter
out noisy data whose predicted labels by peer models are both
different from the observed label from the “disagreement” in
stage 2. That is, our noisy label cleansing mechanism has two
criteria: 1) peer models disagree on the predictions for this
data, and 2) the prediction results by two peer models are
both different from the observed label of the data.

The last question is, how can we know when the models
change from stage 1(2) to stage 2(3). One possible solution
is to use the validation utility to help us decide. In stage
1, models have very low utility since they fit neither clean
nor noisy data. In stage 2, the utility of models increases as
the models have learned useful knowledge from clean and
easy-to-fit data. In stage 3, models’ utility can still increase
but with relatively slower speed compared to stage 2, since
noisy labels are hard to fit. However, due to the uncertainty
of the gradient-based optimization process, it is not efficient
to separate these stages using the validation utility. We solve

this problem using the weighted decay count. We count the
number of epochs for each data when it satisfies the previously
mentioned two criteria. Clean data tend to satisfy those two
criteria during stage 1, while noisy data tend to satisfy those
two criteria in both stage 1 and stage 2. Therefore, data with
more counts at the end of training are determined as the data
with noisy labels. To further reduce the effects of stage 1, we
multiply a weight (smaller than 1) to the counts at the end of
each epoch before adding them to the new counts of the next
epoch. Weighted decay count smooths the decision process
and makes the criteria more robust to the randomness caused
by the gradient-based optimization process.

PATE++. In Algorithm 3, we present the complete PATE++
framework for training more robust PATE by filtering out noisy
labels based on the PATE+ framework first, and then retraining
PATE+ on the sanitized dataset, which is formed by removing
the top τ% data with the most count as introduced above.
τ indicates the removal percentage. The privacy analysis for
Algorithm 3 follows Proposition 2 by the post-processing
property of DP. Notice the noisy label cleansing procedure
does not involve additional privacy leakage since it does not
depend on the private training dataset of teacher ensembles.

IV. EXPERIMENTS

We performed experiments on Fashion-MNIST and SVHN
to demonstrate the efficiency of our proposed PATE+ and
PATE++ frameworks compared to the original PATE for
training the student model on noisy data provided by private
teachers aggregation.

A. Fashion-MNIST

Fashion-MNIST dataset [21] consists of 10 classes with
60,000 training examples and 10,000 testing examples. Similar
to in the original PATE, we use 60,000 training examples
to train the teachers and 10,000 testing examples as the
public dataset for training the student. We divide the 60,000
training examples randomly into 250 disjoint subsets equally.
Each subset is used to train one teacher model, which is a
convolutional neural network with seven convolutional layers
followed by two fully connected layers and an output layer
(same as the deep model in the original PATE). After 250
teachers are trained, we use Confident-GNMax aggregator
to label 2,200 data from the public dataset twice. For the
first time, we use the smaller noise which leads to (5.04,
10−5)-DP guarantee. For the second time, we use the larger
noise which leads to (4.05, 10−5)-DP guarantee. Adding the
larger noise during the private teacher aggregation leads to
a tighter privacy guarantee (smaller ε), while the trade-off is
that there will be more noisy labels within the labeled dataset.
The structure of the discriminators in the student model is
the same as the structure of teachers. The generator of the
student model is a three-layer fully connected neural network.
The 10,000 testing examples are further divided into the first
9,000 (where 2,200 are labeled by teachers as labeled data
and 6,800 are used as unlabeled data) for training and the
last 1,000 for testing. We compare the test accuracy of the
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student models trained by 1) the original PATE (traditional
semi-supervised training); 2) PATE with co-teaching between
two peer discriminators; 3) PATE+ (PATE with co-teaching+
between two peer discriminators); and 4) PATE++ (PATE+
with noisy label cleansing). We train student models with batch
size 100 using Adam optimizer with the learning rate set to
0.01. In PATE++, the decay factor α is set to 0.9 by grid
search. Table I shows the experimental results.

From Table I, we can observe that PATE++ achieves the best
performance on training the student model. The improvement
is even higher (4.8% vs. 0.8% ) when the privacy budget
is tight (4.05 vs. 5.04). This further motivates our proposed
mechanism PATE++, since there is an inevitable trade-off
between utility and privacy in the PATE framework, The
stronger privacy requires adding larger noise during the private
teacher aggregation which leads to a higher noise ratio in the
student training data. PATE++ mitigates this by making the
student model more robust when trained with noisy labels.

TABLE I
TEST ACCURACY OF THE STUDENTS UNDER DIFFERENT FRAMEWORKS

TRAINED ON FASHION-MNIST DATASET.

Student Accuracy
Privacy budget (ε, δ) Original

PATE
PATE with
co-teaching

PATE+
(Alg.1)

PATE++
(Alg.3)

(4.05, 10−5) 74.8% 77.3% 76.5% 79.6%
(5.04, 10−5) 82.1% 82.5% 82.7% 82.9%

Selection of R and τ . As suggested in [15], the ratio of
small-loss instances R should be chosen increasingly during
the training since when the number of epochs goes large,
the model will gradually overfit on noisy labels. Thus, more
instances can be kept in the mini-batch at the start while
less should be in the end. We use their proposed scheduling:
R(e) = 1− βmin

{
e
15 , 1

}
where e is the epoch and β is the

estimated noise rate which can be determined by manually
verifying a small sampled subset. We report the student accu-
racy of 1) PATE with co-teaching, and 2) PATE+ (the same as
PATE++ with τ=0) under the different noise ratio estimation
values in Table II. We show the setting with (4.05, 10−5)-
DP guarantee. We can see that the estimated noise rate for
the scheduling has an effect on student performance. How to
best estimate the noise rate and set the optimal scheduling
function is still an unsolved problem in the co-teaching and
co-teaching+ works [15], [16].

TABLE II
TEST ACCURACY OF THE STUDENT MODELS WITH VARYING R (BOLD

RESULTS COINCIDE WITH TABLE I).

Estimated Noise Ratio β 0.1 0.2 0.3 0.4
PATE with co-teaching 76.2% 77.3% 77% 76.2%

PATE+ (Alg.1) 76.4% 76.5% 77.3% 77.4%

TABLE III
TEST ACCURACY OF THE STUDENT MODELS WITH VARYING τ (BOLD

RESULT COINCIDES WITH TABLE I).

Removal Ratio τ 0.091 0.182 0.227 0.273 0.318 0.364
PATE++ (β = 0.2) 78.1% 78.6% 79% 79.5% 79.6% 78.2%

We fix β = 0.2 and report the student accuracy of PATE++
with different τ values for the noisy label cleansing ratio in

Table III. Increasing the removal ratio τ will increase the
chance to move more noisy labels from the labeled dataset to
the unlabeled dataset and lead to better student performance
because the student model is trained on the dataset with less
noisy labels. However, the tradeoff is that with the higher
removal ratio, less labeled data will be left as well as data
with clean labels that the student can learn useful knowledge
from. In practice, we choose the removal ratio by grid search.

B. SVHN
SVHN [22] contains 10 classes with 73,257 training exam-

ples and 26,032 testing examples. We use the same structure
for the student model as in Fashion-MNIST experiments. The
26,032 testing examples are divided into 10,000 for student
training and 16,032 for student testing. We use the clean
teacher votes made available online by the authors of PATE
to do the Confident-GNMax aggregation for labeling student’s
training data. 3,000 data are labeled privately using the smaller
noise corresponding to (4.93, 10−6)-DP guarantee and the
larger noise corresponding to (3.96, 10−6)-DP guarantee. The
student models are trained the batch size 100 inputs using
the Adam optimizer with the learning rate set to 0.003 and
the decay factor α set to 0.9 in PATE++. Table IV shows the
experimental results on SVHN with the estimated noise rate
β = 0.2 and the removal percentage τ = 0.4.

TABLE IV
TEST ACCURACY OF THE STUDENTS UNDER DIFFERENT FRAMEWORKS

TRAINED ON SVHN DATASET.

Student Accuracy
Privacy budget (ε, δ) Original

PATE
PATE with
co-teaching

PATE+
(Alg.1)

PATE++
(Alg.3)

(3.96, 10−6) 80.5% 86.1% 79.8% 91.5%
(4.93, 10−6) 91.7% 92.8% 91.6% 93.7%

We can observe in Table IV that PATE++ significantly
outperforms the original PATE, especially under the tight
privacy budget. The student accuracy of PATE+ is shy when
compared with PATE with co-teaching. The reason could be
the drawbacks of the "update by disagreement" strategy that
we mentioned previously.

V. RELATED WORK

[23] proposed to transfer the knowledge learned from
a publicly available non-private dataset to the teachers in
order to alleviate the problem that the training data assigned
for each individual teacher maybe not enough to achieve
an ideal performance for some complex datasets and tasks.
[24] exploited knowledge distillation [25] to further transfer
the knowledge from teacher ensembles to the student model
privately through the representations from intermediate layers
of teacher models. [26] developed a new semi-supervised
learning algorithm called MixMatch, which achieves state-of-
the-art performance in several benchmark datasets by combin-
ing several dominant approaches for semi-supervised learning
together into a unified framework. They demonstrate that
MixMatch improves the performance of PATE with respect
to the accuracy-privacy trade-off, which is unsurprising be-
cause PATE is a general framework with the student model
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trained by the semi-supervised learning paradigm in order
to reduce the total privacy cost induced by each individual
query. Any improved semi-supervised learning algorithm is
expected to improve the original PATE framework. Different
from these previous works, our work improves PATE from
another perspective by incorporating the novel noisy label
training and cleansing mechanism under the semi-supervised
learning framework to improve the student model accuracy
without additional privacy cost.

Learning with noisy examples has a long research history
[27]. Currently, training deep learning models with noisy
labels has received increasing attention [15], [16], [28]–[31].
A comprehensive review of all the works within this area is
beyond the scope of this paper. Our proposed mechanisms
incorporate the co-teaching and co-teaching+ methods into
the PATE framework to better train the student model with
noisy labels and achieve promising results. Investigation of
other noisy label training methods to further enhance the
performance will be an interesting research direction.

VI. CONCLUSIONS

We proposed the PATE+ mechanism for robust training
of the student model in PATE, and PATE++ mechanism
based on PATE+ which combines co-teaching+ between two
discriminators within the structure of GAN and noisy label
cleansing. Experimental results demonstrate the advantage of
our mechanisms compared to the original PATE, especially
when the privacy budget is tight. Our proposed mechanisms
enhance the utility and privacy trade-off in private model train-
ing and further improve the practicality to achieve meaningful
privacy guarantees when training deep models on sensitive
data. We leave applying PATE++ to other applications such as
sequence-based models and graph models as future work.
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