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Abstract Visual information plays a critical role in

human decision-making process. Recent developments

on visually aware recommender systems have taken the

product image into account. We argue that the aes-

thetic factor is very important in modeling and pre-

dicting users’ preferences, especially for some fashion-

related domains like clothing and jewelry. This work is

an extension of our previous paper [43], where we ad-

dressed the need of modeling aesthetic information in

visually aware recommender systems. Technically speak-

ing, we make three key contributions in leveraging deep

aesthetic features. In [43], (1) we introduced the aes-

thetic features extracted from product images by a deep

aesthetic network to describe the aesthetics of products.

We incorporated these features into recommender sys-
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tem to model users’ preferences in the aesthetic aspect.

(2) Since in clothing recommendation, time is very im-

portant for users to make decision, we designed a new

tensor decomposition model for implicit feedback data.

The aesthetic features were then injected to the basic

tensor model to capture the temporal dynamics of aes-

thetic preferences.

In this extended version, we try to explore aesthetic

features in negative sampling to get further benefit in

recommendation tasks. In implicit feedback data, we

only have positive samples. Negative sampling is per-

formed to get negative samples. In conventional sam-

pling strategy, uninteracted items are selected as neg-

ative samples randomly. However, we may sample po-

tential samples (prefered but unseen items) as negative

ones by mistake. To address this gap, (3) we use the

aesthetic features to optimize the sampling strategy.

We enrich the pairwise training samples by consider-

ing the similarity among items in the aesthetic space

(and also in the semantic space and graphs). The key

idea is that a user may likely have similar perception

on similar items. We perform extensive experiments on

several real-world datasets and demonstrate the useful-

ness of aesthetic features and the effectiveness of our

proposed methods.

1 Introduction

Recommender systems have been widely used in on-

line services to predict users’ preferences based on their

interaction histories [16]. Recently, visual information

has been intensively explored to enhance the perfor-

mance of recommender models [14, 9, 46, 7]. In many

domains of interest, the images of items play an impor-

tant role in user decision-making process. For example,
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when purchasing clothing, users will scrutinize product

images for the intuitive representation of the clothing

like shape, design, color schemes, decorative pattern,

texture, and so on. To leverage these kinds of informa-

tion, existing efforts have extracted various visual fea-

tures from item images and injected them into recom-

mender models, like SIFT features, CNN features, color

histograms, etc. For example, Zhao et al. [46], Chen

et al. [7] utilized low-level SIFT features and color his-

tograms, and He and McAuley [14], McAuley et al.

[29], Chen et al. [9] utilized high-level CNN features

extracted by a deep convolutional neural network.
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Fig. 1 Comparison of CNN features and aesthetic features.
The CNN is inputted with the RGB components of an im-
age and trained for the classification task, while the aesthetic
network is inputted with raw aesthetic features and trained
for the aesthetic assessment task.

We argue that the aesthetic information is crucial

in predicting user preferences on products in many do-

mains, such as clothing, furniture, ornaments, electron-

ics, etc. Taking the product shown in Figure 1 as an

example, besides the semantic information, a user will

also notice that the dress is with colors black and white,

simple yet elegant design, and delightful proportion.

She may have the intention to purchase it if she is satis-

fied with these aesthetic factors. In fact, for many users,

especially young females, the aesthetic factor could be

the primary factor when purchasing clothes. Unfortu-

nately, conventional visual features do not encode the

aesthetic information by nature. Zhao et al. [46] used

color histograms to portray users’ intuitive perception

about an image, but the solution leaves much space to

improve, since it does not make good use of many valu-

able information, such as aesthetic information shown

in Figure 1. To address this issue, we proposed a more

comprehensive and high-level aesthetic representation

for items in our previous paper [43].

This paper is the extension of [43], where we ex-

tracted aesthetic-related features with a dedicated neu-

ral network called Brain-inspired Deep Network (BDN)

[39]. We input raw features that are indicative of hu-

man aesthetic feelings, such as hue, saturation, duo-

tones, complementary colors, etc., and train BDN for

the image aesthetic assessment task. We use the back-

bone to extract high-level aesthetic features. Intuitively,

BDN is trained to mine information that is important

to the aesthetic assessment task, thus these features

encode aesthetic factors such as colors, structure, pro-

portion, and styles (see Figure 1 as an example). In this

paper, to make a thorough use of aesthetic features, we

additionally utilize them for negative sampling. In our

method, the aesthetic features are used for both mod-

eling and learning: we define the user preference model

to be aware of aesthetic features, and then use them to

improve the sampling quality when learning the model.

We first introduce the research effort in [43]. Com-

pared with other products, clothing shows obvious tem-

poral characteristics, since in clothing recommendation,

if an item can be purchased depends on not only if the

user likes the it, but also if it fits the current time. To de-

sign the basic model, we consider these two vital factors.

Also, users’ aesthetic preferences are impacted by these

two factors: (1) It is obvious that aesthetic preferences

show a significant diversity among different people. For

instance, when purchasing clothing, children prefer col-

orful and lovely products while adults prefer those can

make them look mature and elegant (empirical evidence

see Figure 7); women may prefer exquisite decorations

while men like concise designs (see Figure 8). (2) The

aesthetic tastes of users also change over time, either in

short term, or in long term. For example, the aesthetic

tastes vary in different seasons periodically — in spring

or summer, people may prefer clothes with light color

and fine texture, while in autumn or winter, people tend

to buy clothes with dark color, rough texture, and loose

style (see Figure 9). In the long term, the fashion trend

changes all the time and the popular colors and design

may be different by year (see Figure 10).

Considering the above-mentioned factors, we exploit

tensor factorization as the basic model to capture the

diversity of aesthetic preferences among users and over

time. There are several ways to decompose a tensor

[21, 35], however, there are certain drawbacks in the ex-

isting models. To tailor it for the clothing recommenda-

tion task, we propose a new tensor factorization model

trained with coupled matrices to mitigate the sparsity

problem [2]. We then combine the basic model with the

additional visual features (concatenated aesthetic and

CNN features) and term the method Visually Aware

Recommendation with Aesthetic Features (VRA).
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Now, we introduce the research effort in this paper.

The other technical contribution of the paper lies in

the learning part. We not only leverage the features we

extracted to model users’ aesthetic preference in VRA,

but also improve the quality of negative sampling by

measuring the similarity of items in the aesthetic space.

When optimizing a model on implicit feedback data

(e.g., purchasing records), pairwise learning has been

widely used due to its rationality, which aims to maxi-

mize the margin between the predictions of positive and

negative samples [36]. In this paper, we design a pair-

wise learning to rank method to factorize the tensor and

coupled matrices. However, when employing pairwise

learning, one critical issue is that not all unobserved

feedbacks are necessarily negative samples, since some

of them might be just unknown by users, i.e., potential

positive samples while mislabeled as negative ones. To

address this issue, we construct the neighbor set of each

item by finding the similar items in the aesthetic space.

The intuition is that the items in the neighbor set of an

purchased item (positive sample) are more likely to fit

the user’s aesthetics thus are more likely to be poten-

tial positive samples. We treat these potential positive

samples as the third kinds of labels between the positive

and negative ones in our Aesthetic-enhanced Pairwise

Learning to Rank (APLR) algorithm.

Finally, we evaluate the performance of our pro-

posed method by comparing it with several baselines

on an Amazon dataset and 5 subsets. Extensive exper-

iments show that the recommendation accuracy can be

significantly improved by incorporating aesthetic fea-

tures. To summarize, our main contributions are as fol-

lows:

– We propose aesthetic features for items’ aesthetic

representation, and then leverage these features in

the recommendation context. Moreover, we compare

the effectiveness with several conventional features

to demonstrate the necessity of the aesthetic fea-

tures.

– We propose a new tensor factorization model to por-

tray the purchase events in three dimensions: users,

items, and time. We then inject the aesthetic fea-

tures into it to model users’ aesthetic preference.

– We use the aesthetic features to enhance the opti-

mization strategy for the proposed model. To enrich

pairwise training samples, we construct neighbor set

for positive items by considering the similarity be-

tween items evidenced by visual features and collab-

orative information. This is the main contribution

compared with our previous paper [43].

– We validate the effectiveness of our proposed model

by comparing it against several state-of-the-art base-

lines on 6 real-world datasets. Experiments show

that we gain significant improvement by exploring

aesthetic features in modeling user preference and

negative sampling.

2 Related Work

Recommender systems have gained more and more at-

tention due to their extensive applications, and created

considerable economic benefits. On various online plat-

forms such as E-commerce, video, and news online plat-

forms, recommender systems help users to find their

interested items efficiently and improve the user expe-

rience significantly. Collaborative filtering (CF) model

[22, 37, 13] boosts the development of recommender sys-

tems. Among various CF methods, matrix factorization

(MF) [22, 36], which encodes user preferences by under-

lying latent factors, is a basic yet the most effective rec-

ommender model. To improve the presentation capabil-

ity, many variants have been proposed [14, 2, 32, 16, 41].

This paper develops aesthetic-aware clothing recom-

mender systems. Specifically, we incorporate the fea-

tures extracted from the product images by an aesthetic

network into a tensor factorization model, and optimize

our model with pairwise learning. As such, we review

related work on aesthetic networks, image-based recom-

mendation, tensor factorization, and negative sampling

strategies.

2.1 Aesthetic Networks

The aesthetic networks are proposed for image aes-

thetic assessment. After Datta et al. [10] first proposed

the aesthetic assessment problem, many research ef-

forts exploited various handcrafted features to extract

the aesthetic information of images [10, 26, 28]. To

portray the subjective and complex aesthetic percep-

tion, Lu et al. [25], Wang et al. [39], Ma et al. [27] ex-

ploited deep networks to emulate the underlying com-

plex neural mechanisms of human perception, and dis-

played the ability to describe image content from the

primitive-level (low-level) features to the abstract-level

(high-level) features. Proposed in [39], Brain-inspired

Deep Network (BDN) model is the state-of-the-art

aesthetic deep model. In this paper, we use BDN to

extract the aesthetic features of product images, and

use these features to enhance the performance of the

recommender system.

2.2 Image-based Recommendations

Recommendation has been widely studied due to its ex-

tensive use. The power of recommender systems lies on
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their ability to model complex preferences that users

exhibit toward items based on their past interactions

and behavior. To extend their expressive power, vari-

ous works exploited image data [14, 9, 46, 6, 7]. For ex-

ample, McAuley et al. [29], He and McAuley [14] used

CNN features of product images while Zhao et al. [46]

recommended movies with color histograms of posters

and frames. Sha et al. [38], Jagadeesh et al. [18] rec-

ommended clothes by considering the clothing fashion

style. Though various visual features are leveraged in

recommendation tasks, they are conventional features

(such as CNN features and SIFT features) and low-

level aesthetic features (such as color histograms). To

propose more powerful aesthetic features, Yu et al. [43]

extracted high-level features by a BDN pretrained for

the aesthetic assessment task, and used these features

to model users’ aesthetic preference. This paper is the

extended version of [43]. To explore aesthetic features in

different aspects, we used them to improve the quality

of negative sampling.

2.3 Tensor Factorization

Time is an important contextual information in recom-

mender systems since the sales of commodities show a

distinct time-related succession. In context-aware rec-

ommender systems, tensor factorization has been ex-

tensively used. For example, Kolda and Bader [21] in-

troduced two main forms of tensor decomposition, the

CANDECOMP/ PARAFAC (CP) and Tucker decom-

position. Karatzoglou et al. [20] first utilized tensor

factorization for context-aware collaborative filtering.

Rendle and Schmidt-Thieme [35] proposed a Pairwise

Interaction Tensor Factorization (PITF) model to de-

compose the tensor with a linear complexity. Tensor-

based methods suffer from several drawbacks like poor

convergence in sparse data [4] and not scalable to large-

scale datasets [1]. To address these limitations, Acar

et al. [2], Bhargava et al. [3] formulated recommen-

dation models with the Coupled Matrix and Tensor

Factorization (CMTF) framework. All existing tensor

decomposition models are designed for explicit feedback

data and usually do not perform well in implicit feed-

back cases. In this paper, we design a novel tensor de-

composition model for implicit feedback data and in-

corporate aesthetic features into it.

2.4 Negative Sampling

In real-world applications, data of implicit feedback, or

one-class form is easier to collect so extensively used.

Prediction on implicit feedback dataset is a challenging

task since we only know positive samples and unob-

served samples, but cannot discriminate negative sam-

ples and potential positive samples from the unobserved

ones [15]. In [36], all unobserved samples are treated

equally as negative ones when sampling. To improve

the sampling quality, many works proposed enhanced

pairwise learning with various extra information [11,

33, 45, 32, 34]. For example, Ding et al. [11], Pan et al.

[33] used view information to enrich positive samples.

Pan and Chen [32], Liu et al. [23] utilized collaborative

information mined from the connections of users and

items. Cao et al. [5], Liu et al. [24] proposed listwise

ranking methods instead of pairwise ones. Yu and Qin

[42] considered the noise in negative samples, and op-

timized the negative sampling strategy based on noisy

label-robust learning. Yu et al. [44] performed negative

supervision on the embedding level by domain adapta-

tion, thus can avoid negative sampling.

Though widely explored, the effectiveness of high-

level visual features in this task is neglected. In this

paper, we leverage the aesthetic features (additonally

with semantic features and collaborative information)

in the learning to rank process. For each positive item,

we regard items with similar visual features or items

connected in the bipartite graph as the neighbors (po-

tential positive samples), and assume that users will

prefer them to other negative samples.

3 Preliminaries

In this section, we introduce some preliminaries about

the aesthetic neural network, which is used to extract

the aesthetic features of clothing images.

Wang et al. [39] introduced the Brain-inspired Deep

Networks (BDN, shown in Figure 2), a deep CNN struc-

ture consists of several parallel pathways (sub-networks)

and a high-level synthesis network. It is trained on the

Aesthetic Visual Analysis (AVA) dataset, which con-

tains 250,000 images with aesthetic ratings and tagged

with 14 photographic styles (e.g., complementary col-

ors, duotones, rule of thirds, etc.). The pathways take

the form of convolutional networks to exact the abstrac-

tive aesthetic features by pre-trained with the individ-

ual labels of each tag. For example, when training the

pathway for complementary colors, the individual la-

bel is 1 if the sample is tagged with “complementary

colors” and is 0 if not.

We input the raw features, including low-level fea-

tures (hue, saturation, value) and abstractive features

(feature maps of the pathways), into the high-level syn-

thesis network and jointly tune it with the pathways for

aesthetic rating prediction. Considering that the AVA
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Fig. 2 Brain-inspired Deep Network (BDN) architecture.

is a photography dataset and the styles are for pho-

tography, so not all the raw features extracted by the

pathways are desired in our recommendation task, thus

we only reserve the pathways that are relevant to the

clothing aesthetic. Finally, we use the output of the

second fully-connected layer of the synthesis network

as our aesthetic features.

We then analyze several extensively used features to

illustrate the superiority of our aesthetic features.

CNN Features: These are the most extensively

used features due to their extraordinary representa-
tion ability. Trained for the image classification task,

CNN extracts the features important to image seman-

tics, thus CNN features mainly contain semantic in-

formation, which contributes little to evaluate the aes-

thetics of an image. Recall the example in Figure 1, it

can encode “There is a skirt in the image” but cannot

express “The clothing is beautiful and fits the user’s

taste”. Devised for aesthetic assessment, BDN can cap-

ture the high-level aesthetic information. As such, our

aesthetic features can do better in beauty estimating

and complement CNN features in clothing recommen-

dation.

Color Histograms: Zhao et al. [46] exploited color

histograms to represent human’s feeling about the posters

and frames for movie recommendation. Though can get

the aesthetic information roughly, the low-level hand-

crafted features are crude, unilateral, and empirical.

BDN can get abundant visual features by the pathways.

Also, it is data-driven, since the rules to extract features

are learned from the data. Compared with the intuitive

color histograms, our aesthetic features are more objec-

tive and comprehensive. Recall the example in Figure 1

again, color histograms can tell us no more than “The

clothes in the image is white and black”.

4 Aesthetic-based Recommendation

In this section, we first introduce the basic tensor fac-

torization model, and then integrate visual features into

the basic model to propose the Visually Aware Recom-

mendation with Aesthetic Features (VRA) model. The

summary of notations are represented in Table 1.

4.1 Basic Model

Considering the impact of time on aesthetic preferences,

we propose a context-aware model as the basic model

to account for the temporal factor. We use a P ×Q×R
tensor A to indicate the purchase events among the

user, clothes, and time dimensions (where P , Q, R are

the number of users, clothes, and time intervals, re-

spectively). If user p purchased item q in time interval

r, Apqr = 1, otherwise Apqr = 0. Tensor factorization

has been widely used to predict the missing entries (i.e.,

zero elements) in A, which can be used for recommen-

dation.
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Table 1 The summary of notations.

Notations Definitions

p/q/r the p-th user/q-th item/r-th time
P/Q/R the total number of users/items/time intervals
A/B/C user-item-time tensor/user-item matrix/time-item matrix

Â/B̂/Ĉ reconstruction of A/B/C
F/fCNN/fAES visual features/CNN features/aesthetic features

Θ = {U, V, W, T, M, N} model parameters
λc/λr the weighting parameter/regularization coefficient
P the set of P users {p1, p2, ..., pP }
Q the set of Q items {q1, q2, ..., qQ}
R the set of R items {r1, r2, ..., rR}

Q+
p /Q−p the set of items purchased/not purchased by user p
Q+

r /Q−r the set of items purchased/not purchased in time r
Q+

pr/Q−pr the set of items purchased/not purchased by user p and/or in time r
D the training set of (user, positive item, time) tuples
NC

q the neighbour set of item q constructed based on CNN features
NA

q the neighbour set of item q constructed based on aesthetic features
NU

q the neighbour set of item q constructed based on CNN users
NT

q the neighbour set of item q constructed based on time
A \ B the set of elements in A but not in B
|A| the size of set A

4.1.1 Existing Methods and Their Limitations

In this subsection, we summarize the motivation of our

novel tensor factorization model by revealing the limi-

tations of existing models.

Tucker Decomposition: This method [21] decom-

poses the tensor A into a tensor core and three matri-

ces,

Âpqr =

K1∑
i=1

K2∑
j=1

K3∑
k=1

aijkUipVjqTkr,

where a ∈ RK1×K2×K3 is the tensor core, U ∈ RK1×P ,

V ∈ RK2×Q, and T ∈ RK3×R. Tucker decomposition
has very strong representation ability, but it is very

time consuming, and hard to converge.

CP Decomposition: The tensor A is decomposed

into three matrices in CP decomposition,

Âpqr =

K∑
k=1

UkpVkqTkr,

where U ∈ RK×P , V ∈ RK×Q, and T ∈ RK×R. This

model has been widely used due to its linear time com-

plexity, especially in Coupled Matrix and Tensor Fac-

torization (CMTF) structure models [2, 3, 1]. How-

ever, all dimensions (users, clothes, time) are mapped

to the same latent factor space. Intuitively, we want

the latent factors relating users and clothes to encode

the information about users’ preference, like aesthet-

ics, prices, quality, brands, etc., and the latent factors

relating clothes and time to encode the information

about the seasonal characteristics and fashion elements

of clothes like colors, thickness, design, etc.

PITF Decomposition: The Pairwise Interaction

Tensor Factorization (PITF) model [35] decomposes A

into three pair of matrices,

Âpqr =

K∑
k=1

UV
kpV

U
kq +

K∑
k=1

UT
kpT

U
kr +

K∑
k=1

VT
kqT

V
kr,

where UV,UT ∈ RK×P ; VU,VT ∈ RK×Q; TU,TV ∈
RK×R. PIFT has a linear complexity and strong rep-

resentation ability. Yet, it is not in line with implicit

feedbacks due to the additive combination of each pair

of matrices. For example, in PIFT, for certain clothes

q liked by the user p but not fitting the current time

r, q gets a high score for p and a low score for r. It

should not be recommended to the user since we want

to recommend the right item in the right time. How-

ever, the total score can be high enough if p likes q so

much that q’s score for p is very high. In this case, q

will be returned even it does not fit the time. In addi-

tion, PITF model is inappropriate to be trained with

coupled matrices.

4.1.2 Model Formulation

To address the limitations of the aforementioned mod-

els, we propose a new tensor factorization method which

is for implicit feedback with linear complexity. When

a user makes a purchase decision on a clothing prod-

uct, there are two primary factors: if the product fits

the user’s preferences and if it fits the time. A clothing

product fits a user’s preferences if the appearance is

appealing, the style fits the user’s tastes, the quality is
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good, and the price is acceptable. And a clothing prod-

uct fits the time if it is in-season and fashionable. For

user p, clothing q, and time interval r, we use the scores

S1 and S2 to indicate how the user likes the clothing

and how the clothing fits the time respectively. S1 = 1

when the user likes the clothing and S1 = 0 other-

wise. Similarly, S2 = 1 if the clothing fits the time and

S2 = 0 otherwise. The user will buy the clothing only

if S1 = 1 and S2 = 1, so, Âpqr = S1&S2. To make the

formula differentiable, we can approximately formulate

it as Âpqr = S1 · S2. We present S1 and S2 in the form

of matrix factorization: S1 = UT
∗pV∗q, S2 = TT

∗rW∗q,

where U ∈ RK1×P , V ∈ RK1×Q, T ∈ RK2×R, and

W ∈ RK2×Q. The prediction is then given by:

Âpqr =
(
UT
∗pV∗q

)(
TT
∗rW∗q

)
. (1)

We can see that in Equation (1), the latent factors re-

lating users and clothes are independent with those re-

lating clothes and time. Though the K1-dimensional

vector V∗q and the K2-dimensional vector W∗q are all

latent factors of clothing q, V∗q captures the informa-

tion about users’ preferences whereas W∗q captures the

temporal information of the clothing. Compared with

CP decomposition, our model is more effective and ex-

pressive in capturing the underlying latent patterns in

purchases. Compared with PITF, combining S1 and S2

with & (approximated by multiplication) is helpful to

recommend right clothing in right time. Moreover, our

model is efficient and easy to train compared with the

Tucker decomposition.

4.1.3 Coupled Matrix and Tensor Factorization

Though widely used to portray the context information

in recommendation, tensor factorization suffers from

poor convergence due to the sparsity of the tensor. To

relieve this problem, Acar et al. [2] proposed a CMTF

model, which decomposes the tensor with coupled ma-

trices. In this subsection, we couple our tensor factor-

ization model with restrained matrices during training.

As our model is proposed by considering two factors: S1

(use’s preference towards items) and S2 (time’s “pref-

erence” towards items), we also explore restrained ma-

trices that can supervise these two factors.

User × Clothing Matrix: We use matrix B ∈
RP×Q to indicate the purchase activities between users

and clothes. Bpq = 1 if user p purchased clothing q and

Bpq = 0 if not. We use B to supervise S1 when learning

our model.

Time × Clothing Matrix: We use matrix C ∈
RR×Q to record when the clothing was purchased. Since

the characteristics of clothing change steadily with time,

we make a coarse-grained discretization on time to avoid

the tensor from being extremely sparse. Time is divided

into R intervals in total. Crq = 1 if clothing q is pur-

chased in time interval r and Crq = 0 if not. We use C

to supervise S2.
In previous work [2, 3, 20, 40], the CMTF mod-

els are optimized by minimizing the reconstruction loss
(MSE OPT):

MSE OPT=
1

2

wwwA− Â
www2

F
+
λc

2

(wwwB− B̂
www2

F
+
wwwC− Ĉ

www2

F

)
+
λr

2
‖Θ‖2F (2)

where Â, B̂, and Ĉ are the reconstructions of A, B,

and C, respectively. Â is defined in Equation (1), B̂ =

UTV, and Ĉ = TTW; λc is a parameter to balance the

weights of the tensor term and coupled matrix terms.

The last term of Equation (2) is the regularization term

to prevent overfitting, and λr is the regularization coef-

ficient. ‖ ‖F is the Frobenius norm of a matrix, Θ repre-

sents the parameters of the model, Θ = {U,V,T,W}.
As shown in Equation (2), we train model parameters

to complete A, and use B and C to assist the supervi-

sion of model training.
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Fig. 3 An example to illustrate our basic model.

Example 1. We give an example to illustrate how our

basic model works (please see Figure 3). There are three



8 Wenhui Yu et al.

items (q1, q2, and q3) and two latent factor spaces (the

user-item latent space and time-item latent space). The

user-item latent space encodes the users’ preference and

the time-item latent space encodes the temporal charac-

teristics of items. In our basic model, we map users and

items into user-item latent space by U and V, and map

time intervals and items into time-item latent space

by T and W. In this example, we aim to recommend

clothes to a user p who likes simple and elegant clothes

in a time interval r in summer. For clothing q1, we can

see that it fits p’s preference and it is a shirt designed

for summer, thus q1 gets high S1 and S2 scores and can

be recommended due to the high score S = S1 · S2. For

the clothing q2, it is a piece of summer clothes yet is

too colorful for p, thus q2 gets low S1 score and high S2

score and cannot be recommended. Clothing q3 is sim-

ple and elegant yet is used in winter, thus q3 gets high

S1 score and low S2 score and cannot be recommended

either.

If we neglect the first term in Equation (2), pre-

dicting S1 in the user-item latent space and predicting

S2 in the time-item space are two independent recom-

mendation tasks. Supervised by B, predicting S1 is a

conventional recommendation task which recommends

items to users. Supervised by C, predicting S2 is to

“recommend” items to current time. When predicting

S2, we need to encode “preferences” of time in the time-

item latent space. These “preferences” may relate to the

seasonal or fashion information.

4.2 Hybrid Model

In this section, we incorporate the visual features into
the basic model, and optimize it with the pairwise learn-

ing to rank method.

4.2.1 Model Formulation

Combined with visual features, we formulate the pre-

dictive model as:

Âpqr =
(
UT
∗pV∗q + MT

∗pF∗q

)(
TT
∗rW∗q + NT

∗rF∗q

)
,(3)

where F ∈ R2K×Q is the feature matrix, F∗q is the vi-

sual features of clothing q, which is the concatenation

of CNN features (fCNN ∈ RK×1) and aesthetic fea-

tures (fAES ∈ RK×1), F∗q =

[
fCNN
fAES

]
and K = 4096.

M ∈ R2K×P and N ∈ R2K×R are visual preference

matrices. M∗p encodes the visual preferences of user

p and N∗r encodes the visual preferences in time in-

terval r. In our model, both the latent factors and vi-

sual features contribute to the final prediction. Though

the latent factors can uncover any relevant attributes

theoretically, they usually cannot in real-world applica-

tions on account of the sparsity of the data and lack

of information. So the assistance of visual information

can highly enhance the model. Also, recommender sys-

tems often suffer from the cold start problem. We can-

not extract information for users and clothes without

consumption records in CF methods. In this case, ex-

tra (visual and context) information can alleviate this

problem. For example, for certain “cold” clothing q, we

can decide whether to recommend it to a certain user p

in current time r according to if q looks satisfying to the

user (determined by M∗p) and to the time (determined

by N∗r).

4.2.2 Pairwise Learning to Rank

Since the Mean Squared Error Optimization (MSE OPT,

please see Equation (2)), which is widely used in exist-

ing CMTF models [2, 3, 20, 40], is designed for explicit

feedback data, we design Pairwise Learning to Rank

(PLR) method with coupled matrix constrain for our

VRA on implicit feedback data. We represent the pos-

itive set D in the form of triples:

D =
{

(p, q, r)
∣∣Apqr = 1

}
,

and the set of unlabeled samples is:

Q−pr =
{
q
∣∣q ∈ Q \ (Q+

p ∪Q+
r

)}
,

where Q denotes the set of items, Q+
p =

{
q
∣∣Bpq = 1

}
denotes the set of items purchased by user p, and Q+

r ={
q
∣∣Crq = 1

}
denotes the set of items purchased in time

r. The objective function is formulated as:

PLR OPT =
∑

(p,q,r)∈D

∑
q′∈Q−

pr

L (p, q, q′, r)−
λr

2
‖Θ‖2F . (4)

L( ) in Equation (4) is the likelihood function,

L (p, q, q′, r) = lnσ
(
Âpqq′r

)
+λc

[
lnσ

(
B̂pqq′

)
+lnσ

(
Ĉrqq′

) ]
,

where Â is defined in Equation (3), B̂ = UTV + MTF,

and Ĉ = TTW+NTF; Âpqq′r = Âpqr−Âpq′r, B̂pqq′ =

B̂pq − B̂pq′ , Ĉrqq′ = Ĉrq − Ĉrq′ ; σ( ) is the sigmoid

function; The model is optimized from users’ implicit

feedback with mini-batch gradient descent, which cal-

culates the gradient with a small batch of samples.

5 Aesthetic-enhanced Pairwise Learning to

Rank

In Section 4, we leverage aesthetic features to model

users’ aesthetic preference and in this section, we use
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Fig. 4 Diagram of our preference predictor.

aesthetic features to improve ranking performance (CNN

features and collaborative information are leveraged as

well for comprehensiveness). PLR which is introduced

in the Subsection 4.2.2 is a pairwise learning method for

multi-objective optimization with the aim of maximiz-

ing the gap between the positive feedbacks and negative

feedbacks. Pairwise learning has been widely used due

to its strong performance [6, 14, 8] while there is a crit-

ical issue in the current formulation. To be specific, a

user did not purchase a product may because she is not

interested in it, but may also because that she has never

seen it before. However, in pairwise learning, all missing

entries are treated as negative samples hence many po-

tential positive samples are mislabeled as neagtive ones.
To to uncover these potential positive samples, we con-

struct the neighbor set Nq for each positive sample q by

uncovering the products that have similar visual repre-

sentations with q, or the products connected to q in

the user-item or time-item graphs. In other words, Nq
contains the products near q in the visual space or in

the graphs. If a user purchased q, she may also prefer

Nq due to the similarity on comprehensive aspects. In

this section, we propose a Aesthetic-enhanced Pairwise

Learning to Rank (APLR) by considering these poten-

tial positive samples in ranking.

5.1 Problem Formulation

When sampling, we regard the neighbours as potential

positive samples. For a user p and a time interval r, we

assume that (1) user p prefers items with positive feed-

backs to the others; (2) user p prefers the neighbours of

the positive sample to the irrelevant ones; (3) positive

samples fit the current time r better than the others; (4)

neighbours of the positive sample fit the current time r

better than the irrelevant ones. So for each (p, q, r) in

D, we have the preference relationship,

(p, q, r) � (p,Q−pr, r), (p, q, r) � (p,Nq, r),
(p,Nq, r) � (p,Q−pr \ Nq, r).

As such, we can generalize Equation (4) as follows:

APLR OPT=
∑

(p,q,r)∈D

[ ∑
q′′∈Q−

pr

L (p, q, q′′, r)+η1
∑

q′∈Nq

L (p, q, q′, r)

+ η2
∑

q′∈Nq

∑
q′′∈Q−

pr
\Nq

L (p, q′, q′′, r)

]
−
λr

2
‖Θ‖2F,

(5)

where η1 and η2 are weighting parameters. Here we can

see that for each purchase record (p, q, r), user p prefers

q to q′ and prefers q′ to q′′. The preference relationship

is constructed by finding the neighbours of the positive

items, which can be interpreted as an item-based collab-

orative learning model [17]. Most existing works learn

to rank by constructing the potential set of each user

[23, 32, 47, 11, 34, 33]. In the next subsections, we will

introduce how to construct neighbour set for each item,

and demonstrate the advantages of our item-based col-

laborative sampling strategy.

5.2 Constructing Neighbor Set

To find the neighbors of each positive sample, we lever-

age the visual information and the collaborative infor-

mation. For visual information, we cluster all products
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with CNN features and aesthetic features. For each

product, the cluster it belongs to is the neighborhood

set. And for collaborative information, we find all prod-

ucts purchased by the same user or purchased in the

same time to be the neighbor products.

Neighbors in aesthetic space: Similarly, we clus-

ter all products by the aesthetic features and regard the

cluster a product q belongs to as the aesthetic neighbor

set, denoted as NA
q . Products close to each other in

the aesthetic space have similar aesthetic characteris-

tics. For a certain user, since that positive samples are

in line with her aesthetics, neighbors are also in line

with her aesthetics.

Neighbors in semantic space: We cluster all prod-

ucts by the CNN features. For a product q, the cluster

it belongs to is the semantic neighbor set, denoted as

NC
q . Products with similar CNN features have similar

appearances, users may have interests in the items that

look like the purchased ones.

Neighbors linked by users: For each product q,

we find all products that purchased by the same user to

consist the user-linked neighbor set, NU
q =

{
q′
∣∣Bpq =

1 ∧ Bpq′ = 1
}

. Each product q′ in NU
q has been pur-

chased by the same user with q, therefore users who

have interests in q may also like q′. We update the part

of our model which captures the users’ preferences (pa-

rameters U, V, and M) with NU
q .

Neighbors linked by time: For each product q,

we find all products that purchased in the same time

with q to consist the time-linked neighbor set, N T
q ={

q′
∣∣Crq = 1 ∧ Crq′ = 1

}
. Each product q′ in N T

q has

been purchased in the same time with the current prod-

uct q, so q′ may fit the current time better than other
missing value samples. We update the part which cap-

tures the temporal character of products in our model

(parameters T, W, and N) with N T
q .

NU
q is the neighbour set of q in user-item bipartite

graph and N T
q is that in time-item bipartite graph. Of

special notice is that they are used to update different

parts of our model. Taking N T
q as an example, it only

contributes to predicting S2. As we discussed in Exam-

ple 1, when predicting S2, we recommend items to each

time interval, i.e., we capture the “preference” of cur-

rent time r rather than of current user p, and return

“personalized” recommendation to r. In this situation,

two items q1 and q2 that both fit r are two similar

items from time perspective, though they may be to-

tally different when considering the preference of the

user, therefore we only use N T
q to update {T,W,N}

rather than {U,V,M}.
N T
q is an extension of NU

q from the user-item graph

to time-item graph. Considering the difference between

user p and time r (p is an index and r is a discrete

numerical value), a more general way to construct N T
q

is to set a window ∆r, and for each product q, N T
q

contains all products that purchased in similar time (in

range of r±∆r) with q, i.e. N T
q =

{
q′
∣∣Crq = 1∧Cr′q′ =

1∧|r−r′| ≤ ∆r
}

. Since the density of C is much higher

than B, the size of N T
q will be very large when we set

a large ∆r, we set ∆r = 0 in our APLR.

5.3 Model Learning

We then calculate the gradient of Equation (5). To
maximize the objective function, we take the first-order
derivatives with respect to each model parameter:

∇ΘAPLR OPT=
∑

(p,q,r)∈D

[ ∑
q′′∈Q−

pr

∂L(p,q,q′′,r)

∂Θ
+η1

∑
q′∈Nq

∂L(p,q,q′,r)

∂Θ

+ η2
∑

q′∈Nq

∑
q′′∈Q−

pr
\Nq

∂L(p,q′,q′′,r)

∂Θ

]
−λrΘ. (6)

where

∂L(p, q, q′, r)

∂Θ
=σ
(
− Âpqq′r

)∂Âpqq′r

∂Θ

+λc

[
σ
(
− B̂pqq′

)∂B̂pqq′

∂Θ
+ σ

(
− Ĉrqq′

)∂Ĉrqq′

∂Θ

]
.

We use θ to denote certain column of Θ. For our VRA
model, the derivatives are:

∂Âpqq′r

∂θ
=


ĈrqV∗q − Ĉrq′V∗q′ if θ = U∗p
ĈrqU∗p/− Ĉrq′U∗p if θ = V∗q/V∗q′

ĈrqF∗q − Ĉrq′F∗q′ if θ = M∗p

(7)

∂B̂pqq′

∂θ
=

V∗q −V∗q′ if θ = U∗p
U∗p/−U∗p if θ = V∗q/V∗q′
F∗q − F∗q′ if θ = M∗p

(8)

Equations (7) and (8) give the derivatives for Θ =

{U,V,M}, and we can easily get the same form for

Θ = {T,W,N}. ∂Âpqq′r
∂θ in Equation (7) is certain col-

umn of
∂Âpqq′r
∂Θ in Equation (6), for example, the p-th

column when θ = U∗p.
Finally, we update the parameters with the deriva-

tives we get. As discussed in Subsection 5.2, we use
different neighborhood sets to update different parts of
the model. For Θ = {U,V,M}, we update the param-
eters:

Θ = Θ + η∇ΘAPLR OPT
∣∣
Nq=NU

q

⋃
NC

q

⋃
NA

q

,

and for Θ = {T,W,N},

Θ = Θ + η∇ΘAPLR OPT
∣∣
Nq=NT

q

⋃
NC

q

⋃
NA

q

.

Our model is optimized with mini-batch gradient de-

scent and for each positive sample, we sample ρ neg-

ative samples and ρ neighbors randomly to construct

pairs, where ρ is the sampling rate.
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Algorithm 1: Learning VRA by APLR.

Input: sparse tensor A, coupled matrices B and C,
visual features F, weight coefficient for
coupled matrices λc, regularization
coefficient λr, weighting parameters η1 and
η2, batch size b, learning rate η, sample rate
ρ, maximum number of iterations iter max,
and convergence criteria.

Output: top-n prediction given by the complete
tensor Â.

1 construct NC
q , NA

q , NU
q , and NT

q for each item q;

2 initialize Θ randomly;
3 iter = 0;
4 while not converged && iter < iter max do
5 iter+ = 1;
6 split all purchase records into b-size batches;
7 for each batch do
8 for each record in current batch do
9 Nq = NC

q

⋃
NA

q

⋃
NU

q ;

10 select ρ neighbour items q′ randomly
from Nq;

11 select ρ neighbour items q′′ randomly
from Q−pr \ Nq;

12 calculate and accumulate
∇{U,V,M}APLR OPT;

13 Nq = NC
q

⋃
NA

q

⋃
NT

q ;

14 select ρ neighbour items q′ randomly
from Nq;

15 select ρ neighbour items q′′ randomly
from Q−pr \ Nq;

16 calculate and accumulate
∇{T,W,N}APLR OPT;

17 {U,V,M}+= η∇{U,V,M}BPR OPT;

18 {T,W,N}+= η∇{T,W,N}BPR OPT;

19 calculate Â and predict the top-n items;

20 return the top-n items;

The detailed learning procedures about our method

are shown in Algorithm 1. We first construct NC
q and

NA
q by clustering the CNN features and aesthetic fea-

tures, and construct NU
q and N T

q by collecting neigh-

bours in user-item and time-item graph (line 1). We

then exploit the mini-batch gradient descent to maxi-

mize the objective function. For each iteration, all pos-

itive samples are enumerated (lines 4-19). We compute

the gradients with a batch containing b positive samples

(line 6), and select ρ neighbours and ρ negative samples

(lines 8-16) construct preference pairs. Different parts

of the model are updated with different samples (lines

12, 16, 17, and 18). To calculate the gradients (line 10),

we combine Equation (6) with Equations (7) and (8).

One thing needs to be point out is that
∂Âpqq′r
∂Θ in Equa-

tion (7) is a certain column of
∂Âpqq′r
∂θ in Equation (6),

for example, the p-th column when θ = U∗p.

As we know, a more popular item tells us less about

user’s preference, and our optimization can weaken the

contribution of popular items by nature. For a popular

item q1 and a minority item q2, |Nq1 | � |Nq2 |, where | |
is the set size. Noting that a popular item connects to

a large proportion of items, Nq1 contains various items

and depicts little about the preference, and we only

select a small proportion of Nq1 ( ρ
|Nq1 |

). For a minor-

ity item q2, Nq2 only contains similar items which the

current user may prefer, therefore we select a large pro-

portion of Nq2 ( ρ
|Nq2

| ). If q2 is very unpopular, we can

almost cover Nq2 by sampling ρ samples.

Another advantage of our neighbour-enhanced pair-

wise optimization is that important neighbours can be

strengthened in the probability level. We give an exam-

ple to illustrate this advantage.

p

q1

q2

q3

q4  q5

q4  q6

q4  q7  q8  q9  q10

N q1

N q2

N q3

Fig. 5 An example of neighbour sets.

Example 2. As shown in Figure 5, p is the current

user, and q1, q2, q3 are three positive samples. q4−10 are

neighbours of positive samples and with high probability

to be preferred by p, hence are potential positive sam-

ples. As we can see, q4 is the most important potential

items since it is the neighbour of all p’s purchased items

and with the highest probability to be preferred. q7−10
are not important since they are the neighbours of q3,

which is a popular item. As we discussed, Nq3 provides

little information about p’s preference. When sampling

from the neighbour set, taking ρ = 1 as an example, q4
has 1

20 , 3
10 , 9

20 , and 1
5 probability to be sampled 3 times,

twice, once, and not to be sampled, respectively. q5 and

q6 both have 1
2 probability to be sampled (once) and have

1
2 probability not to be sampled. q7−10 all have 1

5 proba-

bility to be sampled (once) and have 4
5 probability not to

be sampled. Assuming we iterate 200 times to train our

model, q4 can be sampled about 240 times, q5 and q6
can both be sampled about 100 times, and q7−10 can all

be sampled about 40 times. We can see that potential

samples are weighted based on the importance in the

probability (frequency) level. To improve the sampling

quality, Liu et al. [23] weighted potential samples based

on the strength of the connection yet additional com-

putation is required. Compared with [23], our method

weights potential samples by nature.
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6 Experiments

In this section, we conduct experiments on real-world

datasets to verify the effectiveness of our method. We

focus on answering the following four key research ques-

tions:

RQ1: What factors affect users’ aesthetics?

RQ2: How is the performance of our overall solution

for the clothing recommendation task?

RQ3: How is the effectiveness of the aesthetic features

compared with conventional visual features?

RQ4: How is the performance of our aesthetic-enhanced

learning to rank method?

6.1 Experimental Setup

6.1.1 Datasets

We use the AVA dataset to train the aesthetic network

and use the Amazon dataset to train the recommenda-

tion models.

– Aesthetic Visual Analysis (AVA): We train the

aesthetic network with the AVA dataset [30], which

is the collection of images and meta-data derived

from DPChallenge.com. It contains over 250,000 im-

ages with aesthetic ratings from 1 to 10, 66 textual

tags describing the semantics of images, and 14 pho-

tographic styles: complementary colors, duotones,

negative image, rule of thirds, image grain, silhou-

ettes, vanishing point, high dynamic range, light on

white, long exposure, macro, motion blur, shallow

DOF, and soft focus. We abandon the last 7 styles

when constructing pathways in our aesthetic feature

extractor since they are about camera setting.

– Amazon: The Amazon dataset [14] is the consump-

tion records from Amazon.com. In this paper, we use

the clothing shoes and jewelry category filtered with

5-core (remove users and items with less than 5 pur-

chase records) to train all recommendation models.

Please note that in the below part of this paper, we

use Amazon to denote the clothing shoes and jew-

elry category.

6.1.2 Experiment Settings

In the Amazon dataset, we remove the record before

2010. Time is discretized by weeks, and there are 237

time intervals in total. To validate the scalability of the

model and give a comprehensive assessment, we split

Table 2 Statistics of datasets.

Dataset Purchase User Item Sparsity of Matrices/Tensors

Amazon 275539 39371 23022 99.9696% / 99.9999%
Men 67156 22547 5460 99.9454% / 99.9998%

Women 176136 35059 14500 99.9653% / 99.9999%
Clothes 115841 32728 8777 99.9597% / 99.9998%
Shoes 94560 32538 8231 99.9647% / 99.9999%
Jewelry 37314 15924 3607 99.9350% / 99.9997%

the dataset into several subsets by gender and cate-

gories of products (Jewelry dataset includes both jew-

elries and watches).

We then randomly split each dataset into training

(80%), validation (10%), and test (10%) sets, and re-

move the cold items and users (items and users with-

out records in training set) from the validation and

test sets. The validation set is used for tuning hyper-

parameters and the final performance comparison is

conducted on the test set. The F1-score and the nor-

malized discounted cumulative gain (NDCG) are used

to evaluate the performance of the baselines and our

model. We recommend the top-n items to each user to

calculate F1-score and NDCG for this user, and calcu-

late the average score as the model performance. Our

experiments are conducted by predicting Top-5, 10, 20,

50, and 100 favourite clothing. The sampling rate ρ is

set as 5 in all pairwise learning to balance the accuracy

and efficiency.

6.2 Influential Factors of Aesthetics (RQ1)

In this subsection, we explore what factors impact the

users’ aesthetics by reporting some statistics of the low-

level aesthetics features: Hue, Saturation, and Value

(HSV). Here we use HSV rather than the high-level

aesthetics features we extract because that the high-

level features (high-dimensional vectors) are difficult to

count and to represent, moreover, the specific meaning

of each dimension is not clear. HSV is low-level yet rep-

resentative, and makes the experiment result explain-

able.

Figure 6 shows the distribution of hue, saturation,

and value, which are counted from the whole Amazon

dataset (the clothing shoes and jewelry category). We

normalize hue, saturation, and value into [0, 1] and nor-

malize the histograms into a unit vector. The bar in the

bottom of Figure 6(a) is the hue, and different hue in-

dicates different colors. From the figure we can see that

users prefer red and blue. The bar in the bottom of

Figure 6(b) is the saturation, which defines the bril-

liance and intensity of a color. From Figure 6(b), we

can see that users prefer a lower saturation. The bar in

the bottom of Figure 6(c) is the value, which refers to
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(a) Hue (b) Saturation (c) Value

Fig. 6 Distribution of hue, saturation, and value of the whole dataset.

the lightness or darkness of a color. The larger the value

is, the lighter the color is. To present the difference of

aesthetic preferences with certain factor, we report the

difference between the normalized HSV histograms be-

fore and after the influence of certain factor, so there

are positive values and negative values (see Figures 7

to 10). We mainly discuss the variation of HSV with

different kinds of users and in different time.

6.2.1 Influence of Users

Modern recommender systems aim to provide the per-

sonalized recommendation, so the influence of differ-

ent kinds of users is very important. It is obvious that

different users have different aesthetic preferences. In

this subsection, we show the variation of HSV impacted

with the gender and age.

Users with different ages: Figure 7 shows the im-

pact of users with different ages. Figure 7(a) and 7(b)

show the saturation distribution of kids and adults, re-

spectively. Kids like clothes with really high saturation

while adults like those with low saturation.

(a) Kids (b) Adults

Fig. 7 Aesthetic preferences of users with different ages.

Users with different genders: Figure 8 presents

the aesthetic preferences of males and females. Fig-

ure 8(a) shows the distribution of the value with males.

They prefer dark clothes that can make them look ma-

ture and steady. Figure 8(b) shows the distribution with

females. They prefer lovely and active clothes in light

colors.

(a) Men (b) Women

Fig. 8 Aesthetic preferences of users with different genders.

6.2.2 Influence of Time

For many products, especially clothes, movies, electronic

devices, etc., sales change dramatically with time. Users’

aesthetic preferences also change with time. For exam-

ple, people like different colors and design in different

seasons. Also, the fashion changes every year. In this

subsection, we represent how time influences aesthetic

preferences in a short term and long term.

Seasonality: Figure 9 represents users’ aesthetic

preferences in different seasons. Figures 9(a) to 9(d)

show the distribution of value in spring, summer, au-

tumn and winter, respectively. Users prefer light colors

in spring and summer while prefer dark colors in au-

tumn and winter.

Annual trend: The fashion trend in different years

is shown in Figure 10. Histograms in Figures 10(a)

to 10(c) show the hue distribution of clothes in 2010,

2012 and 2014, respectively. As shown in Figure 10,

users preferred yellow and blue in 2010. In 2012, yellow

and purple became popular. In 2014, the most popular

color was red.

From the figures above, we come to the conclusion

that users’ aesthetic preferences change with different

people and different time. So we propose a time-aware

model taking these two factors into account as the basic

model.
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(a) Spring (b) Summer

(c) Autumn (d) Winter

Fig. 9 Aesthetic preferences in different seasons.

6.3 Performance of Our Model (RQ2)

To demonstrate the effectiveness of our model, we adopt

the following methods as baselines for performance com-

parison:

– BPR: This Bayesian Personalized Ranking method

is a well known ranking-based method [36] for im-

plicit feedback. The preference pairs are constructed

between the positive samples and the other ones. In

our experiments, we optimize matrix factorization

(MF) model with the pairwise optimization.

– VBPR: This Visual Bayesian Personalized Ranking
method is a visually aware recommendation method

[14]. The visual features are pre-generated from the

product images using CNN.

– VNPR: This Visual Neural Personalized Ranking

method is a visually aware neural network for rec-

ommendation [31]. We predict the user preference

with both embeddings and visual features. Inter-

actions of users and items are achieved by a deep

structure.

– DVBPR: This Deep Visual Bayesian Personalized

Ranking method is an end-to-end visually aware

neural recommendation model [19]. In [19], the em-

bedding layer is removed and CNN is trained from

the scratch to predict the user preference. Our ex-

periments show that this setting is suboptimal, thus

we reserve the embedding layer and pretrain the

CNN on ImageNet.

– CPLR: This Collaborative Pairwise Learning to

Rank method [23] is an extension of BPR. Collabo-

rative information is used to improve the quality of

negative sampling and further improve the quality

of ranking.

– WBPR: This Weighted Bayesian Personalized Ranking

me-thod [12] is an extension of BPR. WBPR im-

proves the quality of negative sampling depending

on the item popularity. Considering that popular

items are unlikely to be neglected, WBPR gives

larger confidence weights to negative samples with

higher popularity.

For fair comparison, all models are tuned with the

same strategy. We iterate 200 times to train all models

and in each iteration, we enumerate all training data

on the training set to update the model and test on

the test/validation set by ranking all items to all users

to calculate evaluation metrics. The average of the best

five values during 200 iterations is reported as the model

performance. The sampling rate ρ is set as 5 in our

experiments. We show the F1-score and NDCG with

different n in Figures 11 and 12 respectively. Subfig-

ures (a) to (f) show the performance on Amazon, Men,

Women, Clothes, Shoes and Jewelry, respectively. For

all datasets and all models, we repeat our experiments

10 times. The bars in Figures 11 and 12 indicate the

average performance and the vertical lines on the top

of the bars indicate the standard deviation. We can see

that the datasets with higher sparsity show lower per-

formance.

As we can see, BPR performs the worst since it only

models user preference based on embeddings. Compared

with BPR, VBPR, VNPR, DVBPR, CPLR, and WBPR

use extra information, or advanced sampling strategy,

thus outperform it. VBPR, VNPR, DVBPR utilize vi-

sual features to model user visual preference and give

prediction based both visual features and embeddings.

VBPR is the basic visual recommendation model, which

simply injects visual features to an MF model. VNPR

and DVBPR are deep visually aware models. VNPR

inputs user and item embeddings into a deep neural

network to achieve better interaction. However, VNPR

fails to outperform VBPR in our experiments and also

in [31]. DVBPR trains CNN in an end-to-end way to ex-

tract fashion aware visual features. As shown in Figures

11 and 12, DVBPR outperforms VBPR marginally.

CPLR and WBPR achieve better negative sampling,

thus outperform BPR. CPLR utilizes the collaborative

information to uncover the potential positive samples,

and achieves significant improvement. WBPR weights

samples based on item popularity and also performs

better than BPR. However, the improvement is marginal

since the strategy is simple and rough.

Enhanced with aesthetic features in both modeling

and negative sampling, our proposed VRA outperforms

all baselines on all datasets. Taking Jewelry as example,
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(a) 2010 (b) 2012 (c) 2014

Fig. 10 Aesthetic preferences in different years.

(a) Amazon (b) Women (c) Men

(d) Clothes (e) Shoes (f) Jewelry

Fig. 11 F1-score of different datasets (test set)

the proposed VRA model outperforms the best baseline

DVBPR about 7.16% on F1-score@10 and 8.64% on

NDCG@10.

An interesting observation is that we gain more im-

provement by the aesthetic feature on Shoes and Clothes

subsets than on Jewelry subset. The possible reason

is that compared with Shoes and Clothes, the style of

Jewelry is relatively simple. For example, the color is

almost either silver or golden. In this case, we gain less

improvement by modeling the aesthetic features.

The sensitivity of λc and λr is shown in Figure 13.

To save space, we only show the result on Jewelry set.

λc is a weighting parameter for the coupled matrices

(Figure 13(a)). When λc = 0.01, our model achieves the

best performance. The sensitivity of regularization co-

efficient λr is shown in Figure 13(b). Our VRA achieves

the best performance when λr = 1.5 and baselines

achieve the best performance when λr is around 0.9.

Figure 14 shows the performance with different length

of latent factors. K1 is the length of latent factors con-

necting users and items, K2 is the length of latent fac-

tors connecting items and time. As Figure 14 shows,

the performance varies with K1 obviously, while not so

obviously with K2. It may be because the rank of the

user-item matrix B is much higher than that of the

time-item matrix C, and we need more representation

ability to model users’ preferences, so our model is more

sensitive with K1. When K1 = 100, K2 = 50, the model

performs the best.

6.4 Necessity of the Aesthetic Features (RQ3)

In this subsection, we discuss the necessity of the aes-

thetic features. We combine various widely used fea-

tures to our basic model and compare the effectiveness

of each feature by constructing five models:
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(a) Amazon (b) Women (c) Men

(d) Clothes (e) Shoes (f) Jewelry

Fig. 12 NDCG of different datasets (test set)

(a) Weighting Parameter

(b) Regularization Coefficient

Fig. 13 Impacts of hyperparameters (Jewelry, validation
set)

– VRA basic: This is our basic Visually Aware Re-

commendation model without any visual features,

which is represented in Subsection 4.1.

Fig. 14 Performance with different length of latent factors
(Jewelry, validation set).

– VRH: This is a Visually Aware Recommendation

with Color Histograms. We only inject color his-

tograms to our proposed basic model VRA basic.

– VRCo: This is a Visually Aware Recommendation

with CNN Features only. We only inject CNN fea-

tures to VRA basic.

– VRAo: This is a Visually Aware Recommendation

with Aesthetics Features only. We only inject aes-

thetic features to VRA basic.

– VRA: This is our proposed model, utilizing both

CNN features and aesthetic features.

All models are optimized on Jewelry dataset, we re-

peat the experiments 5 times and report the F1-score

in Figure 15. As shown in Figure 15, VRA basic per-

forms the worst since no visual features are involved

to provide the extra information. With the information
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Fig. 15 Performance of various features (Jewelry, test set)

of color distribution, VRH performs better, though still

worse than VRCo and VRAo, because the low-level fea-

tures are too crude and unilateral, and can provide very

limited information about users’ aesthetic preferences.

VRCo and VRAo show the similar performance because

both CNN features and aesthetic features have strong

ability to mine user’s preferences. Our VRA model, cap-

turing both semantic information and aesthetic infor-

mation, performs the best on the dataset since those

two kinds of information mutually enhance each other

to a certain extent. Give an intuitive example, if a user

wants to purchase a skirt, she needs to tell whether

there is a skirt in the image (semantic information)

when looking through products, and then she needs to

evaluate if the skirt is good-looking and fits her tastes

(aesthetic information) to make the final decision. From

Figure 16, we can see that though the aesthetic features

and CNN features do not perform the best separately,

they mutually enhance each other and achieve improve-

ment together.

Several purchased and recommended items on Ama-

zon dataset are represented in Figure 16. The items in

the first row are purchased by certain user (training

data, the number is random). To illustrate the effec-

tiveness of the aesthetic features intuitively, we choose

the users with explicit style of preferences and single

category of items. The items in the second row and

third row are recommended by VRCo and VRA respec-

tively. For these two rows, we choose the five best items

from the 50 recommendations to exhibit. Comparing

the first and the second row, we can see that leverag-

ing semantic information, VRCo can recommend the

congeneric (with the CNN features) and relevant (with

tensor factorization) commodities. Although it can rec-

ommend the pertinent products, they are usually not in

the same style with what the user has purchased. Cap-

turing both aesthetic and semantic information, VRA

performs much better. We can see that the items in

the third row have more similar style with the training

samples than the items in the second row.

Taking Figure 16(c) as an example, we can see that

the user prefers boots, ankle boots, or thigh boots.

However, products recommended by VRCo are some

different types of women’s shoes, like high heels, snow

boots, thigh boots, and cotton slippers. Though there

is a thigh boot, it is not in line with the user’s aesthet-

ics due to the gaudy patterns and stumpy proportion,

which rarely appears in her choices. The products rec-

ommended by VRA are better. First, almost all recom-

mendations are boots. Then, thigh boots in the third

row are in the same style with the training samples, like

leather texture, slender proportions, simple design and

some design elements of detail like straps and buck-

les (the second and third ones). Though the last one

seems a bit different with the training samples, it is

in the uniform style with them intuitively, since they

are all designed for young ladies. It is also obvious in

Figure 16(f), we can see that what the user likes are

vibrant watches for young men. However, watches in

the second row are in pretty different styles, like digi-

tal watches for children, luxuriantly-decorated ones for

ladies, old-fashioned ones for adults. Evidently, watches

in the third row are in similar style with the train sam-

ples. They have similar color schemes and design el-

ements, like the intricatel-designed dials, nonmetallic

watchbands, small dials, and tachymeters. As we can

see, with the aesthetic features and the CNN features

complementing each other, VRA performs much better

than VRCo.

6.5 Performance of APLR (RQ4)

In this subsection, we illustrate the effectiveness of our

APLR optimization criterion.

Figure 17 shows the model tuning with respect to

weighting parameters η1 and η2. We can see that when

η1 = 0.1 and η2 = 0.01, the model achieves the best

performance. When η1 = 0 and η2 = 0, the model be-

comes VRA PLR. As shown in the figure, VRA APLR

outperforms VRA PLR about 4.70% on F1-score.

When η2 is fixed, F1-score usually takes the maxi-

mum when η1 is about 0.1. When η1 is fixed, F1-score

usually takes the maximum when η2 is about 0.01. We

come to the conclusion that the preference relationship

(p, q, r) � (p,Nq, r) is more important than (p,Nq, r) �
(p,Q−pr \ Nq, r).

7 Conclusion

In this paper, we investigated the usefulness of aesthetic

features for personalized recommendation on implicit
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(a) (b)

(c) (d)

(e) (f)

Fig. 16 Items purchased by users and recommended by different models (Amazon dataset).

feedback datasets. We proposed a novel model that in-

corporates aesthetic features into a tensor factorization

model to capture the aesthetic preferences of users at

a particular time, and leveraged visual information and

collaborative information to optimize the model. Ex-

periments on challenging real-world datasets show that

our proposed method dramatically outperforms state-

of-the-art models, and succeeds in recommending items

that fit users’ style.

For the future work, we are interested in construct-

ing high-order connections among items with spectrum

clustering, social networks, etc. instead of only one-

order connections, to enhance the pairwise learning.

Also, we will establish a large dataset for product aes-

thetic assessment, and train the networks to extract the

aesthetic information better. Lastly, we will investigate

the effectiveness of the aesthetic features in the setting

of explicit feedback.
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