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Abstract—Deep learning models have achieved great success
in many real-world tasks such as image recognition, machine
translation, and self-driving cars. A large amount of data are
needed to train a model, and in many cases, the training data are
private. Publishing or sharing a deep learning model trained on
private datasets could pose privacy concerns. We study the model
inversion attacks against deep learning models, which attempt to
reconstruct the features of training data corresponding to a given
class given access to the model. While deep learning with differ-
ential privacy is state-of-the-art for training privacy-preserving
models, whether they can provide meaningful protection against
model inversion attacks remains an open question. In this paper,
we first improve the existing model inversion attacks (MIA) to
successfully reconstruct training images from neural network
based image recognition models. Then, we demonstrate that deep
learning with the standard record-level differential privacy does
not provide quantifiable protection against MIA. Subsequently,
we propose class-level and subclass-level differential privacy and
develop algorithms to provide a quantifiable privacy guarantee
against MIA. Experiments on real datasets demonstrate that our
proposed privacy notions and mechanisms can effectively defend
against MIA while maintaining model accuracy.

Index Terms—Differential Privacy; Deep Learning; Model
Inversion Attack

I. INTRODUCTION

Neural networks have achieved great success in many
real-world tasks like image recognition and natural language
processing [1], [2]. Training neural networks requires a large
amount of training data which may contain users’ sensitive
information such as images, voice, medical histories, and
location traces. Publishing or sharing the deep learning model
trained on private data directly could pose privacy concerns
[3]–[5]. Even though the adversaries do not have access to
the original training data, they can use the models to infer or
reconstruct (the features of) the training data. Several works
demonstrated different attacks aiming to extract information
about the private training datasets from the published deep
learning models. Membership inference attacks [4] attempt to
infer whether or not a specific record was in the training
dataset given black-box API access to the model. Model
inversion attack [3] (MIA) attempts to reconstruct a recog-
nizable face image corresponding to a person (a class) from
a face recognition model given the name of the person (the
class label) and white-box access to the model. The purpose

of membership inference attack and MIA are different. The
former attempts to recover the “existence” information of
a target data point, while the latter attempts to recover the
visual property or features of a target class (which can be also
private). Therefore, both of them are considered as privacy
threats and violations [6]–[8].

Differential privacy (DP) has been widely accepted as a
strong and provable privacy framework for statistical data
analysis [9]–[12]. Recent works developed deep learning
models with DP [13]–[18]. Standard DP requires that the
statistical model (parameters) learned from a set of data is
indistinguishable regardless of the presence or absence of any
record in the dataset. The common way to train a deep learning
model with DP is to use differentially private Stochastic Gra-
dient Descent (DP-SGD) which injects Gaussian noise to the
gradients in each iteration during the SGD based optimization
when learning the model parameters [13], [19].

Most works on deep learning with DP focus on improving
model accuracy given a privacy requirement or enhancing the
privacy and utility tradeoff. There is still a limited demon-
stration of how effective DP is in protecting against the
above mentioned attacks in practice. [20] evaluated DP against
membership inference attacks and showed that DP can protect
against the attacks successfully only by sacrificing model
utility by a considerable margin. This is not surprising as the
indistinguishability guarantee of DP with respect to the pres-
ence of a record is directly aligned with the goal of preventing
the inference of the membership of a record. Injecting noise to
the model parameters required by DP naturally degrades the
performance of the model.

Whether DP or other mechanisms can provide meaningful
privacy protection against model inversion attacks without
sacrificing model utility is still an open question. While [3]
proposed some preliminary defense measures against MIA, it
does not provide a rigorous or quantifiable guarantee against
the attacks. Intuitively, if we apply the standard record-level
DP, the perturbed model may provide some mitigation to MIA
due to the perturbed model parameters. However, since there
are typically multiple instances (e.g. face images) correspond-
ing to the same class (e.g. person), record-level DP which
only protects the presence of one record may not prevent
the reconstruction attack since all the records of the same
class are encoded in the model. Another potential solution is
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to use group-DP [9] to protect the presence of all records
corresponding to one class as a group. However, this will
lead to amplified perturbation by the group size which can be
determined by the largest class size. Such an application may
yield unacceptable model accuracy due to the significantly
amplified perturbation while overprotecting certain data since
different classes may have varying numbers of records.

In this paper, we focus on the MIA against deep learning
models and aim to understand whether existing DP can provide
meaningful defense against MIA. Our results show that while
it provides some mitigation, it does not provide effective
and quantifiable protection. We subsequently propose new DP
notions and mechanisms for more effective and quantifiable
protection against MIA. The contributions are as follows:
• We first improve the original MIA and demonstrate its

success on neural network models (Section III).
• We propose both class-level DP (class-DP) and subclass-

level DP (subclass-DP) for deep neural networks as quan-
tifiable privacy notions against MIA (Section IV).

• We propose algorithms for training deep learning models
with class-DP and subclass-DP (Section IV). We formally
prove the privacy guarantees of the proposed algorithms.

• We evaluate deep learning models with class and subclass-
DP against MIA using real datasets (Section V). The results
demonstrate that the level of class and subclass-DP directly
correlates with the robustness against MIA and hence can
provide a quantifiable measure against the risk.

II. PROBLEM SETTING AND BACKGROUND

In this section, we first describe our problem setting and the
threat model. Then we give the definitions of MIA and DP.

A. Problem Setting

We consider the setting where a model provider trains
a neural network classification model f(x) using a private
training set D, where x ∈ Rd is an input record in d-
dimensional space. The output of f(x) is the prediction vector
y ∈ Rk where each dimension corresponds to one predefined
label or class. The model provider shares the trained model
with other parties without sharing the data. We study model
inversion attacks where an adversary abuses the shared model
by attempting to reconstruct the original (features of) training
data corresponding to a target class. Our goal is to develop
privacy notions and algorithms that allow a model provider to
build a model that is robust against model inversion attacks.

Threat Model. We assume a white-box attack in which an
adversary has access to the published model including model
structure and parameters, but has no access to the training data,
nor back door access [21] to the training process.

B. Model Inversion Attack

Model inversion attack [3] is a reverse engineering attack
that attempts to “reconstruct” the training data from a trained
neural network model. Given the model parameters and a
target label, the goal is to find a data point x corresponding to
the label following the same distribution with data points in

D that maximizes flabel(x), which is equivalent to minimize
the following objective function:

c(x) = 1− flabel(x), (1)

where flabel(x) is the confidence score of the target class.
While the reconstructed data point may not correspond to a

specific data point in the dataset, it leaks the statistical property
or general features of the target class. For example, a face
image generated by a successful MIA reveals how the person
with the target name (the class label) looks like [3].

C. (ε, δ)-Differential Privacy

Differential privacy (DP) [9], [10] is a strong and rigorous
privacy guarantee which ensures the output distributions of an
algorithm are indistinguishable with a certain probability when
the input datasets differ in only one record.

Definition 1. ((ε, δ)-Differential Privacy) [9]. Let D and D′
be two neighboring datasets that differ in at most one entry. A
randomized algorithm A satisfies (ε-δ)-differential privacy if
for all S ⊆ Range(A): Pr [A(D) ∈ S] ≤ eεPr [A(D′) ∈ S]+
δ, where A(D) represents the output of A with the input D.

In the definition of (ε, δ)-DP, ε and δ are the privacy
parameters or privacy budget which indicate the privacy loss.
A smaller ε means a higher level of indistinguishability and
hence stronger privacy. A smaller δ means a lower probability
that the privacy guarantee provided by ε will be broken.

The granularity of DP is dependent on the definition of
neighboring datasets. In the original DP definition, two neigh-
boring datasets differ in one record, which can be considered
as record-level DP (record-DP). It hides the presence of any
record in the input dataset. The standard hamming distance-
based DP can be extended depending on other notions of
distance between the neighboring datasets under different
situations [22], [23].

D. Deep Learning with Differential Privacy

DP has been applied to deep learning models with DP-SGD
algorithms [13], [19] in order to protect the privacy of training
datasets. In each SGD iteration, DP-SGD clips the Euclidean
norm of the gradient and injects calibrated Gaussian noise to
the clipped gradient. Each iteration of the DP-SGD becomes a
randomized mechanism with a quantifiable privacy loss which
is defined as follows:

Definition 2. (Privacy Loss [13]) For neighboring datasets
D,D′, auxiliary input aux and output o ∈ Range(A), the
privacy loss at a particular output o is defined as,

c(o
∣∣A,aux,D,D′) := log

P[A(aux,D) = o]
P[A(aux,D′) = o] . (2)

For DP-SGD, each iteration incurs a privacy loss, where
A represents one iteration of the DP-SGD update procedure,
o is the updated parameter vector, aux is all the parameter
sequences obtained before this iteration, and D is the training
dataset. Abadi et al. [13] proposed the moments accountant
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technique with random sampling that provides a tighter privacy
loss composition than the advanced composition theorems [24]
for the overall privacy loss of DP-SGD over multiple iterations.
We will use it for our privacy analysis in this paper.

Definition 3. (Moments Accountant [13]) The moments ac-
countant of a randomized mechanism A with κ-th moment is
defined as follows:

αA(κ) := arg max
aux,(D,D′)

logE[exp(κc(o
∣∣A,aux,D,D′))], (3)

where the expectation is taken over the output distribution
o ∼ A(aux,D) and c(o

∣∣A,aux,D,D′) is the privacy loss.

III. IMPROVED MODEL INVERSION ATTACK

While the original MIA has gained success on simple
neural networks such as Softmax regression and Multilayer
perceptron network (MLP) [3], it has limited success on deep
neural networks only with auxiliary training data [6] or with
adversarial training [25]. For more complex models, MIA
tends to produce images that look unrealistic even with the
denoising and sharpening filter [3]. In this section, we propose
new regularization terms to enhance the optimization used in
MIA to produce more recognizable images. We demonstrate
that the enhanced MIA can be effective against deep learning
models with more complex network structures.
`1-Norm Regularization. `1-norm regularization can be used
to enforce sparsity on the solution vector, or reconstructed
image x. The sparsity constraint reduces and limits the inten-
sity of pixels which are not important in leading the model
to output the target class label. Therefore, it can help with
removing noise and enhancing the contrast of the output image
x, especially with black and white images. The loss function
of MIA with `1-norm regularization on image x becomes:

c(x) = 1− flabel(x) + λ‖x‖1 (4)

where the coefficient λ controls the penalty effect caused by
`1-norm regularization.
BTV Regularization. While `1-norm regularizer may achieve
noise removal and contrast enhancement on black and white
images with a clear contrast, this benefit may be limited on
gray scale images. For such images, we propose to use the
bilateral total variation (BTV) regularization [26]:

RBTV =

p∑
l=−p

p∑
m=0
m+l≥0

αm+l
∥∥∥x− SlxSmy x

∥∥∥
1

(5)

The BTV regularizer is essentially the accumulation of
differences between central pixels and their neighborhoods
within the spatial window size measured by p. It helps to main-
tain the main image features and preserve sharp edges when
performing the super-resolution reconstruction task where the
goal is to recover a single high-resolution image from a set
of low-resolution images [26], [27]. The loss function of MIA
with BTV regularization becomes:

c(x) = 1− flabel(x) + λRBTV (6)

Enhanced MIA Algorithm. Algorithms 1 outlines our en-
hanced MIA with the new regularizers. Line 4 uses an op-
tional change-of-variable for the optimization by introducing

a “box constraint” [28] to ensure that the value of each
pixel in the reconstructed image stays in the range [0, 1]:
x = 1

2 (tanh (w) + 1). The optimization is then implemented
over w. If no change-of-variable is used, we can directly set
x = w. We use Adam optimizer instead of SGD used in the
original MIA [3], which uses the moving average of the first
and second moments of gradients (line 6 and 7) to scale the
learning rate adaptively.

Algorithm 1: Improved MIA Algorithm
Input: label, T , β1, β2, τ , η, λ, the target model f .

1 Initialize variables w, m, and v to be zeros with the same
size as training images of f .

2 Define c(x) using eq.(4) or (6)
3 for t = 1 · · ·T do
4 xt−1 = 1

2
(tanh (wt−1) + 1)

5 gt = ∇c (xt−1)
6 mt = β1mt−1 + (1− β1) gt
7 vt = β2vt−1 + (1− β2) g2

t

8 wt = wt−1 − η mt√
vt+τ

9 end
10 return xT = 1

2
(tanh (wT ) + 1)

Fig. 1: MIA on MNIST dataset.

Fig. 2: MIA on Faces94 dataset.

Visual Results. Figure 1 shows the reconstructed images of
the original and enhanced MIA (using `1 norm and change-
of-variable) against a CNN model trained on the MNIST
dataset in comparison to sample original images. We set the
parameter values as T = 5000, β1 = 0.9, β2 = 0.999,
τ = 10−8, η = 0.1, and λ = 0.05. We can observe that the
enhanced MIA generates more realistic and similar images to
the original images than the original MIA. Figure 2 shows the
reconstructed images of the original and enhanced MIA (using
BTV regularization) against a softmax classifier trained on the
Faces94 dataset (see Section V for details). We set p = 2,
α = 0.9, and λ = 0.001 for the BTV regularization. We
observe that the reconstructed face images by enhanced MIA
preserve sharper edges and corners, and less blur compared to
original MIA.
Attack Success Metric. To quantify the results of reconstruc-
tion besides visual inspection, we define an attack success
metric, MIA distance, as the minimum distance between the
reconstructed image and all the training images in the target
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TABLE I: MIA distance for MNIST dataset
Class (Digit) 0 1 2 3 4 5 6 7 8 9
Original MIA 8.02 8.36 9.14 9.50 8.35 9.76 9.64 8.38 8.79 8.93

Enhanced MIA 5.93 7.89 8.51 7.92 8.2 8.41 8.51 7.76 8.06 8.76

TABLE II: MIA distance for Faces94 dataset
Class (Person) 1 2 3 4 5 6
Original MIA 0.707 0.663 0.64 0.681 0.668 0.707

Enhanced MIA 0.691 0.643 0.626 0.664 0.65 0.692

class. In contrast to the average distance which measures the
distance between the reconstructed image and the “average”
image of the target class, we use minimum distance because it
represents the worst case scenario. A smaller distance indicates
the recovered image is more similar to the original training
data, suggesting a more successful attack. A larger distance
means that the attack is less successful and the model is more
robust. We will also use this metric to evaluate the model’s
robustness against MIA.

Different distance metrics can be used depending on the
data. For example, for the MNIST dataset which includes
simple white and black images, we can use Euclidean distance
which is shown in Table I. We observe that the reconstructed
images from enhanced MIA have a consistently smaller dis-
tance than the original MIA. For the gray-scale face images,
we adopt the structural similarity index (SSIM) [29], which is
more suitable for measuring the perceptual similarity between
two face images than Euclidean distance [30]. The value
range of SSIM is [0, 1] where 1 indicates the most similar.
Table II shows the minimum distance (1-SSIM) between the
reconstructed images and training images in the target class
for both original MIA and enhanced MIA. We can observe
that enhanced MIA achieves better results.

IV. CLASS AND SUBCLASS DIFFERENTIAL PRIVACY

In this section, we propose class-DP and subclass-DP as
quantifiable privacy notions against MIA and corresponding
privacy algorithms to achieve them.

A. Class-Level Differential Privacy

Definition of Class-Level DP. Our main goal is to provide
a rigorous and strong privacy notion that can quantify the
protection against MIA which targets the statistical property
of a given class corresponding to a set of records in the
training data. Intuitively, our secret to be protected is the
statistical properties or features of a target class. Motivated by
this, we propose class-level DP which defines the neighboring
databases as two datasets differing in one class (i.e. all records
that belong to the same class). Class-level DP guarantees
that the resulting models are indistinguishable even if all the
records in any one class are substituted. Therefore, MIA can
not reconstruct a representative image of any target class.

Definition 4. (Class Neighboring Datasets). Let D denote
a dataset with K classes of records. The class neighboring
datasets to D are the datasets D′ that can be obtained from D
by replacing all the records in an arbitrary class k ∈ 1, ...,K.

Compared to the definition of neighboring datasets [9] in
record-DP, a pair of class neighboring datasets differ in one
class of data, which indicates they have the same number
of classes and all of those classes are the same (same data
and labels) except one. For example, let D be a hand-written
digit dataset containing images of digits from 0 to 9, the class
number of D is 10. Replacing all images of digit 0 with images
of letter a in D forms a class neighboring dataset D′.

Definition 5. (Class-Level Differential Privacy). A randomized
algorithm A with domain N|X | satisfies class-level (ε, δ)-
differential privacy if for all S ⊆ Range(A) and for all class
neighboring datasets D, D′ ∈ N|X |:

Pr[A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S] + δ.

Considering record-DP can be unbounded (neighboring
datasets are formed by adding or removing one record) or
bounded (replacing one record or removing and then adding
one record), our class-DP definition here is bounded, i.e.
the class neighboring datasets are formed by replacing an
entire class. We can also define the unbounded class-DP
which requires the indistinguishability of the resulting model
regardless of whether an entire class is present or not in the
training data. We will show in our privacy analysis later all
proofs can be derived similarly with these two versions of DP
with the only difference being a constant factor.

Comparison with Record and Group-DP. Class-DP is a
strong privacy guarantee. It protects not only one data record in
private datasets like in record-DP [9] but also all other records
which share common patterns or follow the same distribution
with that record in the same class. Class-DP is different from
group-DP [9] which ensures the indistinguishability of the
statistical output regardless of the presence or absence of any
group of a given size of m. While bearing some similarities,
class-DP is not equivalent to group-DP even if we assume all
classes have the same size m. This is because the neighboring
pairs in class-DP differ in one class, and the classes are only
a subset of all possible groups of size m. We can consider
class-DP (with the same class size m) as a weaker version of
group-DP, but specifically designed to protect against MIA. In
addition, class-DP allows groups of different sizes which are
determined by the size of each class and hence provide more
precise protection against MIA.

We can potentially adopt group-DP to protect against MIA
by setting the group size as the largest class size. However,
doing so will lead to amplified perturbation by the group size
and hence unacceptable model accuracy. In fact, any (ε, δ)-
DP mechanism M satisfies (mε,mδ)-group-DP for group size
m with no necessary change to the private training process.
This amplifying factor m can be very large and will render
the model not useful with a meaningful privacy guarantee.

B. Algorithm for Class-DP

Algorithm 2 outlines the steps to achieve class-DP for deep
learning models based on class-based sampling. Suppose the
training dataset D = {C1, · · · , CK} contains K classes of
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data. During each step of the SGD, each class is sampled with
probability q (line 3). The data of all selected classes will be
used in the current step of SGD for calculating gradients and
updating parameters. Dividing the noisy sum of the clipped
gradient by the number of selected classes for the current
SGD step approximates the average update of all classes while
preventing the information of a single class from leakage.

Algorithm 2: Class-level differentially private SGD
Input: Training dataset D = {x1, · · · , xN}, loss function

L(θ) = 1
N

∑
i L (θ, xi), learning rate ηt, noise scale

σ, gradient norm bound S, sampling ratio q.
1 Initialize θ0 randomly.
2 for t = 1 · · ·T do
3 Sample each class with probability q.
4 for each selected class Ci(i = 1, · · · , kt) do
5 For each xj ∈ Ci, compute gt (xj)← ∇θtL (θt, xj)
6 Average gradients within class Ci,

g(i) ← 1
|Ci|

∑|Ci|
j=1 gt (xj) %%Compute gradient

7 g(i) ← g(i)/max

(
1,
‖g(i)‖

2
S

)
%%Clip gradient

8 end
9 g̃t ← 1

qK

(∑kt
i=1 g

(i) +N
(
0, σ2S2I

))
%%Add noise

10 θt+1 ← θt − ηtg̃t %%Update
11 end
12 return θT and overall privacy budget (ε, δ) computed by

moments accountant with sampling.

Privacy Analysis. We analyze the privacy of Algorithm 2 by
extending the moments accountant technique in Definition 3
to the class-DP setting. There are two key differences between
the setting in [13] and ours: 1) [13] considers record-level DP
while ours is class-level; 2) the neighboring concept in [13]
is random “in or out” of a record while ours is a random
substitution of a class. Due to such discrepancy, our analysis
deviates from theirs. To begin with, we recall the following
two lemmas from [13]. Lemma 1 facilitates the composition
of the moments accountant of an iterative algorithm. Lemma
2 provides the translation of moments accountant to (ε, δ)-DP.

Lemma 1. (Composibility [13]) Let mechanism A be a
composition of a sequence of adaptive mechanismsA1, ...,AT ,
where At :

∏t−1
i=1 Range(Ai) × D → Range(At). For any κ,

it gives αA(κ) ≤
∑T
t=1 αAt(κ).

Lemma 2. (Tail Bound [13]) For any ε > 0, the mechanism
A is (ε, δ)-DP for δ = minκ exp(αA − κε).

We also develop the following Lemma 3 that will be used
in our main DP result in Theorem 1. It adapts Theorem 2 in
[13], where the main difference is to replace µ1 ∼ N (1, σ2)
there to µ2 ∼ N (2, σ2) here, and quantify the new αµ0,µ(κ)
accordingly. This is because for class-DP and subclass-DP,
we prefer the neighboring dataset notion to be a random
substitution of class/subclass rather than “in or out” of an
arbitrary record.
Lemma 3. Let µ0 and µ2 denote the probability density
function of N (0, σ2) and N (2, σ2) respectively. Let µ be
the mixture of µ0 and µ2: µ = (1 − q)µ0 + qµ2. Let

αµ0,µ(κ) = logmax(E1, E2), where E1 = Ez∼µ0 [(
µ0(z)
µ(z) )

κ]

and E2 = Ez∼µ[( µ(z)µ0(z)
)κ]. Suppose q < 1

16σ and κ ≤
σ2 ln 1

qσ , then it gives αµ0,µ(κ) ≤
4q2κ(κ+1)
(1−q)σ2 +O(q3/σ3).

Proof: We follow the proof of Theorem 2 in [13]
with an emphasize on the difference part with [13]. Let
α = 4q2κ(κ+1)

(1−q)σ2 + O(q3/σ3). To prove αµ0,µ(κ) =

logmax(E1, E2) ≤ α, we need to prove E1 =

Ez∼µ0 [(
µ0(z)
µ(z)

)κ] ≤ 1+α; E2 = Ez∼µ[( µ(z)µ0(z)
)κ] ≤ 1+α, so that

αµ0,µ(κ) ≤ log(1+α) ≤ α. Following [13], both inequalities
can be proved by the same method. For any distributions νa
and νb, Ez∼νa [(

νa(z)
νb(z)

)κ] = Ez∼νb [(
νa(z)
νb(z)

)κ+1], where the
latter can be expanded using binomial expansion,

Ez∼νb [(
νa(z)

νb(z)
)κ+1] =

κ+1∑
i=0

(
κ+ 1

i

)
Ez∼νb [(

νa(z)− νb(z)
νb(z)

)i].

Substituting (νa, νb) = (µ, µ0) and (νa, νb) = (µ0, µ) in,
when i = 0, the first term is 1; when i = 1, the second
term is 0. In the following, we calculate the third term with
the more difficult case (νa, νb) = (µ0, µ), i.e., i = 2, which
starts to deviate from [13]:

Ez∼µ[(
µ0(z)− µ(z)

µ(z)
)2] = q2Ez∼µ[(

µ0(z)− µ2(z)

µ(z)
)2]

(i)

≤ q2

1− q∫ +∞

−∞

(µ0(z)− µ2(z))
2

µ0(z)
dz =

q2

1− qEz∼µ0 [
(µ0(z)− µ2(z))

2

µ0(z)
],

where (i) is by µ ≥ (1− q)µ0 and the above can be further
bounded by calculating the last expectation:

Ez∼µ0 [
(µ0(z)− µ2(z))

2

µ0(z)
] = Ez∼µ0 [(1− exp(

4z − 4

2σ2
))2]

= exp(
4

σ2
)− 1 ≤ 4

σ2
.

(7)

The third term can be bounded as(
κ+ 1

2

)
Ez∼µ[(

µ0(z)− µ(z)
µ(z)

)2] ≤ 4q2κ(κ+ 1)

(1− q)σ2
. (8)

In the following, we show the terms from i = 3, .... are
dominated by i = 3 term which is of order O( q

3κ3

σ3 ).

Ez∼µ[(
µ0(z)− µ(z)

µ(z)
)i] ≤

(I)︷ ︸︸ ︷∫ 0

−∞
µ(z)|(µ0(z)− µ(z)

µ(z)
)i|dz+

(II)︷ ︸︸ ︷∫ 2

0

µ(z)| (µ0(z)− µ(z)
µ(z)

)i|dz+

(III)︷ ︸︸ ︷∫ +∞

2

µ(z)|(µ0(z)− µ(z)
µ(z)

)i|dz .

(I) ≤ 2iqi

(1− q)i−1σ2i

∫ 0

−∞
µ0(z)|z − 1|idz ≤ (4q)i(i− 1)!!

2(1− q)i−1σi
.

(II) ≤ qi

(1− q)i

∫ 2

0

µ(z)
4i

σ2i
dz ≤ (4q)i

(1− q)iσ2i

(III) ≤ qi

(1− q)i−1σ2i

∫ +∞

2

µ0(z)(
2µ2(z)

µ0(z)
)idz,

which is 2i factor larger the estimation in [13]. Together,
the i ≥ 3 terms are dominated by i = 3 term with
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order O( q
3κ3

σ3 ). In sum, we have proved that αµ0,µ(κ) ≤
4q2κ(κ+1)
(1−q)σ2 +O(q3/σ3).

Theorem 1. Let σ2 =
16q2T ln( 1

δ )

ε2 and q <
√

ε

64
√
T ln(1/δ)

.

Algorithm 2 satisfies (ε, δ)-class-DP.
Proof: Let At(D) :=∑

i∈[kt]
1
qK

(∑kt
i=1 g

(i) +N
(
0, σ2S2I

))
, where each g(i)

is the S-clipped gradient computed based on the sampled
class Ci and satisfies ‖g(i)‖2 ≤ S. First, we upper bound
αAt(κ). For class neighboring datasets (D,D′), Without
loss of generality, let D = {C1, ..., CK−1, CK} and
D′ = {C1, ..., CK−1, C

′
K}, where each Ck, k = 1, ...,K,

denotes all the data (records and label) in class k. The
distribution of At(D′) ∼ N ( 1

qK

∑kt
i=1 g

(i)

|D′ ,
1

(qK)2

∑kt
i=1 σ

2S2I),

where g(i)|D′ denotes the stochastic gradient computed on D′. It

is equivalent to At(D′) ∼
∑kt
i=1

1
qK

(
g
(i)

|D′ +S ·µ0

)
, with µ0 ∼

N (0, σ2), where g
(i)
|D′ is the clipped gradient computed

based on D′. For At(D), depending on whether the
K-th class is sampled or not, the mean of At(D) is
{(1 − q)

∑kt
i=1 g

(i)

|D′} + {q(
∑kt
i=1 g

(i)

|D′ − g
(K)

|C′
K

+ g
(K)

|CK
)}. The

argmax in eq.(3) is achieved when ‖g(K)

|CK′ − g
(K)

|CK‖2 = 2S,

which gives At(D) ∼ 1
qK

∑kt
i=1 g

(i)

|D′ + S · ((1 − q)µ0 +

qµ2), with µ2 ∼ N (2, σ2). Thus, to bound αAt(κ),
it suffices to estimate αµ0,µ(κ) which is given in
Lemma 3. With the composition property in Lemma
1, we have αA(κ) ≤

∑T
t=1 αAt(κ) ≤ 4Tq2κ2

σ2 . By
Lemma 2, to ensure (ε, δ)-class-DP, it suffices to ensure
4Tq2κ2

σ2 ≤ κε
2 , exp(−κε2 ) ≤ δ. In addition, since having

used Lemma 3, we need to satisfy its constraints:
q < 1

16σ , κ ≤ σ2 log( 1
qσ ). With our choice of q and

σ, we can verify that the above constraints hold. Finally,
Algorithm 2 is (ε, δ)-class-DP.

Remark 1. For unbounded class-DP (i.e. random deletion
of a class), we can still provide similar privacy guarantee by
following similar procedure as the proof for the bounded class-
DP case above: we ensure that Algorithm 2 is (ε, δ)-class DP
if σ2 =

4q2T ln( 1
δ )

ε2 and q <
√

ε

32
√
T ln(1/δ)

.

C. Subclass-Level Differential Privacy
While class-DP provides strong protection against MIA, it

may require a large amount of noise when the number of
classes is small, i.e. class size is large. Recall that in our
privacy analysis we utilize moments accountant to provide
tight privacy loss analysis for our class-DP-SGD algorithm.
Moments accountant itself depends heavily on the privacy
amplification via random sampling with a sampling ratio of q.
The smaller the q, the better the amplification and the smaller
the privacy loss. For datasets where the number of classes is
small comparing to the number of data records, i.e. q will be
large, achieving meaningful class-DP while preserving model
accuracy may not be feasible.
Definition of Subclass-DP. To address this, we propose
subclass-DP that defines the neighboring databases based on a

subclass, a predefined subset of records within a single class.
In many practical applications, there exist natural subclasses
within a large class. Subclass-DP ensures the indistinguisha-
bility of the output model with respect to any subclass. It can
be considered as a weaker version of class-DP. We show that it
will allow better and customizable privacy and utility tradeoff.

(a) Class of digit 4 (b) Class of digit 9

Fig. 3: Examples of Subclasses from the MNIST dataset.

Consider the image classification tasks that we focus on
in this paper, images with the same label in the dataset often
exhibit different sub-patterns. For example, as shown in Figure
3 where images are from the MNIST dataset, each class of
digit images can be naturally divided into different groups,
and images within a group are more similar to each other
than those from other groups.

Definition 6. (Subclass Neighboring Datasets). Let D denote
a dataset with K subclasses of records. The subclass neigh-
boring datasets to D are datasets D′ that can be obtained
from D by replacing all the records in an arbitrary subclass
k ∈ 1, ...,K.

Definition 7. (Subclass-Level Differential Privacy). A random-
ized algorithm A with domain N|X | satisfies subclass level
(ε, δ)-differential privacy if for all S ⊆ Range(A) and for all
subclass neighboring datasets D, D′ ∈ N|X |:

Pr[A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S] + δ.

Subclass-DP can be considered as a generalized notion of
record-DP and class-DP. When the number of subclasses in
each class ksub is 1, it is equivalent to class-DP. When ksub is
the number of records in each class, it is equivalent to record-
DP. The relationship between subclass-DP and group-DP is
the same as that between class-DP and group-DP, except that
subclass-DP corresponds to smaller group size.
Algorithm for Subclass-DP. The algorithm for Subclass-DP is
the same as the class-DP algorithm (Algorithm 2) except that
we sample random subclasses instead of random class (line
3) and the average gradient is computed within each sampled
subclass (line 7). This additional subclass-based sampling pro-
vides additional privacy amplification which promises better
privacy and utility tradeoff. In this paper, we form subclasses
using k-means clustering algorithm with a predefined number
of clusters ksub to mimic the natural subclasses.
Privacy Analysis. The privacy analysis for the subclass-
DP algorithm is inherited from Theorem 1 and it’s proof
by switching the class-level related notion to the subclass-
level ones. We summarize the subclass-DP guarantee in the
following corollary while omitting its detailed proof.
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Corollary 1. Let σ2 =
16q2T ln( 1

δ
)

ε2
and q <

√
ε

64
√
T ln(1/δ)

.

Algorithm 2 with subclass sampling is (ε, δ)-subclass differ-
entially private.

V. EXPERIMENTS

We evaluate the proposed class and subclass DP-SGD
algorithms on MNIST [31] and Faces941 to demonstrate their
effectiveness in defending against MIA while preserving good
model utility. MNIST contains 60,000/10,000 training/test
examples which are gray-scale handwritten digit images with
the size 28 × 28. Faces94 is a facial image dataset with 153
individuals and each has 20 color facial images with the size
180 × 200. We convert color images into grayscale and rescale
them to 60 × 70. We use image augmentation techniques2 to
create additional facial images such that each individual has
220 images. We then randomly divide the training/test set into
190/30. We use a vanilla model without privacy protection and
a model with record-DP as baseline comparisons.

A. MNIST

A convolutional neural network (CNN) with two convolu-
tion layers followed by two fully connected layers is used.
We train it without DP protection as the vanilla model and
the test accuracy reaches 98.9%. We train the same CNN
models with record-DP using the DP-SGD method proposed in
[13] as the record-DP model. We use three choices of noise
scale for the Gaussian noise which are σ = 0.65, 1.0, 1.8,
and obtain three models with test accuracy of 96%, 93%, and
91% and corresponding privacy loss of (6, 10−5), (1.6, 10−5),
and (0.5, 10−5)-DP respectively. Finally, we train the same
CNN model using the subclass-DP-SGD algorithm (Algorithm
2 with random subclass sampling) as the subclass-DP model.
The reason we use subclass-DP instead of class-DP is that
the number of classes is small for the MNIST dataset which
will make class-DP not meaningful. We will evaluate class-
DP on the Faces94 dataset later in the section. Each class of
digits in the MNIST dataset is divided into 50 subclasses using
the k-means clustering algorithm (k=50). We set the subclass
sampling ratio of q to be 0.2. We also use three choices of
noise scale which are σ = 1.6, 3.0, 3.65. We choose a fixed
gradient norm bound 3.0. We obtain three models with test
accuracy of 96%, 93%, and 91% and corresponding privacy
loss of (18.6, 10−3), (8.2, 10−3), and (7, 10−3)-subclass-DP
respectively. Note that our criteria for the three subclass-DP
models are to have matching accuracy with the three record-
DP models. This way, we can have a fair comparison for each
pair of record-level DP model and subclass-DP model at the
same level of model accuracy in terms of their robustness to
MIA.

MIA. We implement the improved MIA in Algorithm 1 with
the same parameter setting and evaluate it against all models.
The parameters of MIA are set as: T = 5000, β1 = 0.9,
β2 = 0.999, τ = 10−8, η = 0.1, and λ = 0.05. Figure 4 and

1https://cswww.essex.ac.uk/mv/allfaces/faces94.html
2https://github.com/aleju/imgaug

Fig. 4: MIA results on vanilla model and record-DP models
trained on MNIST.

Fig. 5: MIA results on vanilla model and subclass-DP models
trained on MNIST.

5 demonstrate the MIA results on the record-DP models and
subclass-DP models respectively. The first row of each figure
shows the ground truth training image samples of digit 0 to 9,
and the second row shows the reconstructed images of MIA
on the vanilla model. The third/fourth/fifth row of Figure 4
and 5 show the reconstructed images of MIA on the record-
DP model and subclass-DP model for model accuracy at 96%,
93%, and 91% respectively. Notice that the record-DP model
and the subclass-DP model at the same row in Figure 4 and 5
have the same model accuracy so we can have a fair compari-
son of their robustness. Comparing Figure 4 and Figure 5, we
can see that record-DP can not defend against MIA. Even with
small ε (row 5) which corresponds to (0.5, 10−5)-DP, MIA can
still reconstruct the corresponding digits. On the other hand,
subclass-DP provides strong protection against MIA which
fails to reconstruct original training data representatives.
MIA Robustness. Figure 6 shows MIA robustness of subclass
DP in comparison with vanilla model and record-level DP
model in terms of the MIA distance (minimum Euclidean
distance between the reconstructed image and training images
in the target class) as defined in Section 3. We can see
that record-DP models provide some protection against MIA
compared to the vanilla model. Comparing the three figures,
we observe that the subclass-DP models have stronger MIA
robustness (larger distance) than the record-DP models at the
same level of model accuracy for all classes, providing more
effective protection against MIA (a better MIA robustness and
accuracy tradeoff).

Figure 7 (8) shows (a) the relationship between ε and model
utility measured by test accuracy, and (b) the relationship
between ε and MIA robustness for record-DP (subclass-DP)
models trained on MNIST with different noise scales and all
other hyperparameters fixed. We note that the absolute value of
epsilon and their comparison between record-DP and subclass-
DP are not very meaningful. Instead, our goal is to adjust
the epsilon for the two models to achieve the same range
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(a) test accuracy=96% (b) test accuracy=93% (c) test accuracy=91%

Fig. 6: MIA Robustness of record-DP and subclass-DP models trained on MNIST with different model utility.

Fig. 7: Record-DP models trained on MNIST: (a) ε vs test
accuracy (b) ε vs MIA robustness

Fig. 8: Subclass-DP models trained on MNIST: (a) ε vs test
accuracy (b) ε vs MIA robustness

of accuracy so we can have a fair comparison of their MIA
robustness (i.e. the tradeoff of accuracy and MIA robustness).
In addition, what is important is whether the epsilon value
correlates with the MIA robustness (i.e. provides quantifiable
protection against MIA). By comparing Figure 7(b) and Figure
8(b), we make two observations. First, subclass-DP has a much
larger MIA distance than record-DP at the same accuracy
level, indicating a much stronger MIA robustness and accuracy
trade-off. Second, the level of ε in record-DP models does not
have any significant correlation with MIA robustness. On the
other hand, the ε of subclass-DP models directly correlates
with their MIA robustness, i.e. a smaller epsilon corresponds
to more robustness (larger distance). Hence it validates our
hypothesis that subclass-DP can provide a more effective and
quantifiable measure against the model inversion risk.

Fig. 9: (a) Model test accuracy vs number of subclasses ksub.
(b) MIA robustness vs number of subclasses ksub

Fig. 10: MIA results on vanilla model and record-DP (left)
and class-DP (right) models trained on Faces94 dataset.

Varying Number of Subclasses ksub. Next, we study the
impact of the number of subclasses ksub within each class
on subclass-DP models in terms of model utility and model
robustness against MIA. Figure 9(a) shows the model test
accuracy under different ksub and (b) shows the MIA robust-
ness under different ksub. For both figures, the noise scale
is fixed as 1.6 and the subclass sampling ratio is fixed as
0.2. We can observe that under the same noise scale and
subclass sampling ratio, increasing ksub will increase the
model accuracy (becomes flat after ksub is large enough), and
decrease the MIA robustness. This utility and robustness trade-
off is consistent with our definition of subclass-DP. When the
ksub is large enough, it will degrade to record-DP (when ksub
equals to the class size), and the model will be under higher
risk of MIA.

B. Faces94

We use the softmax regression model as in [3] and train
the vanilla model without privacy protecting with 100.0%
test accuracy. We train record-DP models with the same
structure using the DP-SGD algorithm [13]. We set three noise
scales which are σ = 0.8/1.1/1.4 and obtain three models
with 99.5%, 99.2%, and 99% test accuracy and corresponding
(9.1, 10−4), (4.2, 10−4), and (2.7, 10−4)-DP respectively. Fi-
nally, we train class-DP models with the same architecture
as the vanilla model using the class-DP-SGD method in
Algorithm 2. The class sampling rate q is set to be 0.33. The
gradient norm bound is 10. We choose three noise scales which
are σ = 0.8/1.2/1.6 and obtain three models with 99.5%,
99.2%, and 99% test accuracy and corresponding (62, 10−2),
(45.5, 10−2), and (40.5, 10−2)-class DP respectively.

MIA. We evaluate the improved MIA using Algorithm 1 with
the loss function (6) where α = 0.9 and p = 2. The parameter
settings are the same for all the models to recover face images
of each class (person). The parameters of MIA are set as:
T = 100, β1 = 0.9, β2 = 0.999, τ = 10−8, η = 0.05,
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(a) test accuracy=99.5% (b) test accuracy=99.2% (c) test accuracy=99%

Fig. 11: MIA Robustness of record-DP and class-DP models trained on Faces94 dataset.

Fig. 12: Record-DP models trained on Faces94 dataset: (a) ε
vs test accuracy (b) ε vs MIA robustness

Fig. 13: Class-DP models trained on Faces94 dataset: (a) ε vs
test accuracy (b) ε vs MIA robustness

and λ = 0.001. Figure 10 demonstrates the MIA results
on the record-DP models and class-DP models respectively.
Again, the record-DP model and the class-DP model in the
same row have the same model accuracy so we can have
a fair comparison. We can draw a similar conclusion to the
MNIST dataset that the record-DP model can not prevent the
reconstruction of the images but class-DP does while achieving
the same model accuracy.

MIA Robustness. Figure 11 shows MIA robustness of class
DP in comparison with the vanilla model and record-level DP
model in terms of the MIA distance. We observe that the class-
DP models have stronger MIA robustness than the record-DP
models at the same level of model accuracy for all classes,
providing more effective protection against MIA.

Figure 12 and 13 show model accuracy and MIA robust-
ness with respect to varying ε for record-DP and class-DP
respectively. Again, we emphasize that the ε value for class-
DP may seem significantly large, the absolute value is not
very meaningful. What is important is that at the same model
accuracy level, class-DP achieves significantly larger MIA
distance than record-DP, which means a much more effective
MIA protection. Similar to MNIST, we also observe that the
level of ε in record-DP models do not have a significant
correlation with the robustness of the model against MIA,

while the ε of class-DP models directly correlates with their
robustness against MIA.

VI. RELATED WORK

[3] first studied MIA targeting neural network models to
recover recognizable facial images of individual’s portrait by
their names and white-box access to the model parameters.
[5] trained an inversion model using an auxiliary dataset
composed of the adversary’s background knowledge to recover
the private dataset. Their attack is different from our improved
model inversion attack since they require an auxiliary dataset
in order to train an additional model to implement the inversion
attack. Our MIA requires no additional datasets and models.
However, how to use auxiliary datasets to further improve MIA
to generate more recognizable images close to the original one
is an interesting topic for further work. There are also works
exploring MIA under the distributing setting [6]–[8], [32]
which are orthogonal to our improved MIA in a centralized
setting. [33] proposed to protect MIA by introducing a regular-
izer into the training loss to mitigate the mutual information
between the model input and the prediction. However, their
method does not provide a rigorous or quantifiable guarantee
against MIA as we do in this paper.

Existing works on privacy-preserving deep learning mainly
focus on achieving better privacy and model utility tradeoff
and tighter privacy loss quantification. Various techniques have
been developed for this purpose, including moments accoun-
tant [13], gradient perturbation with adaptive budget allocation
[17], objective function perturbation [14], and private teacher-
student knowledge transfer [15]. Despite better privacy-utility
tradeoff achieved by the above works under the record-DP
notion, there is limited understanding of how effective DP
is in protecting against various privacy threats empirically
[18], [20]. Whether DP or other privacy notions can provide
meaningful protection against MIA without sacrificing model
utility is still an open problem, which we focus on in this
paper.

As for broadened DP notions, [34] protected “user-level”
DP for user-partitioned data when training an LSTM language
model with a strong DP guarantee. [35] proposed “client-
level” DP, which can be achieved in the federated setting
along with good model utility when the number of clients
is large enough. The class-level DP coincides with user-level
and client-level DP [34], [35] when one class corresponds to
one user (client). However, class and user are two orthogonal
concepts, e.g. one class may not directly correspond to one
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user and each user can have data of multiple classes. In this
sense, the class-level DP and user-level DP are not the same
for most of the cases. In terms of the targeted problems, our
purpose of defending against MIA is very different from [34],
[35], which considers the privacy issues for federated training.
An important contribution of our paper is to show that DP-
based techniques can be applied against MIA with proper
development, in spite of the previous unsuccessful attempt [6]
which applied record-level DP straightforwardly.

VII. CONCLUSION

We study the problem of protecting deep learning models
against MIA. We show that traditional record-DP for building
private deep learning models does not provide effective and
quantifiable protection against MIA. Further, we propose two
new DP notions, class-DP and subclass-DP, and algorithms for
protecting deep learning models against MIA. Experiments
on two real datasets show that class or subclass-DP can
effectively defend against MIA while preserving good model
utility. While we focus on the centralized setting and neural
networks in this paper, the class-DP and subclass-DP notions
are generally applicable to other machine learning settings
(e.g. collaborative setting) and models (e.g. decision trees) to
protect against MIA, and we leave the evaluation of them as
future works.
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[6] B. Hitaj, G. Ateniese, and F. Pérez-Cruz, “Deep models under the gan:
information leakage from collaborative deep learning,” in ACM SIGSAC
CCS, 2017.

[7] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi, “Beyond
inferring class representatives: User-level privacy leakage from federated
learning,” in IEEE INFOCOM 2019-IEEE Conference on Computer
Communications. IEEE, 2019, pp. 2512–2520.

[8] A. Salem, A. Bhattacharya, M. Backes, M. Fritz, and Y. Zhang,
“Updates-leak: Data set inference and reconstruction attacks in online
learning,” in USENIX Security Symposium, 2020.

[9] C. Dwork, A. Roth et al., “The algorithmic foundations of differential
privacy,” Foundations and Trends® in Theoretical Computer Science,
2014.

[10] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate, “Differentially private
empirical risk minimization,” JMLR, 2011.

[11] J. Lou and Y.-m. Cheung, “Uplink communication efficient differentially
private sparse optimization with feature-wise distributed data,” in Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

[12] ——, “An uplink communication-efficient approach to featurewise dis-
tributed sparse optimization with differential privacy,” IEEE Transac-
tions on Neural Networks and Learning Systems, 2020.

[13] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Tal-
war, and L. Zhang, “Deep learning with differential privacy,” in ACM
SIGSAC CCS, 2016.

[14] N. Phan, Y. Wang, X. Wu, and D. Dou, “Differential privacy preservation
for deep auto-encoders: an application of human behavior prediction,”
in AAAI, 2016.
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