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Abstract—Contact tracing is an essential public health tool
for controlling epidemic disease outbreaks such as the COVID-
19 pandemic. Digital contact tracing using real-time locations
or proximity of individuals can be used to significantly speed
up and scale up contact tracing. In this demonstration, we
present our system, REACT, for REAl-time Contact Tracing
and risk monitoring via privacy-enhanced tracking of users’
locations. With privacy enhancement that allows users to control
and refine the precision with which their information will be
collected and used, REACT will enable: 1) contact tracing of
individuals who are exposed to infected cases and identification
of hot-spot locations, 2) individual risk monitoring based on
the locations they visit and their contact with others. In this
paper, we demonstrate the procedure of contact tracing using our
application and the utility of contact tracing given the protected
locations.

I. INTRODUCTION

More than 10 million people in the U.S. have been infected
with the coronavirus (COVID-19) and more than 200,000
have died as of November 20201. Nationwide, hundreds of
thousands of new cases are still reported daily.

Contact tracing [1] is the quintessential public health tool
for controlling epidemic disease outbreaks such as the COVID-
19 pandemic. Tracing involves identifying all individuals
who may have come into contact with an infected person
and advising them to safely isolate or quarantine at home.
Traditional contract tracing practices, such as those currently
adopted by the CDC2, require a contact tracer to assess an
infected individual contacts by asking about his/her activities.
This process, however, does not scale. It is time-consuming
and ultimately infeasible for large scale contact tracing in a
pandemic, as is the case for COVID-19. In addition, contact
data collected in this way may be incomplete (limited to
known contacts) or unreliable. Digital contact tracing using
real-time locations or proximity of individuals can significantly
speed-up and scale contact tracing, as demonstrated by many
efforts in Asia and Europe [2]–[7].

User privacy is the critical issue in sharing real-time location
traces of users for digital contact tracing. Uncontrolled sharing
of users’ whereabouts can lead to a wide range of attacks,
from stalking and assault, to various privacy breaches that may

1https://covid.cdc.gov/covid-data-tracker
2https://www.cdc.gov/coronavirus/2019-ncov/php/contact-tracing/

contact-tracing-plan/contact-tracing.html

disclose sensitive personal details such as one’s health status,
political or religious orientation, etc [8].

Many contact tracing applications use only Bluetooth-
collected proximal pairings, not absolute geo-coordinates, to
protect location privacy. Examples of this include official
contact tracing apps from countries such as United Kingdom,
Switzerland, and Germany. Of those apps, some keep the
contact data locally in the user’s phone while others upload the
contact data to a central location (e.g., Singapore, Australia).
However, ignoring absolute locations sacrifices the ability to
estimate risk based on the type of the locations and identified
hot spots and the ability to trace indirect contacts. A select
few (e.g., Norway) collect both bluetooth contact data and
GPS location data. This approach has led to privacy concerns
and consequently a low adoption rate among citizens3. There
have been apps that require mandatory location check-ins from
citizens issued by governments like China [9]. While highly
effective for containment interventions, these apps have also
heightened concerns about surveillance and data abuse.

We believe a pandemic like COVID-19 requires a careful
design of privacy protection—with public health benefits and
privacy enhancement approaches—that optimizes the trade-
offs (illustrated in Figure 1). Our contributions are summarized
as follows.

Fig. 1: Public Health Utility and Privacy Tradeoffs

• We present our application, REACT, for privacy-
enhanced contact tracing using real-time locations.

• REACT protects users’ location privacy by
perturbing their exact geo-coordinates using Geo-
Indistinguishability, a powerful location privacy definition

3https://www.bbc.com/news/technology-52355028
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that extends the popular protection model of differential
privacy.

• Only perturbed locations are reported to the server. In-
herently, there is utility loss associated to this process:
contact tracing services will return information relevant to
the reported location, instead of the actual one. However,
the users can adjust their privacy levels (the precision of
their uploaded locations) as their risk evolves.

• We propose an algorithm that models (as a probability)
the possibility of an actual contact between an infected
user and his/her contacts, given only their perturbed
locations. We optimize to maximize this accuracy.

• We propose efficient implementations of the spatiotempo-
ral queries for such contact tracing given the potentially
large number of users.

II. APPROACH

A. Contact Tracing

Digital contact tracing using real-time locations can sys-
tematically identify all users who have been in contact with
an infected case both directly and indirectly. There are three
common types of transmission of COVID-19: 1) direct person-
to-person transmission, i.e. in close contact with someone in-
fected (simultaneous co-location); 2) fomite transmission, i.e.
in contact with a contaminated surface or object at a location
visited by someone infected earlier (lagged co-location) [10];
and 3) indirect person-to-person transmission by contact with
someone who is earlier in contact with someone infected.
Figure 2 illustrates four user trajectories where uc has a
confirmed infection at time t4 and the three transmission
scenarios: 1) u1 via simultaneous co-location at t2, 2) u2 via
lagged co-location at time t4, and 3) u3 via direct transmission
from u1 at t3 (indirect transmission from uc).

Fig. 2: Transmission Scenarios
In REACT, we primarily consider the first two scenarios

which are the primary ways of transmission. Assume the
location trace of each user is represented as a sequence of
visits < u, s, t > (user u at location s at time t). Given a user
uc with confirmed infection, we find who have simultaneous
or lagged co-location with uc in a back tracing window (this
can be parameterized, e.g. as 5 days which is the currently
known median incubation period for COVID-19 [11]). Given
a sequence of visits by a single user, this problem can be
formulated as composition of range queries which given a
location dataset, a spatial range and a time interval, returns
all locations s that intersect with both the spatial range
and the time interval. For each location s visited by uc at

time t in the time window, we can compute a range query
using a spatial range of 6 feet centered at s and a time
interval of up to 72 hours starting at t (the viable time of
COVID-19 virus on surfaces [12]). These parameters can be
adapted to characteristics of individual locations (e.g., inter-
personal distances vary in closed/open spaces) and particular
viruses (e.g., infectious spread range of aerosolized particle, as
determined by research and CDC recommendations). Consider
the example in Figure 2, the query given uc will return u1
and u2. To scale such spatial queries, we utilize R-trees [13]
to index the visits on the three dimensions: latitude, longitude
and time.

B. Privacy Enhancements

To mitigate privacy risks and ensure widespread adoption,
we give users full control over how their information will
be collected. In particular, REACT allows users to control
the precision and frequency with which their geo-coordinates
are reported, controlled via an intuitive set of privacy set-
ting options. User’s geo-coordinates are perturbed using the
geo-indistinguishability (GeoInd) privacy definition [14]–[17]
based on users’ choices of privacy level. Given a privacy
parameter ε, and app users u1 (and u2, respectively), ε-GeoInd
perturbation mechanism distorts their exact locations l1 (l2)
to l′1 (l′2) by adding a spatial noise vector derived from a
2D Laplace distribution (with scale inversely proportional to
ε). The challenge is then to accurately compute the range or
reachability queries over the perturbed locations. We extend
probabilistic techniques of [16] to calculate the range query
over the pair of perturbed locations l′1 and l′2. Recall that the
range query captures whether or not two users actually made
a contact (parameterized as a reachable distance R), which is
indicative of the risk of a potential transmission. The objective
is then to calculate their reachability probability p(d ≤ R|d′),
where d and d′ are the Euclidean distances of their exact and
perturbed location pairs, respectively.

The simplest way to approximate the reachability proba-
bility distribution Prd,d′ (for a given R and ε) is by numeric
computation using a publicly available locations dataset (since
a closed form solution may not exist). First, a large num-
ber of user pairs are perturbed according to ε-GeoInd, and
the resulting distances (actual distance d and the perturbed
d′) are recorded. Then a function F(d, d′) maps the per-
turbed distances over discretized spatial ranges, e.g., in meters
[0...10), [10...20), ..., [500...∞) to actual distances, such that
the cumulative distribution of d for a given range of d′ is ap-
proximated. This way the mapping function approximates the
desired probability distribution F(d, d′) ≈ Prd,d′(d ≤ R|d′).
With this approximate function, we can define a threshold
0 < α < 1, to consider a pair of users in-contact if the
reachability probability between their perturbed locations is
greater than α.

Given a reachable distance R and a threshold α, our contract
tracing query works as follows: 1) determine the maximum
d′ that satisfies Prd,d′(d ≤ R|d′) > α; 2) instead of R, the
maximum d′ (much more relaxed than R) is used to perform a



(a) Privacy Level Control (b) Report Status (c) Alert

Fig. 3: Mobile App Demonstration

range query on the indexed dataset; 3) the candidates returned
by the range query are refined to get the final results. The first
and second steps ensure that all the locations that are reachable
with probability α are retrieved.

To further improve the precision of the contact tracing query,
we can adopt a multi-stage privacy approach where users can
adjust the privacy level of the location to be uploaded as their
risk evolves. When the server identifies a user as a contact
with a confirmed case, the user can choose to upload precise
or less perturbed (lower privacy level) locations stored locally
to confirm contact status.

III. APPLICATION DEMONSTRATION

The REACT4 app extends an existing open source project
named Covid Community Alert5 with privacy features dis-
cussed in this work. REACT app collects proximal contacts
(via Bluetooth) in addition to geo-coordinates (via GPS if
permitted by user) for the purpose of contact tracing and
assessing users’ need to quarantine. It maintains the anonymity
of its users by recording ephemeral device IDs that persist for
the duration the app is installed and can be reset by user by re-
installing the app. The overall architecture of the application
is shown in Figure 4. We demonstrate the workflow of the
client side and server side in the following sections.

Fig. 4: Application Overview

A. Client Mobile App

We extended the mobile app with additional location privacy
features. A UI element allows the user to select a desired pri-
vacy level as shown in Figure 3a for sharing his/her locations.
This privacy level is interpreted as the level of perturbation

4https://github.com/Emory-AIMS/react
5https://coronavirus-outbreak-control.github.io/web/

that is applied to user’s location before it is transmitted to the
receiving server. We implemented the GeoInd based location
perturbation with predefined privacy levels. If None is selected,
the exact locations are reported to the server. The Share
Location option allows the user to opt-in/out at any time.
Another UI element provides the functionality for the users
to self-report their COVID status as shown in Figure 3b.

The app works as follows. A user registers the device by
sending a randomly generated device ID to the server on using
the app for the first time (no personal information collected).
The app scans for Bluetooth signals emanating from nearby
devices and collects their IDs. The interaction information
including devices IDs, timestamp, interaction duration, and the
privacy-enhanced GPS location (if the user opts in) are sent
to the back-end server. When a confirmed case is reported,
the back-end server executes a Contact Tracing Query to find
the potential contacts and update their at-risk score. If the risk
score exceeds a preset level, an alert is relayed to these users
as a notification on their device. As shown in Figure 3c, the
main interface is also updated to reflect the notification status.

B. Contact Tracing Query

We will also demonstrate the contact tracing queries in the
backend described in the previous section using a subset of the
Gowalla Geo-social Network checkin dataset [18]. The dataset
comprises a total of 3.6M check-ins within the US, from 54k
unique users between Feb 2009 and Oct 2010. A randomly
selected set of 500 users simulates the confirmed cases. Two
check-ins are assumed to be co-located (representing a direct
person-to-person transmission) if their Euclidean distance is
within R and time interval is at most T . We set R to 25
meters and T to 20 minutes following previous work [19],
[20]. We represent the privacy parameter ε as an easy-to-
interpret average obfuscation value ` = εr, where r is set to a
constant 200 meters [14]. We vary privacy parameter ` from
ln2 to ln8 (corresponding to average perturbation of 2.88 km
to 0.96km, respectively).

We compare our approach against a straightforward appli-
cation of GeoInd (dubbed the oblivious method) which counts
two users as co-located when d(l′1, l

′
2) ≤ R where l′1, l

′
2

https://github.com/Emory-AIMS/react
https://coronavirus-outbreak-control.github.io/web/


are perturbed locations. We evaluate two scenarios: the first,
named U2U (uncertain to uncertain), assumes that both the
infected user’s location and other users’ locations are per-
turbed; the second scenario, named U2E (uncertain to exact),
assumes the infected user’s locations is exact and other users’
locations are perturbed. We compute precision (the fraction of
correct co-location instances over all instances inferred), and
recall (the fraction of correct colocations retrieved over the
total count of co-locations in the original data) to evaluate the
utility of the approaches.

Figure 5 (Figure 6) shows the results of the U2U (U2E,
respectively) scenario where the privacy of the infected user’s
locations is set to ln4 and the privacy parameter of all
other users varies from ln2 to ln8, corresponding to high to
low privacy respectively. In both scenarios, our probabilistic
method outperformed the oblivious. Both precision and recall
increase with the decrease of user privacy level. This verifies
that users with lower privacy requirement can receive more
accurate risk estimation.

Fig. 5: U2U precision/recall by varying `

Fig. 6: U2E precision/recall by varying `
Lastly, by exploiting spatio-temporal R-trees for computing

co-location range queries, our algorithm is up to 300× more
efficient, when compared to a nested-loop implementation that
calculates the pairwise distance over all (infected user, other
user) tuples.

For future work, we are investigating more fine-grained risk
quantification approaches that take into account the type and
risk factors of the locations the users visit in addition to the
contact with infected users.
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