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ABSTRACT

Cross-silo Federated Learning (FL) emerges as a promising frame-
work for multiple institutions to collaboratively learn a joint model
without directly sharing the data. In addition to high utility of the
joint model, rigorous protection of the sensitive data and commu-
nication efficiency are among the key design desiderata of a suc-
cessful FL algorithm. Many existing efforts achieve rigorous pri-
vacy by ensuring differential privacy for the intermediate model
parameters, however, they typically assume a uniform privacy pa-
rameter for all the sites. In practice, different institutions may have
different privacy requirements due to varying privacy policies or
preferences of the data subjects.

In this paper, we focus on explicitly modeling and leveraging
the heterogeneous privacy requirements of different institutions.
We formalize it as the heterogeneous differentially private feder-
ated learning problem and study how to optimize utility for the
joint model while minimizing communication cost. As differen-
tially private perturbations inevitably affect the model utility, a
natural idea is to make better use of information submitted by
the institutions with higher privacy budgets (referred to as “pub-
lic” clients, and the opposite are “private” clients). The challenge
is how to use such information without biasing the global model.
To this end, we propose the Projected Federated Averaging with
heterogeneous differential privacy, named as PFA, which extracts
the top singular subspace of the model updates submitted by “pub-
lic” clients and then utilizes them to project the model updates of
“private” clients before aggregating them. We further propose the
communication-efficient PFA+, which allows “private” clients to
upload projected parameters instead of original parameters using
the projection space learned from the previous round. Our exper-
iments on both statistical learning and deep learning verify the
utility boost of both algorithms compared to the baseline methods,
whereby PFA+ achieves over 99% uplink communication reduction
for “private” clients. Our implementation is publicly available.
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1 INTRODUCTION

Federated learning (FL) [6, 21, 23, 34] has attracted substantial at-
tention in recent years, since it provides a promising approach
for multiple devices (e.g., smartphones, IoT devices) or institutions
(e.g., hospitals or banks) to collaboratively learn a joint model from
the sensitive local data. The latter is also known as cross-silo fed-
erated learning, which will be the focus of this paper. We consider
the horizontally partitioned setting in which the institutions have
their own sets of data subjects (e.g. patients or customers) with
the same set of features and wish to learn a joint model. For exam-
ple, a formidable problem common for clinical studies is the inad-
equate number of subjects of a given condition (e.g. rare disease),
esp. at a single institution. Cross-institutional learning is desired
to mitigate the data shortage or bias and learn a more accurate
and generalizable model. Figure 1 shows the typical FL framework
where clients upload local model updates to a semi-trusted coor-
dinating server which in turn aggregates the local models into a
global model through multiple rounds of iterations.
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Figure 1: Framework of federated learning.
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In addition to high utility of the joint model, rigorous protection
of the sensitive data and communication efficiency are among the
key design desiderata of a successful FL algorithm. Privacy is a
key design consideration that motivates the FL framework, which
requires each client’s raw data to be stored locally and only inter-
mediate model updates are transferred during collaborative train-
ing. By avoiding direct data exchange, it reduces the risk of sensi-
tive information disclosure. However, the transferred intermediate
variables can still disclose sensitive user information via advanced
adversarial algorithms and have been shown to be vulnerable to
various privacy attacks such as reconstruction attacks and mem-
bership inference attacks [19, 39, 43, 46, 54]. To further enhance
the privacy-preserving capability, differential privacy (DP) [12]
has been introduced to ensure rigorous privacy protection for the
intermediate model updates [15, 21, 47]. However, existing works
assume a uniform privacy budget for all the clients. In practice,
different institutions may have different privacy requirements due
to varying privacy policies or varying privacy preferences of the
data subjects (e.g. different demographic groups), which leads to
heterogeneous privacy budgets across institutions. An open ques-
tion is how to adapt the FL algorithms for better trade-offs among
model utility and communication efficiency while allowing hetero-
geneous privacy guarantees for the clients.

We formalize the heterogeneous differentially private FL prob-
lem, where the privacy budgets are varying from institution to in-
stitution. The central goal is to exploit the heterogeneous privacy
budgets to optimize utility during the federated training, while
minimizing the uplink communication cost. To ensure DP, the util-
ity of the joint model inevitably decreases due to the perturba-
tions injected on local model updates submitted to the server. In-
formally, the “private” institutions with stricter privacy budgets re-
quire larger perturbation, leading to less accurate model updates,
while the “public” clients with more relaxed privacy budgets sub-
mit more accurate model updates. Thus, a natural idea is to extract
more useful information from the “public” clients’ model updates.
While intuitive, the challenge is to decide which “right” information
to extract and how to use it without access to the raw local data, be-
cause we want neither the case where too much public institutions’
information biases the joint model, nor the case where too less in-
formation does not help improve the joint model utility.

Previous work [17, 30, 38] have observed that the stochastic gra-
dients of the model parameters stay in a low-dimensional space
along the training trajectory in a typical Stochastic Gradient De-
scent (SGD) based learning algorithm and DPSGD algorithms. Mo-
tivated by this, our main idea is to extract the top singular sub-
space of the model updates submitted by “public” clients as such
“right” information, i.e., a lower dimensional subspace extracted
from the model updates. Since the model updates submitted by
“private” clients contain more noise, projecting them onto the sub-
space from “public” clients will allow us to extract and aggregate
the most useful information while mitigating the impact of the
noise, hence higher utility for the joint model could be achieved.
Simultaneously, the lower-dimensional subspace makes it possible
for the “private” clients to only upload projected model updates in
the reduced subspace, hence achieving significant communication
reduction.

Contributions. In this paper, we introduce the definition of het-
erogeneous DP in FL (FL-HDP), and propose a novel projection
based federated averaging (PFA) algorithm that achieves FL-HDP
by perturbing each client’s local update in a customized way. To
fully utilize the model updates with heterogeneous perturbation
noises, PFA exploits the top singular subspace extracted from the
intermediate local updates of the “public” clients for aggregating
the global updates with enhanced utility. We further propose a
communication-efficient variant PFA+ in which “private” clients
use subspace from previous model updates to upload projected
model parameters instead of the original ones, with minimal im-
pact on model utility. The contributions are summarized as follows.

(1) We formalize the problem of heterogeneous DP in FL which
allows different institutions to have different privacy require-
ments.

(2) We first propose the basic weighted average (WeiAvg) ap-
proach that considers the varying privacy budgets of clients.
The clients with tighter privacy budgets are assigned a larger
weight when averaging the model updates, and vice versa.
Then we propose an advanced projected federated average
(PFA) approach, which partitions the clients into “public” and
“private” ones with more relaxed and strict privacy budgets re-
spectively, and utilizes the top singular subspace of the “pub-
lic” clients for projecting the model updates before aggregating
them, leading to noise reduction and higher utility compared
with the standard FedAvg and the basic WeiAvg.

(3) We further propose a communication-efficient variant PFA+,
which applies projected federated averaging in an asynchro-
nous way and allows “private” clients to upload only projected
model updates in the reduced subspace, and achieves signifi-
cant communication reduction with minimal impact on utility.

(4) We provide a formal convergence analysis showing that PFA
can achieve the same convergence rate as the non-private Fe-
dAvg under the same assumptions. We also show communica-
tion and computation complexity analysis of PFA.

(5) We perform a comprehensive evaluation on both statistical
learning and deep learning models using several real world
datasets from different domains. The results demonstrate that
PFA and PFA+ greatly improve the utility of the joint model
over the baseline methods in different settings. In addition,
PFA+ achieves over 99% uplink communication reduction for
“private” clients with comparable utility.

Organization. The rest of the paper is structured as follows. Sec-
tion 2 reviews the related work. Section 3 describes the preliminar-
ies. Section 4 presents the proposed methods. Section 5 presents
the experiments. Finally, Section 6 draws a conclusion and dis-
cusses future directions.

2 RELATED WORK
2.1 Federated Learning

Federated learning (FL) is a form of decentralized learning with the
goal of collaboratively training a global model from data stored in
multiple remote clients [29]. It has received significant interest in
recent years, owing to its distinct privacy advantages compared to
the traditional centralized learning. However, there are also open



challenges such as the communication and computation overheads,
data and model heterogeneity, and unreliable or potentially mali-
cious participating clients or servers [2, 21, 29, 32].

Federated optimization methods. One of the most widely used
approaches for federated optimization problem is federated aver-
aging (FedAvg) [34], in which a randomly sampled subset of clients
run a certain number of Stochastic Gradient Descent (SGD) steps
locally and independently and the central server then averages
the local models to update the global model. While FedAvg has
emerged as a de facto standard algorithm, it has several limitations
in overcoming the inherent challenges of FL, such as the commu-
nication and computation overheads, data heterogeneity, and con-
straints on the model architectures [2, 21, 29, 32]. To overcome
these issues, some works approach FL in new perspectives. For ex-
ample, Lin et al. [32] propose a distillation framework for robust
federated model fusion (FedDF), which enables FL in more general
settings such as heterogeneous client models and data. Al-Shedivat
et al. [2] formulate FL as a posterior inference problem, and pro-
pose an approximate algorithm FedPA that runs local and global
posterior inference on the clients and server side respectively.

Differentially private federated learning. Attempts to inte-
grate differential privacy into federated learning for enhanced pri-
vacy protection have been made previously. Notably, Geyer et
al. [15] achieve client-level differential privacy by adding random
Gaussian noise on the aggregated local model updates to hide a
single client’s information. McMahan et al. [35] propose the user-
level or sample-level differential privacy by allowing each client to
perturb its computed gradients locally and upload the noisy model
updates to the server. User-level differential privacy ensures that
the intermediate model parameters and final model are indistin-
guishable regardless of the presence or absence of any given record
(user) at each client. Other works also consider the combination of
DP and blockchain [4], or add DP noise on both uplink and down-
link communication channels [47]. In this work, we adopt the user-
level differential privacy while allowing heterogeneous privacy pa-
rameters to be used at each client.

2.2 Heterogeneous Differential Privacy

There is rich literature exploring differentially private mechanism
design considering heterogeneous privacy preferences. Most of
them are focused on centralized setting [3, 20, 28, 36], where each
user holds a single data entry and is associated with a personal-
ized privacy parameter. For the case of cross-silo FL, each client
contributes multiple data entries, and can be associated with a dif-
ferent client specific privacy parameter. We refer to this as client-
level heterogeneous differential privacy to make a distinction.

User-level personalized differential privacy. The line of work
on user-level personalized differential privacy in centralized set-
ting starts by Alaggan et al. [3] who first introduced the notion of
heterogeneous differential privacy. Another independent work by
Jorgensen et al. [20] introduced a similar notion of personalized
differential privacy (PDP). PDP considers the case where each user
or record is associated with its own privacy parameter. They pro-
posed two mechanisms based on non-uniform sampling and expo-
nential mechanism, which are applicable to more common queries

compared with [3]. Following the above two works, an extensive
set of methods has been developed for adopting personalized pri-
vacy guarantees in different scenarios, more complex tasks, or per-
suing better data utility [10, 24, 28, 31, 36, 50, 52].

Client-level heterogeneous differential Privacy. There is lim-
ited work considers heterogeneous privacy preferences in the de-
centralized setting where each client is associated with its own pri-
vacy parameter. This can be due to the fact that each client has its
own privacy policy or the client allows its users to specify person-
alized parameters. Given the heterogeneous privacy parameters
from different clients, a straightforward approach is to design the
learning algorithm to satisfy €in-DP, with €,,i, as the minimum
privacy budget across all clients [35], then apply conventional al-
gorithms designed for uniform DP. Obviously, this approach could
lead to a large amount of under-utilized privacy budgets.

Recently, an independent work by Chathoth et al. [9] has made
efforts for addressing cohort-level privacy heterogeneity moti-
vated by the IoT setting. More specifically, all clients are first
grouped into cohorts and Gaussian noises are added on the aggre-
gation of local updates from the clients in each cohort. In their
approach, the privacy budgets used at each communication round
are still identical for all cohorts. By a privacy accountant, clients
with stricter privacy requirements will end sooner than those of
more relaxed privacy requirements. Thus they adopted continual-
learning based methods to ensure the model utility. In contrast,
we consider client-level heterogeneous DP which is better moti-
vated in our cross-silo FL setting. In addition, we use heteroge-
neous privacy parameters for the clients for each round and de-
velop a projection-based approach for enhanced utility and com-
munity efficiency.

2.3 Gradient Projection

Previous work have observed that stochastic gradients stay in
a low-dimensional space along the training trajectory of SGD
[17, 30, 38]. Zhou et al. [53] further studied the noisy gradients and
proposed a variant of DPSGD algorithm, named Projected DPSGD
(PDPSGD), for reaching a better privacy-utility trade-off in deep
learning. However, these observations mostly focused on the sto-
chastic gradients in the centralized setting, we empirically prove
that the projection-based approach can be adapted to the noisy
model updates in the FL setting (see Figure 13 with its related
description in Appendix B), and first exploit its benefit for both
(heterogeneous) noise reduction and communication reduction in
the federated setting. The key differences between our method and
PDPSGD are discussed in details in Appendix D.1.

3 PRELIMINARIES

In this section, we will give a brief review of the related definitions
and notations used in the paper. Table 2 in Appendix A summarizes
the frequently used notations.

3.1 Federated Learning

Federated Learning Formulation. We focus on a typical cross-
silo horizontally partitioned FL setting: there is a central coordi-
nating server and M clients with each holding a local dataset with



the same set of features drawn from an unknown data distribution
denoted by P, m € [M]. The aim is to jointly optimize the ob-
jective function denoted by L(x), where x is the trainable model
parameters.

Definition 1 (Federated Learning Formulation). The global
empirical loss £ (x) is taking the weighted average of the per-client
loss L (x) over all clients, i.e.,

M M N,
L(x) = Z wmLm(x), s.t. Z wm = 1, where wy, = Wm
m=1 m=1
1

and £, (x) is the local loss of client Cp, on the local dataset defined
as follows,
1 &
L (X) = f(x’ gi)7 (2)
Nm =
where Dy, with size Ny, is the local dataset with each sample
{&1,...,&N,, } drawn from Pp,.

Federated Averaging. Federated averaging (FedAvg) [34] is a ba-
sic algorithm for optimizing eq.(1), which is shown in Algorithm 6
in Appendix B. More specifically, at each communication round t,
a random subset of clients Sy, run some number of local update
iteration steps (e.g., SGD steps) based on their local dataset Dy,
and upload the local model updates to the central server which
aggregates the collected local information and updates the joint
model via a simple average operation. There are three distinct fea-
tures. For privacy consideration: 1) raw dataset Dy, for m € [M]
are kept local and only intermediate local model updates are com-
municated; For communication efficiency: 2) partial client partic-
ipation in Step 4 is used, where only a sub-sample S;_ of clients
participate in round ¢, by either server sampling or client volun-
teering; and 3) periodic communication is used, i.e. participating
clients run multiple local updates, rather than one, before submit-
ting the local updates to the server.

3.2 Differential Privacy

Definition of Differential Privacy. Differential Privacy (DP)
[12], as a formal mathematical framework providing rigorous pri-
vacy protection, has been extensively incorporated into a broad
range of data analysis tasks over the last decade, ranging from
simple statistical estimations to complicated machine learning al-
gorithms [1, 13, 15].

Definition 2 ((¢, §)-Differential Privacy [13]). A randomized
mechanism M : © — R with domain D and range R satis-
fies (e, 6)-differential privacy ((e, §)-DP) if for any two neighboring
datasets D, D’ € D that differ only by a single record, and for any
subsets of outputs S C R, it holds that

PrIM(D) € §] < e Pr[M(D’) € S] + 6.

It ensures that the output of a DP algorithm is indistinguish-
able regardless of the presence or absence of a record, even in the
worst-case scenario where the adversary has known all the records
except one. The parameter €, which is also known as the privacy
budget, manifests the upper bound of the privacy loss. The smaller
€, the less the privacy loss. The other parameter § > 0 captures
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Figure 2: Framework of projected federated averaging with
heterogeneous differential privacy (Algorithm 2).

the probability that the e-differential privacy (e-DP) [12] is broken.
Given a specified €, the small §, the less the probability of privacy
leakage. And when § = 0, (¢, §)-DP is also known as the pure e-DP.

Composability of Differential Privacy. An appealing feature
of DP is that it allows a complex DP algorithm to be built from
much simpler building blocks whose DP is easier to analyze, as
elaborated in the following two properties.

PROPERTY 1 (SEQUENTIAL COMPOSITION[11]). Let the ran-
domized mechanism M; : D — R each satisfies (¢;, 5;)-DP. The
sequence of {Mi};cm satisfy (X; €i, 2. 0i)-DP.

PROPERTY 2 (PARALLEL COMPOSITION[51]). Let the random-
ized mechanism M; : D; — R each satisfies (¢;, §;)-DP, where the
sequence of {D;};e[p) are disjoint subsets of domain D. Any func-
tions g on the sequence of {Mi}ie[pm), i-e. g(M1, Mo, ...) satisfy
(max; €;, max; &;)-DP.

Both of the above two properties are important and practical to
analyze the cumulative privacy loss incurred by composing multi-
ple DP mechanisms.

DP Stochastic Gradient Descent. A major milestone on DP ma-
chine learning is the DP stochastic gradient descent (DPSGD) [1] al-
gorithm, which becomes a fundamental building block for training
deep learning models with DP. DPSGD adds noise on the clipped
gradients during each training iteration to ensure that each gradi-
ent descent is differentially private, and thus the final model also
satisfies differential privacy due to the composition properties.

Moments Accountant. Prior work [1] points out the naive se-
quential composition and their extensions (e.g., the strong compo-
sition theorem[14]) cannot estimate the privacy loss accumulation
for the iterative SGD training process tightly. To solve this prob-
lem, the moments accountant (MA) technique is proposed, which
keeps track of the log moments of the privacy loss variable under
the Poisson subsampling, and can be seen as a tighter variant of



sequential composition. For completeness, we introduce MA defi-
nition and properties in Supplement. In this work, we will apply
the moments accountant technique to trace the privacy loss dur-
ing each client’s local training process and terminate before the
loss exceeds the target privacy budget.

4 PROPOSED METHODS

In this section, we first formalize the federated learning with
heterogeneous DP problem (Subsection 4.1) and describe the
overall framework with local privacy mechanisms (Subsection
4.2). Then, we identify the key challenge: How to pinpoint the
key indicative information from the “public clients” that helps im-
prove the overall utility of the global model without biasing it?
To answer the question, we propose three attempts, which are
main technical contributions of the paper:

(1) WeiAvg (Subsection 4.3): A natural yet naive idea is to as-
sign larger weight for the “public” clients while curtailing the
weight for the “private” clients with hope that the less per-
turbed “public” updates will improve the utility of the global
model; a potential limitation of this approach is that the influ-
ence from the “public” clients may dominate the “private” ones
and bias the global model;

(2) PFA (Subsection 4.4): A more effective way to “reweight” the
two types of clients is to make use of the leading singular space
of “public” updates and project “private” updates onto it, which
discards the useless information incurred by heavy private per-
turbation of the “private” updates while still keeping the most
essential information lied along the top singular space;

(3) PFA+ (Subsection 4.5): By following the observation that the
top singular space evolves slowly between two consecutive
rounds, we further propose to use delayed projection to aggres-
sively reduce the uplink communication cost for the “private”
clients without sacrificing utility.

4.1 Federated Learning with Heterogeneous
Differential Privacy

We first formalize heterogeneous DP for federated learning.

Definition 3 (Heterogeneous Differential Privacy in Fed-
erated Learning (FL-HDP)). Let the set of clients be C =
{C1,...,Cprm}, where each client Cp, € C holds a local dataset Dy,.
The federated learning satisfies {(€m, 5m)}me[a)-heterogeneous
differential privacy, if each client satisfies (€, §m )-differential pri-
vacy with respect to its local dataset.

Remark 1. In the cross-silo FL setting where each client has
multiple users’ data samples, the definition ensures user-level (or
sample-level) DP for all the local datasets at each client while al-
lowing client-level privacy customization. Each client can set €,
based on its privacy policy or even allow their users to specify their
own privacy preferences, i.e., user-level personalized DP. In the lat-
ter case, each client can use the minimum value over all the users
as its privacy preference €,. While we focus on client-level het-
erogeneity, an interesting future research is to develop algorithms
that achieve personalized DP for different users at each client with
enhanced utility. We also assume the privacy preference of each
client is public to the central server.

A naive approach: minimum mechanism. The minimum mech-
anism can be also applicable for the FL, i.e. using the minimum of
em of all clients, and then leveraging existing DP federated learn-
ing methods designed for uniform differential privacy. However,
this approach would obviously lead to a large amount of under-
utilized privacy budgets and suboptimal utility, especially when
there is a great diversity of privacy preferences among all clients.
Hence, a more reasonable idea is to ensure the accumulated privacy
loss of each client is bounded by the client-specific privacy budget
€m, and develop new DP federated learning methods dedicated to
the heterogeneous DP.

Overall Framework. An illustration of our overall proposed
framework is provided in Figure 2. The basic idea is that the server
partitions the clients into “public” and “private” clients according
to their privacy budgets. We denote the total number of SGD it-
erations by T. At each communication round ¢., the server ran-
domly samples a subset of K (K < M) clients S;, and broadcasts
the current global model x;, to all the participants. Each partici-
pating client Cp, € 8¢, runs 7 local SGD steps independently with
DP and then uploads noisy model updates to the server. The server
then aggregates the noisy model updates to form the global model
based on our proposed algorithms tailored to the heterogeneous
DP including WeiAvg, PFA and PFA+ (the figure illustrate the PFA
algorithm for the aggregation component).

Remark 2. Considering the diversity of individuals and organiza-
tions’ privacy preferences, it is realistic to expect a small fraction
of the clients may choose a larger privacy budget (i.e., a weaker
privacy protection), especially when there are incentives such as
in exchange for financial compensation or a more effective model.
For simplicity, we consider each client’s privacy budget as a ran-
dom variable that follows an unknown distribution. (e.g., Gauss-
ian mixture distribution, Pareto distribution, etc). For separating
the “public” and “private” clients, clustering analysis (e.g., Gauss-
ian mixture model) can be used to group the clients into two clus-
ters. We can also choose the top-K clients in terms of the privacy
budgets as the “public” clients, especially if the potential distribu-
tion is relatively uniform, which means the borders between the
two types of clients are fuzzy, where the value of K tends to be
small and depends on the applications.

4.2 Differentially Private Local Update

In this part, we present the client side DP mechanism and analy-
sis, which are common components shared by all three algorithms.
To ensure DP for the model updates for each client, we adapt the
standard DPSGD algorithm [1] to federated setting and apply the
moment accountant (MA) [1] for keeping track of the accumulated
privacy loss at each client over the course of training.

Local DPSGD. For participating clients in each round, they per-
form a number of local SGD steps before uploading the model
updates to the server. It is fairly straightforward to integrate
the DPSGD algorithm into the local update procedure with well-
designed Gaussian noise added on the gradients in each iteration
in order to achieve user-level DP on the model updates to be up-
loaded to the server.



Algorithm 1: Weighted Averaging with Heterogeneous
Differential Privacy (WeiAvg)

Algorithm 2: Projected Federated Averaging with Hetero-
geneous Differential Privacy (PFA)

input :clients’ privacy preferences {(€m, Sm) }me[m). total rounds T
output  :global model x7

1 X ¢ (Initialize randomly)

2 fort’ =0to \_%J do

3 te — t't

4 St « (random subset of K clients)

5

6

foreach client Cpy € St do in parallel
L Ax}? « LocalDPSGD(x¢, )

7 Axte — Zme(k] Ws,, (€m) - Ax]
8 Xtet7 & Xte — AXye

©

return X7

Budget Accountants. An important task for achieving FL-HDP is
to keep track of the usage of privacy budget for each of the clients
along the course of training. Once the privacy budget runs out,
clients can opt out from the remaining training. In our work, we
leverage the moment accountant technique and introduce a moni-
toring module, called the budget accountant, which is in charge of
privacy budget accounting: (1) Pre-check at the beginning of the
communication round if a client has sufficient privacy budget to
participate in the current round; (2) Compute and update the accu-
mulated privacy loss of a client after the current communication
round is over.

Privacy budget per round. Based on the above modules, there
are two feasible strategies for determining the privacy budget to
use for each round.

o Uniform budgets: we enforce the same privacy budget for all
the clients for each round, i.e. the additive Gaussian noises of
all clients are drawn from an identical distribution. In this case,
those clients with a smaller privacy budget will spend their pri-
vacy budgets relatively quickly and terminate the training ear-
lier, while the others will continue participating in the following
training until there are no sufficient clients left for the next com-
munication round.

o Heterogeneous budgets: we use privacy budget for each client in
each round proportional to their overall privacy budget €y, i.e.
the additive Gaussian noises of the clients are drawn from differ-
ent distributions determined by their privacy budget. For each
of the clients, since its total privacy budget should be allocated
to multiple local SGD steps, a small privacy budget will result in
a large noise per iteration, and vice versa. In this case, all clients’
privacy budgets will run out roughly at the same time.

For both of these strategies, aggregating the noisy local updates
in a straightforward way (i.e., federated averaging [34]) to form
a global model would inevitably lead to a biased estimator of the
model updates and suboptimal model utility. For the former, the
error is induced by catastrophic forgetting [22], that is, the knowl-
edge from clients who stay until the end could overwrite the knowl-
edge from clients who terminate early. For the latter, the error is
induced by the additive Gaussian mixture noise if a simple average
function is applied for model aggregation. In this paper, we focus
on the second strategy (as shown in Alg. 7 in the supplement) and
propose effective aggregation methods for error correction in Sub-
section 4.3 and 4.4.

input :Clients’ privacy preferences {(€m, Sm) }me[m). total rounds T
output: global model x7
X0 < (Initialize randomly)
for t’ :OtoLT;ljdo
te — t't
St « (random subset of K clients)
(pub) (pri)
Sie »Spe

[POERTI R

«—(Partition St into two groups according to clients’ privacy
requirements)

6 foreach client C; € Stc do in parallel
L Ax]? « LocalDPSGD(xy )

8 ARy, — ProjectedFedAvg({Axx Yme[K]s S;fub), S;fri))

9 Xtot7r & Xt — AXq,

10 return X7

4.3 WeiAvg: Weighted Averaging

To solve inherent error accumulation induced by the additive
Gaussian mixture noise and make a better trade-off between pri-
vacy with heterogeneous privacy budgets and model utility, we
first propose an intuitive Weighted Averaging (WeiAvg) approach
which allows each of the clients to contribute proportionately to
their privacy budgets to the aggregated model. Technically, we de-
fine the weight function ‘W : R — R w.r.t clients’ privacy budgets
€m as follows:
€m
Ws(em) Smes em’

where S denotes a subset of sampled clients. Thus, the updates
with a greater magnitude of noise will get a smaller weight, allevi-
ating their negative impact on the utility of the aggregated model.

Our experimental results in Section 5 show that in most cases,
the weighted averaging achieves obvious improvement compared
with the federated averaging. However, such a straightforward am-
plification of the influence from the “public” clients’ updates has
a risk of dominating the “private” clients and biasing the global
model, which will be illustrated in the experiments. Although sub-
optimal, WeiAvg provides us two important insights motivating us
to design a better aggregation strategy for the FL-HDP problem:
1) On the one hand, the superiority of WeiAvg over vanilla FedAvg
indicates that making better use of more “public” clients update in-
deed help improve the utility of the global model.
2) On the other hand, it is crucial to extract the right piece of in-
formation from “public” clients in order to avoid “public” clients
dominating the “private” clients.

4.4 PFA: Projected Federated Averaging

In this section, we propose an advanced approach called Projected
Federated Averaging with heterogeneous DP (PFA) in order to
make the most of every noisy local updates and obtain an opti-
mal noise-reduced aggregated model under heterogeneous privacy
budgets conditions. The key idea is to extract the top singular space
from the “public” clients’ updates and project the “private” clients’
updates onto the extracted low-rank space. PFA has two advan-
tages over directly amplifying the influence of “public” clients’ up-
dates via WeiAvg:

e WeiAvg does not mitigate the noisy information contained in
“public” clients’ updates (recall that “public” clients still intro-
duce DP noise, although smaller than “private” clients), while



Algorithm 3: Projected Federated Averaging

input :Noisy model updates {Ax"" } e[k, “public” clients Spub) “private”
clients S(P71)
output: the aggregated model updates AX
1 Function ProjectedFedAvg ({AX™ } ¢ k). Spub) spri)y;

<pub
2 AxPUD < 5 s(pub) We(pub) (€m) - AX™
3 S« Ax(Pub) L (Ax(pub))T
4 V. < (Compute the top-k eigenvectors of X)

// Project the ‘‘private’’ updates
5 AxPri) 2 esori) Wepri) (em) - AX™
6 AxPri) — v vy Az

// Projected federated averaging
7 S « Spub) 4 gpri)
AR — EmEES(PU—b) cm . Ax(pub) + Znies(P’U em . Ax(pri)

meS €m meS €m
9 return AX

PFA filters out the noisy information in the bottom singular
space and keeps only the useful information possessed by the
top singular space.

o WeiAvg curtails the overall information including both useful
and noisy components from “private” clients’ updates, while PFA
keeps the useful components by projection based on the obser-
vation that the useful component tends to lie on the common
low-rank subspace shared by both “private” and “public” clients.

Projected Federated Averaging. Alg. 2 shows the overall PFA
algorithm with client-server interactions and Alg. 3 shows the
server-side projection-based averaging in detail (the procedure in
line 7 of Alg. 2). PFA involves the following four critical steps on
the server side:

(1) Client division: After the client sampling procedure at round
tc € [T), the server divides the participating clients S;, into

two groups — the private clients Slgf ") with a small DP param-
eter €, (ie., a relatively greater magnitude of noise) and the

“public” clients St(f) “P) ith a relatively larger €, (ie., a less
magnitude of noise). This can be achieved by clustering algo-
rithms such as k-means or Gaussian mixture models. Moreover,
we refer to their respective model updates as “private” updates
and “public” updates for simplicity (Line 4 in Alg. 2).

Subspace identification: Once the server receives the local up-
dates from participating clients, it uses a singular value decom-
position (SVD)-based parallel projection method like [53] to
identify the most useful subspace for aggregating the updates.
The primary idea is that we obtain the approximated gradient
subspace from the less noisy information of “public” clients
compared to the “private” clients. More specifically, given the
“public” updates Ax" € RP where G € Sg “5) and the
project dimension k < p, server computes the top-k eigenvec-
tors Vi € RP*K of the second moment matrix of the average
“public” updates Axj" (Line 2-3 in Alg. 3). Alternatively, we

—
)
~

can also find projection matrices through random projection
methods such as Johnson-Lindenstrauss transform and Gauss-
ian transform [5]. However, our empirical results in Section 5
verify that this approach could lead to a biased estimator of the
model updates and a dramatic decrease of model utility com-
pared to the proposed approach.

(3) “Private” updates projection: Depending on the calculated pro-

jection matrices, the server projects and reconstructs the “pri-

gpri)

stead of applying ‘the parallel projection to each of “private”
updates and then computing the average later, we apply it di-
rectly to the weighted mean of the “private” updates from all
gpri)’
which is equivalent to the canonical form since the projecttion
onto a subspace is a linear transformation (Line 4-5 in Alg. 3).
Projected federated averaging: Finally, the server aggregates the
original “public” updates and the projected “private” updates
via weighted average to form the global model. Following the
transformations in the previous steps, here we actually com-

. . . _(pub)
pute the average by using their weighted mean value Ax .

and Af(gfri) (Line 6 in Alg. 3).

vate” updates Ax via the projection VkV;(r. In practice, in-

€ s . . . T A=
private” clients for computation efficiency, i.e., ViV, Ax

“

=

Remark 3. A good rule of thumb of choosing the projection di-
mension k is to satisfy the common heuristic that the top-k singu-
lar values are at least c times as big as the sum of the other singu-
lar values, where c is a domain-dependent constant. Strikingly, our
experiments show that it suffices to set k = 1 (i.e., preserve only
the largest singular value space) to gain large utility boost, which
in addition allows both efficient SVD computation by iterative al-
gorithms like Lanczos method or Power method and aggressive
uplink communication compression to be introduced by PFA+.

Privacy Analysis. We now state the heterogeneous DP guaran-
tees of our PFA approach in federated learning.

THEOREM 1 (DIFFERENTIAL PRIVACY GUARANTEE OF LOCAL
DPSGD). For each client Cp, € C, given the sampling probability
q = B/Ny, and the total number of local SGD steps T* = %, for
any e < ¢1q°T*, the local update satisfies (€, 5 )-differential pri-
vacy for any 8, > 0 if the noise scale

g\ T*log (1/6)
————=
€
where both c1 and co are constants, M and K are the number of total
clients and sampled clients at each round respectively, Ny, is the size
of local dataset of client Cp, € C, and B is the size of a random batch
in local SGD iterations.

Om =

Proor. The proof follows the DP proof of DPSGD [1]. O

THEOREM 2 (HETEROGENEOUS DIFFERENTIAL PRIVACY GUARAN-
TEE OF PFA). The PFA algorithm in Alg. 2 satisfies {(€m, Om) }me[m] -
FL-HDP and (max, €m,;, maxy, 8, )-DP.

Proor. In PFA, where the sequence of clients’ local datasets

{Dm}me|m) are disjoint subsets drawn from domain D and each

client C, € C runs a maximum number of T* = % steps

of DPSGD algorithm M,,, : D,, — RP that satisfies (e, m)-
DP locally and independently, Alg. 2 satisfies {(€m,Sm)}me[m)-
heterogeneous DP in federated learning setting.

Moreover, according to the parallel composability of DP as
shown in Property 2 and the fact that the PFA algorithm consists of
a series of linear operators on the sequence of {Mp.},¢[ar), PFA
also satisfies (max;, €m, maxy, 6m )-DP. m]



Algorithm 4: Communication-efficient Projected Feder-
ated Averaging with Heterogeneous Differential Privacy

(PFA+)

input :Clients’ privacy preferences { (€, 5m))me[M] , total rounds T
output:global model x
1 Xg < (Initialize randomly)
2 fort’ =0to L%J do
3 te — t'T
4 St « (random subset of K clients)
(pub) (pri)
Sic ’ Sic

5 «—(Partition S¢, into two groups according to clients’ privacy

requirements)

6 foreach client Cry, € St do in parallel
AX]" « LocalDPSGD(x¢,. )
8 if warmup round or “public” client then

// Full dimensional noisy model updates
return Af(;"

10 else

// Projected noisy model updates
1 AR — V[t - 1]T AP
[ c

12 return AX}?
c

13 ARy, Vi [t'] «

. (pub) o(pri)
ProjectedFedAngro((Ax;’; bme[K)s Stc 5 Stc , Ve[t —1])
4| Xtedr < Xep — ARy

15 return xXp

Remark 4. We emphasize that in this paper, we do not fo-
cus on the task of DP analysis. Thus we follow the widely ac-
cepted DPSGD algorithm and moments accountant which en-
able a direct comparison with the existing works utilizing the
same techniques[44]. Using more advanced DP analysis for a
tighter privacy amplification result[45] as well as tighter privacy
composition[7] is also recommended.

Convergence Analysis. The convergence analysis of PFA is pre-
sented in Theorem 3. The proof is in Appendix A.

THEOREM 3. Under Assumptions 1-3, for non-convex L-Lipschitz
smooth objective function, the convergence result of PFA is

T-1
1 < oo s
TZ()E[||VtCVTCVL(xt)|I§ <
t=

®)
2 _ o NP+ 1D)(K+2) k2 Lpk?
ry_T(L(XO) L)+ e (E+a)+ XB "
which is under the choice of nj statisfies
Ap3L2[2C D](K+2)  An’L[C1 +K
_n MPLTRG Ao+ )}(+)+U [1+]s0.(4)

2 2K K2
Remark 5. Theorem 3 shows that the convergence of PFA in
terms of the projected gradient norm has the same convergence
rate as the non-private FedAvg under the same set of assumptions.
Thus, our algorithm is able to deliver the desired heterogeneous dif-
ferential privacy without affecting the overall convergence speed.

4.5 PFA+: A Communication-efficient Variant

As we have mentioned before, communication overhead is a pri-
mary bottleneck for federated learning. PFA has not made any
progress in this challenge since the size of model updates commu-
nicated between clients and server has not changed. In this section,
we introduce an improved variant, named PFA+which reduces the
size of the communicated local model updates in order to greatly
reduce the uplink communication cost. Considering the asymme-
try of the uplink and downlink bandwidth on the clients’ side, it

Algorithm 5: Asynchronous Projection Federated Averag-
ing

input :noisy model updates {Ax™ }¢, s, “public” clients Spub), “private”
clients S(P71)
output:the aggregated model updates AX
1 Function ProjectedFedAvgPro({Ax™ }Cm €S> S(pud) ) S(pri)’ V;qpre) ):

// Reconstruct the projected privacy updates using the previous
projection matrix
2 AXPTD <3 coriy Wepriy (m) - AX™
3 AxPri) Vl(fre)Ai(P’i)
4 S « Spub) 4 g(pri)
5 AX — imes(f’“b) b . Ax(pub) | Zmes(pri) em - AxPri)
ZmeS €m meS €m
// Compute the current projection matrix
6 Ax(Pub) ZmeS(P”b) Ws(pub) (€m) - Ax™
7 5 Ax(Pub) . (Ax(pub))T
8 V. < (Compute the top-k eigenvectors of X)
9 | return AX, Vi

is especially important to reduce the uplink bandwidth for a more
significant practical impact in terms of total runtime. In section 5,
our empirical studies suggest that compared with other baselines,
PFA+ has offered a significant 99% reduction for “private” clients
in terms of the megabytes that communicated from clients to the
server, while the test accuracy remains the same level as PFA.

The main idea of PFA+ is to communicate the dimension-
reduced model updates, i.e. projected updates on the subspace,
from clients to the server. More specifically, upon the PFA’s archi-
tecture in Alg. 2, PFA+ makes the following algorithmic changes
on the clients’ side and server side respectively:

(1) Local update with projection. On the clients’ side, instead of up-
loading the model updates Axj", each “private” client Cp, €
St(f " first projects the computed model updates onto the top-

k subspace (obtained from the server based on the “public”

clients’ update from previous round), then upload the projected

updates Vi, € RP*K to the server. As for the “public” clients,

they still upload the full-dimensional model updates. (Line 7-11

in Alg. 4).

Projected federated averaging with delayed subspace. On the

server side, similarly with PFA, all full-dimensional “public” up-

dates are used to calculate top-k subspace as shown in Alg. 5.

Instead of projecting the “private” updates onto the calculated

subspace, the server reconstructs the projected “private” up-

dates back to the original shapes via the same projection ma-
trices from previous round, then merges them with the public
updates via average.

We note the slight discrepancy or asynchronization: the sub-
space computed from the public updates in the previous round
is used to project the “private” updates in the current round,
and the current subspace is used for the next round. In our
algorithm, we apply the projected federated averaging in a de-
layed manner, considering that the top singular space usually
evolves slowly between two consecutive rounds. For the first
round, which we call it the warmup round, we follow the same
procedure as in PFA, i.e., all clients upload the original model
updates and the server aggregates them to compute the first
top-k subspace. This first subspace will be applied in the second

(2

~



round. Our experimental studies verified that this small asyn-
chronization of the projection subspace has minimal impact on
the final model utility while allowing significant communica-
tion reduction. Alg. 5 shows the complete details.

Privacy Analysis. Theorem 4 gives the heterogeneous DP guaran-
tee of PFA+. Since the DP randomizers of PFA+ remains essentially
unchanged compared with PFA, thus the proof is similar with The-
orem 2, and we omit it here for brevity.

THEOREM 4 (HETEROGENEOUS PRIVACY GUARANTEE OF PFA+).
The PFA+ in Alg. 4 satisfies {(€m,Om)}me[m)-FL-HDP and
(maxmem, max,;, 8, )-DP.

Computation Cost Analysis. Theorem 5 gives the computation
cost per round of training for calculating the subspaces and pro-
jections on the server and clients side. Note that the analysis for
PFA is the same except that both subspaces and projections are
computed on the server side. The proof is in Appendix D.2.

THEOREM 5. Let p denote the dimension of the parameter space
and m be the number of “public” clients participating in a training
round, the total complexity of computing the top-k subspaces for cen-
tral server is O(kmp), and the complexity of computing the projec-
tions for each client is O (k).

Communication Cost Analysis. We consider the uplink band-
width as the total number of uploaded bits in the course of the
training process. Without loss of generality, we assume the ma-
chine learning model with total number of parameters p is pF bits,
where F is typically 32 bits. For PFA+, the original parameters in
a given layer of the model will be compressed to a k-dimensional
(k < p) vector. For any model, e.g., a 2-layer logistic regression
model, each “private” client only requires uplink bandwidth with
2kF bits in each round. If k = 1, this value will be aggressively
reduced to merely 2F bits. For complex deep learning models with
hundreds and thousands of parameters, PFA+ would offer a con-
siderable communication reduction.

5 EVALUATION

In this section, we perform a comprehensive evaluation with a se-
ries of experiments to demonstrate that WeiAvg, PFA and PFA+ can
attain a higher test accuracy compared to the common federated
averaging algorithms which do not take the heterogeneous privacy
preferences into account, and are significantly better than Mini-
mum baseline which achieves the most strict level of privacy.

5.1 Experiment Setup

Datasets and Models. We evaluate our methods on two open
benchmark datasets: MNIST[26], Fashion-MNIST (fMNIST) [49],
CIFAR10 [25] and IMDb movie review [33]. More details of datasets
and the models we used are presented in Table 6 in Appendix B.

Baselines and Methods. We compare the three algorithms we
proposed with four baselines as follows.

o WeiAvg: weighted average algorithm in Algorithm 1.
o PFA: PFA method in Algorithm 2.
e PFA+: communication-efficient variant of PFA in Algorithm 4.

Table 1: Distribution of privacy preferences

Distribution Parameters Setting

Uniform Uniform distribution U (1.0, 10.0)
Gauss Gaussian distribution N (3.0, 1.0)
Pareto Pareto distribution
MixGauss1 Mixture of N7 (0.1, 0.01) and N2(10.0, 0.1) with

mixture weights 0.9 and 0.1

MixGauss2 Mixture of N1 (0.5, 0.01) and N2(10.0, 0.1) with
mixture weights 0.9 and 0.1

MixGauss3 Mixture of A1 (1.0, 0.1) and N2(10.0, 0.1) with
mixture weights 0.9 and 0.1

MixGauss4 Mixture of N7(0.1,0.01), N2(1.0,0.1) and

N3(10.0, 1.0) with mixture weights 0.5, 0.4 and 0.1

e FedAvg: the FedAvg [34] algorithm with heterogeneous DP.

e Minimum: the FedAvg with uniform (ming, €, ming, &, )-DP.

e Maximum: the FedAvg with uniform (max, €x, maxy, 6m)-
DP L.

e NP-FedAvg: the non-private FedAvg algorithm.

Privacy preferences. For explicitly simulating the potential dis-
tribution of clients’ privacy preferences and compare the methods
with those different settings, we consider 4 different types of ran-
dom distributions as shown in Tab. 1, i.e., Uniform, Pareto, Gauss-
ian and multimodal distribution (a mixture of two or three differ-
ent Gaussian distributions). Fig. 9 in Appendix B gives examples
of clients’ privacy preferences for M being 20, 30, 40 and 50, re-
spectively. For example, considering a scenario where the privacy
preferences of 20 clients are drawn from a MixGauss1 distribution,
there would exist about 2 “public” clients with privacy budgets
around 10.0, and the others with privacy budgets around 0.1 would
be treated as “private” clients.

Implementations. We run experiments on a machine with an In-
tel Core i7-8700K and one NVIDIA GeForce GTX 1080 Ti running
Ubuntu with 64GB memory. To simulate the cross-silo FL setting in
the cases of IID and non-IID data distribution across the clients re-
spectively, we follow the partitioning strategies in [34]. For exam-
ple, the training examples of MNIST/fMNIST are partitioned into
M = 20,30,40 and 50 subsets, each client holds the same size
of 1200 training examples. For IID case, each client’s local dataset
consists of examples from all classes; for non-IID case, each client
has an imbalanced dataset with non-uniform distribution of class
labels. Table 3 and 4 in Appendix B show the examples of IID and
non-IID partition of MNIST for M = 20 respectively.

We sequentially run the local training procedures, thus we do
not explore hyper-parameters as thoroughly since these experi-
ments require significant computational resources. All of our ex-
periments explore a variety of constant learning rates (e.g., [0.1,
0.05, 0.01, 0.025, 0.005, 0.001]) and a variety of projection dimen-
sions k (e.g., [1, 2, 5, 10, 64, 128, 256]) for the best results. Unless
otherwise stated, we fix the random client sampling ratio % =0.8
per round and up to T = 100 communication rounds in the course
of the learning process. For local update procedures, we usually set
the number of local iterations 7 = 100 and the random batch size
B = 8. Since the model training is a randomized procedure, we
repeat all the experiments 5 times and report the mean accuracy.

'We introduce this additional baseline as an “upper bound” of the performance consid-
ering the extreme case where all clients uses the identical maximum privacy budget.
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Figure 3: Test accuracy versus communication rounds evaluated on MNIST and Fashion-MNIST (fMNIST) in IID data setting
with privacy preferences distribution of MixGauss1.

For the evaluation metrics, we use test accuracy on the test ex- MixGauss3), both of which have the same level of maximal privacy
amples to measure the model utility, and the number of transferred preference 10.0, while the minimal privacy preferences are around
megabytes between clients and server along the training process 0.1 and 1.0, respectively. In Fig. 3, we show the experimental results
to compare the uplink bandwidth cost. evaluated on MNIST and fMNIST in IID setting with the distribu-

tion of MixGauss1, while relegating the results of other settings to
5.2 Evaluation Results on IID Data Appendix B due to space limitation. In Fig. 4, we further present
5.2.1 The Effect of Privacy Specification. In this section, we focus the results with other distributions of privacy budget as listed in

on two candidate privacy preference settings (i.e., MixGauss1 and Table 1, which compare all algorithms under a wider selection of
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Figure 4: Effect of privacy specification: test accuracy on the
MNIST-CNN experiments in IID data setting.

privacy specifications that manifest various scattering degree of
the privacy budgets between “public” and “private” clients.

From Fig. 3, compared with WeiAvg, both PFA and PFA+ at-
tain more distinct utility advantages over the FedAvg with HDP
algorithm and the Minimal mechanism for both logistic regression
and CNN model. Although all private algorithms have worse accu-
racy than non-private baselines, a reasonable level of model utility
remains for projection-based methods, while FedAvg with DP be-
comes ineffective and unusable, e.g., the test accuracy of FedAvg
fluctuates around 0.1 in Fig. 3(c). As for the comparison between
PFA+ and PFA, we can observe from all plots that PFA+ attains a
model performance very close to PFA while achieving significant
communication reduction. This evaluation results will be further
discussed in Section 5.2.2. Fig. 10 in Appendix B gives the analo-
gous experiments with distribution of MixGauss3. The main dif-
ference is the utility gap between FedAvg/Minimum and our pro-
posed methods significantly shrinks. It makes sense since greater
privacy budgets lead to weaker perturbation, resulting in perfor-
mance improvement of baseline methods.

As a comparison, Fig. 4 further plots the impact of other distri-
butions listed in Table 1. We only present the experiment results
on MNIST-CNN-IID with M = 30 in the paper, while deferring
other cases that show a similar trend due to space limitation. By de-
fault, all test accuracy values are averaged over the last 10 rounds
before the round limit is reached. We can observe a more clear
trend that, with increasing the scattering degree of the privacy bud-
gets between “public” and “private” clients, PFA and PFA+ always
outperform the FedAvg with HDP and Minimum mechanism, and
maintain reasonable test accuracy. For WeiAvg and FedAvg with
HDP methods, both of them are vulnerable to the scattering de-
gree and the minimal value of clients’ privacy preferences. When
the privacy budgets follow the Uniform or the Gaussian distribu-
tion, they could reach a model utility that is pretty similar to our
projection-based methods.

As for the evaluations on more complex datasets CIFAR10 and
IMDB from Figure 5, we can also observe PFA and PFA+ outper-
forms weighted averaging slightly, and all three of them get signif-
icantly better performance compared with the basic FedAvg.

5.2.2 The Effect of Projection Methods. In this subsection, in order
to verify that the low-rank subspace extracted from “public” up-
dates indeed contains indicative information, we compare it with
random low-rank projection methods (e.g., via the Gaussian trans-
form) in terms of model accuracy with a variety of projection di-
mensions and fixed local update iterations. Then, we show the
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Figure 5: Test accuracy versus communication rounds eval-
uated on CIFAR10 and IMDDb in IID data setting for M = 50.
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Figure 6: Effect of projection dimensions and projection
methods: test accuracy versus communication rounds on the
MNIST-LogR experiments in IID data setting when M = 30.

unique superiority of PFA+ in reducing the communication cost
compared with the other baselines.

Random projection versus “public” updates-extracted pro-
jection. Fig. 6 shows the impact of projection dimensions for the
random projection and the “public” updates-extracted projection
respectively on the MNIST-LogR-MixGauss1 experiments in IID
data setting. In Fig. 6(a), we can see PFA+ reaches the optimal test
accuracy (around 80%) when the projection dimension k = 1, and
the performance is quite close to the case when k = 2. However, as
the dimension increases, it leads to a greater variance and poorer
test accuracy. This is a indicator of the fact that most stochastic
gradients in general stay in a low-dimensional subspace.

In contrast, the random projection method has the worst perfor-
mance when k is far less than the original dimension p. Moreover,
when the “private” clients have strict privacy preferences, either a
large dimension or a small dimension cannot reach an acceptable
model utility, as shown in Fig. 6(b). These strong experimental re-
sults underscore the effectiveness of the parallel projection method
applied in our proposed frameworks.

Communication-reduction effects of PFA+. Fig. 7 plots the
communication-reduction effects of PFA+ in terms of the accumu-
lated number of megabytes that communicated from clients to the
server during the FL period when there are 5 “public” clients and
45 “private” clients participating in the training process.

For a logistic regression model with 2 layers (a fully connected
layer and a softmax layer) and projection dimension k = 1, PFA+
only requires 2F bits (F = 32) for each “private” client at each
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Figure 7: Effect of communication reduction: number of
megabytes on MNIST in IID data setting when M = 50.

communication round, and requires a total number of 12MB up-
link bandwidth after 100 communication rounds, while the other
methods need around 113MB since all clients need to transfer the
full-dimensional model parameters. For a CNN model with a total
of 8 layers (see subsection 5.1 for detailed model description) and
the projection dimension k = 1, PFA+ requires a total number of
40MB uplink bandwidth while the others need 377MB. Overall, for
both logistic regression and CNN models, PFA+ could offer a signif-
icant uplink bandwidth reduction by nearly 99% during the entire
training process w.r.t the “private” clients and 90% w.r.t all clients
with a negligible decrease in model utility, which indicates that the
communication-reduction effects of PFA+ depend on the number
of “private” clients participating in the training process. Note that
to design a more reasonable “private” client identification mecha-
nism and make a better trade-off between communication reduc-
tion and model utility is also part of our future work.

Computation overhead of PFA+. Table 5 in Appendix B sum-
marizes the empirical results of computation cost of PFA+ for both
the server and the clients in terms of the averaged runtime (s) per
round over the entire training process for computing the subspaces
and projecting the “private” updates, respectively. We can see the
overhead for clients are relatively low, and the complexity of the
model architecture will significantly affect the overhead for com-
puting the subspaces.

5.3 Evaluation Results on Non-IID Data

In Fig. 11 and Fig. 12 in Appendix B, we show full experiment re-
sults for both MNIST and fMNIST in Non-IID setting with privacy
preferences distribution MixGauss1 and MixGauss3. We simulated
a relatively weak but reasonable non-IID setting, where all train-
ing examples in the benchmark dataset are first sorted by labels,
divided into 10M shards of size 1200/10 = 120, and assigned to
each of M clients 10 shards like [34]. In this way, each client could
be assigned to a local dataset with a varying number of labels, and
each label has a varying number of examples. Only a very few ex-
ceptions could possess training examples with all labels. Compared
with the learning results of the three methods we proposed in the
case of IID setting, an obvious decrease in test accuracy can be ob-
served in all experiments. The gaps between the FedAvg and the
projection-based methods have also narrowed. Nonetheless, PFA
and PFA+ still outperform other methods in most cases.
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Figure 8: Test accuracy versus communication rounds eval-
uated on MNIST in NonIID data setting when M = 30.

6 CONCLUSION

This paper focuses on the heterogeneous differentially private fed-
erated learning problem and studies how to optimize utility for the
joint model under the heterogeneous privacy restriction across dif-
ferent institutions. Towards overcoming two inherent challenging
problems of federated learning: data privacy and communication
cost, we first propose the PFA approach which leads to a larger
noise reduction and higher utility compared with the standard fed-
erated average algorithm, then further propose a communication-
efficient variant PFA+ which offers a significant 99% communica-
tion reduction for “private” clients. Through a comprehensive eval-
uation on both statistical learning and deep learning, we demon-
strate the effectiveness of both algorithms compared to the stan-
dard federated average algorithm.

There are several different directions towards generalizing the
work here. First, we plan to theoretically demonstrate the effec-
tiveness and robustness of our proposed methods. We also plan to
integrate this work into the personalized federated learning tasks
especially for non-IID data distributions, in which each institution
not only could enjoy a customized privacy protection but also gain
a personalized machine learning model.
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Projected Federated Averaging with Heterogeneous Differential Privacy:
Supplementary Material

This supplementary material contains: 1) Section A: omitted proofs of Theorems. 2) Section B: omitted experiment details and more
experiment results; 3) Section C: additional definitions, theorems, and algorithms. 4) Section D: additional discussions. Finally, our code can
be accessed via https://github.com/Emory- AIMS/PFA.

A PROOF FOR THE CONVERGENCE ANALYSIS OF PFA

We introduce the following two assumptions which are also adopted in non-private federated learning algorithm analysis [18].

A.1 Notation

Table 2: The summary of notations

Notation [ Definition

Notations for the typical FL setup

T total SGD iterations for in the course of FL
T local SGD steps between two successive communication rounds
C, M set of all clients with size M
Ste, K subset of clients with size K participating in the ¢¢-th iteration
(communication round)
Cm the m-th client
Dm, Nm the local dataset of Cp, with size Np,
Bm the random batch sampled from Cp,’s local dataset
Xt the global model at the ¢-th iteration
x;" the local model of Cyy, at the ¢-th iteration
0(x, +) the differentiable loss function
Notations for the privacy personalization
(€m>Om) the DP parameters of Cpp,
cub) ¢lpri) “public” and “private” clients in Cp,
Spub) §(pri) “public” and “private” clients in Sy,
Vi the top-k singular space for gradient projection

Before proceeding to detailed proofs, we introduce some notation, some of which also have been summarized in Table 2.
We use S; to denote the subset of randomly selected clients at the communication round ¢ with size |S;| = K. We use
g" =VLu(x) 2 VL(x; D)
g EVL(x;B8™)+n", B"eD™
for 1 < m < M to denote the full gradient over the entire local dataset and the stochastic gradient over a uniformly sampled mini-batch,
where n™ is the injected random noise for DPSGD which is drawn from a random Gaussian distribution with mean 0 and variance 2.
The corresponding quantities evaluated at the m-th client’s local solution at ¢-th iteration x}* are denoted by g/* and g}*. Additionally, we
indicate the expectation over random sampling of clients at the server side at each communication round by Eg, [], and use notation E[/]
to denote the expectation over random sampling of mini-batches at the client side. Thus, we have

®)

BlEs, (8] | = B[Es, [VLOG E™) + 0] | = 3 wilm(x) ©)
me[M]
We then introduce several auxiliary notations as follows for the clarity in presentation. First, we define x; = [x}, e ,xf ] and & =

{_ftl, cee, §tK } to denote the set of local solutions and sampled mini-batches at round t at all clients, respectively. Let S; = St(P u“b) St(p r)

be the set of sampled clients at ¢-th round and X be the average of their local solutions, we have

Xy %( Z x;" + Z x’t") (7)

meSPuP) meSP

Il>

Let g; be the average of their local noisy stochastic gradients. Recall the global model update process
X411 = Xt — N8t (8)

we define g; according to Algorithm 3 in Section 4 and Algorithm 7 in Appendix C

gtfl( PCAHES ORI Vtcvl(f;;”ﬂLn?n)) ©)

K )
mesP) mes?rd
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We then introduce the following virtual variables for the ease of derivations

A 1 = YU

gt Y E+ Y o+ Y Vi Viap) (10)
meS; meSt("’”b) meSt(‘"i)

N 1 N vl xm 1 om

Ap = % Z ViV 8 — % Z g - (11)
meSt(pri) meSt(Pri)
Thus, we have

& =8+ Ar. (12)

A.2 Assumptions

AssuMPTION 1 (L-sMOOTHNESS). The objective function is L-smooth w.rt x, i.e., for any x,x’ € R%, we have

IVL(x) - VL) < Lilx - x']|. (13)

ASSUMPTION 2 (BOUNDED VARIANCE OF LOCAL GRADIENTS). For every local dataset Dy,, m € [M], we can sample an independent local
mini-batch & with size |€| = B. Let g, denote the unbiased stochastic gradient g, = %me (x;8), and Eg[gm] = gm = ﬁme (x; D),
the variance is bounded, i.e.,

K2

E§||§m _gmHS < C1||gm||§ + B

) (14)
where C1 is a non-negative constants and inversely proportion to the mini-batch size and k is another constant controlling the variance bound.

AsSUMPTION 3 (BOUNDED WEIGHTED GRADIENT DIVERSITY[18]). The weighted gradient diversity which is a quantity to measure the hetero-
geneity among all local objectives is bounded, i.e.,

. YimeM] Wmllgm ||§

A(x,w) = <
I ey wmgmll3

A, (15)
where wp, 2 0 and 3 c(p) wm = 1.

A.3 Main Proof for Theorem 3

THEOREM 6 (SAME ASs THEOREM 3). Under Assumptions 1 to 3, for non-convex L-smooth global objective function, the convergence result of
PFA is

T-1 3 2 2

1 < = _ 2 _ 4> (K + 1)(r + Dk Lk
= > B[V VIV e -z : 16
T ;O Ve VEVLEIZ| < 7 (L) - L)+ <5 + <5 (16)

which is under the choice of the learning rate nj statisfies
S CEE{ R PEIVIRYV W SR an
2 T ! t=0 Kz
ProOF. According to Assumption 1, we have the following inequality:
- 172L - 2

L(xr41) = L(xe) < (VLX) 80) + 5 llgellz (18)

By taking expectation on both sides of above inequality with respect to all sources of randomness, we have

B[Es, [£(xe1) - L&0)] | < B[, [(VL(). 8] | +’727L B[Es, [Ig13] | )

(a) (b)



In the following, we call Lemma 1 to 4, which further have
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As a result, we have

T-1 272 2 2

1 - = _ 2 _ n“L*(r +1)(K+2) x* _.  Lnx
= vV, V]V 2<— - L — , 21
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which is under the choice of 7 statisfies
0 APL2[2C + t(r + 1)](K + 2) N A*L[C1 + K] - 22)
2 2K K2 -

m]

A.4 Lemmas

The following key lemmas are the essential building blocks which used to form the main proof of Theorem 3. First, we show Lemma 1 which
gives the upper bound of the term (a) in RHS of Eq.(19). Then we will give the upper bound of the term (b) in Lemma 3.

LEMMA 1. Under Assumptions 2 to 3 with Eq.(9), we have

- UE[ES, [(Vf(it)7§t>]]

< —2|a-IVLEIE + el Vi VEVLEIE| - 2| =)l D wnVLm I +elVe VL Y win VL (x) 3]
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@ comes from Lemma 2; ® holds because 2(a, b) = ||a]|?> + ||b||?> — ||a — b||? and the assumption of L-smooth objective function. O

LEMMA 2. Under the same assumptions with Theorem 3, we have
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where @ is due to the fact that II; and IT; are orthogonal, thus (IL;[-], II}[-]) = 0, and @ is due to the fact that
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LEMMA 3. Under Assumptions 2, we have the following bound
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where ® holds because the fact that ||a + b||? < 2(||a]|2 + [b]|?), @ comes from E[X?] = E[[X-EX]?] + E[X]?, and ®, ® are due to
Assumption 2 and 3, respectively. O

LEMMA 4. Under the same assumptions with Theorem 3, we have
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Proor. Without loss of generality, let tc = | £ |7 and t = t. + j where t and j € [1, 7] denotes the indices of communication round and
local update iteration, respectively. For public clients, the local model update procedure is as follows
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For public clients, we have
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Similarly, for private clients, we also have
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By taking expectation over the random selection of clients, we have
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where ® comes from the definition of weighted gradient diversity in Assumption 3



B OMITTED EXPERIMENT DETAILS AND MORE EXPERIMENT RESULTS

MixGauss4 (0.1, 1.0, 10.0)
—— Gauss (L0, 5.0)
Pareto (0.5, 10.0)
Uniform (1.0, 10.0)

MixGauss4 (0.1, 1.0, 10.0)
—— Gauss (1.0, 5.0)
Pareto (0.5, 10.0)
Uniform (1.0, 10.0)

MixGauss4 (0.1, 1.0, 10.0)
—— Gauss (1.0, 5.0)
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Uniform (1.0, 10.0)
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—e— Uniform (1.0, 10.0)

Privacy Budgets

200 0 5 10 15 20

Figure 9: Examples of privacy specifications. Each of the plots presents examples of clients’ privacy preferences for M being 20,
30, 40 and 50, respectively. For instance, from the first figure, we can see if the privacy preferences of 20 clients are drawn from
a MixGauss1 distribution, there exists about 2 clients with privacy budgets around 10.0, and the others with privacy budgets
around 0.1.

Table 3: An instance of IID data setting. Table 4: An instance of NonlIID data setting,.

CID Num. of classes Num. of examples per class (0-9) CID Num. of classes Num. of examples per class (0-9)

1 10 146, 129, 116, 131, 94, 95, 111, 102, 120, 156 1 9 0, 33, 351, 853, 296, 268, 593, 306, 4, 296

2 10 127, 127, 125, 131, 110, 93, 109, 126, 133, 119 2 5 592, 437, 1071, 0, 0, 0, 0, 316, 584, 0

3 10 115, 135, 107, 145, 104, 117, 128, 129, 106, 114 3 7 890, 342, 268, 43, 306, 551, 0, 600, 0, 0

4 10 107, 136, 112, 128, 127, 117, 111, 125, 122, 115 4 6 0, 300, 29, 381, 846, 544, 0, 900, 0, 0

5 10 121, 128, 122, 124, 113, 112, 116, 119, 107, 138 5 8 0, 340, 342, 818, 67, 533, 0, 308, 295, 297
16 10 133, 147, 120, 119, 130, 93, 110, 131, 121, 96 16 8 0, 69, 531, 37, 294, 270, 295, 351, 1153, 0
17 10 94, 144, 118, 122, 120, 114, 119, 121, 114, 134 17 8 296, 604, 0, 71, 564, 266, 295, 614, 290, 0
18 10 132, 129, 125, 118, 118, 104, 115, 123, 109, 127 18 6 588, 612, 33, 300, 267, 0, 0, 306, 297, 597
19 10 124, 126, 111, 119, 131, 118, 122, 111, 113, 125 19 9 299, 601, 104, 796, 0, 1, 593, 306, 4, 296
20 10 111, 150, 120, 126, 135, 115, 95, 135, 108, 105 20 10 297, 634, 269, 77, 523, 1, 293, 16, 294, 596

Table 5: The computation overhead of PFA+ for both the server and the clients in terms of the averaged runtime (s) per round
over the entire training process for computing the subspaces and projecting the “private” updates, respectively. Note that the
above empirical results are highly dependent on the CPU power of the central server.

Model Num. of parameters p Num. of Lanczos iterations k Num. of public clients m Num. of total clients N Avg. Runtime (s).per round
(server / client)
Logistic Regression 128 3 30 035/0.013
7850 128 5 50 0.37/0.011
(evaluted on MNIST) 256 5 50 176/ 0.022
128 3 30 2.98/0.035
(evalzlizﬂe;ncﬂIIIIHST) 26010 128 5 50 6.3/0.035
256 5 50 25.52/0.036
128 3 30 56.34 / 1.065
4-layer CNN 6
(evaluted on CIFAR10) 10 128 5 50 57.25/1.108
256 5 50 213.73 / 2.605
128 3 30 34.16 / 0.098
iﬁﬁfﬁfﬂﬁgﬁi 160,306 128 5 50 26.24 / 0.065
256 5 50 70.56 / 0.170
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Figure 10: Test accuracy versus communication rounds evaluated on MNIST and Fashion-MNIST in IID data setting with pri-
vacy preferences distribution of MixGauss3. Compared with the WeiAvg algorithm, both PFA and PFA+ attain more distinct
utility advantages over the FedAvg with HDP algorithm and the Minimal mechanism for both the logistic regression and CNN
models. Although all private algorithms have worse accuracy than non-private baselines, a reasonable level of model utility re-
mains for projection-based methods, while the FedAvg with DP becomes ineffective. As for the comparison between PFA+ and
PFA, we can observe from all plots that the PFA+ attains a model performance very close to PFA. The main difference between
the results in MixGauss3 setting and the results in MixGauss1 setting (see Fig.3) is the utility gap between FedAvg/Minimum
and our proposed methods significantly shrinks. It makes sense since greater privacy budgets lead to weaker perturbation,
resulting in the performance improvement of baseline methods.
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Figure 11: Test accuracy versus communication rounds evaluated on MNIST and Fashion-MNIST in NonlIID data setting with
privacy preferences distribution of MixGauss1. Compared with the results in IID data setting (see Fig.3), an obvious decrease
in test accuracy can be observed in all experiments. Nonetheless, PFA and PFA+ still outperform other methods in all cases.
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Figure 12: Test accuracy versus communication rounds evaluated on MNIST and Fashion-MNIST in NonlIID data setting with
privacy preferences distribution of MixGauss3. Compared with the results in IID data setting (see Fig.10), the gaps between the
baselines and the projection-based methods have narrowed obviously in all experiments. Those results suggest the advantages
of our PFA and PFA+ when there is an extravagant scattering degree of the privacy budgets between “public” and “private”
clients.
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Figure 13: Top-256 eigenvalues of the “public” local model updates along the federated learning process. All experiments are
performed in the MNIST-CNN-IID setting for 50 rounds with Gaussian noise scale is 0 (noise-free), 0.1 and 1.0 respectively.
X-axis and Y-axis represent the order and the value of 256 eigenvalues from smallest to largest.

Table 6: Datasets and Models

Num. of

Dataset training/test Data Type Num. of Models
Classes
examples
MNIST [26] 28 X 28 Logistic Regression (LogR)
) 60k/10k : 10 )
Fashion-MNIST[49] gray images 2-layer CNN
CIFAR10 [25] 50k/10k 32 x 32 10 4-layer CNN[34]

color images

IMDb movie review [33] 25k/25k text 2 2-layer LSTM-RNN 3




C ADDITIONAL PRELIMINARIES

Algorithm 6: Federated Averaging (FedAvg) [34]
input :Total communication rounds T
output:global model x7

1 Function ServerExecute:

2 x( < (Initialize randomly)
3 fort’ =0to L%J do
4 te —t't
5 S;, < (random subset of K clients)
6 foreach client Cp, € Sy, do in parallel
7 L Ax}? « LocalUpdate(x;,)
// Federated averaging
8 A)_(tC_AH— «— ‘S;tcl ZCmEStC AX;Z
N return x7

Algorithm 7: Local Update (DPSGD [1])

input : (initial) global model x in the current round
parameter :loss function £(x, -), local steps 7, learning rate 1, local dataset size Ny, batch size B, gradient norm bound C, noise
scale o,

output  :noisy model update Ax
Function LocalDPSGD:

[

2 Xp «— X
3 forj=0tor—1do
// Subsampling
4 Bj « (Take a random batch from local dataset with sampling probability ¢ = %)
5 foreach microbatch ¢; € Bj do
6 gj,i — V(x5 &)
// Clip gradients
7 gj,i — gj,i . max(l, M)
// Add noise
8 & < 157 (Zi8.1 + N(0,05 - C°1))
o | L Xt =X - g
10 AX «— X —X;
1 return Ax

Definition 4 (Moments Accountant [1]). Let M : D « R be a randomized mechanism and D, D’ be any two neighboring datasets. Let
aux denote an auxiliary input. The moments accountant is defined as:
apm(d) 2 max  apq(4;aux,D,D’) (45)
aux,D,D’
where a y((4; aux, D,D’) % log E[exp(Ac(0; M, aux, D, D’))] is the moment generating function of the privacy loss random variable which
is defined as follows:
Pr[M(aux, D))

c¢(0; M, aux,D,D’) £ log Pr[M(aux, D')]

(46)

Theorem 7 allow us easily to bound the moments of the mechanism overall and then convert the moments bound to the (e, §)-DP
guarantee.



THEOREM 7 (PROPERTIES OF THE MOMENTS ACCOUNTANT). 1. [Composability] Suppose that a mechanism M consists of a sequence of
adaptive mechanisms My, ..., My where M; : ]_[Jl.;l1 R; X D — R;. Then, for any A

k
ap(d) < Z aM; (). (47)
i=1

2. [Tail bound] For any € > 0, the mechanism M is (e, §)-differentially private for
5= m}%n exp(ap () — Ae)

D ADDITIONAL DISCUSSIONS AND PROOFS

In this section, we further explain and discuss several important problems that are only briefly mentioned in the main body due to space
limitations.

D.1 Key Differences Between PFA and PDPSGD

The key differences between PFA and PDPSGD [53] is threefold:

i) PDPSGD assumes the availability of a public dataset. In contrast, we do not require any public dataset drawn from the same distribution
as the private dataset and identify “public” clients which are used to extract the subspace information. From the algorithmic point of view,
PDPSGD computes the linear projection by the subspace of the raw gradients evaluated on the public dataset, while PFA computes the
linear projection by the subspace of noisy local model updates evaluated on a set of “public” clients’ local private data. To show that the
projection based approach can be adapted to noisy model updates, we added experimental studies showing the noisy model updates indeed
exhibit a small fraction of large eigenvalues.

ii) PDPSGD is limited to the noise reduction in the centralized setting. Our proposed PFA is the first work to exploit its benefit for both
(heterogeneous) noise reduction and communication reduction in the federated setting. In our improved variant of PFA, considering that
the top singular space usually evolves slowly between two consecutive rounds, we apply the projection in a delayed manner, that is, project
the “private” updates on the client side and reconstruct the collected projected updates on the server side, which significantly reduces the
uplink bandwidth.

iii) Our scenario of heterogeneous privacy budgets at different clients presents new challenges and also opportunities of exploiting a
varying amount of useful information from the local model updates with different amount of injected noises. In PFA, we integrate the
weighted averaging technique into the projected federated averaging steps (see line 2,5 in Algorithm 3) for further improving the model
utility.

D.2 Proof of Theorem 5
We present the proof of the computation complexity of PFA+ as follows.

Proor. i) For computing the subspaces: Since the dimension of the parameter space p can be quite large in most cases the common SVD
methods are no longer able to calculate the eigenspace efficiently and effectively. Thus, we use the Lanczos method [27] to approximate the
top-k eigenspace of the local model updates evaluated on “public clients”, which is an effective method for computing a few eigenvalues
and associated eigenvectors of a very large real symmetric matrix M € RP*P, The main task in the Lanczos procedure is to first compute the
Lanczos tridiagonal matrix, then the k largest eigenvalues from the corresponding matrix. The main idea of the Lanczos tridiagonalization
is using an orthogonal similarity transformation to the matrix M. This step does not need to access the explicit matrix, but only computing
a matrix-vector Mv multiplication at most k times, here v € R? is an arbitrary vector. In implementation, we actually do not calculate
Mv directly due to the huge memory consumption, but A(ATv) where A € RPX™ is the “public updates” matrix and m is the number of
public clients. Therefore, the matrix—vector multiplication can be done in O (mp) arithmetical operations. Besides, it does O(p) arithmetical
operations at each Lanczos iteration without considering the matrix-vector multiplication. Therefore, the total complexity of computing
the subspaces is O(kmp).

ii) For computing the projection: After the projection matrix Vi € RP*k s calculated using the Lanczos algorithm, the next step is to
project the “private updates” to the subspaces, that is, VkTApr iv, Where Apyiy € RP is the weighted average of the “private updates”.

Therefore, the total complexity of computing the projections is O (k). For the empirical evaluation results, please refer to Section 5.2.2
for more details. O
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