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Abstract

Mining user-generated content–e.g., for the
early detection of outbreaks or for extracting
personal observations–often suffers from the
lack of enough training data, short document
length, and informal language model. We pro-
pose a novel multi-view active learning model,
called Context-aware Co-testing with Bagging
(COCOBA), to address these issues in the
classification tasks tailored for a query word–
e.g., detecting illness reports given the disease
name. COCOBA employs the context of user
postings to construct two views. Then it uses
the distribution of the representations in each
view to detect the regions that are assigned to
the opposite classes. This effectively leads to
detecting the contexts that the two base learn-
ers disagree on. Our model also employs a
query-by-committee model to address the usu-
ally noisy language of user postings. The
experiments testify that our model is applica-
ble to multiple important representative Twit-
ter tasks and also significantly outperforms
the existing baselines. Our code and dataset
are available at https://github.com/p-karisani/
cocoba.

1 Introduction

Over the last decade, social media data became
one of the valuable resources for extracting infor-
mation about real-world phenomena and activi-
ties. Early detecting of outbreaks (Karisani and
Karisani, 2020), monitoring natural disasters (Im-
ran et al., 2015), collecting daily individual obser-
vations (Mei et al., 2014), and monitoring customer
satisfaction (Agnihotri et al., 2016) are a few ap-
plications. Being cost efficient and having short
implementation cycles are the intriguing attributes
of mining this data. However, there are signifi-
cant technical challenges in automatically distilling
such knowledge. User postings in social media are
typically short, their language is informal, and their
content can be highly ambiguous. Additionally, in

many scenarios there is not enough training data
available (Karisani and Karisani, 2021).

To address these challenges researchers seek to
develop models that require smaller training sets
and generalize faster. For instance, expansion meth-
ods were used to address short document lengths
(Karisani et al., 2015), neural word embeddings
were used to address feature sparsity (Karisani and
Agichtein, 2018), Transfer Learning was used to
address the lack of enough training data (Dirkson
and Verberne, 2019), and Active Learning was used
to address class imbalance distributions (Burkhardt
et al., 2020). We focus on Active Learning in this
article. The distinctive characteristics of active
learning models make them especially appealing
to the researchers in this domain. Being robust to-
wards the initial training set and addressing noisy
labels (Ghani et al., 2003), overcoming class im-
balance challenge (Choi et al., 2020), and com-
pensating for the lack of training data (Cui et al.,
2019) are the well-understood qualities of Active
Learning.

In this study, we tackle the classification tasks
tailored for query words. The applications of such
tasks are abundant. In Online Public Health Moni-
toring where given the variants of a disease name
we want to extract the positive report cases (Paul
and Dredze, 2017). In Customer Satisfaction Mon-
itoring where given a product or brand name we
want to extract the true mentions of the product and
visualize the outcome (Agnihotri et al., 2016). In
Observation Extraction where given a real-world
phenomenon we want to extract the relevant re-
ported observations (Cui et al., 2019). Or in Entity
Filtering where given an entity name we want to
filter out non-relevant user postings for the down-
stream tasks–e.g., for Online Reputation Manage-
ment (Spina et al., 2015). In this article we exploit
this shared quality and propose a novel unified ac-
tive learning model for a range of tasks.

Our model, which we call COCOBA (Context-
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aware Co-testing with Bagging), is based on the
idea that the content of user postings can be used
in a context sensitive multi-view active learning
model to resolve the disagreement over similar
use cases. To achieve this, we use the properties
of the problem and derive two contextual repre-
sentations from user postings. Then we modify a
multi-view active learning model to effectively use
these representations. And finally, we use a query-
by-committee model to increase robustness to the
noise in user postings. We show that COCOBA is
applicable to at least three important representative
problems1. Namely we focus on: Personal Health
Mention detection (PHM) (Karisani and Agichtein,
2018) where given an illness name the goal is to
detect the positive reports of the illness; Observa-
tion Extraction (OE) (Zahra et al., 2020) where
given a real-world event the goal is to extract the
relevant reported observations; and Product Con-
sumption Pattern identification (PCP) (Huang et al.,
2017) where given a product the goal is to detect
the number of usages of the product to calculate
its penetration rate. Our experiments testify that
our novel unified model consistently outperforms
existing models.

The contributions of our study are as follows:
1) We propose a novel unified multi-view active
learning model to address the tasks tailored for a
query in user-generated data. 2) We carry out an ex-
tensive set of experiments and show that our model
is applicable to at least three representative tasks.
3) We show that our model consistently outper-
forms existing active learning models. 4) We con-
structed a relatively large dataset of manually anno-
tated tweets for PHM task that is publicly available.
Our dataset consists of 18,000 tweets across three
topics2: Parkinson’s, cancer, and diabetes.

We believe our novel model, our detailed ex-
periments, and our new dataset significantly push
the state of the art, and also help practitioners to
develop better systems with smaller training sets.
In the next section, we contrast COCOBA with
existing models.

2 Background and Related Work

Background. In a typical active learning classi-
fication scenario, there is a small set of labeled

1Please see the cited articles for the discussion on the
challenges of the selected tasks.

2Based on published reports (Yin et al., 2019) our dataset
is the largest manually annotated dataset on this topic.

data and a large set of unlabeled data available3.
A predictive model is trained on the set of labeled
data, and based on a criterion–either labeling cost
or model performance–one data point from the set
of unlabeled data is queried for annotation4. The
annotated data point is added to the set of labeled
data, and the procedure is iterated. The initial state
in which the model has access to a small set of
labeled data is called the cold start state. The learn-
ing algorithm that the model employs to explore
the hypothesis space is called the base learner;
and the algorithm that the model uses to select the
next unlabeled data point is called the query strat-
egy. Majority of the active learning models rely
on informativeness, representativeness, and diver-
sity metrics to select their candidate data points
(Chang et al., 2019). Despite the significant ad-
vances in Active Learning over the last decades,
the uncertainty-based sampling model (Lewis and
Gale, 1994) remains one of the most widely used
and studied models (Attenberg and Provost, 2011;
Jedoui et al., 2019). There are multiple methods to
identify uncertainty in the base learner: the amount
of entropy in the model prediction (Settles, 2009),
the magnitude of gradients in back propagation
(Zhang et al., 2017), or the variance in successive
predictions of the model (Gal et al., 2017) are a few
examples.
Active Learning for user-generated content.
Given the stability and usually satisfactory perfor-
mance of the uncertainty-based sampling model,
the majority of the successful applications of Ac-
tive Learning in user-generated data rely on this
model. (Pohl et al., 2018) proposes a model for Cri-
sis Report monitoring, (Tran et al., 2017) integrates
Active Learning with Semi-supervised Learning
for entity recognition, and (Spina et al., 2015) pro-
poses to combine the informativeness and repre-
sentativeness metrics for entity recognition. (Li
et al., 2017) experiments with Active Learning for
detecting symptoms in Chinese tweets, (Stanovsky
et al., 2017) reports the application of Active Learn-
ing in Adverse Drug Reaction monitoring (ADR)
task, and (Burkhardt et al., 2020) combines Active
Learning with crowd sourcing for the ADR task.
The authors in (Jiang et al., 2020) propose a query
diversity criterion for spam filtering on Twitter, and

3The survey by Settles (Settles, 2009) and the article
by Lowell et al., (Lowell et al., 2019) provide a complete
overview of Active Learning.

4Our criterion in this article is the model performance, and
we assume that the annotation cost is uniform.



the authors in (Zhao et al., 2020) combine Active
Learning with crowd-sourcing to develop a pipeline
for detecting job-related posts in social media. All
of these studies use the uncertainty-based sampling
model.

In this study, we focus on a multi-view con-
tention reduction model (Abe and Mamitsuka,
1998) called co-testing (Muslea et al., 2006). The
main idea of co-testing algorithm is to construct
two views from input data and train a base learner
on each view. Then query a data point from the
set of unlabeled points that are assigned to the op-
posite classes by two base learners–these points
are called contention points. To be able to use
multi-view models, we derive two contextual repre-
sentations from user postings. Then we modify the
co-testing query strategy to utilize this contextual
information and increase the gain in user annota-
tions. We aim at a category of social media tasks
tailored for a query word–or a closely related set of
query words. Such tasks have many applications,
ranging from Entity Filtering and Disease Mining
to Crisis Management and Customer Satisfaction
Monitoring. We show that our model, which we
call COCOBA, is applicable to at least three rep-
resentative tasks from different domains. Namely
we focus on: Personal Health Mention detection
(PHM), Observation Extraction (OE), and Product
Consumption Pattern identification (PCP).

In summary, to our knowledge, our study is the
first that proposes a unified active learning model
for a range of social media tasks. It is also the
first study that proposes to use a multi-view model
to address these tasks. It is one of the very few
works that step beyond applying the traditional
uncertainty-based model5, and to our knowledge,
it is the only work that extends an active learning
model to effectively exploit the properties of the
user-generated data.

3 COCOBA: Model Description

We begin this section by discussing the approach
for extracting two contextual representations from
user postings. Given two views, we can employ co-
testing algorithm, however, the default co-testing
algorithm is context independent. Therefore, we
will modify the default co-testing query strategy to
use the contextual information. Finally, we try to
tackle the typically noisy language of user postings

5The study by (Cui et al., 2019) employs the expected error
reduction technique along a semi-supervised learning model.

via a variance reduction technique.

3.1 Extracting Two Contextual
Representations from User Postings

Our approach to construct two views from the user
postings is inspired by the research on Word Sense
Disambiguation (WSD) and their mainstream so-
lutions, i.e., the contextual word embeddings. The
neural contextual word embeddings are proven to
encode the information required to effectively char-
acterize the context in which the words occur (Scar-
lini et al., 2020). To extract two contextual repre-
sentations from the user postings, we extract one
representation on the document level to capture
the overall information of the user postings, and
extract another representation on the word level to
capture the context that the query words are used
in. Because by definition the user postings always
contain at least one of the query words then this
task is always feasible. This approach is a deriva-
tion of the algorithm that we proposed in (Karisani
et al., 2020).

We demonstrate this by outlining the task of
extracting the true reports of diabetes on Twitter.
Given the query words “diabetes” and “diabetic”,
we may observe the hypothetical tweet: “Right now
the only complication I’ve got with my diabetes is
neuropathy, which isn’t fun”. Given this tweet,
we can extract a feature vector on the tweet level
which encodes the overall information of the tweet.
Additionally, we can extract another feature vector
on the word level to capture the context of the
search term6, i.e., the vector representation of the
search term in: “...my diabetes is neuropathy...”.

Even though the feature vectors of the tweet level
and word level views are not fully orthogonal, we
argue that they still focus on different aspects of
the text to represent the context of the tweet. Local
and global feature sets have shown to be effective
in other scenarios (Ghani et al., 2003). In the next
section, we exploit this motif in an active learning
framework.

3.2 Incorporating Context in Co-testing
Having two separate contextual representations for
every user posting allows us to employ co-testing
algorithm. However, the default co-testing query
strategy and its variants (Muslea et al., 2006; Ghani

6In the case that multiple search terms are used to collect
the data, all the occurrences of the search terms in the tweets
can be mapped to a single synthesized token.



et al., 2003) are unable to fully utilize the contex-
tual information that is stored in the representations.
These variations mostly rely on the confidence of
base learners to score the candidate data points, e.g.,
most confident disagreement between base learners.
We argue that the contextual representations that
we extract contain enough information to detect
similar user postings, and this information can be
used to resolve the disagreement over a set of user
postings, rather than one single user posting. This
can potentially lead to a better annotation choice
during the active learning iterations. Based on this
argument, we propose the following query strategy.

Let ~d and ~w be the document and word level rep-
resentations of the user posting t, and given t, let
ConfD(~d|t) and ConfW (~w|t) be the confidence
of the base learners for classification in the docu-
ment level and word level views respectively. We
define the score of the contention user posting t as
follows:

score(t)=PD(~d|t)×ConfD(~d|t)+
PW(~w|t)×ConfW(~w|t) (1)

where PD(~d|t) and PW (~w|t) are the probabilities
of the user posting t being generated by the distri-
bution of the contention points in the document
and word level views respectively. The terms
ConfD(~d|t) and ConfW (~w|t) can be estimated
by the output of the classifiers in the document and
word level views respectively. To estimate PD(~d|t)
and PW (~w|t), we first fit two density estimators on
the vectors of the contention data points in each
view to extract the empirical distribution of the pop-
ulation, and then use these estimators to calculate
the probability of observing the data points7.

Intuitively, Equation 1 assigns a higher score to
the user postings that are confidently assigned to
the opposite classes in two views, and are also close
to the other set of contention points in each view.
There are two advantages in employing this scor-
ing function. First, scaling the confidence of the
base learners by the probability densities naturally
aggregates the benefits of contention reduction and
density based query strategies. Second, assuming
that the data points that are close to each other in
the feature space are similar and likely to have the
same label (Chapelle et al., 2003), by promoting
the user postings that are close to the cluster of
the contention points, we can effectively use the
contextual information to resolve the disagreement

7For the theoretical discussion regarding the density esti-
mators see (Silverman, 1986).

over a set of similar user postings. This is particu-
larly the case when a candidate data point and its
adjacent points are projected into the same regions
of the input feature space in both views.

Figure 1 demonstrates our query strategy. Each
data point in the document representation space
(the left panel) is associated to one data point in
the keyword representation space (the right panel).
The triangular data points are the set of contention
tweets, i.e., the tweets that are assigned to the op-
posite classes by the classifiers in two views. The
regular co-testing algorithm selects the data point
with the largest distance from the classifier decision
boundary–the dashed lines–i.e., the yellow data
point. However, we select the data point which is
close to the cluster of contention data points and
also has a large distance from the classifier decision
boundary, i.e., the black data point.

Positive Region Negative Region

Document Representation Space

Positive Region Negative Region

Keyword Representation Space

Tweets Labeled by the two base learners in one iteration:
Labeled Negative by both learners 
Labeled Positive by both learners
Subject to disagreement (contention points)
Co-testing best candidate
COCOBA best candidate

Unlabeled Tweets

Figure 1: The document and word level views in CO-
COBA query strategy. The regular co-testing algorithm
queries the contention point with the largest distance
from the classifier decision boundary in two views
(the yellow triangle). COCOBA queries the contention
point which is closest to the set of other contention
points and also has a large distance from the decision
boundary in two views (the black triangle). Figure best
viewed in color.

In the next sections, we use Equation 1 as the
ranking function in our model.

3.3 Increasing Robustness to Noise in Social
Media

As pointed out by (Karisani and Agichtein, 2018),
the user postings in social media–particularly on
the Twitter website–are highly noisy. They tend to
be short, and suffer from inventive lexicons. For
instance, in our early example of extracting the re-
ports of diabetes, a user posting may be added to
the set of contention points and selected for anno-



tation due to its unique figurative language. How-
ever, selecting another user posting for annotation
might be a better choice to have a more diverse and
representative training set. If we assume the rela-
tively uninformative user postings are noise–which
due to their unique characteristics may receive a
high score by Equation 1–then we may be able
to dampen their effect through variance reduction
algorithms.

To address this issue we propose to employ bag-
ging technique, which is empirically shown to re-
duce model variance (Buhlmann and Yu, 2002).
In the discussed example, bagging can influence
the score of the mentioned user posting, either
through affecting the distribution of the contention
user postings, or reducing the disagreement rate
between two base learners. We use bagging as
follows: In each iteration, we sample multiple sub-
sets of user postings from the set of labeled data.
On each subset, we train a pair of base learners
as described in Section 3.1. For each pair of base
learners, we use the model described in Section
3.2 to assign a score to all unlabeled user postings.
Finally, the ultimate ranking list is constructed by
aggregating the scores of the unlabeled data across
the models.

Our approach for employing bagging is slightly
different from the regular query-by-committee
model (Abe and Mamitsuka, 1998). In the reg-
ular query-by-committee model, one estimator is
trained on each subset of data, and the best candi-
date data point is the data point which is subject
to the most disagreement among the estimators. In
our model, the candidate data points, for each sub-
set, are the data points that are assigned to opposite
classes by the base learners. Then, each predictive
model votes for these contention points, and the
best candidate data point is the one that is subject
to the most agreement among the models.

3.4 Overview of Algorithm
Algorithm 1 summarizes one iteration of CO-
COBA . Lines 10-21 describe the training proce-
dure, and Lines 22-31 describe the labeling proce-
dure. The training stage begins by sampling from
the set of labeled tweets; then two base learners are
trained on two views of the sampled set. Next, two
base learners are used to label the set of unlabeled
tweets. The contention tweets are detected, and
in each view one density estimator is fitted. The
density models are used to approximate the proba-

bility mass values of every contention tweet. These
steps are repeated for each sub-sample. To rank the
set of unlabeled tweets, the prediction confidences
and probability mass values are used in Equation
1 to score all the contention tweets. The top tweet
is queried and added to the labeled set and all the
sampled sets–Line 19 and Line 20. Finally, all the
base learners are re-trained on the updated sampled
sets. In the labeling stage, each pair of the base
learners is used to label the test tweets–Line 25. To
predict the final label a majority voting algorithm
is employed–Lines 28-31. In the next section, we
discuss the implementation details of COCOBA.

Algorithm 1 One Iteration of COCOBA
1: procedure COCOBA
2: Given:
3: L : Set of labeled tweets
4: U : Set of unlabeled tweets
5: T : Set of test tweets
6: K : Number of estimators
7: Return:
8: Labeled set of test tweets, and updated training set
9: Execute:

10: for i← 1 to K do
11: Sample a subset of L and store in S[i]
12: Train two base learners on S[i] and store in BL[i][0]

and BL[i][1]
13: Use BL[i][0] and BL[i][1] to label the set U
14: Store the contention tweets in C[i], and their

prediction confidences in Conf [i][0] and
Conf [i][1]

15: Fit two density estimation models on two views of
C[i] and store them in DS[i][0] and DS[i][1]

16: Use DS[i][0] and DS[i][1] to calculate the prob-
ability mass values for all the tweets in C[i]
and store them in P [i][0] and P [i][1]

17: Plug the arrays Conf and P into Equation (1) to
calculate the aggregated score for tweets in C

18: Rank all the tweets in C based on their score, and
store the top one in W

19: Query the label of W
20: Add W to L and all the tweet sets stored in S
21: Use the updated S to retrain the base learners of BL
22: for t in T do
23: PCount← 0
24: for pair in BL do
25: label← confpair[0](t) + confpair[1](t)
26: if label ≥ 0 then
27: PCount← PCount+ 1
28: if PCount ≥ K/2 then
29: t is Positive
30: else
31: t is Negative
32: Return T,L

4 COCOBA: Implementation Details

In this section, first we discuss the feature vectors
that we used in COCOBA. Then, we discuss the
base learners and the density estimation models that



we implemented. Finally, we explain the details of
the bagging step.
Feature vectors (Section 3.1): We used neural
contextual word embeddings to represent the two
contextual representations discussed in Section 3.1.
We used the BERT pre-trained base model (Devlin
et al., 2019), to extract the document level and word
level views–the size of the vectors in this model is
768. For simplicity, if a task had multiple query
words we assumed their contexts is comparable8–
even though the approach in (Shi and Lin, 2019)
could have been leveraged to create a canonical
term. Additionally, If a user posting contained
more than one search term, we selected the first
occurrence to construct the word level view.
Base learners (Section 3.1): We used a one-layer
fully connected network as the base learner. To ac-
count for the increasing size of the training set dur-
ing the active learning iterations, we also updated
the BERT vectors every few hundred iterations by
fine-tuning–see Section 5.3 for detail.
Density estimators (Section 3.2): We used a
Parzen density estimator to approximate the density
of the contention points (Heidenreich et al., 2013).
For simplicity, we opted for a linear kernel model.
We set the bandwidth hyper-parameter in the docu-
ment level view to 30, and in the word level view
to 45–these values were determined based on the
average distance of the data points in each view
which is independent of the labeled data.
Bagging details (Section 3.3): There is no widely
accepted number of estimators for the models based
on bagging (Settles, 2009). We used 15 estimators
in our implementation. For each estimator, we
randomly sub-sampled 60% of the labeled set with
replacement to be used as the training data.

5 Experimental Setup

We begin this section by describing the datasets,
then we discuss the baselines, and finally, explain
the experiments.

5.1 Datasets
We show that our model is applicable to three tasks:
Personal Health Mention detection (PHM), Obser-
vation Extraction (OE), and Product Consumption
Pattern identification (PCP). Below we describe the
datasets.

8Recall that by definition, our tasks are defined for closely
related search keywords.

Training Test

Topic Size Neg Pos Size Neg Pos
Parkinson’s 4096 84% 16% 2120 85% 15%

Cancer 3915 80% 20% 2091 79% 21%
Diabetes 4318 82% 18% 2097 86% 14%

Table 1: The number of tweets, and the percentage of
the positive and negative tweets across the topics in Ill-
ness dataset.

Illness dataset: For PHM task, we constructed a
dataset of English tweets across three different top-
ics: Parkinson’s disease, cancer, and diabetes. To
collect the tweets related to diabetes, we used the
search terms “diabetes” and “diabetic”. We used
the Twitter search API and retrieved a set of tweets–
excluding retweets and replies–over the span of one
year between 2018 and 2019. To create the training
sets, we randomly sampled about 4,000 tweets for
each topic from the 2018 data. To create the test
sets, we randomly sampled about 2,000 tweets per
topic from the 2019 data. To annotate the sampled
sets, we followed the definition of Personal Health
Mention detection problem (PHM), proposed in
(Karisani and Agichtein, 2018). That is, the tweets
that mention the health condition and contain a
health report were labeled positive, otherwise, they
were labeled negative. We hired one annotator to
annotate the tweets. In order to validate the an-
notations, we randomly sub-sampled 10% of the
labeled tweets, and hired another annotator to re-
annotate the set. We found the inter-agreement rate
to be 0.81 with Cohen Kappa test, which represents
a substantial agreement between the two annota-
tors (Viera and Garrett, 2005). Table 1 summarizes
Illness dataset. We see that on average about 18%
of the tweets are positive in each topic.
Observation dataset: For OE task, we used the
dataset introduced in (Zahra et al., 2020) on report-
ing flood incidents, which contains 4,000 tweets9.
Each tweet is categorized as Direct-Observation,
Indirect-Observation, or None. We assumed the
tweets that make a direct observation are positive–
which account for 17% of the dataset. With pre-
serving the original distribution, we sampled 1,000
tweets for the test set. Query keywords used to col-
lect the dataset are “flood”, “rain”, and “overflow”.
Product dataset: For PCP task, we used the
dataset introduced in (Huang et al., 2017). This
dataset10 consists of the tweets related to a medi-

9Available at https://crisisnlp.qcri.org/
10Publicly available via the organizers of SMM4H work-

shop: https://aclweb.org/portal/content/smm4h

https://crisisnlp.qcri.org/
https://www.aclweb.org/portal/content/smm4h-social-media-mining-health-applications-workshop-shared-task-acl-2019


cal product–influenza vaccine. A tweet is labeled
positive if it reports receiving the medical product.
There are 6,617 tweets in this dataset. We used
the tweets posted in 2013 and 2014 in the training
set, and the tweets posted in 2015 and 2016 in the
test set. In the training set, we found 4,503 tweets
for which 31% of them were positive. In the test
set, we found 2,114 tweets for which 22% were
positive.

5.2 Baselines
In this section, we describe the baseline models
that we included in the experiments. We included
one naive baseline (random sampling), one classic
baseline (uncertainty sampling), one learning-from-
data model (LAL), and one self-paced learning
model (SPAL). In Section 6.2 we also compare our
model with the co-testing algorithm. The input
features were identical between all the models–as
described in Section 4.
random: This baseline is without Active Learning.
In each iteration, we randomly selected one tweet
from the set of unlabeled tweets, and added to the
labeled set.
uncertainty: We included the most widely used
uncertainty-based model described in (Settles,
2009). The output probability of the base learner
was used as the confidence score.
lal: We included the model proposed in
(Konyushkova et al., 2017)11. This model is an
error reduction algorithm, which models the query
sampling problem as a regression task. We report
the Iterative variant, which is a stronger baseline
and performed better. We used the suggested set-
tings in the reference to set-up the model.
spal: We included the model proposed in (Tang and
Huang, 2019)12. This model is a self-paced method,
which tries to maintain a balance between the infor-
mativeness and the easiness of queries through an
objective function. We used the settings proposed
in the reference to set-up the model.

5.3 Experimental Details
We trained and evaluated all of the models in each
topic of Illness, Observation, and Product datasets
separately. Following the argument in (Mccreadie
et al., 2019), we report the F1 of the models in the
positive set. The rest of the experimental setup was
identical to what is adopted in the active learning

11Available at https://github.com/ksenia-konyushkova/LAL
12Available at https://github.com/NUAA-AL/ALiPy

literature (Settles, 2009; Lowell et al., 2019). In the
cold start state, we randomly sampled 50 labeled
tweets, and assumed that the rest of the labeled
data is unlabeled. We report F1 measure in the
test set as the training set is augmented with new
labeled tweets. We fixed the initial set of labeled
tweets across all the experiments, ensuring that all
of the models have access to an identical set of
tweets in their cold start state. Additionally, we
repeated all the experiments 5 times and report the
average of the experiments. In order to account for
the increasing size of the training sets during the
active learning iterations, every 350 iterations we
fine-tuned the BERT model–mentioned in Section
4–and updated the entire set of tweet and word
representations in all the baseline models.

6 Results and Analysis

In this section we report the main results, and then
we provide an empirical analysis.

6.1 Results
Figures 2a, 2b, and 2c report the performance of
the models in Illness , Observation , and Prod-
uct datasets respectively. Additionally, Table 2
compares the performances at four different ratios
of the training set sizes, i.e., 25%, 50%, 75%, and
100%. The results confirm that–except in a few
cases–all the models outperform random baseline,
confirming that Active Learning is an effective strat-
egy to approach these tasks. The results signify that
our model COCOBA is consistently outperforming
the baselines. This is particularly the case over the
initial iterations. During these iterations our model
employs two views to issue the queries, whereas the
other models rely on one view. As more training
data becomes available, and the pool of unlabeled
data shrinks, the models converge–except in Obser-
vation dataset. Finally, the experiments show that
uncertainty model is performing strikingly well,
confirming the consistency of this model–discussed
in Section 2. The authors in (Attenberg and Provost,
2011) report that under different problem settings
state-of-the-art active learning models may be infe-
rior to the uncertainty model.

6.2 Empirical Analysis
In Section 3.2 we argued that the regular co-testing
algorithm can be further improved by exploiting the
density of the contention points. We also proposed
a method to incorporate this information using a

https://github.com/ksenia-konyushkova/LAL
https://github.com/NUAA-AL/ALiPy
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Figure 2: F1 of the models at varying training set sizes during the active learning iterations in all three datasets.

F1 in Illness dataset F1 in Observation dataset F1 in Product dataset

Model 25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100%
random 0.513 0.688 0.679 0.728 0.360 0.468 0.403 0.533 0.651 0.706 0.715 0.736

uncertainty 0.584 0.757 0.790 0.801 0.359 0.541 0.551 0.565 0.682 0.750 0.774 0.780
lal 0.530 0.731 0.778 0.787 0.340 0.514 0.566 0.547 0.669 0.734 0.763 0.772

spal 0.503 0.718 0.778 0.786 0.312 0.492 0.506 0.567 0.656 0.722 0.762 0.776
COCOBA 0.723* 0.788* 0.804* 0.809 0.522* 0.573* 0.559 0.602* 0.738* 0.761 0.774 0.788

Table 2: F1 of the models at 25%, 50%, 75%, and 100% of the training set sizes during the active learning iterations.
The improvements indicated by * are statistically significant–using paired t-test (adjusted P < 0.05).
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Figure 3: F1 of COCOBA and COBA (COCOBA with-
out context) at varying training set sizes in Ill-
ness dataset.

Parzen density estimator. To support our claim and
also to evaluate the proposed method, we compare
COCOBA with a variant of this method that does
not use the context, i.e., this method only uses
the classifier confidences–see Equation 1. Figure
3 reports the result of this experiment. We see
that the performance of our model is noticeably
higher than that of the new model, which we call
COBA (Co-testing with Bagging).

In Section 3.3 we argued that a variance reduc-
tion technique can mitigate the problem caused
by the noisy language model. To support this
argument we deactivated the robustness step13

and evaluated the resulting model which we call
COCO (Context-aware Co-testing without bag-

13In this experiment, bagging is deactivated in both query
and labeling stages. Similar results can be achieved if we
deactivate bagging only in query stage.
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Figure 4: F1 of COCOBA and COCO (COCOBA with
no bagging) at varying training set sizes in Ill-
ness dataset.

ging). Figure 4 reports the result of this experi-
ment in Illness dataset. We see that the new model
COCO is inferior to COCOBA. The figure shows
that the new model is particularly outperformed
during the early iterations. Our error analysis re-
vealed that due to the small training set during these
iterations the base learners are more prone to query-
ing relatively uninformative tweets, which explains
why this span is impacted most by the variance
reduction technique.

Next, we compare our model with a variant of co-
testing (Muslea et al., 2006) which is customized
and adapted to event extraction task in (Liao and
Grishman, 2011). All the settings were set to be
identical between both models for this experiment–
we used our idea of constructing two contextual
representations in both models. Thus, this experi-
ment focuses on evaluating the ideas of contextu-
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Figure 5: F1 of co-testing and COCOBA at varying
training set sizes in Illness dataset.

alization and robustness proposed in Sections 3.2
and 3.3. Figure 5 reports the outcome of this exper-
iment in Illness dataset. The results show that the
improvement over co-testing model is consistent,
however, as the training set grows–and the set of
unlabeled data shrinks–both models converge.

A closer look at the graphs in Figure 2 shows
the existence of an elbow point in the early itera-
tions. The improvement rate before reaching this
point is dramatic and after this point it is slower.
Our case by case inspection revealed that during
the early iterations our scoring function–described
in Section 3.2–can effectively use the density of
the contention points. However, as the algorithm
proceeds, the set of contention points is exhausted
and our model converges to a regular contention
reduction algorithm. Thus, we conjecture that in
the presence of larger set of unlabeled data CO-
COBA may yield even better results14. One particu-
larly interesting quality of our model is the absence
of critical hyper-parameters to tune. Excluding
the hyper-parameters of the base learners, which
is shared between all the models, in our experi-
ments COCOBA was not sensitive to the number
of estimators in the bagging step or the value of the
bandwidth in the kernel density estimators15.

In summary, we showed that our active learning
model outperforms the state of the art in multiple
settings. The authors in (Attenberg and Provost,
2011) report that active learning models typically
show mixed results and fail to generalize to new
scenarios. Thus, we selected three datasets and
also included two state-of-the-art and two tradi-
tional baselines and showed that our model consis-
tently perfroms well. The results suggest that our

14In terms of runtime, COCOBA is comparable to lal–
which is also an ensemble. In the experiments, spal performed
much slower.

15We tried {10,15,20} estimators, the results were consis-
tent.

model can be potentially applied to a broader set of
query-based classification tasks. This claim is to be
further investigated. Additionally, there is still a set
of social media tasks that are not based on queries
e.g., sarcasm detection, hate speech detection, and
fake news identification. Future work may explore
these areas.

7 Conclusions

In this paper we proposed a novel active learning
model for short text classification tasks in user-
generated data. Our model utilizes the contextual
information of user postings in a multi-view ac-
tive learning model, exploits the density of the
contention points to increase the gain per query,
and employs a query-by-committee step to ad-
dress the usually noisy language of social media
posts. Through an extensive set of experiments
we showed that our model, COCOBA, is applica-
ble to multiple tasks. Our code and a relatively
large dataset that we constructed along the way are
publicly available.
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