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Abstract—With the prevalence of data-driven intelligence, data
markets with various data products are gaining considerable
interest as a promising paradigm for commoditizing data and
facilitating data flow. In this paper, we present Stackelberg-Nash
based Data Markets (Share) to first realize a demand-driven
incentivized data market with absolute pricing. We propose a
three-stage Stackelberg-Nash game to model trading dynamics
which not only optimizes the profits of all selfish participants
but also adapts to the common buyer-broker-sellers market
flow and solves the seller selection problem based on sellers’
inner competition. We define Stackelberg-Nash Equilibrium and
use backward induction to solve the equilibrium. For inner
Nash equilibrium, we apply the conventional direct derivation
approach and propose a novel mean-field based method along
with provable approximation guarantees for complicated cases
where direct derivation fails. Experiments on real datasets verify
the effectiveness and efficiency of Share.

I. INTRODUCTION
Data products (e.g., query services, aggregate statistics, and

machine learning models) have paved the way for a variety of
data-driven tasks in diverse industries. High-performance data
products require a large amount of high-quality data. While
there is a wealth of data generated from different sources, they
are highly dispersed, which brings significant challenges to
data aggregation. Besides, there is a gap between data supply
and demand, and data suppliers or demanders usually lack
the necessary resources and techniques to survey the vast data
sources and turn data into data products. Thus, despite the
increasingly available and enriched data, the wealth of data is
far from being fully exploited. As one of the most important
topics in Boston Database Meeting 2023 [1], data markets have
been demonstrated as a promising paradigm to commoditize
data and connect data suppliers and demanders [2], [3].
Motivations. A typical data (product) market consists of three
parties: buyers, brokers, and sellers [4]–[6]. Buyers propose
demands for data products and pay for them; brokers facilitate
the transactions between buyers and sellers (and take charge
of manufacturing data products from data); sellers offer data
with different quality and sell data to brokers in exchange
for compensation. We use two motivating examples to further
specify our targeted settings.

Vehicle Example. An automaker (e.g., Ford Motors Com-
pany) wants to get insight into users’ purchase preferences
of vehicles to decide investments. Ford (buyer) turns to
McKinsey, a consulting company, and proposes a series of
queries Q, each with distinctive conditions specified and
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the corresponding purchase intention to be answered, e.g.,
whether a female customer in Texas would most likely buy
fuel vehicles, pure electric vehicles, or hybrid vehicles. To
answer the queries, McKinsey (broker) needs to gather sales
data of different vehicle types and produce a data product
M, e.g., data statistics aggregating total sales of each vehicle
type after screening location and gender. McKinsey buys data
from multiple vehicle retailers (sellers) who own sales data
of various vehicles. Retailers sell data with different qualities
responding to different compensations.

Health Example1. A biopharmaceutical company, e.g.,
Pfizer (who spends $12 million to buy health data from
a variety of sources including IMS Health as reported by
Scientific America [7]), wants to get insight into the effects of
their released COVID-19 vaccination for further development.
Pfizer (buyer) turns to a healthcare consulting firm with a
series of queries Q searching for the arising adverse reactions,
e.g., select the reported nausea within three months after the
vaccination in America. To answer the queries, the consulting
firm (broker) needs to gather realistic health data to produce a
data product M, e.g., data aggregation listing the symptomatic
description of nausea with the time and location of vaccine
inoculation filtered. The consulting firm collects data from
healthcare companies (sellers), e.g., the aforementioned IMS
Health which owns and sells de-identified prescription data,
medical claims, and electronic medical records. While the
health data is anonymized to comply with privacy laws,
IMS Health may still suffer from risks of medical disputes
and thus enhance privacy preservation using techniques such
as perturbation which contributes to different quality of the
provided health data.

Ford or Pfizer can benefit from the data product (accessing
it via querying and answering) and in the meantime needs to
pay for it; McKinsey or the healthcare consulting firm gains
by selling the product (answering the queries) after spending
resources to buy the data and produce the product; and the
vehicle retailers or the healthcare companies sell data for
compensations while suffering from costs (majorly the privacy
loss incurred from data). They are driven to join the data
market by the profit they can earn, and thus a general data
market is considered where all three parties are selfish, i.e.,
have their own revenue and cost, and aim to maximize their

1While data sharing in healthcare can bring societal benefits, many issues
such as privacy and ethics need to be considered. Here we aim to show the
motivation of Share supported by real cases, leaving the other issues outside
the scope of the paper.
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Fig. 1. The framework of Share.

profit (the difference between revenue and cost). Moreover,
how they act in the market affects each other. If Ford sets
a low price for the demanded product in pursuit of profit,
McKinsey may pay little to buy the data to recover costs.
Getting low compensations, the vehicle retailers offer poor-
quality data, inducing a low-performance product and in turn,
harming the profit of Ford. Therefore, it is a critical research
issue to design an incentive mechanism for data markets
(especially data pricing) that can encourage three selfish
yet interdependent parties to participate in data trading
and thus invigorate the market.

While all three parties need to maximize their profits, they
play different roles in the market flow. Data sellers such
as vehicle retailers likely do not regard data selling as the
main business. Rather, data transactions are likely initiated by
data buyers (demanders) such as Ford and Pfizer as in our
motivating examples. For other examples, Perkins School for
the Blind demands patient data to understand how to identify
cerebral visual impairment [8], and logistics companies ask for
foot-traffic data streams to forecast future inventory demand
[4]. In such demand-driven scenarios, a single transaction
serves one specific demand (e.g., personalized services) and
thus buyers can be considered as orientating the market in
turn (coming one at a time) as practiced in [4]. A data buyer
proposes its demand to a data broker in the market, e.g.,
McKinsey, which then buys data from data sellers. While
there may exist multiple competitive brokers, we consider one
broker and put emphasis on its interactions with the other
two parties. Concerning the limited data owned by one single
seller, multiple data sellers (e.g., numerous vehicle retailers)
are considered, each having a dataset that can together con-
tribute to solving the buyer’s demand. Therefore, to facilitate
data trading in scenarios like the illustrated examples, we
focus on demand-driven data markets with one buyer, one
broker, and multiple sellers.

Many recent works [4]–[6], [9], [10] on data markets have
emphasized various aspects of the market design, yet not
targeted the demand-driven market with incentives for all three
parties. Therefore, it is tempting to ask: how to build a
well-functioning data market with an incentivized pricing
mechanism, which can satisfy the profit needs of all selfish
participants and adapt to the demand-driven scenarios.
Challenges and Contributions. We summarize three chal-

lenges (C1, C2, C3) faced in constructing the demand-driven
data market with incentives for all three parties, and propose
a feasible solution, Stackelberg-Nash based Data Markets
(Share) utilizing game theory as in Fig. 1. The detailed
workflow is presented in Section III-B.

Existing works on data markets vary in design goals and
typically address one aspect or one party’s need, such as prod-
uct quality optimization for buyers [11], revenue maximization
for sellers [5], social welfare maximization [12], or market
protection from strategic participants [13], but fail to realize
profit optimization for all parties. Pricing constitutes a key
mechanism in incentive market construction, but the lack of
market practices and pricing references makes data pricing far
from trivial (similar to petroleum pricing at the early stage),
especially an absolute price compared to the relative one which
is determined in comparison with other data, e.g., by Shapley
value [14] as in [4], [6], [10]. Therefore, the first challenge is
(C1): How to design a pricing mechanism for data markets
to realize absolute pricing and maximize the profits of all
three parties. To solve this challenge, we adopt game theory
which can support the multi-objective incentive mechanism
design in data markets. The interactions of the three entities
are modeled as a game, in which each participant can achieve
its profit-maximization goal by making its optimal strategy.
Moreover, absolute prices of data are modeled as strategies and
directly determined in the game process with the involvement
of all the parties, which further encourages their participation.

Though efforts have been made to satisfy buyers’ needs
(e.g., utility demand and purchase budget in [4], [6]), no
existing paradigm can well adapt to the demand-driven data
market with the market flow in order, i.e., first demanded and
initiated by the buyer, then translated and transmitted through
the broker, and finally received and realized by the sellers.
Therefore, the second challenge is (C2): How to encode the
buyer-broker-sellers market flow to cater to the targeted
demand-driven data market. To solve this challenge, we
formalize the interactions among three parties as a multi-stage
dynamic game and adapt Stackelberg game [15] which can
deal with the sequential order of participants, by regarding the
buyer as the leader, the broker as the sub-leader, and sellers
as followers. As shown in Fig. 1, the buyer first announces
what data product it demands and determines the product price
based on its profit-maximization goal; the broker then tries to
buy data from sellers and decides the data price; each seller
then chooses what data quality to provide.

Since there are multiple sellers, it is critical to select the
best data (with the highest data quality) from the sellers to
meet the buyer’s product demand and in the meantime satisfy
the broker’s resource constraints, which is referred to as seller
selection problem. Many existing works made the buyer [11]
or broker [6], [16] responsible for seller selection, which not
only requires the buyer/broker’s capability of learning the
data quality but also limits the sellers’ ability to choose their
provided data quality according to the data price. Hence, the
third challenge is (C3): How to model the seller selection
problem to select the best set of data for trading. To



solve this challenge, we consider the inner competition among
sellers which can make the winners the selected sellers without
the assistance of the buyer or broker. Sellers are allowed to
manipulate their provided data quality by Local Differential
Privacy (LDP) [17] to compete for the selling quantity of data.
We model the inter-seller competition as a Nash game [18]
because of its advantage in modeling sellers’ equal positions,
and find the desired Nash equilibrium by applying direct
derivation and proposing a mean-field based approximation
for complex cases when direct derivation fails.

Our goal is not to cover all data markets nor to address
all critical issues in real-world data trading, but rather to
propose an incentive mechanism for data markets anchored
in a demand-driven scenario, which is meaningful in practice
but has not been studied yet. Although borrowed from existing
methodologies in game theory, Share attempts to contribute to
data management research by innovatively adapting promising
theories to data market construction with both 1) data-specific
problem formulations considering data quality and privacy cost
and 2) generally applicable equilibrium-solving solutions. The
major contributions are summarized below.

• We present Share, an incentivized data market framework
with an absolute pricing mechanism based on a three-
stage Stackelberg-Nash game, which is the first to satisfy
all-party profit maximization in demand-driven scenarios.

• We apply Nash game for the seller selection problem,
which formulates sellers’ inner competition and incorpo-
rates data selection into the three-party game process.

• We define Stackelberg-Nash Equilibrium in data markets
and derive it by backward induction. To solve the inner
Nash game, we apply direct derivation as well as design
a novel mean-field method for complex cases, for which
error analysis is presented.

• We conduct experiments on real and synthetic datasets to
verify the effectiveness and efficiency of Share.

Organization. Section II provides the related work. Section III
presents the data market framework based on Stackelberg-
Nash game. Section IV constructs a market instance for
which approaches to deriving the equilibrium and the trading
dynamics are presented. Section V reports the experimental
results while Section VI draws a conclusion.

II. RELATED WORK
A. Data Market

Data markets trade data in direct (raw data [19], [20]) or
indirect forms (derived data products, e.g., queries [9], [21]
and models [4]–[6], [10]). While research on data market
evolves in myriad directions including data mining [22]–[27],
data storage [28], [29], and data security [30], [31], we explore
the data market design emphasizing on the incentives by
formalizing trading (pricing) mechanisms. Related research
problems are reviewed below.

In terms of profit maximization for all parties, few studies
can provide a thorough solution. [6] established a model
marketplace with the needs of buyers and sellers considered,
but assumed that the broker is neutral without its profit

consideration and determines model prices only for single
objective optimization, i.e., revenue maximization for sellers.
[16] studied multiple objective optimization for crowdsens-
ing data trading. Nevertheless, the specific characteristics of
crowdsensing data (e.g., sensing time) limit the extension to
the general data market. Diversified data products, typical
privacy issues, and latent interrelations among participants
should be considered. In Share, by combining multiple game
mechanisms, we formulate for-all profit-maximization data
markets with unrestricted data and data products, privacy
consideration for data sellers, as well as inner competition
modeling for seller selection.

As for data pricing, several surveys [32]–[34] claimed
fundamental principles and reviewed the evolution of pricing
models. In terms of absolute pricing, [6] provided absolute
prices for data models, which, however, highly rely on the
survey results and can’t be adjusted dynamically. [4] applied
Myerson’s payment rule to determine absolute model payment
but allocated relative compensations to sellers in proportion
to their contributions based on Shapley value. While auction
[35] can be a promising way for absolute price discovery and
has been widely adopted in data pricing [12], [13], rarely can
every party be included in the price determination. In Share,
we propose a feasible absolute pricing mechanism for both
data and data products with all three parties involved.

Many works looked at the seller (data) selection prob-
lem. One strand of research lied in data acquisition. For
example, [11] dug into how a buyer purchases data under
a budget to improve machine learning models, yet without
addressing the market design issues including data pricing,
revenue allocation, as well as the strategic actions of sellers
and brokers. Within the data market design scope, [6] made
brokers choose datasets to maximize Shapley coverage of the
trained model. [16] used a combinatorial multi-armed bandit
mechanism for brokers to select sellers. However, the selection
results directly affect the profits of sellers, and therefore the
seller selection problem is closely correlated to the profit
maximization problem for sellers and should not be considered
separately. Seller selection can be seen as the spontaneous
process of the inner competition among sellers, proactively
determined by their strategies rather than passively conducted
by the buyer or broker. In Share, the seller selection problem is
formalized as the inter-seller Nash game, which is a part of the
incentive mechanism for profit optimization of all participants.

Data marketplaces have been practiced, e.g., Snowflake [36]
and AWS [37], which involve products centrally listed with
posted pricing, and focus more on scalability than incentives.
Instead, Share provides a parameterized solution to guide
autonomous data trading among profit-seeking participants by
giving full play to their pricing power, which can act as an
alternative framework catering to strong incentive needs.
B. Game Theory

(Non-cooperative) Game theory provides a tool for analyz-
ing the interplay among individuals with conflicting objectives
and has been widely used in various situations. Nash [18]
accurately described Nash equilibrium as a solution concept



for simultaneous-move games. Many researchers used Nash
game as a powerful tool to formulate and solve problems
with simultaneous interactions [38], [39]. Instead, Stackelberg
game [15] features sequential actions, which was first used
to formulate the determining process for oligopoly firms
producing homogeneous products and has been further applied
to many practical situations with hierarchical organizations,
e.g., security game [40] and crowdsensing [41].

Since Nash proposed his theory, many researchers have
sought algorithms for finding Nash equilibrium. [42] showed
complexity results of deriving Nash equilibrium and [43]
further studied the complexity of computing a mixed Nash
equilibrium. In terms of solving Stackelberg game, backward
induction approach, an iterative technique to derive dynamic
game equilibrium, is often used [16], [41], [44]. In fact,
deriving Stackelberg equilibrium with complete information
can be formulated as a bilevel optimization problem [45].

In Share, we adopt Stackelberg game for the focused
demand-driven data markets because it captures the sequential
actions of participants and can thus adapt to the buyer-broker-
sellers market flow while maintaining the profit maximization
for all parties. Moreover, we first adopt Nash game for
the seller selection problem since Nash game models the
simultaneous-move interaction among equals and can be used
for the inner competition among data sellers, which can select
sellers based on their strategies.
III. MARKET FRAMEWORK: PARTICIPANTS, MECHANISM,

AND EQUILIBRIUM

We crystallize the market participants by profit functions
in Section III-A, formulate the market mechanism in Section
III-B, and define the market equilibrium in Section III-C. For
reference, Table I summarizes the frequently used notations.
To set up, we clarify the assumptions and the problem below.
Assumptions. The key assumptions in Share are outlined
below including the general settings of the market and the
detailed roles of participants, which are motivated in Section
I supported by practical examples.

• Buyer-broker-sellers market. A demand-driven data mar-
ket is considered with one buyer, one broker, and multiple
sellers acting in order.

• Profit-seeking participants. All the participants want to
maximize their own profits.

• Complete information. The profit functions of participants
are considered available as assumed in Stackelberg game
and Nash game [15].

In terms of participants, the detailed assumptions concerning
their roles are set as follows.

• Buyer. To fulfill a data-driven task, buyer B asks for a
data product from broker A. Buyer B gets access to the
product via queries Q (either transactional or analytical)
and claims its required product performance (the answer
accuracy2), notated as ν. Note that the trading would

2We use accuracy in a broad sense which, independent of our model, can be
measured in distinctive ways depending on the query task (e.g., the precision
of the returned purchase intention on vehicles, or the completeness of the
aggregated nausea cases).

TABLE I
FREQUENTLY USED NOTATIONS.

Notation Definition

Buyer B

Q demanded query to be solved
ν demanded product performance
pM basic price of data product
θ1, θ2 parameters of concern on each attribute
ρ1, ρ2 parameters of sensitivity to each attribute
U(·) utility function of the product
PB(·) payment function between buyer and broker
Φ(·) profit function of the buyer

Broker A

N total data quantity
pD basic price of data
σk parameters of manufacturing cost
C(·) cost function of manufacturing data product
Ω(·) profit function of the broker

Seller Si

i index of seller
m total number of sellers
τi data fidelity
ϵi parameter in local differential privacy
χi sold data quantity
λi parameter of privacy sensitivity

Li(·) privacy loss function
PSi(·) payment function between broker and seller
Ψi(·) profit function of the seller

Data

Di seller Si’s raw dataset
Dt

i seller Si’s provided dataset
Dt whole dataset for manufacturing
qDi dataset quality provided by seller Si

qD total quality of dataset for manufacturing
qM data product quality
ωi weight of seller Si’s dataset

fail if the demand of buyer B is not satisfied, e.g., the
product cannot give answers for the asked 100 queries,
or some answer has an accuracy lower than expected.
Buyer B gains utility from the product (query answers)
while giving the payment to broker A.

• Broker. Broker (Arbiter) A wants to make profits by
bridging the transactions between buyers and sellers. To
answer queries Q with demand ν, broker A needs to buy
N data records (limited by its computation resources)
from sellers to make the data product (in any needed
form from statistics aggregating to model training) which
incurs costs (e.g., computing cost). Then, broker A sells
the product to buyer B in exchange for payment.

• Sellers. A large number of sellers {Si|i = 1, 2, ...,m}
exist in the market. Each seller Si owns dataset Di and
wants to sell it for profit. Seller Si applies perturbation
to its data utilizing a privacy scheme to manipulate the
data quality locally and sells χi processed data records
to broker A. The data quantity χi, with

∑m
i=1 χi = N ,

is to be decided by the market mechanism, and for any
required number χi ∈ N+, |Di| ≥ χi, indicating that each
seller has enough data for the trading. Seller Si receives
compensation from broker A while suffering from the
(privacy) cost for the data it sells.

Problem Statement. The problem is to establish an incentive
mechanism for data markets under the above assumptions.
The input is the profit functions Φ(·), Ω(·), and Ψi(·) of
buyer B, broker A, and each seller Si while the output is a
strategy profile jointly decided by participants,

〈
pM , pD, τ

〉



that designates product price pM , data price pD, and data
fidelity τ for data trading, so as to achieve the goal that the
profits of all participants are maximized at an equilibrium.
A. Market Participants

The profits Φ(·), Ω(·), and Ψi(·) are defined below includ-
ing the function templates and desired properties, which can
be instantiated in various forms. A market instance with every
function instantiated will be constructed in Section IV and
feasible approaches are proposed to solve its equilibrium.

1) Profit Function of Buyer: When buyer B comes to the
market and asks for a data product, it cares about its revenue,
the utility it can get from the product, and its cost, the payment
it should give to the broker.

Revenue. The revenue of buyer B is the utility gained from
the product. The performance of the product itself (embodied
in the accuracy of query answers which is specified in demand
ν) affects the utility. Moreover, the quality of data used to
make the product contributes to the utility. While the answer
accuracy only indicates how the product performs under
a certain testing environment (related to specific validation
datasets), dataset quality measures how good raw materials
are, making the judgment of product utility more stable and
less sensitive to various application scenarios. The dataset
quality is measured as the total quality of datasets contributed
by all sellers, qD =

∑m
i=1 q

D
i , where qDi is the dataset

quality seller Si provides. Intuitively, the dataset quality is
related to the intrinsic characteristic of data (e.g., the number
of features) and the contribution of the data to the product
which will be captured into the weights of sellers in Section
IV-A. Besides, the dataset quality can be manipulated by
sellers through the provided data fidelity τi and data quantity
χi. The dataset quality is thus notated as qDi = g(χi, τi)
where g(·) is positively correlated with τi and χi and will
be instantiated in Section IV-A. Data fidelity τi is determined
by the perturbation added by seller Si, measured as the privacy
level of LDP mechanism (see more in Section III-A3) while χi

is determined by sellers’ inner competition on τ (see more in
Section III-B). Combining both dataset quality and product
performance, the gained utility is quantified by a function
U(qD, ν) following the law of diminishing marginal utility
[46] in economics, as instantiated in Section IV-A.

Cost. The cost of buyer B is the payment to broker A.
Based on the above analysis, we define qM = h(qD, ν) to
objectively represent the quality of the data product which
depends on both data quality qD and product performance ν,
and h(·) will be instantiated in Section IV-A. Also, pM is
defined as the basic price of qM (the product price), and the
payment for the product can be formulated as the function
PB(pM , qM ) positively correlated to the basic price and the
product quality, which will be instantiated in Section IV-A.

Profit. The profit Φ(·) of buyer B is the difference between
the quantification of utility and the payment to broker A.

Φ
(
pM , τ

)
= U

(
qD, ν

)
−PB(pM , qM ). (1)

2) Profit Function of Broker: When broker A receives
the demand from buyer B, it cares about its revenue, i.e.,

the payment from buyer B, and its cost consisting of the
compensations to sellers to buy the data and the manufacturing
cost in the process of producing the data product.

Revenue. The revenue of broker A is the payment from
buyer B, i.e., PB(pM , qM ) (the cost of buyer B).

Cost. The cost of broker A is the sum of 1) the compensa-
tions to sellers and 2) the manufacturing cost. Broker A needs
to pay each seller Si compensation according to its provided
data quality, which is formulated as function PS(pD, qDi )
and instantiated in Section IV-A. Here pD describes the basic
price of data (the data price) similar to the product price pM .
Broker A also needs to consume some resources to make
the product. Different manufacturing consumption would be
induced if processing data with different sizes or producing a
product with different performance. Therefore, cost function
C(N, ν) is formulated related to total data size N and product
performance ν and will be instantiated in Section IV-A.

Profit. The profit Ω(·) of broker A is defined as the received
payment from buyer B minus the compensations to sellers and
the manufacturing cost as follows.

Ω
(
pM , pD, τ

)
=PB(pM , qM )−

m∑
i=1

PS(pD, qDi )−C (N, ν) .

(2)
3) Profit Function of Seller: When seller Si gets the

purchase request for data from broker A, it cares about its
revenue, the compensation from broker A and its cost coming
mostly from its privacy loss.

Revenue. The revenue of seller Si is the compensation from
broker A, i.e., PS(pD, qDi ) (one part of the cost of broker A).

Cost. The cost of seller Si is mainly the privacy loss
incurred based on data fidelity τi it provides (we ignore other
costs of collecting, processing, and packaging data which can
be formulated as a constant and integrated into the profit
function). Data fidelity τi is determined and manipulated by
seller Si through LDP mechanism which provides a well-
justified measurement tool to simultaneously capture noise
level (fidelity) and privacy level (cost). Hence, τi is defined as
f (ϵi) where ϵi represents the privacy level in standard LDP.
We conclude the following characteristics f (·) should satisfy
concerning the marginal trend and boundary conditions, and
the instantiation will be shown in Section IV-A.
1. The data has fidelity τi = 0 when ϵi = 0 which means

the data is random.
2. Larger ϵi, higher τi, since less noise is added to data.
3. τi increases slower as ϵi becomes larger because very

little noise is being added and further decreasing noise
does not make a significant difference to data fidelity
anymore. On the other hand, when ϵi is very small, i.e.,
with extremely large noise, increasing ϵi can significantly
increase data fidelity. Besides, τi cannot increase perpet-
ually and should be upper bounded.

Bigger τi means better fidelity of data and more privacy loss
for seller Si. We quantify such loss by function Li(·) which
is positively related to τi. It’s intuitive that the cost function
should not only increase but also increase faster for higher τi,



which corresponds to the principle of increasing marginal cost
[46] in economics. Moreover, the privacy cost would increase
as more data is sold (larger χi). Specific function Li (τi) will
be elaborated in Section IV-A.

Profit. The profit Ψi(·) of seller Si is the difference between
the compensation and the quantification of privacy loss.

Ψi

(
pD, τi

)
= PS(pD, qDi )− Li (τi) . (3)

B. Market Mechanism
In Share, the three entities take strategies in order. We first

present the market workflow. Then we specify the strategies
of buyer B, broker A, and each seller Si, respectively. Based
on the strategies, the market mechanism is proposed.

Market Workflow. The market workflow is shown in Fig. 1. ①
Buyer B puts forward the demand for a product including the
queries and the required performance. ② Buyer B determines
the product price to buy the data product from broker A. ③
Broker A, acting as the bridge for the transaction between
the buyer and m sellers, determines the data price to buy the
data from sellers. ④ Each seller chooses what data (strictly
speaking, data fidelity) to sell, and conducts corresponding pri-
vacy perturbation locally. ⑤ Sellers sell the protected datasets
to broker A in exchange for the compensations. ⑥ Using
the dataset bought from sellers, broker A manufactures the
product. ⑦ Broker A sells the product to buyer B. After buyer
B receives the product via query answers and gives payment
to broker A, the transaction is finished.

Buyer’s Strategy. Buyer B makes its strategy first, which is
to determine the product price pM , in order to maximize its
profit by considering the desired utility of the product and
stimulating the responses of the broker and sellers, i.e., what
data price and data fidelity broker A and sellers would provide
according to pM .

Broker’s Strategy. Broker A takes its strategy second, which
is to determine data price pD, in order to maximize its profit
given pM by stimulating the sellers’ responses, i.e., what data
fidelity each seller would provide according to pD.

Seller’s Strategy. Sellers make their strategies last. The
strategy of each seller Si is to determine data fidelity τi to
maximize its profit by balancing the revenue of selling data
and the cost of the privacy loss given the data price pD.

Meanwhile, the inner competition among m sellers should
be considered. Given the data price pD, if seller Si provides
data with higher fidelity τi, more quantity would likely be
sold. If other sellers provide better fidelity, less data quantity
of seller Si could be chosen. The data quantity that each seller
Si can sell is thus formalized as χi(τi, τ−i) (see the instance
in Section IV-A). Each seller competes for the quantity of
data that can be sold by manipulating the data fidelity while
balancing the compensation and the privacy cost. We define
such inner competition among sellers as a Nash game. Seller
Si determines its strategy τi simultaneously with each other
to maximize its own profit which is also affected by other
sellers’ strategies τ−i. Nash equilibrium would be achieved

where no seller can increase its profit by unilaterally changing
its strategy with all other sellers’ strategies fixed. The data
quantity χi sold by each seller Si can be calculated according
to the equilibrium state, treated as the seller selection results.

Note that if one participant finds that its maximized profit
is below zero, it will quit since it can gain no benefit from
participating in the data trading, which guarantees the indi-
vidual rationality [47] of participants. If it is the buyer or the
broker who quits the trading or all sellers simultaneously get
negative profits and quit, the current transaction would fail and
a new transaction would be initiated. Otherwise, the remaining
participants would continue and finish the transaction. Since
it is easy to deal with the quit situation, we focus on the more
common case and assume that all participants can get non-
negative profits in the following discussions.

Three-Stage Stackelberg-Nash Game. Strategies of buyer B,
broker A, and sellers Si (i = 1, 2, ...,m) constitute the strategy
profile

〈
pM , pD, τ

〉
of data markets. Such a profile determines

market trading rules including selling at what price for both
data product (pM ) and data (pD), what data (data fidelity)
to sell (τ ), as well as how to select sellers (the calculated
χ = (χ1, χ2, ...χm) based on τ ). The market mechanism
is formulated as a three-stage Stackelberg-Nash game, where
buyer B is the leader, broker A is the sub-leader, and m sellers
act as the followers. Each of them tries to maximize its own
profit by determining its optimal strategy variable. The three-
stage Stackelberg-Nash game is defined as follows.

Definition 1 (Three-Stage Stackelberg-Nash Game): The
game consists of three stages for buyer, broker, and sellers.
Stage 1 Buyer B: pM ∗

= argmaxpM Φ
(
pM , τ (pD(pM ))

)
.

Stage 2 Broker A: pD∗
= argmaxpD Ω

(
pM , pD, τ (pD)

)
.

Stage 3 Seller Si: τ∗i =argmaxτi Ψi

(
pD, τ

)
, i=1, 2, ...,m.

The above three-stage Stackelberg-Nash game involves both
sequentiality and simultaneity. Sequentiality indicates the or-
der in market flow, i.e., driven by demand, the data trading
proceeds with buyer B acting first, broker A taking its strategy
second, and sellers making their strategies last. Simultaneity
indicates the equal positions of m sellers who take strategy
simultaneously in their inner Nash game.

C. Market Equilibrium

In the above game, our objective is to find an optimal
strategy profile

〈
pM

∗
, pD

∗
, τ ∗
〉

, by which each participant
can maximize its own profit. Meanwhile, the optimal solution
must satisfy some equilibrium so that no one is willing to
adopt other strategies, which indicates market stability, making
our design feasible. We define a Stackelberg-Nash Equilibrium
(SNE) in data markets.

Definition 2 (Stackelberg-Nash Equilibrium): An optimal
strategy profile

〈
pM

∗
, pD

∗
, τ ∗
〉

constitutes a Stackelberg-
Nash Equilibrium (SNE) if and only if the following set of
inequalities is satisfied.



Φ
(
pM

∗
, τ ∗(pD

∗
(pM

∗
)
)
≥ Φ

(
pM , τ ∗(pD

∗
(pM )

)
,

Ω
(
pM , pD

∗
(pM ), τ ∗(pD

∗
)
)
≥ Ω

(
pM , pD, τ ∗(pD)

)
,

Ψi

(
pD, τ ∗(pD)

)
≥Ψi

(
pD, τ−i

∗(pD), τi
)
, i=1, 2, ...,m.

SNE indicates that each participant takes its optimal strategy
which maximizes its own profit in a demand-driven data
market with buyer-broker-sellers sequence. No one can add
its own profit by unilaterally changing its strategy.

IV. MARKET CONSTRUCTION: EQUILIBRIUM SOLVING AND
TRADING DYNAMICS

In this section, we first instantiate a data market by speci-
fying each function template in Section IV-A and then derive
the market equilibrium by backward induction in Section IV-B.
We describe the market dynamics in Section IV-C.
A. Market Instance

In terms of profit functions of participants, we claim the
basic properties that should be satisfied in Section III, based
on which we give instances below following certain practices.
Other alternatives can be adopted based on real cases.

1) Profit instantiation of Buyer B: In terms of the utility
of buyer B, it has been analyzed that combining product
performance and dataset quality to measure product utility can
make the quantification of product utility more comprehensive.
Since the dataset quality qDi of each seller is positively
correlated with the number of tuples χi and the fidelity of
each tuple τi, we instantiate qDi = g(χi, τi) as χiτi based
on the intuition that the multiplication reflects the fidelity of
the whole dataset. As mentioned before, other inherent factors
of data may also contribute to the data quality, which have
been studied and are complementary to our work [48], and
we focus on the effect sellers can exert on the data instead of
the intrinsic characteristics which can be further formulated
into qDi as a constant. Based on the instance of qD, we
define the utility of a data product as the weighted sum of
the utility of the dataset quality and the utility of the product
performance, which are further formulated as the logarithmic
functions following utility theory [49] in economics.

U
(
qD, ν

)
= θ1 ln (1 + ρ1q

D) + θ2 ln (1 + ρ2ν). (4)

Here θ1 and θ2 satisfy θ1, θ2 ∈ (0, 1), θ1 + θ2 = 1, which
measure the relative significance of the two for buyer B.
In our example, if dataset quality qD plays a greater role
than product performance ν in the decision-making of the
automaker, the automaker may set θ1 = 0.7 and θ2 = 0.3.
ρ1 > 0 and ρ2 > 0 refer to buyer B’s sensitivity to these two
attributes respectively. More sensitive, more utility added when
the attribute gets better. For example, if higher dataset quality
can bring the automaker much more utility, its ρ1 would be big,
meaning that the automaker is highly sensitive to the quality
of production materials.

In terms of the payment of buyer B, we instantiate qM =
h(qD, ν) as qDν since it is positively correlated to qD and
ν, and specify PB(pM , qM ) = pMqM , which borrows from
common sense that the payment for goods is equal to the unit
(basic) price multiplied by the quantity (quality).

2) Profit instantiation of Broker A: In terms of the first
part of the cost of broker A, the payment to each seller Si is
similarly instantiated as the product of the basic price pD and
the dataset quality pD, i.e., PS(pD, qDi ) = pDqDi .

In terms of the second part of the cost of broker A, we
adopt a widely used transcendental logarithmic function for
the manufacturing cost because of its adaptability to varied
economies of scale and manufacturing strategy (e.g., how to
allocate computing resources) according to the work [50]. Here
σk, k ∈ {0, 1, 2, 3, 4, 5} are the parameters of the translog cost
function which can be fitted by broker A based on the actual
manufacturing procedure.

C(N, ν) = exp

(
σ0 + σ1 ln(N) + σ2 ln(ν) +

1

2
σ3 ln

2(N)

+
1

2
σ4 ln

2(ν) + σ5 ln(N) · ln(ν)
)
.

(5)
3) Profit instantiation of Seller Si: In terms of the privacy

cost of seller Si, we first instantiate data fidelity τi and data
quantity χi. We choose an inverse trigonometric function form
as f(·) which satisfies the characteristics stipulated in Section
III-A3 and give the following definition of τi.

τi = f(ϵi) =
2

π
arcsec(wiϵi + 1), ϵi ∈ [0,∞) , (6)

which leads to τi ∈ [0, 1). Additionally, τi = 1 when no noise
is added. Thus τi ∈ [0, 1].

We then instantiate the quantity χi of data that can be sold
by seller Si as proportional to the data fidelity τi it provides.

χi = N
ωiτi∑m

j=1 ωjτj
, (7)

where ω1, ω2, ..., ωm refer to the weights of sellers’ data,
which are maintained by the broker. Such weights reflect
the historical performance of each seller’s data in past deals
(implying the verifiable data value). The broker would update
these weights after each round of transactions. For example,
new weights can be updated based on the contributions of
sellers to the data product in the current transaction. One
of the evaluation methods for the data contribution is by
Shapley value [14], which is adopted in this market instance
and implemented in our experiments.

Based on the instances of data fidelity τi and data quantity
χi, we adopt a widely used quadratic function for the cost of
seller Si. Here λi > 0 is seller Si’s privacy sensitivity. In our
health example, the privacy loss of IMS Health corresponds
to the negative impact of data exposure, and Li(·) quantifies
the economic estimation of the impact (e.g., legal expenses or
amends to patients).

Li (τi) = λi(χiτi)
2. (8)

B. Solving Equilibrium: Backward Induction
To determine the optimal strategy profile

〈
pM

∗
, pD

∗
, τ ∗
〉

,
we adopt the backward induction approach [51]. We first
investigate Stage 3 to solve Nash equilibrium among sellers
and derive the expression of each seller’s optimal strategy



τ∗i , i = 1, 2, ...,m (Eq. 12) for any given data price pD in
Section IV-B1. We explore two methods, direct derivation and
an approximate method using the mean-field state which can
deal with complicated cases. Next, we consider Stage 2 to
determine the expression of the optimal strategy pD

∗ (Eq. 16)
of broker A for any given product price pM in Section IV-B2.
In this process, the expression of τ∗i , i = 1, 2, ...,m solved
from Nash game can be used as sellers’ optimal reactions
to pD. Then, we back to Stage 1 to find the value (rather
than the expression) of buyer B’s optimal strategy pM

∗ (Eq.
17) based on the optimal reactions of the broker as well as
sellers in Section IV-B3. After that, we can get the value of
the optimal strategy pD

∗ by substituting pM
∗ into the result

(Eq. 16) in Stage 2. Finally, we can compute the value of each
seller’s optimal strategy τ∗i by substituting pD

∗ into the result
(Eq. 12) in Stage 3. Till now, the complete strategy profile〈
pM

∗
, pD

∗
, τ ∗
〉

has been determined. The detailed deduction
is presented as follows.

1) Expression of τ ∗ in Stage 3: We present two approaches
to derive the expression of τ∗i for sellers, direct derivation and
a mean-field based approximation method for large numbers
of sellers and complicated profit function forms that can hardly
be solved by direct derivation.

Direct Derivation. By substituting Eqs. 7, 8 into Eq. 3, we
get each seller’s profit

Ψi

(
pD, τi

)
= pDχiτi − λi(χiτi)

2

= pD ·N ωiτ
2
i∑m

j=1 ωjτj
− λi

(
N

ωiτ
2
i∑m

j=1 ωjτj

)2

.

Ψi is correlated to not only seller Si’s strategy τi but
also other sellers’ strategies τj , j ̸= i because of the inner
competition formulated as Nash game among sellers. As we
discussed before, each seller aims to maximize its own profit.
Therefore, we derive each of the first-order derivatives for m
sellers’ profit functions and let each of them equal to zero,
thus getting m equations. The equation for seller Si is

pD
∂
(
N

ωiτ
2
i∑m

j=1 ωjτj

)
∂τi

−2λi·N
ωiτ

2
i∑m

j=1 ωjτj
·
∂
(
N

ωiτ
2
i∑m

j=1 ωjτj

)
∂τi

= 0.

(9)

If
∂

(
N

ωiτ
2
i∑m

j=1
ωjτj

)
∂τi

= 0, it is an all-zero solution, which does
not meet our problem situation, so we can directly eliminate
∂

(
N

ωiτ
2
i∑m

j=1
ωjτj

)
∂τi

, and then get

pD
m∑
i=1

ωiτi − 2Nλjωjτ
2
j = 0, j = 1, 2, ...,m, (10)

where each Si’s equation not only relates to its own strategy
τi but also contains other sellers’ strategies, requiring us to
solve m simultaneous equations together. Finding that

2Nλ1ω1τ
2
1 = 2Nλ2ω2τ

2
2 = ... = 2Nλmωmτ2m = pD

m∑
i=1

ωiτi.

(11)

By adding all m equations in Eq. 10, we get

mpD
m∑
i=1

ωiτi − 2N

m∑
i=1

λiωiτ
2
i = 0.

Using τ1 to indicate other τi (i = 2, 3, ..., ,m) from Eq. 11,

mpDτ1

m∑
i=1

√
λ1ω1ωi

λi
− 2Nmλ1ω1τ

2
1 = 0.

Therefore,

τ∗1 =
pD

2N
√
ω1λ1

m∑
i=1

√
ωi

λi
,

and using Eq. 11 again, we get all sellers’ optimal strategies

τi
∗ =

pD

2N
√
ωiλi

m∑
j=1

√
ωj

λj
, i = 1, 2, ...,m. (12)

Note that the second-order derivative
∂2Ψi(pD,τi)

∂τ2
i

< 0, so these
solutions can maximize each seller’s profit.

Mean-field based Approximate Method. It is theoretically
feasible that the optimal τ can be derived by directly using
the derivation method for each seller’s profit function and
then solving m simultaneous equations as above. However,
for complicated function forms (e.g., more complicated loss
function rather than the used one), since the number of
sellers m can be quite large in practice, it may be difficult
to derive analytical expressions by solving a large number
of simultaneous equations each with complex forms. Specif-
ically, the m equations are highly coupled, i.e., each with
all τi, i = 1, 2, ...,m, and eliminating the similar terms to
simplify the equations as we did in Eq. 9 is not always feasible.
Therefore, we propose an approximate method that makes each
equation with a single τi and independent from others. Note
that the approximate approach is proposed to deal with the
case where direct derivation would fail rather than to improve
the efficiency. Thus we take a different privacy loss function
form for the sellers as an example where the direct derivation
is not practically feasible in order to illustrate the mean-field
method. Specifically, we replace Eq. 8 with Li (τi) = λiχiτi

2.
The approximation is based on the mean-field theory [52],

which deals with situations that involve a great number of
agents, i.e., sellers in our context. When there are a great
number of sellers in Nash game, it is reasonable to expect
that a single seller has a tiny (infinitesimal) influence on the
equilibrium and is affected by other sellers through a mean-
field state, which we formulate as the weighted mean of all
sellers’ strategies, τ .

τ =

∑m
i=1 ωiτi
m

. (13)

The mean-field state τ indicates the overall data fidelity pro-
vided by sellers at equilibrium and is not intensively affected
by the data fidelity from one specific seller.

Using the new privacy loss function, the profit function of
seller Si in Eq. 3 is changed into

Ψi

(
pD, τi

)
= pD(χiτi)− λiχiτi

2. (14)



Using τ , χi can be simplified as N ωiτi
mτ . Since τ is not strongly

affected by specific τi, we can easily derive the first-order
derivative of each seller’s profit function Ψi

(
pD, τi

)
with

respect to τi and let them equal to zero.

pD ·N ωiτ
2
i

mτ
− λi ·N

ωiτ
3
i

mτ
= 0, i = 1, 2, ...,m.

We derive Si’s optimal strategy

τ∗i =
2pD

3λi
, i = 1, 2, ...,m. (15)

Note that the second-order derivative
∂2Ψi(pD,τi)

∂τ2
i

< 0, so these
solutions can maximize each seller’s profit.

Error Analysis. We use fixed τ to replace
∑m

i=1 ωiτi
m when

deriving the derivatives. Such replacement is an approximation
and its error depends on the form of the profit function. We
analyze the error bound of the mean-field approach.

Theorem 1: The exact weighted mean of all sellers’ strate-
gies by the direct derivation is defined as τDD, and the
approximated one by the mean-field method is τMF . The error
is τDD−τMF . Consider the case that the privacy loss function
is Li (τi) = λiχiτi

2. When the number of sellers m is large
and by scaling ω1, ω2, ..., ωm such that ωi

λi
≤ 1

pDm2 , we get

− 1

6m2
< τDD − τMF <

1

m
− 2

3m2
.

Note that what makes sense is the proportional relationship
among ωi, i = 1, 2, ...,m, allowing us to arbitrarily scale them.

Proof 1: By applying direct derivation to Eq. 14 and
considering it as a quadratic equation about τi, we can get
the expression of τ∗i w.r.t. Στ¬i =

∑m
j=1,j ̸=i ωjτj . Through

multiple times of scaling and simplifying, both the upper
and lower bounds of τDD = 1

m

∑m
i=1 ωiτ

∗
i are derived,

i.e., 1
m

∑m
i=1

pDωi

2λi
< τDD < 1

m

(∑m
i=1

√
pD ωi

λi

)2
. With the

condition further applied, the approximation error is bounded.
See more details in the complete version [53].

Through the above error analysis, we draw the follow-
ing empirical conclusion: by scaling the value of ωi (i =
1, 2, ...,m) to satisfy ωi

λi
≤ 1

pDm2 , the error of the mean-field
approximation method will be bounded in an acceptable range
and decrease with increasing m when m is very large. When
m approaches infinity, the error is approximately zero. This
result is in line with the mean-field theory [52]. When the
number of sellers m is big, our proposed mean-field method
appears reasonable in terms of error.

2) Expression of pD∗ in Stage 2: We give the expression of
pD

∗ for the broker by direct derivation. The detailed derivation
is presented in the complete version [53].

pD
∗
=

νpM

2
. (16)

Note that the second-order derivative
∂2Ω(pM ,pD,τ)

∂pD2 < 0, so
the solution can maximize the broker’s profit.

3) Value of pM ∗ in Stage 1: We also use direct derivation
in this stage, and by using the results in Sections IV-B1
and IV-B2, we can directly derive the value rather than the
expression of pM

∗ for the buyer. The detailed derivation is
presented in the complete version [53].

pM
∗
=

−c2 +
√
c2
2 + 4c2

1c2

2c1c2
, (17)

where c1 = ρ1ν
4

∑m
i=1

1
λi

and c2 = ν2

2θ1

∑m
i=1

1
λi

. Note

that the second-order derivative
∂2Φ(pM ,τ)

∂pM 2 = − θ1c
2
1

(1+c1pM )2
−

θ1c2 < 0, so the solution can maximize the buyer’s profit.
Getting pM

∗, we can determine the optimal value of pD∗ by
substituting pM

∗ into Eq. 16 and each seller’s optimal value
of τ∗i by substituting pD

∗ into Eq. 12. Till now, the complete
optimal strategy profile

〈
pM

∗
, pD

∗
, τ ∗
〉

has been determined,
based on which the market transaction can be conducted.

4) Equilibrium Analysis: We prove the existence and
uniqueness of SNE in Share.

Theorem 2: The complete optimal strategy profile〈
pM

∗
, pD

∗
, τ ∗
〉

determined by backward induction approach
uniquely constitutes SNE.

Proof 2: The existence and uniqueness of SNE can be
deduced by the property that the strategy space is a convex and
compact subspace of Euclidean space while the profit func-
tions are concave [54]. Take the buyer as an example. It can
be justified that the buyer’s maximum profit is obtained only
at pM ∗ derived by direct derivation due to the strictly concave
property of Φ(·) w.r.t. pM , leading to the first inequation in
Definition 2 holding uniquely at pM ∗. Similar results apply to
the second inequation for the broker. In terms of the sellers, a
unique Nash equilibrium can be justified similarly and the third
inequation holds for every seller only at τ∗i . Therefore, SNE
exists in our mechanism as the set of inequalities in Definition
2 can be satisfied at

〈
pM

∗
, pD

∗
, τ ∗
〉

, while any other strategy
profile cannot satisfy the three inequations simultaneously and
constitute SNE. More details can be found in [53].

C. Complete Data Trading Dynamics

We summarize the complete dynamics of data markets in
Alg. 1 with the above equilibrium-solving process integrated.

The first phase is Initialization. Each party reports its input
parameters which can be fitted based on the function shape
and historical data through parameter estimation techniques
[55]. The buyer sets appropriate parameters θ1, θ2, ρ1, ρ2 for
its utility function and proposes queries Q with performance
parameter ν which need to be solved by the product (Line
2). Note that the product is not restricted in forms decided
by the broker while the access channel for data buyers is
uniformly set as queries. The broker crystallizes the size N of
data it can handle, determines σk, k ∈ {0, 1, 2, 3, 4, 5} for its
cost function, and maintains the weights ωi, i = 1, 2, ...,m of
sellers’ datasets (Line 3). To decide the real weights before the
first transaction, the broker can use dummy buyers to iterate
several times where Shapley value can be used to evaluate



Algorithm 1: Data trading dynamics.
1 %% Initialization;
2 From the current buyer B, demanded queries Q and parameters

ν, θ1, θ2, ρ1, ρ2 are provided;
3 From broker A, N, σk(k ∈ {0, 1, 2, 3, 4, 5}), ωi(i = 1, 2, ...,m)

are given;
4 From existing m sellers, each seller Si decides λi;
5 %% Strategy Decision;
6 Through three-stage Stackelberg-Nash game, the optimal strategy

profile
〈
pM

∗
, pD

∗
, τ∗〉 is determined by the buyer, the broker,

and sellers, respectively;
7 %% Data Transaction;
8 The quantity of data each seller can sell, χ∗, is calculated according

to Eq. 7;
9 for each seller Si, i = 1, 2, ...m do

10 Randomly pick χi
∗ data pieces from its dataset Di;

11 Calculate ϵi
∗ from the strategy τi

∗ according to Eq. 6;
12 Conduct LDP with ϵi

∗ on its χi
∗-sized dataset, and then give

the protected Dt
i to broker A;

13 Broker A gets data from sellers to form dataset Dt for production
and pays compensation PS∗

i to each seller;
14 %% Product Production;
15 Broker A then uses Dt to produce the data product as well as

computes the answers to queries Q;
16 After manufacturing the product, broker A updates ω1, ω2, ..., ωm

(might scale down or normalized as needed) based on the
contribution to the product from each seller’s Dt

i ;
17 %% Product Transaction;
18 Broker A gives the product to buyer B (by returning the query

answers), and meantime buyer B pays PB∗ to broker A.

the sellers’ datasets. Sellers give their privacy sensitivity
λi, i = 1, 2, ...,m (Line 4).

The second phase is Strategy Decision. Using the strategy
mechanism, buyer B, broker A, and each seller Si give product
price pM

∗, data price pD
∗, and data fidelity τ ∗

i in order
according to Eqs. 17, 16, 12, respectively (Line 6).

Then Data Transaction between the broker and sellers
begins. The data quantity chosen from each seller can be
calculated according to Eq. 7 (Line 8). Each seller randomly
picks χ∗

i -sized dataset (Line 10) and pre-processes it for
privacy protection based on ϵi

∗ calculated from Eq. 6 (Lines
11-12). After that, seller Si gives its protected dataset Dt

i to
the broker in exchange for compensation PS∗

i (Line 13).
The next phase is Product Production. The broker collects

the data as Dt and uses it to make the product (Line 15).
Moreover, the weights of sellers’ datasets are updated by the
broker based on their corresponding contributions to the data
product (Line 16). We give one update formula based on
Shapley value as an example: ω′

i = 0.2ωi+0.8SVi, where SVi

is the Shapley value of Dt
i to the product and the coefficient

0.8 indicates to what extent the historical performance of data
can be useful for the current task. The updated weights ω′

i can
be used in the subsequent transaction.

The last phase is Product Transaction between the broker
and the buyer. The broker gives the product (strictly speaking,
the query answers based on the product) to the buyer and the
buyer pays PB∗ to the broker (Line 18). So far, the current
data transaction among buyer B, broker A, and sellers Si, i =
1, 2, ...,m has finished. When the next buyer comes, the next
transaction will start.

V. EXPERIMENTS

In this section, we present experimental studies validating
the effectiveness and efficiency of Share. We first describe
our experiment setups in Section V-A. Sections V-B and V-C
show the results verifying the effectiveness and efficiency of
Share, respectively. Section V-D shows the effects of the main
parameters used in Share.
A. Experiment Setup

We conduct experiments on a machine with an Intel Core
i7-11700KF running Ubuntu with 64GB memory. The Shap-
ley value is calculated based on Monte Carlo Method [56].
Laplace mechanism [57], a technique for achieving LDP, is
applied to each record to adjust data fidelity for each seller.
Datasets. We use a real dataset, Combined Cycle Power
Plant (CCPP) [58], which contains 9,568 data points with
four features. The buyer’s demanded query task is to get the
prediction of net hourly electrical energy output given the
specific conditions of features, which can be understood as the
analytical query extensively used in the analytical database. A
linear regression model is considered as the data product that
the broker manufactures to serve the queries and explained
variance is used to measure the performance. We randomly
choose a training dataset (the data of sellers) with a size of
9,000, and the 568 data records left are used for validation
(based on which the queries of the buyer are generated). In
the real world, the datasets of sellers can be the same in
quality (which makes it easy to randomly choose sellers to
buy data) or vary in quality, which is the case we deal with in
Share. To simulate the distinction in data quality, we first sort
data by quality measured by Shapley value, which indicates
the contribution of each data record to regression. Then by
distributing data in decreasing quality over sellers, each seller
owns 90 data records with different quality. Besides the real
dataset, we augment CCPP through replication and Gaussian
noise N (0, 0.12) injection to generate a synthetic dataset with
a size of 1, 000, 000 to test the efficiency of Share.
Parameter Settings. Our parameters include the number of
sellers m, the total data quantity N , the required explained
variance ν, the individual parameters of each party’s profit
(i.e., buyer B’s θ1, θ2, ρ1, ρ2 related to utility, broker A’s
cost parameters σk, k ∈ {0, 1, 2, 3, 4, 5}, and seller Si’s
privacy sensitivity λi, i = 1, 2, ...,m), and the initial weights
ωi, i = 1, 2, ...,m of sellers. We set m = 100, N = 500,
and ν = 0.8. The utility parameters of the buyer are set
as θ1 = 0.5, θ2 = 0.5, ρ1 = 0.5, ρ2 = 250 (in order
to balance the impacts of product performance and dataset
quality). The cost parameters of the broker are related to the
practical manufacturing situation and are set as default values
σ0 = 1 × 10−3, σ1 = −2, σ2 = −3, σ3 = 1 × 10−3, σ4 =
2×10−3, σ5 = 1×10−3. Sellers’ λi, i = 1, 2, ...,m are picked
randomly in (0, 1). ω1, ω2, ..., ωm are initially generated by
using a dummy buyer to iterate the mechanism which takes
five times to stabilize the profits. We consider buyer B as a
general buyer coming after several transactions have finished.
Shapley values of sellers’ datasets can be calculated after
regression to update the weights for the next transaction.
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Measurement Metrics. Four main indexes are adopted to
evaluate the mechanism concerning both effectiveness and
efficiency. We will show the results of using direct derivation
for equilibrium solving. The mean-field approach (used when
direct derivation fails) performs the same on the metrics.

• Profit. The profits of the buyer, the broker, and sellers.
• Social welfare. The effect on the overall benefit, no-

tated as a function of τ , i.e., SW (τ ) = U (τ ) −∑m
i=1 Li (τi)−C. Note that the social welfare measures

the total profits, correlated to the collected data (more
precisely, data fidelity τ ) yet independent of payments
(prices) which only circulate among participants. The
optimum social welfare can be derived by solving the
social welfare maximization problem maxτ SW and
used to measure the social welfare level of our mechanism
which is represented as the ratio to the social optimum.

• Product quality. The quality of the data product manu-
factured by the collected data with distinctive fidelity.

• Runtime. The time cost of executing the mechanism
which evaluates the efficiency.

B. Effectiveness
Given the parameters set above, the optimal strategy〈
pM

∗
, pD

∗
, τ ∗
〉

is determined according to solutions in Eqs.
17, 16, and 12. We verify the optimality (profit maximization)
for all participants as well as the implied equilibrium in
Figs. 2(a)-(c). The social welfare and product quality are then
evaluated with different numbers of sellers in Fig. 2(d). We
also investigate the effect of the inner Nash game in Table II.

Fig. 2(a) shows the profit maximization of buyer B. By
changing its strategy pM while maintaining the rest, the peak
of the buyer’s profit Φ(·) appears when its optimal strategy
pM

∗
= 0.036 determined in Eq. 17 is adopted (the monetary

unit can adjust with how the utility/cost function is mapped
into money). Whatever strategy the buyer chooses except pM ∗,
it will get a lower profit when all other participants’ strategies
are fixed. We can also observe the change in the profits of the
broker and the seller (with seller S1 taken as a representative
of sellers) shown in the other two lines. Specifically, with

growing pM , the broker can gain more profit, which can
further add the compensations and thus the profits for sellers.

Fig. 2(b) shows the profit maximization of broker A. By
changing its strategy pD while maintaining the rest, the peak
of the broker’s profit Ω(·) verifies that its optimal strategy
pD

∗
= 0.014 solved by Eq. 16 uniquely guarantees its profit

maximization while any other pD would lead to an inferior
profit. The change in the profits of the buyer and seller can
be also observed. Specifically, the growing pD brings more
compensations to sellers, adding their profits. Due to more
compensations, the dataset quality from sellers can therefore
be improved, which causes the rise of the buyer’s profit.

Fig. 2(c) shows the profit maximization of seller S1 (taken
as a representative). By changing its strategy τ1 while main-
taining the rest, the peak of seller S1’s profit Ψ1 verifies
that the optimal strategy τ∗1 = 0.001 solved by Eq. 12
achieves maximum profit and unilaterally changing its strategy
promises no more profit. Combined with the results analyzed
above, it can be concluded that SNE is reached since no par-
ticipant can improve its profit by individually manipulating its
strategy, and the optimality of all the participants is achieved.
The other lines show the change in profits of other participants,
indicating the transparency of the inner Nash game of Stage
3 to the upper stages and the dilution of the individual effect
by the large number of sellers. See more analyses in [53].

Fig. 2(d) shows the ratio results of social welfare and
data product quality, collectively referred to as social efficacy,
compared to the optimum ones derived from the social welfare
maximization problem. The proposed mechanism can achieve
extremely high (over 95%) social welfare. As the number
of sellers rises, the social welfare slightly decreases, which
implies that more strategic gaming among participants exac-
erbates the social inefficiency in terms of overall profits. The
product quality performs inferior to the socially optimal result
due to the selfish profit-seeking behaviors of participants,
which, however, would still outperform the baselines as shown
in the following justification of Nash game. Better products
can be acquired when more sellers (thus, more data) engage,
implying the significance of data circulation.
Inner Nash Game. To verify the effectiveness of using Nash
game to formulate Stage 3, we implement the mechanism
compared to the baselines of using Random and Average
strategies to select data. Table II shows the product quality
qM , the profit results of the buyer Φ, the broker Ω, and the
average level of sellers Ψ̄, as well as the social welfare SW
(represented as the ratio to the optimum) through Nash game,
Random, and Average respectively with the parameters kept
the same. We can observe that the Nash-based seller selection
outperforms the baselines in terms of the data product quality,
the profits of all three parties, and the social welfare. The
product quality based on the data selected by Nash game
is the highest, which explicitly shows the effectiveness of
the seller selection results. In terms of individual profits, not
only data sellers benefit from their inner benign competition,
the profits of both the buyer and the broker also increase,
which indicates the advantage of the inner Nash game to



TABLE II
COMPARING NASH WITH OTHERS.

Nash Random Average
qM 6.379658 2.013382 2.022149
Φ 3.255229 2.995894 2.996831
Ω 0.099928 0.031531 0.031669
Ψ̄ 0.000500 0.000154 0.000161

SW 96% 90% 90%
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Fig. 3. Efficiency.

the upper stages. In terms of social benefits, the Nash game
modeling achieves the highest social welfare compared to the
optimal one, implying its effectiveness in data markets both
individually and collectively.

Note that the buyer’s profit is much more than the broker’s
and sellers’, which is in line with the property of Stackelberg
game (in favor of the leader) and consistent with the desired
effect in demand-driven markets. The buyer as the transaction
initiator can create value using the demanded product and gain
long-term benefits (e.g., the huge revenue Ford earns owing to
the business decision based on the acquired query answers),
while the broker or the sellers make a profit from the one-shot
transaction which is relatively lower.
C. Efficiency

Fig. 3(a) and Fig. 3(b) show the runtime of the proposed
data trading algorithm with and without Shapley value to
update weights. We use the synthetic dataset with 1, 000, 000
data records and adjust the number of sellers m from 5 to
10, 000 while fixing the other parameters and the average
number of data records chosen from each seller as 100.
Fig. 3(a) shows that the runtime grows as m goes higher but
with an acceptable rate. Even when m = 10, 000, it does not
take too much time. While our mechanism contains a time-
consuming part to calculate Shapley values, Fig. 3(b) shows
that our mechanism without Shapley value calculation can run
very fast with a linear time complexity.
D. Parameter Influence

In this section, we make sensitivity analyses of the major
parameters in our mechanism and investigate how the param-
eters affect the strategies and profits of the three parties.

Fig. 4(a) and Fig. 4(b) present the effect of ρ1 on strategies
and profits. Note that ρ1 is a parameter of the buyer’s sensitiv-
ity to dataset quality, which objectively reflects the relationship
between dataset quality and product utility. Fig. 4(a) shows that
too small of a ρ1 can hardly lead to effective markets because
of the buyer’s indifference to the data. When ρ1 reaches a
certain level, all the strategies stay the same and the market
reaches equilibrium. The influence of ρ1 is limited within the
utility for the buyer and can no longer disturb the equilibrium,
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which may be due to common sense that the dataset quality
cannot increase unlimitedly and with sharper sensitivity to the
data, higher prices wouldn’t bring about better data anymore.
Figs. 4(b-f) show other parameter effects, which are detailedly
analyzed in the complete version [53].

VI. CONCLUSION AND FUTURE WORK

We presented Share, the first demand-driven incentivized
data market framework. The profit maximization for all par-
ticipants and the buyer-broker-sellers market flow are fulfilled
by considering the mutual interaction among three parties as a
three-stage Stackelberg game, in which the absolute pricing for
data is also realized. We addressed the seller selection problem
by considering the inter-seller competition as a Nash game. To
derive the Stackelberg-Nash Equilibrium, backward induction
is used, and a novel mean-field approximation with provable
guarantees is proposed. Our proposed data market framework
performs well on real and synthetic datasets in terms of both
effectiveness and efficiency.

Our work opens up many interesting research questions,
e.g., how to accommodate multiple buyers and how to support
complex costs of sellers across transactions, which can be
promising future directions.
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